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Abstract

This paper is a selected overview of econometric methods for duration models and will appear in
the forthcoming book The Economics of Search by the authors. The focus of the paper is on
martingale methods for continuous time data and general methods for the analysis of discrete-
time data including multi-spell models and general life-history models.
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1. Introduction

Many empirical tests of search theory employ duration data (see Devine and Kiefer,

1991). For example, the standard model of job search in a stationary environment model implies

that unemployment durations have an exponential distribution. In this chapter we develop some

statistical tools used to analyze duration data (for more thorough treatment see Lancaster, 1990

or Klein and Moeschberger, 1997). Duration analysis is also referred to as survivor analysis,

where the duration of interest is the survival time of a subject (e.g. person or machine). Much of

the recent statistical analyses of duration data focus on the hazard function. The hazard function

is related to the probability of exiting the initial state within a short interval, conditional on

having survived up to the starting time of the interval. In many applications, hazard functions are

conditional on a set of covariates. An important feature of the hazard function is that it can be

made to depend on covariates that change over time.

In section 2 of this chapter we shall review the basic definition of a hazard function and

its relation to the probability density and cumulative distribution function. Section 3 then gives a

brief description of counting process theory and martingales. This framework is useful for

analyzing duration data including multiple spell duration data (See Andersen and Borgan, 1985,

Arjas, 1989, Fleming and Harrington, 1991, and Anderson, Borgan, Gill and Keiding, 1992 for

more thorough discussions). Parametric estimation methods for continuous time duration models

with covariates are presented in Section 4 while the semi-parametric Cox regression model is

discussed in Section 5. Section 6 presents estimation techniques for grouped or discrete-time

duration data. In many situations we are interested in studying an individual’s movement through 

several labor market states over time. After extending discrete-time methods to a multi-spell
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framework in section 7 and d competing risks models in section 8, section 9 presents the

general estimation methods for discrete-time life history data. The chapter concludes with a brief

discussion of some specification diagnostic methods that can be derived from the counting

process approach.

2. Hazard Functions

This section presents a brief overview of hazard functions. Initially we will focus on

models without covariates. Later sections of the chapter will then introduce both time-constant

and time-varying covariates into the hazard framework.

Let T?0 represent a positive random duration variable, which has some probability

distribution in the population; t denotes a particular value of T. In survival analysis, T is the

length of time that an individual lives. In many economic applications T is the duration of an

unemployment spell or the duration of job tenure. The cumulative distribution function (c.d.f.) of

T is defined as

( ) ( ), 0.F t P T t t  

The survivor function is defined as

( ) 1 ( ) ( ).S t F t P T t  

Thus, S(t) represents the probability that an even has not occurred by time t or that the individual

has “survived past” t. Throughout this section we assume that T is continuous and denote the 

probability density function (p.d.f.) of T by ( ) ( )
dF

f t t
dt

 . For t> 0, P(t?T<t+ t |T? t) is the

probability of leaving the initial state in the interval [t,t+ t ) given survival until time t. The
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hazard function for T is defined as

0

( | )
( ) lim

t

P t T t t T t
t

t




  



. (1)

Thus, the hazard function is the instantaneous rate of leaving per unit time (the “escape” rate)

From equation (1) it follows that, for “small” t , ( | ) ( )P t T t t T t t t     . The

hazard can then be used to approximate a conditional probability in much the same way that the

height of the p.d.f. of T can be used to approximate an unconditional probability. We can express

the hazard function in terms of the density and c.d.f. very simply. First, write

( ) ( )( )( | ) .( ) 1 ( )
F t t F tP t T t tP t T t t T t P T t F t

       

When the c.d.f. is differentiable, we can take the limit of the right hand side, divided by t , as

t approaches zero from above:

0

( ) ( ) 1 ( ) ( )
( ) lim

1 ( ) 1 ( ) ( )h

F t t F t f t f t
t

t F t F t S t




 
   

  

Because the derivative of S(t) is -f(t), we have

log ( )
( )

d S t
t

dt
  (2)

and, using F(0) = 0, we can integrate (2) to get
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0
( ) 1 exp ( ) , 0

t
F t s ds t      (3)

Straight forward differentiation of (3) gives the p.d.f. of T in terms of the hazard function:

0
( ) ( ) exp ( ) .

t
f t t s ds     

Therefore, all probabilities can by computed using the hazard function. For example, for all

points a1 < a2,

22
2 1

1

1 ( )
( | ) exp ( )

1 ( )

a

a

F a
P T a T a s ds

F a


         

and

2

1 2 1( | ) 1 exp ( ) .
a

a
P a T a T a s ds       

In many empirical applications the shape of the hazard function is of primary interest. In

the simplest case, the hazard function is constant: ( ) , for all t 0t   . In this case the exit

process is memoryless: the probability of exit in the next interval of time does not depend on

how much time has been spent in the current state. The standard continuous-time model of

stationary job search with a constant offer arrival rate and wage distribution G implies a

constant re-employment hazard rate

( ) (1 ( ))rt G w    
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For a constant hazard function, equation (3) implies that ( ) 1 exp( )F t t which is the c.d.f. of

the exponential distribution.

When the hazard function is not constant we say that it exhibits duration dependence.

Assuming that ?(?) is differentiable, the hazard exhibits positive duration dependence at time t if

d?(t)/dt > 0 and negative duration dependence at time t if d?(t)/dt < 0. If d?(t)/dt > 0 for all t we

say the process exhibits positive duration dependence. With positive duration dependence, the

probability of exiting the initial state increases the longer one is in the initial state.

Example 1: Weibull distribution. A popular parametric distribution used in empirical analysis is

the Weibull distribution. The random variable T is said to have a Weibull distribution= if its

c.d.f. is given by ( ) 1 exp( )F t t 

where ?and ?are non-negative parameters. The p.d.f. is given by

1( )( ) ( )
f tt tS t

   

and the hazard function is 1( ) exp( )f t t t    . When ?= 1, the Weibull distribution

reduces to the exponential with ?= ?. If ?> 1, the hazard is monotonically increasing, so the

hazard everywhere exhibits positive duration dependence; for ?< 1, the hazard is monotonically

decreasing. Graphs of the Weibull hazard function for different values of are presented in
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Example 2: Log-logistic distribution: The random variable T has a log-logistic distribution if its

c.d.f. is given by

1
( ) 1

1
F t

t




and its hazard function is given by

1( )
( )

( ) 1
f t t

t
S t t












 


(4)

for > 0 and > 0. To examine whether the hazard function exhibits positive or negative

duration dependence in some ranges we differentiate (4) with respect to t:

 
 

   
 

   

2 2 2 2 2 2 2 2 2 2 2 2

2 2

22 2 2 2

2 2

( 1) 1 1 1
( )

1 1

( 1)( 1)

1 1

t t t t t t t t
t

t t

t tt t

t t

       

 

  

 

        


 

    

 

    

 

      
  

 

      
 

For 1 , ( ) 0t  for all t and for > 1 ( ) 0t  for
1/

1
t





 
 
 

and ( ) 0t  if

1/
1

t





 
 
 

. Graphs of the log-logistic hazard function for different values of are presented

in Figure 2.
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3. Counting Processes and Martingales

The theory of counting processes and their accompanying martingales is useful in

developing estimation procedures for duration data. Here we will be content with giving a

cursory overview of the counting process approach. More detailed discussions can be found in

Bremaud (1981), Fleming and Harrington (1991), and Anderson et al (1992).

Recall that a counting process is a process that counts the number of events that occur at

random times. Let Tn , n=0,1,2, … be a sequence of positive random variables such that 

1) T0 = 0

2) Tn < Tn+1 P a.s.

3) lim nn
T


P a.s.

