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1 Introduction

In finance the dynamic behavior of underlying economic variables and asset prices has been often

described using one-factor diffusion models, where volatility is a deterministic function of the level

of the underlying variable.1

Since determining the functional form of such diffusion processes is particularly important for

pricing contingent claims and for hedging purposes, several specification tests have been proposed,

within the class of one-factor models.

Examples include Aı̈t-Sahalia (1996), who compares the parametric density implied by a given

null model with a nonparametric kernel density estimator. He rejects most of the commonly

employed models and argues that rejections are mainly due to nonlinearity in the drift term.2

Similar findings to those of Aı̈t-Sahalia (1996) have been also provided by Stanton (1997) and

Jiang (1998). Durham (2003) also rejects most of the popular models; in his case rejections are

mainly due to misspecification of the volatility term. In particular, he finds implausibly high values

for the elasticity parameter in the Constant Elasticity of Variance (CEV) model, implying violation

of the stationarity assumption. Bandi (2002) applies fully nonparametric estimation of the drift

and variance diffusion terms, based on the spatial methodology of Bandi and Phillips (2003), and

finds that the drift term is very close to zero over most of the range of the short term interest rate.

Therefore, rejections of a given model seem to be due to failure of the mean reversion property

rather than to nonlinearity in the drift term. Qualitatively similar findings are obtained by Conley,

Hansen, Luttmer and Scheinkman (1997), using generalized method of moments tests based on the

properties of the infinitesimal generator of the diffusion.3

Most of the papers cited above have suggested testing and modeling procedures which are valid

under the maintained hypothesis of a one-factor diffusion data generating process. Hence, the need

of testing for the validity of the whole class of one-factor models.

This is the objective of the paper. Under minimal assumptions, the paper proposes a testing

procedure in order to distinguish between the case in which the volatility process is a deterministic

function of the level of the underlying variable and the one in which it is a function of one or more
1Although in the financial literature there is a somewhat widespread consensus about the fact that stock prices

are better characterized by multifactor stochastic volatility models, short term interest rates are still often modeled

as a one-factor diffusion process, in which volatility is a deterministic function of the level of the variable (see e.g.

Vasicek, 1977, Brennan and Schwartz, 1979, Cox, Ingersoll and Ross, 1985, Chan, Karolyi, Longstaff and Sanders,

1992, Pearson and Sun, 1994).
2Aı̈t-Sahalia (1996) does not reject a generalized version of the Constant Elasticity of Variance model. His results

have been revisited by Pritsker (1998), who points out the sensitivity of Aı̈t-Sahalia’s test to the degree of dependency

in the short interest rate process.
3See also the comprehensive review on estimation of one-factor models by Fan (2003).
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(possibly unobservable) factors, driven by not perfectly correlated Brownian motions. With a slight

abuse of terminology, the former class of models is referred to as one-factor models and the latter as

stochastic volatility models.4 In particular, the paper compares generic classes of one-factor versus

stochastic volatility models, without making assumptions on the functional forms of either the drift

or the variance component.

If the null hypothesis is not rejected, then one can use the different testing and modeling pro-

cedures mentioned above, based on the maintained hypothesis of a one-factor diffusion generating

process. Conversely, if the null hypothesis is rejected, then one has to perform model diagnostics

within the class of stochastic volatility models, using for example the efficient method of moments

(e.g. Chernov, Gallant, Ghysels and Tauchen, 2003), or generalized moment tests based on the

properties of the infinitesimal generator of the diffusion (see e.g. Corradi and Distaso, 2004). For

example, one can test the validity of multi factor term structure models, suggested by e.g. Duffie

and Singleton (1997), Dai and Singleton (2000, 2002).

The suggested test statistics are based on the difference between a kernel estimator of the

instantaneous variance, averaged over the sample realization on a fixed time span, and realized

volatility. The intuition behind the chosen statistic is the following: under the null hypothesis of a

one-factor model, both estimators are consistent for the underlying integrated volatility; under the

alternative hypothesis the former estimator is not consistent, while the latter is. More precisely,

building on some recent work by Bandi and Phillips (2003) and Barndorff-Nielsen and Shephard

(2004a), it is shown that the statistics weakly converge to mixed normal distributions under the

null hypothesis and diverge at an appropriate rate under the alternative. The derived asymptotic

theory is based on the time interval between successive observations approaching zero, while the

time span is kept fixed. As a consequence, the limiting behavior of the statistic is not affected by

the drift specification. Also, no stationarity or ergodicity assumption is required.

The proposed testing procedure is derived under the assumptions that the underlying variables

are observed without measurement error and that the generating processes belong to the class of

continuous semimartingales. Therefore, the provided tests are not robust to the presence of either

jumps or market microstructure effects; more precisely, when either of the two occur, the test

tends to reject the null hypothesis, even if the volatility process is a deterministic function of the

underlying variable. However, as the test is computed over a finite time span, one can first test for

the hypotheses of no jumps and no microstructure effects, and then perform the suggested testing

procedure over a time span in which neither of the hypotheses above is rejected.
4In the stochastic volatility literature, often by one-factor model one means a model in which volatility is a function

of a single stochastic factor, driven by a Brownian motion not perfectly correlated with the one driving the underlying

economic variable or the asset price.

2



The rest of this paper is organized as follows. In Section 2, the testing procedure is outlined

and the relevant limit theory is derived. Section 3 reports the findings from a Monte Carlo exercise,

in order to assess the finite sample behavior of the proposed tests. Concluding remarks are given

in Section 4. All the proof are gathered in the Appendix.

In this paper, p−→, d−→ and a.s.−→ denote respectively convergence in probability, in distribution

and almost sure convergence. We write 1{·} for the indicator function, $!% for the integer part of

!, IJ for the identity matrix of dimension J and Z ∼ MN(·, ·) to denote that the random variable

Z is distributed as a mixed normal.

2 Testing for One-Factor vs Stochastic Volatility Models

2.1 Set-Up

As discussed above, our objective is to device a data driven procedure for deciding between one-

factor diffusion models and stochastic volatility models, under minimal assumptions.

We consider the following class of one-factor diffusion models

dXt = µ(Xt)dt + σtdW1,t

σt = σ (Xt) (1)

and the following class of stochastic volatility models

dXt = µ(Xt)dt + σtdW1,t

σ2
t = g(ft)

dft = b(ft)dt + σ1(ft)dW2,t, (2)

where ft is typically an unobservable state variable driven by a Brownian motion, W2,t, possibly but

not perfectly correlated with the Brownian motion driving Xt, thus allowing for possible leverage

effects.

The models in (1) encompass the class of parametric specifications analyzed by Aı̈t-Sahalia

(1996), and they also allows for generic nonlinearities. The models in (2) include the square root

stochastic volatility of Heston (1993), the Garch diffusion model (Nelson, 1990), the lognormal

stochastic volatility model of Hull and White (1987) and Wiggins (1987), and are also related to

the class of eigenfuction stochastic volatility models of Meddahi (2001). Note that ft may be a

multidimensional process, thus allowing for multifactor stochastic volatility processes. Also, the

one-factor model may be possibly nested within the stochastic volatility model, in the sense that we

can allow for the specification σ2
t = σ2 (Xt) g(ft). Andersen and Lund (1997) and Durham (2003)
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propose to extend the different one-factor models by adding a stochastic volatility term, and suggest

models in which volatility depends on both the level of the underlying variable and a latent factor,

driven by a different Brownian motion.5

In particular, it should be stressed that in our procedure we compare generic classes of one

factor versus stochastic volatility models, without any functional form assumption on either the

drift or the variance term.

We state the hypothesis of interest as

H0 : σ2
t = σ2 (Xt) , a.s.

versus the alternative

HA : σ2
t = g (ft) , a.s.

where ∀ω ∈ Ω+,
∣∣∣
∫ 1
0 (g (fs)− g (Xs)) ds

∣∣∣ )= 0 and Pr (Ω+) = 1, with Ω+ ∈ Ω, and Ω denotes the

probability space on which (ft, Xt) are defined.