Condition 3) is needed to insure that the counting process doesn’t blow up to infinity in finite 

time. The counting process N(t) is then defined by

 
1

( ) n
n

N t I T t




  .

Thus, N(0) =0 , ( )N t almost surely, and the sample paths of N(t) are piecewise constant,

right continuous and non-decreasing with jumps of size 1.

A filtration or history denoted by { , 0}tF t  is a sequence of sigma algebras indexed by t

that measure the accumulated information up to time t. As time progresses information increases

and so s tF F for s <t. That is .s tA F A F    The history “just before” time t is denoted by 

t
F  and is the sigma algebra generated by all sets in Fs for all s< t.

Definition: A process X(t) is adapted to { , 0}tF t  if X(t) is Ft measurable for all t.
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Before continuing we shall review some results from martingale theory.

Definition: A right-continuous stochastic process X(t) with left-hand limits is said to be a

martingale with respect to the history Ft if

i) X(t) is adapted to Ft

ii) X(t) is integrable ( (| ( ) |) )E X t  for all t

iii) For all 0 s t  , E(X(t)|Fs)=X(s) P-a.s.

X(t) is called a submartingale if we replace iii) by

iiia) For all 0 s t  , sE(X(t)|F ) X(s) P-a.s.

and X(t) is called a supermartingale if we replace iii) by

iiib) For all 0 s t  , sE(X(t)|F ) X(s) P-a.s.

The next theorem is important for deriving martingales associated with stochastic processes.

Doob-Meyer Decomposition Theorem Let X(t) be a right-continuous non-negative

submartingale with respect to history Ft. Then there exists a right-continuous martingale M(t)

and an increasing right-continuous predictable process A(t) such that ( ( ))E A t and

( ) ( ) ( ) P a.s.X t M t A t 

Corollary: Let N(t) be a counting process with associated “intensity process” (t). Then

0

( ) ( ) ( )
t

M t N t t ds 

is a Ft–martingale.
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Definition: A process X(t) is said to be predictable with respect to{ , 0}tF t  if X(t) is
t

F -

measurable for all t.

Another useful theorem is the following:

Theorem: If V(t) is a predictable process such that

0
[ | ( ) | ( )

t
E V s s ds  P a.s. then

0 0 0
( ) ( ) ( ) ( ) ( ) ( )

t t t
V s dM s V s dN s V s s ds    (5)

is a Ft - martingale.

Let C be a censoring time and define Y(t) to be the stochastic process ( ) { }Y t I C t  .

Thus, Y(t) equals one up until and including the time at which an observation is censored and

equals zero, thereafter. We assume that this stochastic process is measurable with respect to
t

F  .

Further define Z(t) to be the stochastic process 1( ) { }Z t I T t  . Using this theorem and defining

with V(t) = Z(t)Y(t) it can then be shown that

0 0
( ) ( ) ( ) ( ) ( ) ( )

t t
Y s Z s dN s Y s Z s s dt  is a Ft - martingale. Thus,

   ( ) ( ) ( ) | ( ) ( ) |
t t t t

t tt t
E Y s Z s dN s F E Y s s ds F 

 
  (6)

for all t > 0.

This result enables us to derive an estimator for the integrated hazard function (t) :

0
( ) ( )

t
t s ds  .

From (6) we have that
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( )( ( ) ( ) | ( ) ( ) ( ) |
t t

E Y t Z t dN t F Y t t E Z t F dt        . (7)

Suppose we have a random sample of size N and let Yi(t), Zi(t), and Ni(t) denote the

sample paths of Y(t), Z(t), and N(t) for the ith individual, i=1,…,N. Then appealing to the law of 

large numbers gives:

1 1

( ) ( ) ( ) ( ) ( ) ( )
N N

i i i i i
i i

Y t Z t dN t t dt Y t Z t

N N


 
 

. Hence,

1 1

1

( ) ( ) ( ) ( ) ( ) ( )
( )

( )( ) ( )

N N

i i i i i i
i i

N

i i
i

Y t Z t dN t Y t Z t dN t
t dt

R tY t Z t
  



 
 



where R(t) is the number “at risk” set at time t and includes all those who have not been censored 

or have failed by t:

1

( ) ( ) ( )
N

i i
i

R t Y t Z t


 .

Thus, we have

*

0 0 0
1

( ) ( ) ( )ˆ(̂ ) ( ) ( ) ( )
( ) ( )

Nt t t
i i

i
i

Y s Z s J s
t s ds dN s dN s

R s R s




      (8)
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where *

1

( ) ( ) ( ) ( )
N

i i i
i

dN s Z s Y s dN s


 and ( ) 1J s  if R(s) > 0 and J(s) =0 if R(s) =0 with the

convention that 0/0=1. The estimator (̂ )t in (8) is referred to as the Nelson-Aalen estimator of

the integrated hazard function and is a step function that is constant at all times except failure

times and jumps up by 1/R(t) at time t when a failure occurs at time t.

The integrated hazard function of the single duration variable T1 equals

* *

0 0
( ) ( ) ( ) ( )

t t
t s ds Z s s ds     . Note this integrated hazard function is stochastic because of

Z(t).

Thus,

0 0
1 1

* *

0 0
1 1

*

0
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

N Nt t

i i i i i
i i

N Nt t

i i i
i i

Nt

i i
i

J s Y s Z s dN s J s Y s Z s d s

J s dN s J s Y s d s

J s Y s dM s

 

 



 

  



  

  



(9)

So,

* *

0 0 0
1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
(̂ ) ( ) ( ( ) ( )) ( )

( ) ( ) ( )

N N Nt t t
i i i i

i i i
i i i

J s Y s Y s J s Z s Y s J s
t d s d N s s dM s

R s R s R s  

 
      

 
     (10)

Which shows that for all t, (̂ )t is an unbiased estimator of
0

( ) ( )
t

s d s  where ( )s = P(J(s) =

1), since



17

 *

0 0 0
1 1

0

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

N Nt t t
i

i i i
i i

t

J s Y s J s J s
d s Y s Z s d s R s d s

R s R s R s

J s d s

 

                

 

   



Furthermore, as N , ( ( ) 1) 1P J s   a.s. and, hence, (̂ )t is a consistent estimator of

( )t .

The next two corollaries are useful applications of the Doob-Meyer Decomposition Theorem:

Corollary 1: Let M(t) be a right-continuous martingale with respect to Ft and assume that

2 ( )E M t   for all t. Then there exists a unique right continuous predictable process called

the predictable quadratic variation of M(t) and denoted by <M,M>(t) such that <M,M>(0)=0,

, ( ) for all tE M M t  and 2 ( ) , ( )M t M M t is a right-continuous martingale.

Corollary 2: Let Mi(t) be a right-continuous martingales with respect to Ft and assume that

2 ( )iE M t   for all t, i=1,2. Then there exists a unique right continuous predictable process

called the predictable covariation process of M1(t) and M2(t) and denoted by <M1,M2>(t) such

that <M1,M2>(0)=0, 1 2, ( ) for all tE M M t  and 1 2 1 2( ) ( ) , ( )M t M t M M t is a right-
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continuous martingale and. 1 2, ( )M M t is the difference of two increasing right-continuous

predictable processes.

Finally, we have

Theorem: Let V1(t) and V2(t) be bounded predictable processes and M1(t) and M2(t) martingales

with respect to Ft such that 2 ( )iM t , i=1,2. Then

1 1 2 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) , ( )V t dM t V t dM t V t V t d M M t   (11)

is a martingale. Finally we present a theorem that relates the compensator of M2(t) to the

compensator of M(t).

Theorem: Let N(t) be a counting process with compensator A(t). Assume that almost all sample

paths of A(t) are continuous and that 2 ( )E M t   . Then <M,M>(t)=A(t). Or in other words,

M2(t)–A is a martingale.

Sketch of Proof: Integration by parts shows that

 22

0
( ) 2 ( ) ( ) ( ) .

t

s t

M t M s dM s M s



   Now, since M(t) = N(t)–A(t) we have
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( ) ( ) ( ).M s N s A s   Substituting into above yields

 

 

22

0

2

0 0

( ) 2 ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) 2 ( ) ( ) ( )

t

s t

t t

s t

M t M s dM s N s A s

M s dM s N s M s dM s N t





 



   

    



 

where the second equality follows from the assumption that A(t) has no jumps P-a.s. and the

third equality follows from the fact that N(t) is a counting process and so

( ) ( )
s t

N t N s


  .

Since M(t)= N(t)-A(t) we then have

2

0
( ) ( ) 2 ( ) ( ) ( ).

t
M t A t M s dM s M t  

Now M(s-) is a predictable process, so both terms on the right hand side are martingales which

shows that A(t) is the compensator of M2(t). Q.E.D.

Next, we have

Theorem: If Ni(t), i=1,…,N  are independent counting processes with compensators, Ai(t),

defined by
0

( )
t

i s ds and Hi(t) are Ft–predictable functions then
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 
0

1

( ) ( ) ( ) ( )
N t

i i i
i

M t H s d N t A t


  is an Ft–martingale with

1) E(M(t)= 0 for all t

2) 2

0
1

var( ( )) ( ) ( )
N t

i i
i

M t E H s s ds


    .

Applying this theorem to the Nelson-Aalen estimator we have

 * *

0 0

2 2

* *

0 0

0

( )ˆVar ( ) ( ) ( ) Var ( )
( )

( ) ( )
, ( ) ( )

( ) ( )

( )
( ) ( )

( )

t t

t t

t

J s
t J s d s dM s

R s

J s J s
E d M M E R s d s

R s R s

J s
E s d s

R s

 
     

 
      

         
         
  

   
  

 

 



this can be estimated by

*
20

( )
( )

( )

t J s
dN s

R s
 
 
 
 .

For large n,

 2
* * *

0 0 0

( ) 1ˆlim ( ) ( ) ( ) lim ( ) ( )
( ) ( )

t t t

n n

nJ s
nE t J s d s E d s d s

R s s 

    
          

    
  

Finally, note that
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 * *

0 0

* *

0 0
1 1

( )
(̂ ) ( ) ( ) ( )

( )

1 ( ) 1 ( )
( ) ( )

( ) ( )

t t

n nt t

i i
i i

J s
n t J s d s n dM s

R s

nJ s nJ s
d M s dM s

R s R sn n 

 
     

 
   

    
   

 

  

which from the martingale central limit theorem leads to the result that the Nelson-Aalen

estimator is asymptotically normally distributed.

Summarizing our results for the Nelson-Aalen estimator *

0

( )
(̂ ) ( )

( )

t J s
t dN s

R s
  we have:

Theorem:

1) (̂ )t is an unbiased estimator of
0

( ) ( )
t
J s d s .

2) (̂ )t is a consistent estimator of ( )t .

3)  *(̂ ) ( )n t t  is asymptotically normally distributed with mean 0 and variance

*

0

1
( )

( )

t
d s

s
 

 
 
 .

i) Kaplan Meier Estimator of the Survivor Function

The Nelson Aalen estimator can be used to derive an estimator for the survivor function S(t).

Note that since
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* ( )
( )

1 ( )
dF t

d t
F t

 


we have

  * *

0 0
( ) 1 1 ( ) ( ) 1 ( ) ( )

t t
S t F s d s S s d s      

So, we can think of an estimator of S(t) has being defined recursively using

0
ˆ ˆ ˆ( ) 1 ( ) ( )

t
S t S s d s  (12)

where (̂ )t is the Nelson-Aalen estimator of the integrated hazard function. Substituting the

definition of the Nelson-Aalen estimator into (12) yields:

**

*

1
(̂ ) if ( ) 1( ) ( )ˆ ˆ( ) ( ) ( )

( )
0 if ( ) 0

S t dN tJ t dN t
dS t S t R t

R t
dN t




 
       

  

Since (̂0) 1S  we then have

*( ) 1
(̂ ) 1 1

( ) ( )
is t t t i

dN s
S t

R s R t 

                
         

  . (13)
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Before turning to models with covariates, we present an example using joblessness spell data

from the February 1996 Current Population Survey’s Displaced Worker Supplement (CPS-

DWS). In the CPS-DWS workers who have been displaced from a job in the previous three years

are asked how many weeks it took before they were re-employed. Joblessness duration data are

right censored if the spell was ongoing at the time of the survey. For convenience we also censor

all spells after 100 weeks. The Nelson-Aalen estimate of the integrated or cumulative hazard

function is presented in Figure 3. Since the integrated hazard is discontinuous it is not possible to

directly estimate the baseline hazard. However, applying kernel smoothing techniques an

estimate can be derived. This is presented in Figure 4.
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4. Parametric Methods for Continuous-time Data with Covariates

i) Time-Constant Covariates

Usually in economics we are interested in hazard functions conditional on a set of covariates or

regressors. When these do not change over time, then we simply define the hazard conditional on

the covariates. Thus the conditional hazard is

0

( | , )
( ; ) lim

t

P t T t t T t
t

t




  



x

x (14)

where x is a vector of explanatory variables. All of the formulas introduced in section 2 above

continue to hold provided the c.d.f. and density are defined conditional on x. Often we are

interested in the partial effects of the xj on ?(t;x), which are defined as the partial derivatives for

continuous xj and differences for discrete xj. While the durations defined by (14) refer to some

“internal” time until the occurrence of an event, the impact of calendar time can be modeled by 

incorporating suitable covariates into x.

An especially important class of models with time-constant regressors consists of the

proportional hazards model. A proportional hazards model can be written as 0( ; ) ( ) ( )t t  x x

where ?(?) > 0 is a non-negative function of x and ?0(t) > 0 is called the baseline hazard. The

baseline hazard is common to all individuals in the population; individual hazards differ

proportionately based on a function ?(x) of observed covariates. Typically , ?(?) is
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parameterized as ( ) exp( )x  xβ

where ? is a vector of parameters.

ii) Time-Varying Covariates

Studying hazard functions is more complicated when we wish to model the effects of time-

varying covariates on the hazard function. For one thing it makes no sense to specify the

distribution of the duration T conditional on the covariates at only one time period. Nevertheless,

we can still define the appropriate conditional probabilities that lead to a conditional hazard

function.

Let x(t) denote the vector of regressors at time t. For t ? 0, let X(t), t? 0 denote the covariate path

through time t: X(t)={x(s): 0 ?s? t}. We define the conditional hazard function at time t by

0

( | , ( ))
( ; ( )) lim

t

P t T t t T t t t
t t

t




   



X

X . (15)

The proportional hazard form is commonly used when covariates are time-varying:

0( : ( )) ( ( )) ( )t t t t  X x . Usually (t) = exp[x(t)’?].

Below, we shall focus on techniques primarily for flow sampling. With flow sampling, the

sample consists of individuals who enter the state at some point during the interval [0,t0] and we

record the length of time each individual is in the initial state. Flow data are usually subject to
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right censoring. That is, after a certain amount of time (t0), we stop following the individuals in

the sample, which we must do in order to analyze the data. For individuals who have completed

their spells in their initial state we observe the exact duration. But for those still in the initial

state, we only know that the duration lasted at least as long as the tracking period.

iii) Maximum Likelihood Estimation with Censored Data

For a random draw i from the population, let ei ? [0, t0] denote the time at which

individuals i enters the initial state (the starting time), let *
it denote the length of time in the initial

state (the duration), and let xi denote the vector of observed covariates. We assume that *
it has a

continuous conditional density f(t|xi;?), t ?0, where ? is the vector of unknown parameters.