Thus, under the null hypothesis the volatility process is a measurable function of the return

process Xt. On the other hand, under the alternative, the volatility process is a measurable function

of a possibly unobservable process ft. In the paper, we simply require that the occupation densities

of the observable process Xt and of the (possibly) unobservable factor ft do not coincide. In fact, if

they do coincide, then the integrated volatility process would be almost surely the same under both

hypotheses. Finally, note that the case of σ2
t = σ2 (Xt) g(ft) falls under the alternative hypothesis,

while the case of a constant variance falls under the null.

In the sequel, we assume that we have data recorded at two different frequencies, over a fixed

time span, which for sake of simplicity, but without loss of generality, is assumed equal to 1.6 More

specifically, we assume to have n and m observations, with m ≤ n, so that the discrete sampling

interval is equal respectively to 1/n and 1/m.

The proposed test statistics are based on

Zn,m,r =
√

m



 1
n

!(n−1)r#∑

i=1

S2
n(Xi/n)−RVm,r



 , (3)

where r ∈ (0, 1],

S2
n(Xi/n) =

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}n

(
X(j+1)/n −Xj/n

)2

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}

(4)

5Andersen and Lund (1997) find that the inclusion of a stochastic volatility component in a square root model

helps the elasticity parameter to fall in the stationary region. Durham (2003) finds that, although the addition of a

second factor increases the likelihood, it has very little impact as to what concerns bond pricing.
6In Section 3, reporting the results of the simulation study, we will consider a time span equal to five days.
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and

RVm,r =
!(m−1)r#∑

j=1

(
X(j+1)/m −Xj/m

)2
. (5)

Note that S2
n(Xi/n) is a nonparametric estimator of the volatility process evaluated at Xi/n; Florens-

Zmirou (1993) has established consistency and the asymptotic distribution of a scaled version of

(4) when the variance process follows (1).7 Recently, S2
n(Xi/n) has been used by Bandi and Phillips

(2003), in the context of fully nonparametric estimation of diffusion processes; their asymptotic

theory is based on both the time span going to infinity and the discrete interval between successive

observations going to zero. This is because they are interested in the joint estimation of the drift

and variance diffusion terms.8

Conversely, our objective is to distinguish between the cases in which volatility is a measurable

function of the observable process, and the one in which it depends on some other state variable.

Therefore we remain silent about the drift term, and we only consider asymptotic theory in terms

of the discrete interval approaching zero. In fact, on a finite time span the contribution of the drift

term is asymptotically negligible.

Notice that S2
n(Xi/n) is a consistent estimator of the instantaneous variance only under the null

hypothesis. Therefore, also its average over the sample realization of the process on a finite time

span, 1/n
∑!(n−1)r#

i=1 S2
n(Xi/n), is a consistent estimator of integrated volatility only under the null

hypothesis.

RVm,r, which is known as realized volatility, has been proposed as a measure for volatility

concurrently by Andersen, Bollerslev, Diebold and Labys (2001), Andersen, Bollerslev, Diebold

and Ebens (2002) and Barndorff-Nielsen and Shephard (2002). The properties of realized volatility

have been extensively analyzed by Barndorff-Nielsen and Shephard (2002, 2004a,b), Andersen,

Bollerslev, Diebold and Labys (2003), Barndorff-Nielsen, Graversen and Shephard (2004) (see also

Andersen, Bollerslev, Meddahi, 2004a,b, and Meddahi, 2002, 2003). Realized volatility is a “model

free” estimator of the quadratic variation of the processes defined in (1) and (2), and is consistent for

the integrated (daily) volatility under both hypotheses. Barndorff-Nielsen and Shephard (2004a)

have shown that a scaled and centered version of RVm,r weakly converges to a mixed normal

distribution when the log price process follows a continuous semimartingale, a result which we will

use in the proof of our Theroem 1. The reason why we use two different sample frequencies in the
7The estimator S2

n(Xi/n) has been also used by Corradi and White (1999) in order provide a test for the correct

specification of the variance process, regardless of the drift specification. Within the class of one-factor models, a

more general test, also allowing for time non-homogeneity, has been suggested by Dette, Podolskij and Vetter (2004).
8Bandi and Phillips (2003) consider a slightly modified version of S2

n(Xi/n), with a generic kernel K(·) replacing

the indicator function. See also Jiang and Knight (1997).
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computation of S2
n(Xi/n) and RVm,r will become clear in the next subsection.

In the sequel we shall need the following assumption.

Assumption 1.

(a) σ (·) and µ (·) , defined in (1), satisfy local Lipschitz and growth conditions. Therefore, for

any compact subsets M (under the null hypothesis) and J (under the alternative hypothesis)

of the range of the process Xt, there exist constants KM
1 , KM

2 , KM
3 , KM

4 , KJ
1 and KJ

2 , such

that, ∀(x, y) ∈ M and ∀(x′, y′) ∈ J ,

|σ(x)− σ(y)| ≤ KM
1 |x− y| ,

|σ(x)|2 ≤ KM
2 (1 + |x|2),

|µ(x)− µ(y)| ≤ KM
4 |x− y|,

∣∣µ(x′)− µ(y′)
∣∣ ≤ KJ

2 |x′ − y′|

and

xµ(x) ≤ KM
3 (1 + |x|2), x′µ(x′) ≤ KJ

1 (1 + |x′|2).

(b) σ1 (·) and b (·) , defined in (2), satisfy local Lipschitz and growth conditions. Therefore, for

any compact subset L of the range of the process ft, there exist constants KL
1 , KL

2 , KL
3 and

KL
4 , such that, ∀(p, q) ∈ L,

|σ1(p)− σ1(q)| ≤ KL
1 |p− q| ,

|σ1(p)|2 ≤ KL
2 (1 + |p|2),

|b(p)− b(q)| ≤ KL
3 |p− q|

and

pb(p) ≤ KL
4 (1 + |p|2).

(c) µ(·),σ(·) and g (·) are continuously differentiable.

Assumption 1(a) states local Lipschitz and growth conditions for the drift term under both hy-

potheses and for the variance term under the null hypothesis. Assumption 1(b) states local Lipschitz

and growth conditions for the variance term under the alternative. Assumptions 1(a)(b) ensure the

existence of a unique strong solution under both hypotheses (see e.g. Chung and Williams, 1990,

p.229). Since we are studying the diffusion processes over a fixed time span, we do not need to

impose more demanding assumptions, such as stationarity and ergodicity.9

9Note that Bandi and Phillips (2001, 2003) allow the time span to approach infinity, and then require the diffusion

to be null Harris recurrent.
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2.2 Limiting Behavior of the Statistic

We can now establish the limiting distribution of the proposed test statistics based on Zn,m,r,

defined in (3), for both the cases where n = m and m/n → 0, as m,n →∞.

Theorem 1. Let Assumption 1 hold.

Under H0,

(i)a if, as n,m, ξ−1
n → ∞, nξn → ∞ and for any arbitrarily small ε > 0, n1/2+εξn → 0, and if

m = n, then, pointwise in r ∈ (0, 1)

Zn,r
d−→ Zr ∼ MN

(
0, 2

∫ ∞

−∞
σ4(a)

LX(r, a) (LX(1, a)− LX(r, a))
LX(1, a)

da

)
, (6)

where Zn,r ≡ Zn,n,r and

LX(r, a) = lim
ψ→0

1
ψ

1
σ2(a)

∫ r

0
1{Xu∈[a,a+ψ]}σ

2(Xu)du

denotes the standardized local time of the process Xt.