Without right censoring we would observe (ei,, xi) and estimation would proceed by

conditional maximum likelihood estimation. To account for right censoring we assume that the

observed duration is ti is obtained as *min( , )i i it t c where ci is the censoring time for individual

i. In some cases, ci is constant across i. For example if you were to track all individuals whose

duration starts at the same calendar time and track them for up to 2 years then the common

censoring time would be 104 weeks. We assume that, conditional on the covariates, the true

duration distribution is independent of the starting point ei and the censoring time ci.

* *( | , , ) ( | )i i i i i iH t e c H tx x (16)

where H(?|?) denotes the conditional distribution. Under assumption (16), the distribution of

*
it given (xi,ei,ci) does not depend on (ei,ci). Therefore, if the duration is not censored, the density



29

of ti = given (xi,ei,ci) is simply f(t|xi;?). The probability that ti is censored is

*( | ) 1 ( | ; )i i i i iP t c F c  x x θ

Let di be a complete spell indicator (di = 1 of uncensored, di = 0 if censored), the conditional

likelihood for observation i can be written as

(1 )( | ; ) [1 ( | ; )]i id d
i i i if t F t x θ xθ

For a random sample of size N the maximum likelihood estimator of ? is obtained by

maximizing

1

{ log[ ( | ; )] (1 ) log[1 ( | ; )]}
N

i i i i i i
i

d f t d F t


   x θ xθ

For example, the Weibull distribution with covariates has conditional density

1( | ; ) exp( ) exp[ exp( ) ]i i i if t t t    x θ xβ xβ

where xi contains unity as its first element for all i.

iv) Unobserved Heterogeneity

One way to obtain more general duration models is to introduce unobserved

heterogeneity into fairly simple duration models. In addition, we sometimes want to test for

duration dependence conditional on observed covariates and unobserved heterogeneity.



30

The key assumptions used to incorporate unobserved heterogeneity are that:

1) Unobserved heterogeneity is independent of the observed covariates.

2) Unobserved heterogeneity distribution is known up to a finite number of parameters

3) Unobserved heterogeneity enters the hazard function in a multiplicative fashion.

Before moving to a more general framework we will consider the model by Lancaster (1979).

For a random draw i from the population it is assumed that the hazard function has the Weibull

form conditional on the observed covariates xi and unobserved heterogeneity vi:

1( ; , ) exp( )i i i it v v t  x x β (17)

where xi1 ?1 and vi > 0. To identify the parameters ?and ?we need to normalize the distribution

of vi so that E(vi) = 1. In Lancaster (1979), it was assumed that the distribution of vi =

Gamma(?,?) so that E(vi) = 1 and Var(vi) = 1/?.

In the general case where the c.d.f. of given (xi,vi) is F(t|xi,vi,?) we obtain the distribution of *
it

given xi by integrating out the unobserved effect. Because vi and xi are independent, the c.d.f. of

*
it given xi is

0
( | ; , ) ( | , ; ) ( ; )iG t F t v k v dv


i ix θρ x θ ρ
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where it is assumed that the density of vi, k(?;?) is assumed to be continuous and depend on the

unknown vector of parameters ?.

With censoring and flow data we should assume

* *( | , , , ) ( | , ) and K( | , , ) ( )i i i i i i i i i i i i iH t v e c H t v v e c K v x x x

Suppose that the unobserved heterogeneity distribution has a gamma distribution and

0( ; , ) ( ) exp( )i i i it v v t  x x β

Then,

 0
0

( | , ) 1 exp exp( ) ( ) 1 exp exp( ) ( )
t

i i i i i iF t v v s ds v t
 

      
 

x x β xβ

where 0
0

( ) ( )
t

t s ds  .

Now the density of vi is

1( ) exp( ) / ( )k v v v v    

where Var(vi)=1/?and ?(?) is the Gamma Function. Thus,
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1

0
( | ; , ) 1 exp( exp( ) ( )) exp( ) / ( )

exp( ) ( )1 1 .

i i i

i

G t v t v v dv

t

 



   



 



    

   
 

x x β

x β

Why would we introduce heterogeneity when the heterogeneity is assumed to be

independent of the observed covariates? In many instances in economics, such as job search

theory, we are interested in testing for duration dependence conditional on the observed and

unobserved heterogeneity, where the unobserved heterogeneity enters the hazard

multiplicatively. As shown by Lancaster (1979), ignoring multiplicative heterogeneity in the

Weibull model results in asymptotically underestimating ?. Therefore, we could very well

conclude that there is negative duration dependence conditional on x, whereas there is no

duration dependence conditional on x and v.

Returning to our example using the CPS-DWS we estimate both Weibull and Weibull-Gamma

models controlling for a number of covariates including the weekly benefit amount an individual

is qualified to receive (WBA) and an indicator for UI receipt (UI) and the interaction of the two

(UI???WBA).1 Figures 5 and 6 display the estimated cumulative hazard and survivor function,

respectively, when the covariates are set to their sample means. To investigate the impact of UI

receipt, Figure 7 portrays the difference in the estimated survivor function for a UI recipient and

UI non-recipient who both qualify for weekly benefits of $200 per week, and whose remaining

covariates are fixed at their sample means. As can be seen from the figure, the survivor function

1 Controls for gender, race marital status, age, education, immigrant status, region of country, industry of lost job,
tenure in lost job, bluecollar-whitecollar status, reason for displacement, weekly wage in lost job and year of
displacement were also included. The sample includes only those who are imputed to be eligible for UI benefits.
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of the non-recipient decreases much more rapidly indicating that they find jobs more quickly

than UI recipients. Figures 8 through 10 present graphs for the Weibull-Gamma model.
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5. The Cox Regression Model

i) Data with no ties:

The models presented above impose parametric assumptions on the baseline hazard

function. In many instances economic theory provides little help in identifying a particular

parametric class. However, if the true baseline hazard function does not belong to the assumed

parametric class of functions, estimates will generally be biased. Cox (1972, 1975) developed a

technique for obtaining estimates of the without imposing any parametric form on the baseline

hazard. This technique is referred to as Cox regression. The model was developed with
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continuous time duration data in which the probability of two durations ending at the same time

equals zero. In most applications however, duration data is grouped to some extent and the

model has been modified to accommodate “ties” in the data. First, however, we will look at the 

case of “no ties.”

The Cox regression model assumes that the conditional hazard function follows a

proportional hazards model:

0( ; ) ( ) exp( )t t  i ix x β

The benefit of the Cox regression method is that it makes no assumptions about the form of the

baseline hazard function ?0(t). In fact the estimation method “partials out” the baseline hazard so 

that it doesn’t appear in the maximand; the only parameters that appear are the regression 

coefficients. Thus, Cox regression is a semi-parametric estimation method.

Cox regression estimation relies on forming a risk pool or risk set at each failure time in

the data. The risk set at failure time t??includes all individuals, i, with and ci greater than or equal

to t?. Thus at t?an individual is in the risk set if the event has not occurred before that time or

they have not been censored. The partial likelihood function is then constructed by considering

the conditional probabilities of failure at each failure time.

For example suppose that there are 5 observations in the data such that

Obs. ti di xi

1. 3 1 2
2. 5 0 2
3. 6 1 1
4. 9 1 0
5. 11 1 1
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Let R(tj) be the risk set at the (ordered) failure time tj. Thus, R(3) = {1,2,3,4,5}, R(6) = {3,4,5},

R(9) = {4,5} and R(11)={5}. At each event time tj, we consider the conditional probability that

the event occurs for the particular observation among those observations remaining in the risk set

“just before” tj, conditional on one event occurring at ti. For any observation, i, in the risk set at

time tj the probability of failure at tj approximately equals ?(tj;xi). Thus, if observation j fails at

time tj, then the conditional probability of observing j equals

j j

( )

exp( ) exp( )
or simply where R R(t ).

exp( ) exp( )
j j

j j j j

i i i i
i R t i R 

 


  
x β xβ

x β xβ

An alternative way to think about the construction of the partial likelihood is to think of

drawing balls from an urn at each failure time. A ball is included in the urn for individual i at

time tj only if individual i has not been censored or has not failed before time tj. Instead of equal

probabilities the relative probability of drawing the ball associated with individual i equals

exp( )ix β. Thus probability of drawing individual j equals

( )

exp( )

exp( )
j

j j

i i
i R t




x β

x β
.

The partial likelihood is formed by the product of these conditional probabilities over all

failure times:

1

exp( )
( )

exp( )
j

K
j

j i
i R

PL




 
 

   
 

 
x β

β
x β

or

1

log ( ) log exp( )
j

K

j i
j i R

PL
 

 
     

 
 β xβ xβ (18)
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Estimates are obtained by maximizing (18) with respect to Let β̂denote the value of that

maximizes (18). Then, the first order conditions for a maximum state that the vector β̂must

satisfy:

1

ˆexp( )
ˆ( ) ˆexp( )

j

j

i iK
i R

j
j i

i R






 
 

   
 

 


 

x x β

s β x 0
x β

The vector function s is usually referred to as the score function. From our discussion of

counting processes it is clear that

00 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) exp( )

t t

i i iM t Y s Z s dN s Y s Z s s ds    x β

is a martingale. Defining the predictable function 1 2( , , , , , )j nH t βxx x as

1 2

exp( )

( , , , , , )
exp( )

j

j

i i
i R

j n j
i

i R

H t






 






x x β

βxx x x
x β



we have
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( , , , , , ) ( ) ( ) ( )
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n

j j n j j j
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Using (19) and appealing to results from laws of large numbers and Martingale Central

Limit Theory, it can be shown that the estimates are both consistent and n - asymptotically

normal with the variance-covariance matrix equal to
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1
2 log( ( ))PL
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  
     
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ββ

which can be consistently estimated by

1 1
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1 1

ˆ ˆ ˆlog( ( )) log( ( )) log( ( ))
or

k k
j j j

j j

PL PL PL
 

 

     
   

         
 

β β β

ββ β β

where the vector β̂denotes the vector of Cox regression estimates and

ˆexp( )ˆ( ) .
exp( )

j

j
j

i
i R

PL







x β

β
x β

ii) Data with Ties

With ties in the data the exact partial likelihood becomes more complex although there

are some approximation methods that reduce the complexity and perform well as long as the

number of ties are “small”. Suppose at each event time j,  dj events occur and let Dj be the set of

individuals for which the event occurs at time j. Returning to the urn analogy then instead of

drawing one ball from the urn at time j, we draw dj balls without replacement. For a particular

sequence s={j(1), …, j(dj)} of draws the probability of observing that sequence equals

( ) ( )

1
( ) { (1), , ( 1)}

exp( )

exp( )

j

j

d
j q j q

q i i
i R t j j q


  



 
x β

x β


. (20)

Thus, the probability equals
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j q j q

s P qj i i
i R t j j q

d  
  



 D

x β

x β


where P(Dj) represents the set of permutations of the indices of the Dj individuals who fail at

time tj. Since the construction of the exact partial likelihood with ties can be quite complex,

several approximations have been suggested. Perhaps the most well know is that by

Breslow(1974) who essentially substitutes sampling with replacement for sampling without

replacement in the urn analogy.

Define

k

j k
k

s x
D

.

Then the Breslow approximation to the partial likelihood equals:

1

exp( )
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j

K

B d
j

i
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



 
 
 

  
  

      




js β
β

x β

.

An alternative approximation by Efron (1977) adjusts the denominator of the Breslow

approximation to the partial likelihood by subtracting a term for the number of balls drawn from

the urn. But instead of deducting the probability weights for the actual balls drawn and then

averaging over all permutations Efron (1977) deducts the average probability weight where the
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average is over all dj in Dj. The Efron (1977) approximation to the partial likelihood equals:

1

1

exp( )
( )

1
exp( ) exp( )

i

j j

K

E d
j

i i
i R ik i

PL
k
d
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 

 
 

 
          


 

js β
β

x β xβ
D

.

Since the Cox regression partial likelihood eliminates the baseline hazard function it does not

produce estimates of the baseline hazard function. The estimates of , however, can be used to

estimate the cumulative baseline hazard, 0 ( )t , using an estimator that weights the data using

ˆexp( )ix β:

*
0 0

1

( )ˆ( ) ( )
ˆ( ) ( ) exp( )

t

n

i i i
i

J s
t dN s

Y s Z s


 



 x β

.

An estimate of the baseline survivor function, S0(t), then equals:

 0 0
ˆ ˆ( ) exp ( ) .S t t 

Returning to or joblessness example presented above, Figures 11 and 12 present

estimates of the cumulative hazard and survivor functions when covariates are fixed at the

sample mean while Figure 13 presents estimates of the survivor function for a UI recipient and

non-recipient who qualify for $200 per week in benefits and whose other covariates are fixed at

the sample mean.
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Cox Regression Model: Cumulative Hazard Function Estimate
Figure 11
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Cox Regression Model: Survivor Function Estimate by Unemployment Insurance Receipt
Figure 13

iii) Stratified Cox Regression

In some circumstances the proportional hazards assumption may be inappropriate. If the

suspect variable is a categorical variable, then one can relax the proportional hazards assumption

for that variable by estimating a stratified model. Suppose the variable w has H categories and

that, a priori, it you suspect that the hazards are non-proportional across the H categories. Then

the stratified Cox regression involves maximizing the partial likelihood function:
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1 1

exp( )
( )

exp( )

h
h

h

hj

H K
j

h j i
i R

SPL
 



 
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  
  

 

 
x β

β
x β

where x includes all other variables except w.

6. Discrete-time Duration Data

i) Time-Constant Covariates

Most duration data available in economics is grouped. That is durations are only known

to fall into a certain time intervals, such as weeks, month, or even years. For example,

unemployment duration data are typically grouped into weeks.

One econometric approach that is taken when analyzing grouped duration data summarizes the

information on staying in the initial state or exiting that state in each time interval using a

sequence of binary responses. Essentially, we have a panel data set where the duration of an

individual determines a vector of binary responses. These in conjunction with the covariates can

be thought of as creating an unbalanced panel where the number of observations per individual

equals Ki = min(Di, Ci) where Di equals the number of periods until the event occurs and Ci

equals the number of periods until the observation is (right) censored. In addition to allowing us

to treat grouped durations, the panel data approach has at least two advantages. First, in a

proportional hazard specification it leads to simple methods for estimating flexible hazard

functions. Second, because of the sequential nature of the data, time varying covariates are easily

introduced.

Through out this discussion we will assume flow sampling. We divide the time line into
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M + 1 intervals, [0, k1), [k1, k2), ? , [kM-1, kM), [kM, ? ), where km are known constants. For

example, we might have k1 = 1, k2 = 2, k3 =3, and so on, but unequally spaced intervals are also

feasible. The last interval is chosen so that any duration falling into it is censored at kM: no

observed durations are greater than kM.