(i)b Define Zn = maxj=1,...,J

∣∣Zn,rj

∣∣ and Z = maxj=1,...,J

∣∣Zrj

∣∣ , where 0 < r1 < . . . < rj−1 <

rj < . . . < rJ < 1, for j = 1, . . . , J, with J arbitrarily large but finite. If, as n,m, ξ−1
n → ∞,

nξn →∞, and, for any ε > 0 arbitrarily small, n1/2+εξn → 0, and if m = n, then

Zn
d−→ Z,

with 



Zr1

Zr2

...

ZrJ




∼ MN




0,





V (r1, r1) V (r1, r2) . . . V (r1, rJ)

V (r2, r1) V (r2, r2) . . . V (r2, rJ)
...

... . . . ...

V (rJ , r1) V (rJ , r2) . . . V (rJ , rJ)








, (7)

where ∀ r, r′,

V (r, r′) = V (r′, r) = 2
∫ ∞

−∞
σ4 (a)

LX(min(r, r′), a) (LX(1, a)− LX(min(r, r′), a))
LX(1, a)

da.

(i)c If, as n,m, ξ−1
n →∞, nξn →∞ and nξ2

n → 0, and, for any ε > 0 arbitrarily small, m/n1−ε →
0, then

Zn,m,r
d−→ ZMr ∼ MN

(
0, 2

∫ ∞

−∞
σ4 (a)LX(r, a)da

)
.
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(i)d Define Zn,m = maxj=1,...,J

∣∣Zn,m,rj

∣∣ and ZM = maxj=1,...,J

∣∣ZMrj

∣∣ , where 0 < r1 < . . . <

rj−1 < rj < . . . < rJ < 1, for j = 1, . . . , J, with J arbitrarily large but finite. If, as

n,m, ξ−1
n → ∞, nξn → ∞ and nξ2

n → 0, and, for any ε > 0 arbitrarily small, m/n1−ε → 0,

then

Zn,m
d−→ ZM,

with




ZMr1

ZMr2

...

ZMrJ




∼ MN




0,





V M(r1, r1) V M(r1, r2) . . . V M(r1, rJ)

V M(r2, r1) V M(r2, r2) . . . V M(r2, rJ)
...

... . . . ...

V M(rJ , r1) V M(rJ , r2) . . . V M(rJ , rJ)








, (8)

where that, ∀ r, r′,

V M(r, r′) = V M(r′, r) = 2
∫ ∞

−∞
σ4 (a)LX(min(r, r′), a)da.

(ii) Under HA, if, as n,m, ξ−1
n → ∞, nξn → ∞ and nξ2

n → 0, and if m/n → π ≥ 0, then,

pointwise in r ∈ (0, 1],

Pr
(

ω :
1√
m

|Zn,m,r(ω)| ≥ ς(ω)
)
→ 1,

where ς(ω) > 0 for all ω ∈ Ω+, where Ω+ is defined as in the statement of HA.

Notice that, as shown in the proof in the Appendix, under the alternative hypothesis, and in

the case where ft is a one-dimensional process, the dominant term of the proposed statistic is

a scaled version of the absolute value of the difference between the local times of Xt and ft. If

instead ft is a multidimensional process, then the multivariate local time analogue of the Lf (1, a)

used in Theorem 1 is not defined, but it can still be interpreted as a occupation density of the

multivariate diffusion ft (see e.g. Geman and Horowitz, 1980 and Bandi and Moloche, 2001).

Therefore, in both cases, there exists an (almost surely) strictly positive random variable ς, such

that (1/
√

m) |Zm,n,r| ≥ ς, with probability approaching one.

The following Corollary considers the case where r = 1, i.e. when we use the whole span of

data in constructing the test statistic.

Corollary 1. Let Assumption 1 hold. Under H0, if, as n,m, ξ−1
n → ∞, nξn → ∞ and nξ2

n → 0,

and, for any ε > 0 arbitrarily small, m/n1−ε → 0, then

Zn,m,1
d−→ MN

(
0, 2

∫ ∞

−∞
σ4 (a)LX(1, a)da

)
.
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Thus, for r = 1, the statistic has a mixed normal limiting distribution for m/n → 0 as m, n →
∞.10

The theoretical results derived above provide an unfeasible limit theory, since the variance

components have to be estimated. A consistent estimator of the standardized local time is given

by

L̂X,n(r, a) =
1

2nξn

1
S2

n(a)

!(n−1)r#∑

i=1

1{|Xi/n−a|<ξn}.

Thus an estimator of

2
∫ ∞

−∞
σ4(a)

LX(r, a) (LX(1, a)− LX(r, a))
LX(1, a)

da, (9)

i.e. of the quantity resulting in Theorem 1 part (i)a, is given by

∫ ∆2

∆1

σ̂4
n(a)

L̂X,n(r, a)
(
L̂X,n(1, a)− L̂X,n(r, a)

)

L̂X,n(1, a)
da, (10)

where

σ̂4
n(a) =

∑n−1
i=1 1{|Xi/n−a|<ξn}n2

(
X(i+1)/n −Xi/n

)4

∑n−1
i=1 1{|Xi/n−a|<ξn}

.

In order to implement the estimator in (10), we need to choose the interval of integration, ∆ =

(∆1, ∆2). Now, if we choose ∆ too small, then we may run the risk of getting an inconsistent

estimator of the term in (9). On the other hand, if we choose ∆ too large, then for some a ∈ ∆,

L̂X,n(r, a) and L̂X,n(1, a) would be very close to zero, and the estimator in (10) will result in a ratio

of two terms approaching zero.

Of course, when computing (10) we can exclude all a ∈ ∆ for which, say, L̂X,n(1, a) ≤ δn, where

δn → 0 as n →∞. However, devicing a data-driven procedure for choosing δn is not an easy task.

In order to avoid this problem, we instead propose below an upper bound for the critical values of

the limiting distribution in Theorem 1, parts (i)a and (i)b.

In fact, note that almost surely,

2
∫ ∞

−∞
σ4(a)

LX(r, a) (LX(1, a)− LX(r, a))
LX(1, a)

da

≤ 2
∫ ∞

−∞
σ4(a)LX(r, a)da ≡ 2

∫ r

0
σ4(Xs)ds,

where the last equality above follows from Lemma 3 in Bandi and Phillips (2003).

Now, Barndorff-Nielsen and Shephard (2002) have shown that

n

3

!(n−1)r#∑

i=1

(
X(i+1)/n −Xi/n

)4 p−→
∫ r

0
σ4

sds, (11)

10When m = n and r = 1, the statistic converges to zero in probability.
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where σ4
s = σ4(Xs) under H0 and σ4

s = g2(fs) under HA; in other words the estimator defined in

(11) is consistent for the “true” integrated quarticity under both hypotheses and therefore provides

an estimator of the upper bound of the term in (9).

On the other hand, we shall provide correct asymptotic critical values for the limiting distribu-

tion in Theorem 1, parts (i)c and (i)d and in Corollary 1. In order to obtain asymptotically valid

critical values and to make the limit theory derived in Theorem 1 part (i)d feasible, we will use a

data-dependent approach. For s = 1, . . . , S, where S denotes the number of replications, let

d̂(s)
m,r =





d̂(s)
m,r1

d̂(s)
m,r2

...

d̂(s)
m,rJ




=





Ĉm(r1, r1) Ĉm(r1, r1) Ĉm(r1, r1) Ĉm(r1, r1)

Ĉm(r1, r1) Ĉm(r2, r2) Ĉm(r2, r2) Ĉm(r2, r2)
...

... . . . ...

Ĉm(r1, r1) Ĉm(r2, r2) . . . Ĉm(rJ , rJ)





1/2 



η(s)
1

η(s)
2
...