For a random draw from the population, Let ym represent a binary indicator equal one if

the event occurs in the mth interval and zero otherwise. For each person i, we observe

1( , , )
ii iKy y which is an unbalanced panel data set of length Ki. Note that the string of binary

indicators is either a sequence of all zeros or a series of zeros ending with a one where the former

sequence is observed when the observation is censored and the latter sequence is observed when

the series of zeros ends because an event occurred.

Let  ik iI C k   ki=1,…Ki. With time invariant covariates, each draw from the

population is, 1 1( , ), , ( , ),
i ii i ik iky y  x . We assume that a parametric hazard function is

specified as ?(t; x,?), where ? is a vector of unknown parameters. Let T denote the time until

exit from the initial state. While we do not fully observe T, either we know which interval it falls

into, or we know whether it was censored in a particular interval. Thus we can compute

1 1( 0 | 0, 0, , )m m mp y y     x , 1 1( 1| 0, 0, , )m m mp y y     x , m=1,… M.

To compute these probabilities in terms of T, we assume that the duration is conditionally

independent of censoring:

T is independent of C given C. Thus,
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1

1

1 1 1 1( 1 | 0, 0, ) ( | ) 1 exp ( ; , )

1 ( , ), m=1, , M where ( , ) exp ( ; , ) .

m

m

m

m

k

m m m m m m k

k

m m k

P y y P k T k T k s ds

s ds

 

  





   
            

      





x x θ

x θ xθ xθ

Therefore,

1 1( 1| 0, 0, , ) ( , ).m m m mP y y      x x θ

We can use these probabilities to construct the likelihood function. If, for observation i,

uncensored exit occurs in interval mi, the likelihood function is

1

1

( , ) [1 ( , )].
i

i

k

m i k i
m

 




 
 

 
 x θ xθ (21)

The first term represents the probability of remaining in the initial state for the first ki - 1

intervals, and the second term is the (conditional) probability that T falls into interval ki. If the

duration is censored in interval ki, we know only that exit did not occur in the first ki -1 intervals,

and the likelihood consists of only the first term in expression (21).

If di is a censoring indicator equal to one if duration i is uncensored, the log likelihood for

observation i can be written as

1

1

log( ) log[ ( , )] log[1 ( , )]
i

i

k

i m i i k i
m

L d 




   x θ xθ (22)

Thus, for a sample of size N, the log likelihood function is

1

1 1 1

log( ) log( ) log[ ( , )] log[1 ( , )]
i

i

kN N

i m i i k i
i i m

L L d 


  

     x θ xθ (23)
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To implement conditional MLE, we must specify a hazard function. One hazard function that is

popular is a piecewise-constant proportional hazard: for m=1, ? , M,

m-1( ; , ) ( , ) , k .m mt t k    x θ xβ

With a piecewise constant hazard and ( , ) = exp( ) x β xβfor m=1, ? , M we have

1( , ) exp[ exp( ) ( )]m m m mk k     x xβ

where km are known constants (often km = m).

Alternatively one could assume an underlying continuous baseline hazard and define

1
0 0 ( ) , m=1, , Mm

m

k

m k
s ds 



 

and

( , ) exp[ exp( ) ]m om  x θ xβ . (24)

Without covariates, maximum likelihood estimation of the 0m in (24) leads to a well known

estimator of the survivor function. We can motivate the estimator from the representation of the

survivor function as a product of conditional probabilities. For m=1, ? , M, the survivor function

at time km can be written as

1
1

( ) ( ) ( | )
m

m m r r
r

S k P T k P T k T k 


    
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Now, for each r=1, 2, ? , M let Nr denote the number of people in the risk set for interval

r: Nr is the number of people who have neither left the initial state nor been censored by kr-1.

Therefore, N1 is the number of individuals in the initial random sample; N2 is the number of

people who did not exit the initial state in the first interval, less the number of individuals

censored in the first interval, and so on. Let Er be the number of people observed to leave in the

rth interval. A consistent estimator of

P(T > kr| T > kr-1) is
( )

, r=1,2, , M.r r

r

N E
N
  (25)

It follows from equation (25) that a consistent estimator of the survivor function at time

kn is

1

( )
(̂ ) , m=1, 2, ,M.

m
r r

m
r r

N E
S k

N

 
  

 
 

This is the discrete-time Kaplan-Meier estimator of the survivor function (at points k1, k2, ? , km).

We can derive this Kaplan-Meier estimator by maximizing the likelihood function

1

1 1

(1 )
i

i

i

kN
d

m k
i m

L  


 

 
  

 
 . (26)

with respect to m, m=1,…M where di is an indicator variable that equals one if the individual

spell is not censored. Taking the log of (26) gives
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and then rearranging terms yields

1 ( ) ( )
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  

 
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 
  

where S(m) denotes those individuals who survivor past m and D(m) denotes the set of

individuals for which the event occurs during m. This reduces to

 # #

1

ln( ) ( ) ln( ) ( ) ln(1 )
M

m m
m

L S m D m 


  

where S#(m) (D#(m)) denotes the number of individuals in S(m) (D(m)). Differentiating the log

likelihood and setting it to zero yields

# #1 1
( ) ( )
ˆ ˆ1m m

S m D m
 




or

# # #ˆ( ( ) ( )) ( )mS m D m S m  .

Solving for m̂ then yields
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# #
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m m
m
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N ES m
S m D m N



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

Now

1 1

ˆ ˆ( )
m m

r r
m r

r r r

N E
S a

N


 

 
   

 
 

which was the Kaplan Meier estimator above.
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ii) Time-Varying Covariates

For the population, let x1, x2, ? , xM denote the outcomes of the covariates in each of the

M time intervals and let X = (x1, x2, ? , xM), where we assume that the covariates are constant

within the interval. In general we will let Xr = (x1, x2, ? , xr). We assume that the hazard at time t

conditional on the covariates up through time t depends only on the covariates at time t. If past

values of the covariates matter, they can simply be included in the covariates at time t. The

conditional independence assumption on the censoring indicators is now stated as

1 1( | , , ) ( | , ), m=1,2, ,Mm m m m m m mD T k T k D T k T k     x x 

This assumption allows the censoring decision to depend on the covariates during the time

interval (as well as past covariates, provided they are either included in xm or do not affect the

distribution of T given xm). Under this assumption, the probability of exiting (without censoring)

is

1

1 1 1( 1 | 0, , 0) ( | , )

1 exp ( ; , ) 1 ( , ).
m

m

m m m m m m m

k

m mk

P y y P k T k T k

s ds



   


        

      
m

m

x x

x x
(27)

we can use equation (27) along with 1( 0 | 0, , 0) ( , )m m m m m mP y y      x x to construct the

log likelihood for person i as in (22) and the sample log likelihood (23).

iii) Unobserved Heterogeneity
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Unobserved heterogeneity can also be added to hazard models for grouped data. For

example, adding unmeasured heterogeneity to (24) and letting ?i = exp(vi) gives

( , , ) exp[ exp( ) ]m m i i m om    x θ xβ (28)

Now the survivor function associated with () equals

11 1

( ; , , ) ( , , ) exp[ exp( ) ] exp exp( )
m m m

m r r r or r or
rr r

S m       
 

               
    
 X θ x θ xβ xβ . (29)

Let ?have c.d.f. G(?). Then

1

( ; , ) exp exp( ) ( ).
m

m r or
r

S m dG   


    
X x β

Now, if G is a gamma distribution with E(?) = 1 and Var(?) = ?2 then (29) becomes

2
1

2

1

( ; , ) 1 exp( ) .
m

m r or
r

S m


 




   
 

X θ xβ (30)

We can then use (30) to form the log likelihood function by noting that the probability of

the event ending in period m equals S(m-1;Xm-1, ?) - S(m;Xm , ?). Letting di equal 1 if event

occurs and 0 otherwise (censored) we have the log-likelihood function
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where  2, , θ αβ with 01 02 0( , , , ).M  α  Other unobserved heterogeneity distributions

are:

Inverse Gaussian:
1

2
2

2
1

1
( ; , ) exp 1 (1 2 exp( ) )

m

m r or
r

S m  
 

         
X θ xβ

Stable Distribution (Hougaard ,1986):
1

2
2

1

1
( ; , ) exp 1 (1 exp( ) )

m c

m r or
r

S m c 
 

         
X θ xβ

Mass-Point Distribution:
1 1

( ; , ) exp exp( )
J m

m j j r or
j r

S m p  
 

   
 

 X θ xβ

where J equals the number of mass points and
1

1
J

j
j

p


 . Rather than fixing the mean of the

mixing distribution to 1 for this distribution, empirical implementation is easier by instead fixing

?01 = 1.