η(s)
J




, (12)

where

Ĉm(rj , rj) =
2
3

!(m−1)rj#∑

i=1

m
(
X(i+1)/m −Xi/m

)4

is a consistent estimator of twice the integrated quarticity and, for each s,
(
η(s)
1 η(s)

2 . . . η(s)
J

)′
is

drawn from a N(0, IJ). Then compute maxj=1,...,J

∣∣∣d̂(s)
m,r

∣∣∣ , repeat this step S times, and construct

the empirical distribution. As S →∞, the empirical distribution of maxj=1,...,J

∣∣∣d̂(s)
m,r

∣∣∣ will converge

the distribution of a random variable defined as

max
j=1,...,J

∣∣∣∣MN
(

0, 2
∫ ∞

−∞
σ4 (a)LX(rj , a)da

)∣∣∣∣ .

Therefore an asymptotically valid critical value for the limit theory in Theorem 1 part (i)d will be

given by CV S
α , which denotes the (1−α)−quantile of the empirical distribution of maxj=1,...,J |d̂(s)

m,rj |,
computed using S replications. Given the discussion above, CV S

α will provide an upper bound for

the critical values of the limiting distribution derived in Theorem 1, part i(b). The implied rules

for deciding between H0 and HA are outlined in the following Proposition.

Proposition 1. Let Assumption 1 hold.

(a) Let S →∞. Suppose that as n,m, ξ−1
n →∞, nξn →∞ and, for any ε > 0 arbitrarily small,

n1/2+εξn → 0. If m = n, then do not reject H0 if

Zn ≤ CV S
α

and reject otherwise. This rule provides a test with asymptotic size smaller than α and

asymptotic unit power.

10



(b) Let S → ∞. Suppose that, as n,m, ξ−1
n → ∞, nξn → ∞ and nξ2

n → 0 , and, for any ε > 0

arbitrarily small, m/n1−ε → 0; then do not reject H0 if

Zn,m ≤ CV S
α

and reject otherwise. This rule provides a test with asymptotic size equal to α and asymptotic

unit power.

As mentioned above, our test is designed to compare two classes of models, namely the one-

factor diffusion models and the stochastic volatility models, regardless of the specification of the

drift term. Therefore, if for example model (1) is augmented by adding another factor into the drift

term (see e.g. Hull and White, 1994), our test will still fail to reject the null hypothesis considered,

because the drift term is, over a fixed time span, of a smaller order of probability than the diffusion

term and so is asymptotically negligible.

2.3 Market Microstructures and jumps

The asymptotic theory derived in the previous subsection relies on the fact that the underlying

process is a continuous semi-martingale. However, some recent financial literature has pointed

out the effects of possible jumps and market microstructure error on realized volatility (see e.g.

Barndorff-Nielsen and Shephard, 2004c,d, Corradi and Distaso, 2004, Andersen, Bollerslev and

Diebold, 2003 for jumps, and Aı̈t-Sahalia, Mykland and Zhang, 2003, Zhang, Mykland and Aı̈t-

Sahalia, 2003, Bandi and Russell, 2003, Hansen and Lunde, 2004 for microstructure noise).

We begin by analyzing the contribution of large and rare jumps. Suppose that the generating

process in (1) is augmented by a jump component,

dXt = µ(Xt)dt + dzt + σtdW1,t,

where σt = σ(Xt), and zt is a pure jump process.

The test statistics based on Zn,m,r are not robust to the presence of jumps. The intuitive reason

is that jumps have a different impact on the two components of the statistics, namely

n−1
!(n−1)r#∑

i=1

S2
n(Xi/n) and RVm,r.

In fact, in the presence of jumps, RVm,r converges to the integrated volatility process plus the sum

of the squared magnitudes of the jumps (see Barndorff-Nielsen and Shephard, 2004c). Conversely,

n−1 ∑!(n−1)r#
i=1 S2

n(Xi/n) converges to integrated volatility plus the weighted sum of the squared

magnitudes of the jumps, where the weights depend on the local time of Xt. Broadly speaking, a

11



jump occurring at time j/n has a larger effect on the component n−1 ∑!(n−1)r#
i=1 S2

n(Xi/n) if there

are many observations in the neighborhood of Xj/n.

However, since our test is carried over a fixed time span, we can pretest for the presence of

no jumps, following for example Barndorff-Nielsen and Shephard (2004c,d); they proposed a test

based on the properly scaled difference between realized volatility and bipower variation, which is a

consistent estimator of integrated volatility in the presence of large and rare jumps in the log price

process. If the null hypothesis is not rejected, we can apply our methodology. Huang and Tauchen

(2004) also suggest a variety of Hausman type tests for jumps and find evidence of a relatively small

number of jumps in the log price process. A similar finding is reported by Andersen, Bollerslev and

Diebold (2003).

As for the presence of microstructure effects, suppose that the observed price of an asset can

be decomposed into

Xj/m = Yj/m + εj/m.

Here εj/m is interpreted as a noise capturing the market microstructure effect. The contribution

of the microstructure noise on realized volatility has already been analyzed in a series of recent

papers (see e.g. Aı̈t-Sahalia, Mykland and Zhang, 2003, Zhang, Mykland and Aı̈t-Sahalia, 2003,

Bandi and Russell, 2003 and Hansen and Lunde, 2004). For example, if the microstructure noise

has a constant variance, i.e. independent of the sampling interval, then

m−1RVm,r
p−→ 2rν

where ν denotes the variance of the microstructure noise (see Zhang, Mykland and Aı̈t-Sahalia,

2003). As for n−1 ∑!(n−1)r#
i=1 S2

n(Xi/n), due to the discreteness of the measurement error component,

the behavior of (nξn)−1 ∑n−1
j=1 1{|Xj/n−Xi/n|<ξn} is not easy to assess. Therefore, our procedure will

not be valid if the log price process is contaminated by microstructure noise.

Similarly to the case of large and rare jumps, it is possible to pretest the series under inves-

tigation for the absence of microstructure noise. In fact, Awartani, Corradi and Distaso (2004)

have suggested a simple test for the null hypothesis of no market microstructure, based on the

appropriate scaled difference between two realized volatility measures constructed over different

sampling frequencies.11 We can then apply our procedure over a time span for which neither the

null hypothesis of no jumps nor the null hypothesis of no microstructure noise has been rejected.
11Awartani, Corradi and Distaso (2004) also propose a specification test of the null hypothesis of microstructure

noise with constant variance. See also Barndorff-Nielsen and Shephard (2004c) for an alternative model of the market

microstructure noise, where the variance of the noise is allowed to depend on the sampling frequency of the data.

12



3 A Simulation Experiment

In this section, the small sample performance of the testing procedure proposed in the previous

section will be assessed through a Monte-Carlo experiment. Under the null hypothesis, we consider

a version of the Cox, Ingersoll and Ross (1985) model with a mean reverting component in the

drift,

dXt = (κ + µXt)dt + η
√

XtdW1,t. (13)

We first simulate a discretized version of the continuous trajectory of Xt under (13). We use

a Milstein scheme in order to approximate the trajectory, following Pardoux and Talay (1985),

who provide conditions for uniform, almost sure convergence of the discrete simulated path to

the continuous path, for given initial conditions and over a finite time span. In order to get a

very precise approximation to the continuous path, we choose a very small time interval between

successive observations (1/5760); moreover, the initial value is drawn from the gamma marginal

distribution of Xt, and the first 1000 observations are then discarded.

We then sample the simulated process at two different frequencies, 1/n and 1/m, and compute

the different test statistics. In particular, the time span has been fixed to five days and five

different values have been chosen for the number of intradaily observations n, ranging from 144

(corresponding to data recorded every ten minutes) to 1440 (corresponding to data recorded every

minute). Therefore, the total number of observations ranges from Tn = 720 to Tn = 7200, where

T denotes the fixed time span expressed in days. Also, the experiment has been conducted for six

different values for m (namely
⌊(

Tn
).7

/T
⌋
,
⌊(

Tn
).75

/T
⌋
,
⌊(

Tn
).8

/T
⌋
,
⌊(

Tn
).9

/T
⌋
,
⌊(

Tn
).95

/T
⌋

and then the limiting case m = n). The process is repeated for a total of 10000 replications.

Results are reported for two test statistics, namely

Zn,m = max
j=1,...,J

√
m

∣∣∣∣∣∣
1
n

!(n−1)rj#∑

i=1

S2
n(Xi/n)−RVm,rj

∣∣∣∣∣∣

and

Zn,m,1 =
√

m

(
1
n

n−1∑

i=1

S2
n(Xi/n)−RVm,1

)
.

Under the conditions stated in Theorem 1, we know that for m/n → 0,

Zn,m
d−→ ZM = max

j=1,...,J

∣∣ZMrj

∣∣ ,

and for m = n,

Zn
d−→ Z = max

j=1,...,J

∣∣Zrj

∣∣ ,
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where the vectors (ZMr1ZMr2 . . . ZMrJ )′ and (Zr1Zr2 . . . ZrJ )′ are defined respectively in (8) and

(7). In the simulation experiment, J = 16, with r starting from r1 = .15 and then increasing by

.05 until r16 = .85. The critical values defined in (12) have been obtained with S = 1000.

Similarly, under the conditions stated in Corollary 1, we have that for m/n → 0,

Zn,m,1
d−→ MN

(
0, 2

∫ ∞

−∞
σ4 (a)LX(1, a)da

)

The empirical sizes (at 5% and 10% level) of the tests discussed above are reported in Table 1,

for κ = 0, η = 1, µ = −.8, ξn = n−10/13. The results for different values of the parameters needed to

generate (13) and the bandwidth ξn display a virtually identical pattern and therefore are omitted

for space reasons. Inspection of the Table reveals an overall good small sample behaviour of the

considered test statistics. The reported empirical sizes are everywhere very close to the nominal

ones, with a slight tendency to underreject for the test based on Zn,m. The zeros appearing in the

rows when n = m are not surprising; in fact, when using the statistic Zn, the critical values used in

the simulation exercise are just an upper bound of the true ones, and therefore one should expect

an undersized test.

Under the alternative hypothesis, the following model has been considered,

dXt = (κ + µXt)dt + η
√

exp
(
σ2

t

) (√
1− ρ2dW1,t + ρdW2,t

)

dσ2
t = (κ1 + µ1σ

2
t )dt + η1

√
σ2

t dW2,t. (14)

A discretized version of (14) has been simulated using a Milstein scheme as above, with κ1 = 1,

η1 = 1, µ1 = −.2. Then, using the obtained values of σ2
t , the series for Xt has been generated,

with ρ = 0 and keeping the remaining parameters at the values used to generate Xt under (13).

The findings for the power of the tests based on Zn,m and Zn,m,1 are reported in Table 2. The

experiment reveals that the proposed tests has good power properties. The test based on Zn,m is

more powerful than the one based on Zn,m,1; this is not surprising, given that Zn,m is specifically

constructed to highlight the differences between the local times of Xt and ft. In fact, in the case

of Zm,n the term driving the power is maxr

∣∣∫ r
0 (LX(r, a)− Lf (r, a)) da

∣∣ , which is in general larger

than
∣∣∣
∫ 1
0 (LX(1, a)− Lf (1, a)) da

∣∣∣, the term driving the power of Zn. Also, the power of the test

based on Zn,m is generally increasing in n and m, as one should expect. In some cases, however,

the power remains constant or even decreases when m approaches n (namely, the cases when

n = 144, 288, 576); this is due to the fact that, when n = m, we are not using the correct critical

values for the test, but just an upper bound, and this may decrease the resulting power of the test.
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4 Concluding remarks

This paper provides a testing procedure which allows to discriminate between one-factor and

stochastic volatility models. Hence, it allows to distinguish between the case in which the volatil-

ity of an asset is a function of the asset itself (and therefore the volatility process is Markov and

predictable in terms of its own past), and the case in which it is a diffusion process driven by a

Brownian motion, which is not perfectly correlated with the Brownian motion driving the asset.

The suggested test statistics are based on the difference between a kernel estimator of the instan-

taneous variance, averaged over the sample realization on a fixed time span, and realized volatility.

The intuition behind is the following: under the null hypothesis of a one-factor model, both es-

timators are consistent for the true underlying integrated (daily) volatility; under the alternative

hypothesis the former estimator is not consistent, while the latter is. More precisely, we show that

the proposed statistics weakly converge to well defined distributions under the null hypothesis and

diverge at an appropriate rate under the alternative. The derived asymptotic theory is based on

the time interval between successive observations approaching zero, while the time span is kept

fixed. As a consequence, the limiting behavior of the statistic is not affected by the drift specifi-

cation. Also, no stationarity or ergodicity assumption is required. The finite sample properties of

the suggested statistic are analyzed via a small Monte Carlo study. Under the null hypothesis, the

asset process is modelled as a version of the Cox, Ingersoll and Ross (1985) model with a mean

reverting component in the drift. Thus, volatility is a square root function of the asset itself. Under

the alternative, the asset and volatility processes are generated according to a stochastic volatility

model, where volatility is modelled as a square root diffusion. The empirical sizes and powers of

the proposed tests are reasonably good across various m/n ratios.
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Table 1: Actual sizes of the tests based on Zn,m,r for different values of m and n

Zn,m Zn,m,1

5% nominal size 10% nominal size 5% nominal size 10% nominal size

n = 144

m = 20 0.03 0.07 0.05 0.07

m = 27 0.03 0.07 0.03 0.07

m = 38 0.04 0.08 0.04 0.09

m = 74 0.04 0.08 0.05 0.10

m = 103 0.03 0.07 0.04 0.09

m = n 0.00 0.00

n = 288

m = 32 0.03 0.07 0.05 0.12

m = 46 0.03 0.07 0.07 0.10

m = 67 0.03 0.07 0.07 0.10

m = 139 0.03 0.07 0.06 0.09

m = 200 0.03 0.07 0.05 0.12

m = n 0.00 0.00

n = 576

m = 52 0.02 0.07 0.08 0.11

m = 78 0.02 0.07 0.05 0.10

m = 117 0.03 0.08 0.08 0.13

m = 259 0.03 0.08 0.04 0.08

m = 386 0.03 0.07 0.06 0.11

m = n 0.00 0.00

n = 720

m = 61 0.03 0.08 0.07 0.10

m = 92 0.03 0.08 0.04 0.09

m = 139 0.03 0.08 0.08 0.13

m = 317 0.03 0.08 0.04 0.09

m = 478 0.02 0.07 0.05 0.10

m = n 0.00 0.00

n = 1440

m = 100 0.03 0.07 0.07 0.12

m = 156 0.03 0.08 0.08 0.12

m = 243 0.06 0.10 0.07 0.12

m = 592 0.05 0.10 0.07 0.12

m = 923 0.05 0.11 0.08 0.13

m = n 0.00 0.00



Table 2: Actual powers of the tests based on Zn,m,r for different values of m and n

Zn,m Zn,m,1

5% nominal size 10% nominal size 5% nominal size 10% nominal size

n = 144

m = 20 0.12 0.22 0.14 0.17

m = 27 0.10 0.14 0.10 0.17

m = 38 0.14 0.18 0.09 0.15

m = 74 0.34 0.42 0.09 0.16

m = 103 0.38 0.44 0.19 0.25

m = n 0.42 0.44

n = 288

m = 32 0.20 0.26 0.11 0.21

m = 46 0.22 0.36 0.10 0.16

m = 67 0.44 0.48 0.12 0.16

m = 139 0.54 0.56 0.33 0.45

m = 200 0.56 0.64 0.26 0.30

m = n 0.54 0.54

n = 576

m = 52 0.22 0.26 0.11 0.16

m = 78 0.44 0.54 0.12 0.14

m = 117 0.48 0.54 0.16 0.19

m = 259 0.56 0.70 0.13 0.14

m = 386 0.84 0.88 0.70 0.76

m = n 0.76 0.82

n = 720

m = 61 0.44 0.52 0.12 0.18

m = 92 0.40 0.54 0.14 0.18

m = 139 0.58 0.66 0.21 0.25

m = 317 0.68 0.72 0.25 0.33

m = 478 0.72 0.82 0.22 0.29

m = n 0.76 0.88

n = 1440

m = 100 0.50 0.60 0.21 0.29

m = 156 0.55 0.75 0.20 0.24

m = 243 0.65 0.70 0.60 0.62

m = 592 0.90 0.90 0.88 0.89

m = 923 0.90 0.95 0.65 0.70

m = n 0.95 0.95



A Proofs

Before proving Theorem 1, we need the following Lemmas.