7. Multi-spell Discrete-time Models

Suppose that instead of a single duration we have multiple durations. For example, we

may be interested in examining consecutive unemployment durations. The survivor function for

the gth spell satisfies
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m

g g g g
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S k P T k P T k T k 

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We shall assume that

1 0( | ) ( , ) exp[ exp( ) ]g g g g g g g g g
m m m m m mP T k T k   

    x x β
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1 0( | ) 1 ( , ) 1 exp[ exp( ) ]g g g g g g g g g
m m m m m mP T k T k   
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1
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m m r r
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S k P T k 


    x β

We will have data for up to G spells for an individual. If an individual completes the gth spell

with Kg = kg that spell contributes

 1

0 0
1

( ) exp exp( ) exp exp( )
g
i

g g
i i

k
g g g g g g g g

i r r k k
r

P K k  
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               
 x β x β

to the likelihood function. If they are censored in the gth spell at time g
ik then that spell

contributes

0
1

( ) exp[ exp( ) ]
g
i

g

k
g g g g
i r r

r

P K k 


     
  
 x β

to the likelihood function. Let the spell indicator variables g
iv =1 if an individual enters the gth
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spell and zero otherwise, g=1,…,G and define the censor variables g
id = 1 if the individual

completes the gth spell and zero otherwise, g=1,…,G. Then each individual contributes 
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0 0
1 1

exp[ exp( ) ] 1 exp[ exp( ) ]

g
ig g

i i

g g
i i
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kG d
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to the likelihood function which is
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and the log-likelihood function equals
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x β x β

x β x β

Under the assumption that spell durations are independent, the likelihood decomposes

and one can obtain estimates for this model by estimating G single spell models where all

individuals with g
iv = 1 are included in the gth estimation. If we instead assume that g = and

0 0
g
m m   for all g then we can “stack” observations for each spell within each individual and

estimate a single spell duration model with log likelihood
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An intermediate case would be a model that restricts g = for all g but allows the

baseline hazard parameters to be spell dependent.
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This case is similar to the continuous duration Cox regression model that stratifies the stacked

data by spell. One could employ single spell discrete duration methods to estimate such a model

by stacking the data and incorporating (G-1) ? M time-varying covariates that are of the form

( ) ( )gmx I K k I S g    where S is a variable denoting the particular spell.

Estimation becomes more complicated if we assume that for each duration

( | 1)g g g g
m mP T k T k   has the form

0( | 1) ( , ) exp[ exp( ) ]g g g g g g g g g g g
m m m m m mP T k T k         x θ xβ

where g are unobserved random variables which are assumed independent of the covariate

processes g
mx , g=1,…,G. In general, the g may be correlated with each other. Denote this joint

distribution of the G x 1 vector ξby G(ξ;) where we have assumed that the distribution can be

parameterized by the Q x 1 vector . The unconditional log likelihood function is obtained by

integrating out ξ. Thus we have
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   x β x β ξδ (31)



61

Estimates are obtained by maximizing () with respect to the g, 0mg, and . Maximum

likelihood estimation may prove computationally intensive since the integral in (31) is typically

multivariate. One may assume a mass-point specification for G where there are M types of

individuals in the population and each type as a unique G x 1 vector of location parameters.

Let pq denote the proportion of the qth type in the population, q=1,…,Q. Then the log-

likelihood (31) becomes
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This likelihood is then maximized with respect to g, 0
g
m , g=1, …,G and ξq, and pq  q=1,…,Q 

where
1

1
Q

q
q

p


 .

8. Competing Risk Models

In many cases spells end for different reasons. Individuals may quit a job or be laid off, a

person may die because of cancer or a heart attack, re-employment may occur into a job that is

part-time or full-time. In such cases the explanatory variables may have differing effects on the

relative probabilities of spells ending for particular reasons. Competing risks framework is

meant to allow for this possibility. While without regressors it is not possible in general to

distinguish models with correlated risks from those with independent risk, Heckman and Honore

(1989) have derived sufficient conditions on the regressors which enable such identification. We
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shall assume that such regressors exist. Also for simplicity in the discussion below we focus

exclusively on the case of two risks. Extension to cases where the number of risks exceeds two is

straightforward.

Competing risk models assume that there are two latent duration variables, T1 and T2,

which represent the time until the occurrence of the type 1 and type 2 events, respectively.

What is observed, however, is only T= min(T1, T2) and an indicator I{T=T1}. This is referred to

as the “identified minimum”. Thus, we know not only how long it took before at least one of the 

two types of events occurred but also which one it was. For example, if you were laid off from

your job after T months of tenure, we know that you hadn’t quit and weren’t laid off before this 

time. We also know the reason for  job spell ending (i.e. layoff). What we don’t know is when (if 

ever) you would have quit your job had you not been laid off first.

We assume that duration data are discrete and proceed by specifying the joint survivor

function for the two latent durations T1 and T2 which is denoted by S (T1, T2 ). In particular we

assume that

1 1 1 1 1 1 1 1
1 0( | ) ( , ) exp[ exp( ) ]r r r r r rP T k T k           1x x β (32)

and

2 2 2 2 2 2 2 2
1 0( | ) ( , ) exp[ exp( ) ]r r r r r rP T k T k           2x x β (33)

where we assume that the variables 1 and 2 are unobserved and independent of the observed

explanatory variables. Correlated risks arise in this model to the extent that 1 and 2 are
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correlated. From (32) and (33) the latent survivor function satisfies
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where
1 21 2 max( , ){ , , , }t tX x x x . Let G be the distribution function for the unobservables 1 and

2. Then the unconditional survivor function satisfies

1 2
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S k k dG    
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 

  1 2X x β xβ . (34)

To construct the likelihood function in this case suppose for the ith individual the fail at time t

due to cause 1. Then,
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In a similar manner we have

 1 2 2 1 2 1 2 1 2 1 2( min( , ), ( ) 1| , , ) ( 1, 1| , , ) ( , 1| , , ) ( | , , )P k k k I k k S k k S k k A k           X X X X

Let 1
ic ( 2

ic ) be an indicator variable that equals 1 if the ith person spell ends for reason 1

(2) and let 3
ic be an indicator variable that equals one if the spell is right censored. Then the log

likelihood function for the competing risks model Log(L) satisfies:
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X

(35)

As we will discuss later, these methods were used by McCall (1996, 1997) to investigate the re-

employment patterns of displaced workers in the United States. In particular, McCall (1996)

used a competing risks framework to model joblessness durations that end due to re-employment

into part-time or full-time jobs and how particular parameters of the US unemployment

insurance (UI) system affect not only how long an individual remains unemployed but also the

type (part-time versus full-time) of job that they are re-employed into.