Lemma 1. Let Assumption 1 hold. Then

sup
s∈[0,1]

|µ(Xs)| = Oa.s.(nε/4),

sup
s∈[0,1]

∣∣σ2(Xs)
∣∣ = Oa.s.(nε/2),

sup
s∈[0,1]

|g(fs)| = Oa.s.(nε/2),

for any ε > 0, arbitrarily small.

A.1 Proof of Lemma 1

We start from the case when Xt follows (1). Define Rl = {inf t : |Xt| > l}. Thus, Rl is an

Ft−measurable stopping time. Let

Xmin(t,Rl) =
∫

min(t,Rl)

0
µ(Xs)ds +

∫
min(t,Rl)

0
σ2(Xs)dW1,s.

Obviously, for all t ≤ Rl, X
min(t,Rl)

= Xt. Now let Ωl = {ω : Rl > 1} and l = ln = nε/4. Thus, given

the growth conditions in Assumption 1(a), Xt is a non-explosive diffusion, and so Pr(Ωln → 1) = 1.

By a similar argument, given Assumptions 1(a), 1(b), the same holds when the volatility process

follows (2). Therefore, the statement follows. !

Lemma 2. Let Assumption 1 hold. Under H0, if, as n → ∞, nξn → ∞, nξ2
n → 0 and, for any

ε > 0 arbitrarily small, m/n1−ε → 0, then, pointwise in r,

√
m

n

!(n−1)r#∑

i=1

(
S2

n(Xi/n)− σ2(Xi/n)
) p−→ 0.

A.2 Proof of Lemma 2

By Ito’s formula

√
m

n

!(n−1)r#∑

i=1

(
S2

n(Xi/n)− σ2(Xi/n)
)

︸ ︷︷ ︸
An,m,r

=
√

m

n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}n
(
X(j+1)/n −Xj/n

)2

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}

− σ2(Xi/n)




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=
√

m

n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}2n
∫ (j+1)/n
j/n

(
Xs −Xj/n

)
σ(Xs)dW1,s

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
Gn,m,r

+
√

m

n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}2n
∫ (j+1)/n
j/n

(
Xs −Xj/n

)
µ(Xs)ds

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
Hn,m,r

+
√

m

n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}n
(∫ (j+1)/n

j/n

(
σ2(Xs)− σ2(Xi/n)

)
ds

)

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
Dn,m,r

. (15)

Thus, we need to show that Gn,m,r, Hn,m,r and Dn,m,r are oP (1).

Now, because of Lemma 1,

Dn,m,r ≤
√

m sup
|Xs−Xτ |≤ξn

∣∣σ2(Xs)− σ2(Xτ )
∣∣

≤
√

m sup
τ∈[0,1]

∣∣∇σ2(Xτ )
∣∣ sup
|Xs−Xτ |≤ξn

|Xs −Xτ |

= O
(√

m
)
Oa.s.(nε/2)Oa.s(ξn) = oa.s.(1), (16)

provided that m1/2nε/2ξn → 0. Since m = o(n1−ε), then

Oa.s(
√

mnε/2ξn) = oa.s(n1/2ξn),

which approaches zero almost surely.

As for Gn,m,r, by the proof of Step 1 of Theorem 1, part(i)a, below, (
√

n/
√

m)Gn,m,r = Gn,r

converges in distribution and so it’s OP (1); therefore Gn,m,r = oP (1), given that m/n → 0, as

m,n →∞.

Finally, given the continuity of µ(·),

|Hn,m,r| ≤
√

m sup
s∈[0,1]

|µ(Xs)| sup
|i/n−s|≤1/n

s∈[0,1]

∣∣Xs −Xi/n

∣∣

=
√

mOa.s.(nε/4)Oa.s.

(
n−1/2 log n

)
= oa.s.(1). (17)

In fact, because of the modulus of continuity of a diffusion (see McKean, 1969, p.96),

sup
|i/n−s|≤i/n

s∈[0,1]

∣∣Xs −Xi/n

∣∣ = Oa.s.

(
n−1/2 log n

)
,

and n1/2−ε+ε/4n−1/2 log n = n−3ε/4 log n → 0. Therefore, the statement follows. !
We can now prove Theorem 1.
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A.3 Proof of Theorem 1

(i)a

Zn,r =
1√
n

!(n−1)r#∑

i=1

(
S2

n(Xi/n)− σ2(Xi/n)
)

︸ ︷︷ ︸
An,r

−
√

n




!(n−1)r#∑

j=1

(
X(j+1)/n −Xj/n

)2 −
∫ r

0
σ2(Xs)ds





︸ ︷︷ ︸
Bn,r

+
1√
n

!(n−1)r#∑

i=1

σ2(Xi/n)−
√

n

∫ r

0
σ2(Xs)ds

︸ ︷︷ ︸
Cn,r

. (18)

The proof of the statement is based on the four steps below.

Step 1: An,r
d−→ MN

(
0, 2

∫∞
−∞ σ4(a)LX(r,a)2

LX(1,a) da
)

.

Step 2: Bn,r
d−→ MN

(
0, 2

∫∞
−∞ σ4(a)LX(1, a)da

)
.

Step 3: Let < An, Bn >r define the discretized quadratic covariation process.

plimn→∞ < An, Bn >r −2
∫ ∞

−∞
σ4(a)

LX(r, a)2

LX(1, a)
da = 0.

Step 4: Cn,r = oP (1).

Proof of Step 1: First note that using Ito’s formula

An,r =
1√
n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}n
(
X(j+1)/n −Xj/n

)2

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}

− σ2(Xi/n)





=
1√
n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}2n
∫ (j+1)/n
j/n

(
Xs −Xj/n

)
σ(Xs)dW1,s

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
Gn,r

+
1√
n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}2n
∫ (j+1)/n
j/n

(
Xs −Xj/n

)
µ(Xs)ds

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
Hn,r
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+
1√
n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}n
(∫ (j+1)/n

j/n

(
σ2(Xs)− σ2(Xi/n)

)
ds

)

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
Dn,r

.

Now, given Lemma 1, Dn,r = oa.s.(1), provided that n1/2+εξn → 0, as n →∞. It is immediate

to see that Hn,r is of a smaller order of probability than Gn,r.

Let < Gn >r denote the discretized quadratic variation process of Fn,r. By a similar argument

as in Bandi and Phillips (2003, pp.271-272),

plimn→∞ < Gn >r −2
∫ ∞

−∞
σ4 (a)

LX(r, a)2

LX(1, a)
da = 0.

Thus, by the same argument as in the proof of Theorem 3 in Bandi and Phillips (2003), the

statement in Step 1 follows.

Proof of Step 2: It follows from Theorem 1 in Barndorff-Nielsen and Shephard (2004a).

Proof of Step 3: The discretized covariation process < An, Bn >r,

< An, Bn >r

= 4n
!(n−1)r#∑

i=1

!(n−1)r#∑

j=1




1{|Xj/n−Xi/n|<ξn}

(∫ (j+1)/n
j/n

(
Xs −Xj/n

)
σ(Xs)dWs

)2

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





= 2n
!(n−1)r#∑

i=1

!(n−1)r#∑

j=1




1{|Xj/n−Xi/n|<ξn}σ4(Xj/n + oa.s.(1))

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}



 (19)

= 2
∫ r

0

(∫ r

0

1{|Xu−Xa|<ξn}σ
4(Xu)du

∫ 1
0 1{|Xu−Xa|<ξn}du

)
da + oa.s.(1)

= 2
∫ ∞

−∞

(∫ ∞

−∞

1{|u−a|<ξn}σ
4(u)LX(r, u)du

∫∞
−∞ 1{|u−a|<ξn}LX(1, u)du

)
LX(r, a)da + oa.s.(1),

where the 2 (instead of 4) on right hand side of (19) comes from Lemma 5.3 in Jacod and

Protter (1998). Along the lines of Bandi and Phillips (2001, 2003), by the change of variable

u− a

ξn
= z,

we have that

< An, Bn >r
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= 2
∫ ∞

−∞

(∫ ∞

−∞

1{|u−a|<ξn}σ
4(u)LX(r, u)du

∫∞
−∞ 1{|u−a|<ξn}LX(1, u)du

)
LX(r, a)da + oa.s.(1)

= 2
∫ ∞

−∞

(∫ ∞

−∞

1{|zξn|<ξn}σ
4(a + zξn)LX(r, a + zξn)dz

∫∞
−∞ 1{|zξn|<ξn}LX(1, a + zξn)dz

)
LX(r, a)da + oa.s.(1)

a.s.−→ 2
∫ ∞

−∞
σ4 (a)

LX(r, a)2

LX(1, a)
da. (20)

Proof of Step 4:

Cn,r =
1√
n

!(n−1)r#∑

i=1

σ2(Xi/n)−
√

n

∫ r

0
σ2(Xs)ds

=
1√
n

!(n−1)r#∑

i=1

σ2(Xi/n)−
√

n

!(n−1)r#∑

i=1

∫ (i+1)/n

i/n
σ2(Xs)ds

=
√

n

!(n−1)r#∑

i=1

∫ (i+1)/n

i/n

(
σ2(Xi/n)− σ2(Xs)

)
ds (21)

and, given the Lipschitz assumption on σ2(·), the last line in (21) is oP (1) by the same

argument as the one used in Step 1.

Given Steps 1-4 above, it follows that the quadratic variation process of Zn,r is given by

2
∫ ∞

−∞
σ4 (a)LX(r, a)da + 2

∫ ∞

−∞
σ4 (a)

LX(r, a)2

LX(1, a)
da− 4

∫ ∞

−∞
σ4 (a)

LX(r, a)2

LX(1, a)
da

= 2
∫ ∞

−∞
σ4 (a)

LX(r, a) (LX(1, a)− LX(r, a))
LX(1, a)

da. (22)

The statement in the theorem then follows.

(i)b Without loss of generality, suppose that r < r′. By noting that

1√
n

!(n−1)r#∑

i=1

S2
n(Xi/n)−

√
n

!(n−1)r#∑

i=1

(
Xi+1/n −Xi/n

)2

=
1√
n

[(n−1)r′]∑

i=1

S2
n(Xi/n)−

√
n

[(n−1)r′]∑

i=1

(
Xi+1/n −Xi/n

)2
,

with S2
n(Xi/n) = 0 and

(
Xi+1/n −Xi/n

)2 = 0 for i > $(n − 1)r%, the result then follows by

the continuous mapping theorem.
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(i)c The statistic Zn,m,r can be rewritten as

Zn,m,r =
√

m

n

!(n−1)r#∑

i=1

(
S2

n(Xi/n)− σ2(Xi/n)
)

︸ ︷︷ ︸
An,m,r

−
√

m




!(m−1)r#∑

j=1

(
X(j+1)/m −Xj/m

)2 −
∫ r

0
σ2(Xs)ds





︸ ︷︷ ︸
Bm,r

+
√

m

n

!(n−1)r#∑

i=1

σ2(Xi/n)−
√

m

∫ r

0
σ2(Xs)ds

︸ ︷︷ ︸
Cn,m,r

. (23)

Note that An,m,r = oP (1) by Lemma 2.

We first need to show that Cn,m,r = oa.s.(1). Given Assumption 1(a), Lemma 1, and recalling

the modulus of continuity of a diffusion (see McKean, 1969, pp.95-96),
∣∣∣∣∣∣

√
m

n

!(n−1)r#∑

i=1

σ2(Xi/n)−
√

m

∫ r

0
σ2(Xs)ds

∣∣∣∣∣∣

=

∣∣∣∣∣∣

√
m

n

!(n−1)r#∑

i=1

σ2(Xi/n)−
√

m

!(n−1)r#∑

i=1

∫ (i+1)/n

i/n
σ2(Xs)ds

∣∣∣∣∣∣

=

∣∣∣∣∣∣

√
m

!(n−1)r#∑

i=1

∫ (i+1)/n

i/n

(
σ2(Xi/n)− σ2(Xs)

)
ds

∣∣∣∣∣∣

≤
√

m

!(n−1)r#∑

i=1

∫ (i+1)/n

i/n

∣∣σ2(Xi/n)− σ2(Xs)
∣∣ ds

≤
√

m sup
|s−τ |≤1/n

s∈[0,r]

∣∣σ2(Xs)− σ2(Xτ )
∣∣ ≤

√
m sup

τ∈[0,r]
|∇σ2(Xτ )| sup

|s−τ |≤1/n
s∈[0,r]

|Xs −Xτ |

=
√

mOa.s.(nε/2)Oa.s.(n−1/2 log n) = oa.s.(1),

as n1/2−ε/2n−1/2 log n → 0. Thus,

Zn,m,r = −Bm,r + oa.s.(1).

The statement then follows from the proof of Step 2 in part i(a).

(i)d The statement follows by the same argument as the one used in part (i)b and by the continuous

mapping theorem.
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(ii) We will prove the Theorem for the case analyzed in part (i)c; in the other cases the proof

follows straightforwardly and is therefore omitted. Under HA, we have that

dXt = µ(Xt)dt +
√

σ2
t dW1,t

σ2
t = g(ft)

dft = b(ft)dt + σ1(ft)dW2,t.

Pointwise in r, we can rewrite Zn,m,r as

Zn,m,r =
√

m

n

!(n−1)r#∑

i=1

(
S2

n(Xi/n)− g
(
fi/n

))
−
√

m

!(m−1)r#∑

j=1

(
X(j+1)/m −Xj/m

)2

+
√

m

n

!(n−1)r#∑

i=1

g
(
fi/n

)

=
√

m

n

!(n−1)r#∑

i=1

(
S2

n(Xi/n)− g
(
fi/n

))

︸ ︷︷ ︸
En,m,r

−
√

m




!(m−1)r#∑

j=1

(
X(j+1)/m −Xj/m

)2 −
∫ r

0
g (fs) ds





︸ ︷︷ ︸
Fm,r

+
√

m

n

!(n−1)r#∑

i=1

g
(
fi/n

)
−
√

m

∫ r

0
g (fs) ds

︸ ︷︷ ︸
Ln,m,r

. (24)

By the same argument used in the proof of part (i)a, Step 4 and Step 2 (respectively) Ln,m,r =

oP (1) and Fm,r = OP (1).

We can expand En,m,r as

En,m,r

=
√

m

n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}n
(
X(j+1)/n −Xj/n

)2

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}

− g
(
fi/n

)




=
√

m

n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}2n
∫ (j+1)/n
j/n

(
Xs −Xj/n

)√
g (fs)dW1,s

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
P n,m,r
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+
√

m

n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}2n
∫ (j+1)/n
j/n

(
Xs −Xj/n

)
µ(Xs)ds

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
Sn,m,r

+
√

m

n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}n
(∫ (j+1)/n

j/n

(
g (fs)− g

(
fi/n

))
ds

)

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
Qn,m,r

. (25)

Now, Pn,m,r is Op(1), again for the same argument used in the proof of part (i)a Step 1, and

similarly Sn,m,r = oP (1), since it has the same behavior under both H0 and HA. Then, we

need to show that Qn,m,r, in absolute value, diverges. Now,

1√
m

Qn,m,r =
1
n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}n
(∫ (j+1)/n

j/n

(
g (Xs)− g

(
Xi/n

))
ds

)

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
T n,m,r

+
1
n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}n
(∫ (j+1)/n

j/n (g (fs)− g (Xs)) ds
)

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
Un,m,r

− 1
n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}
(
g

(
fi/n

)
− g

(
Xi/n

))

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





︸ ︷︷ ︸
V n,m,r

. (26)

Note that Tn,m,r is oP (1), by the same argument as the one used in part (i)a, Step 1.

As for Vn,m,r, it can be rewritten as

− 1
n

!(n−1)r#∑

i=1

(
g

(
fi/n

)
− g

(
Xi/n

))
=

(∫ r

0
g(Xs)ds−

∫ r

0
g(fs)ds

)
+ OP (n−1/2), (27)

where the first term of the right hand side of (27) is almost surely different from 0, given that

Xs and fs have different occupation density. Also, in the case in which fs is one-dimensional,

we have that

− 1
n

!(n−1)r#∑

i=1

(
g

(
fi/n

)
− g

(
Xi/n

))
=

∫ ∞

−∞
g(a)LX(r, a)da−

∫ ∞

−∞
g(a)Lf (r, a)da + OP (n−1/2),

where Lf (r, a) (resp. LX(r, a)) denotes the standardized local time of the process ft (resp.

Xt) evaluated at time r and at point a, that is it denotes the amount of time spent by the
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process ft (resp. Xt) around point a, over the period [0, 1]. Thus,

−
√

m

n

!(n−1)r#∑

i=1

(
g

(
fi/n

)
− g

(
Xi/n

))

diverges (to either −∞ or to ∞), at rate
√

m, provided that LX(r, a)− Lf (r, a) )= 0 (almost

surely) for all a ∈ A, with A having non-zero Lebesgue measure, that is provided that ft and

Xt have different occupation densities over a non-negligible set.

Finally, Un,m,r can be written as

1
n

!(n−1)r#∑

i=1




1

nξn

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}n

(∫ (j+1)/n
j/n (g (fs)− g (Xs)) ds

)

LX(1, Xi/n) + oP (1)



 . (28)

Expanding the sums, (28) can be rewritten as

1
nξn




n

(∫ 2/n
1/n (g (fs)− g (Xs)) ds

)

LX(1, X1/n) + oP (1)

+
1{|X1/n−X2/n|<ξn}n

(∫ 2/n
1/n (g (fs)− g (Xs)) ds

)

LX(1, X2/n) + oP (1)

. . . + . . .
1{|X1/n−X[(n−1)r/n]|<ξn}n

(∫ 2/n
1/n (g (fs)− g (Xs)) ds

)

LX(1, X(n−1)/n) + oP (1)





+ . . .

+
1

nξn




1{|Xj/n−X1/n|<ξn}n

(∫ (j+1)/n
j/n (g (fs)− g (Xs)) ds

)

LX(1, X1/n) + oP (1)

+
1{|Xj/n−X2/n|<ξn}n

(∫ (j+1)/n
j/n (g (fs)− g (Xs)) ds

)

LX(1, X2/n) + oP (1)

. . . + . . .
1{|Xj/n−X[(n−1)r/n]|<ξn}n

(∫ (j+1)/n
j/n (g (fs)− g (Xs)) ds

)

LX(1, X(n−1)/n) + oP (1)





+ . . .

+
1

nξn




1{|X(n−1)/n−X1/n|<ξn}n

(∫ 1
(n−1)/n (g (fs)− g (Xs)) ds

)

LX(1, X1/n) + oP (1)

+
1{∣∣∣X(n−1)/n

−X2/n

∣∣∣<ξn

}n
(∫ 1

(n−1)/n
(g (fs)− g (Xs)) ds

)

LX(1, X2/n) + oP (1)

. . . + . . .

1{∣∣∣X(n−1)/n
−X[(n−1)r/n]

∣∣∣<ξn

}n
(∫ 1

(n−1)/n
(g (fs)− g (Xs)) ds

)

LX(1, X(n−1)/n) + oP (1)



 .
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Thus,

1
n

∑n−1
j=1 LX(1, Xj/n)

(
g

(
fj/n

)
− g

(
Xj/n

))

supi LX(1, Xi/n)
+ oP (1)

≤ 1
n

!(n−1)r#∑

i=1




∑n−1

j=1 1{|Xj/n−Xi/n|<ξn}n
(∫ (j+1)/n

j/n (g (fs)− g (Xs)) ds
)

∑n−1
j=1 1{|Xj/n−Xi/n|<ξn}





≤
1
n

∑n−1
j=1 LX(1, Xj/n)

(
g

(
fj/n

)
− g

(
Xj/n

))

infi LX(1, Xi/n)
+ oP (1). (29)

Note that the numerator in the lower and upper bounds of the inequality in (29) approaches

zero if and only if LX(1, a)−Lf (1, a) = 0 (almost surely) for all a ∈ A, with A having non-zero

Lebesgue measure, or in the multidimensional case, if Xs and fs have the same occupation

density, which is indeed ruled out under the alternative hypothesis. Therefore, (1/
√

m)Zn,m,r

consists of the sum of two nondegenerate random variables which do not cancel out each

other. Thus, Zn,m,r diverges at rate
√

m with probability approaching one.

Therefore, the statement follows. !

A.4 Proof of Corollary 1

It follows directly from Theorem 1, part (i)c. !

A.5 Proof of Proposition 1

(a) From equation (12), it follows that, for r1 < r2 < ... < rJ ,





d̂(s)
m,r1

d̂(s)
m,r2

...

d̂(s)
m,rJ





d−→ MN




0,





2
∫ r1

0 σ4(Xs)ds 2
∫ r1

0 σ4(Xs)ds . . . 2
∫ r1

0 σ4(Xs)ds

2
∫ r1

0 σ4(Xs)ds 2
∫ r2

0 σ4(Xs)ds . . . 2
∫ r2

0 σ4(Xs)ds
...

... . . . ...

2
∫ r1

0 σ4(Xs)ds 2
∫ r2

0 σ4(Xs)ds . . . 2
∫ rJ

0 σ4(Xs)ds








.

Also, note that




2
∫ r1

0 σ4(Xs)ds 2
∫ r1

0 σ4(Xs)ds . . . 2
∫ r1

0 σ4(Xs)ds

2
∫ r1

0 σ4(Xs)ds 2
∫ r2

0 σ4(Xs)ds . . . 2
∫ r2

0 σ4(Xs)ds
...

... . . . ...

2
∫ r1

0 σ4(Xs)ds 2
∫ r2

0 σ4(Xs)ds . . . 2
∫ rJ

0 σ4(Xs)ds




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−





V (r1, r1) V (r1, r2) . . . V (r1, rJ)

V (r2, r1) V (r2, r2) . . . V (r2, rJ)
...

... . . . ...

V (rJ , r1) V (rJ , r2) . . . V (rJ , rJ)





is positive semi-definite, where the latter matrix above is defined in the statement of Theo-

rem 1, part (i)b. Given Theorem 1, part (i)b, the statement follows directly.

(b) Immediate from Theorem 1, part (i)d.

In both cases, the unit asymptotic power of the proposed tests follows from Theorem 1, part

(ii). !
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