In the United States, many unemployed individuals who qualify for UI benefits do not

file a claim. McCall’s (1996) analysis focused only on displaced workers who qualified for 

benefits. To allow for the possibility that changes in the parameters of the UI system will affect

the choice to file a UI claim (see Anderson and Meyer, 1997 and McCall, 1995), McCall (1996)
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modeled the claim filing choice and allowed for the possibility that unobservable determinants

of that choice may be correlated with unobservable determinants (i.e. 1 and 2 in (35) ) of the

re-employment rates into part-time and full-time jobs. Thus UI receipt was modeled by the

dichotomous variable UI which equals 1 if an individual files a claim and 0 otherwise where

Pr(UI=1) has the functional form

P(ui=1)=1-exp[ exp( )]u  z δ

where z is a vector of explanatory variables, is a vector of parameters and u is an unmeasured

variable that is uncorrelated with X and z. However, u may be correlated with 1 and 2 in

(35) and ui (along with its interaction with some variables in X) are added as explanatory

variables in (35). Denote these variables by v. The likelihood function for this model selectivity

corrected competing risks model is
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(36)

McCall(1996) used a mass-point specification for the unobserved heterogeneity

distribution G which assumes that there are M types of individuals in the population with type m

having the unique triplet 1 2( , , )u
m m m    of “location” points and composing pm of the population,

m=1,…,M, with

1

1
M

m
m

p


 . For this specification, the likelihood in (36) becomes
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Two particular unemployment insurance parameters of interest to McCall(1996) were the weekly

benefit amount and the disregard amount which we discuss further in chapter XX.

9. General Discrete-Time Life History Models

More generally, we consider a discrete-time life history process that is characterized by a

discrete-valued state space S and the following conditional transition probabilities 1P ( )r
kF  for r

? S which represents the conditional probability that the process is in state r at time k given the

history of the process (information) up to (discrete) time k-1. The history would include not only

the past history of transitions of the process but also the history of, possibly time-varying,

covariates. If a more coarse history is observed, Gk, with Gk ? Fk we will instead have

 
1 1( )

k

r
G kE P F

  . For example, a particular covariate that affects the transition probabilities may

not be observed. A specific form of this probability may be

 ( 1) ( 1) ( 1)
1 ( 1) ( 1) 0 ( 1)

( ) 1 exp exp( )
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where s(k-1) is the state occupied at time k-1, ( 1)sg k  represents how many visits to state s

have occurred by k-1 with

( )

1 1

g sr
g
s

s g

k k
 



and g
sk represents the time spent in state s during its gth visit. Note that the s, g(s) and g

sk are

random variables at time 0. Now,
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and by convention we fix the probability of remaining in the state at t-1 to
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Suppose that we observe only Gk-1, then
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k s k s Gs k

P G d 


   x β P .

In particular we assume that durations in each state are observed as well as all x’s. Onlythe

variables ( )rg s
s are unobserved and the ( )rg s

s are F0 measurable and distributed independently of

the x’s. Then 

 1 1 1 0( ) ( ) ( | ) ( )r r
k k kP G P F L F F dB   ξ

where L(Fk-1| F0) represents the probability (“likelihood”) of observing a particular history Fk-1

given F0 and B(ξ) is the distribution of the vector ξ. Essentially we “integrate out” thevector of
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variablesξ. Suppose for individual i we observe the sequence of times spent in states and the x’s. 

Further suppose that the distribution B can be characterized by the parameter . Since we have
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The log-likelihood function is then

1

ln( ) ln( )
N

i
i

L L




which is maximized with respect to the parameters g
sβ , 0

g
s m , and .

One example which applies these discrete-time life history methods would be the analysis

of employment to unemployment and unemployment to employment transitions when workers

may have access to unemployment insurance. In the United States and Canada, workers can still

receive benefits while working for jobs with low earnings. In particular, in Canada workers are

allowed to earn the maximum of $50 or 25% of their weekly benefit amount with no reduction in
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unemployment insurance benefits. For any additional earnings above this amount, weekly

benefits are reduced dollar for dollar. Given the possibility that benefits may be received while

employed or unemployed, it may be desirable to specify an econometric model with four distinct

states: employed-benefits (EB), employed-no benefits (ENB), unemployed-benefits (UB),

unemployed-no benefits (UNB).

The transitions UNB?ENB , UB?ENB, ENB?UNB and UNB?UB would commonly be

observed where the latter transition occurs when an already unemployed individual files for a

claim or when a newly unemployed individual satisfies a waiting period that is required by law

(e.g. in Canada there is a two week waiting period before benefits can be received). Other

transitions that are possible but perhaps less common are the UB?UNB transition that occurs

when an individual exhausts unemployment insurance benefits or is disqualified from receiving

benefits for some reason (e.g. inadequate job search). The UB?EB occurs when an individual

receiving unemployment insurance benefits begins a low-earnings job that allows them to

continue receiving benefits. The transitions EB?UB and ENB?UB occur when an individual

who is in the benefit period from a past job loss and has not exhausted all benefits loses their

current job. The EB?ENB may occur either when a person who is working and receiving

benefits exhausts their benefits or when a person who is working and receiving benefits

experiences a sufficiently large increase in earnings that disqualifies them from receiving further

benefits while working.

Suppose we have panel data that follows a sample of individuals from the time they lose

a job forward. Thus, all individuals begin in state UNB. Here, our goal is simply to demonstrate

how a likelihood function would be constructed from the individual life histories. So, consider a
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particular individual (i) who files for and receives benefits after satisfying the two week waiting

period, receives benefits without working for then five weeks before working part-time. The

individual still receives benefits while working and this job last four weeks. The individual then

is unemployed (and receiving UI benefits) for eight weeks before finding another part-time job.

The individual still receives benefits while working at this new part-time job and this job last

eight weeks before the individual is made a (permanent) full-time job offer which precludes

receiving further benefits. This particular history is portrayed in Figure 1.

The components of the contribution to the likelihood for individual i would be
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for the final period of working“offclaim”where we assume that the individual is right censored

after K period on the job.

Thus, the contribution to the likelihood equals of this individual
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.

In this setup we have allowed for the baseline hazards parameters and coefficients associated

with the explanatory variables to depend on the total number of previous visits to that state. More

general forms of state dependence could also be incorporated into the model. For example, the

transition probabilities may depend not only on the number of times the state was previously

visited but also on the time spent in the state on each previous visits.
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10. Specification Tests for Duration Models

To conclude this chapter we briefly consider specification testing for duration models. While

there are several methods to potentially test the validity of a model specification in hazard

models, one particularly useful test is based on the notion that if the model is correctly specified

then

00 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) exp( )

t t

i i i i i i iM t Y s Z s dN s Y s Z s s ds    x β

is a martingale.2 Thus,

00 0
ˆ ˆ(̂ ) ( ) ( ) ( ) ( ) ( ) ( ) exp( )

t t

i i i i i i iM t Y s Z s dN s Y s Z s s ds    x β

which is based on the sample estimates of 0 ( )s and βshould be approximately a martingale if

the model is correctly specified. Using the fact that the estimates are consistent and appealing to

the martingale central limit theorem, one can construct Chi-square tests of model specification.

Moreover, graphical assessment is feasible since under the null hypothesis that the model is

correctly specified (̂ )iM t is “approximately” a martingale for all i and t and, hence, plots of 

weighted sums of (̂ )iM t  should appear as “white-noise”or patternless (See Arjas, 1989). The

remainder of this section follows McCall (1994) and focuses on discrete-time duration models.

In the discrete case we work with martingale difference sequences. Let Ni(k) = I{Ki=k, Ci>k}

where Ci denotes a censoring-time variable. Then,

   ( ) ( ) 1 1 ( , )i i k kx k N k I K k I C k        x

forms a martingale difference sequence. These martingale differences can be standardized by the

2 For additional specification diagnostic methods for duration models see Schoenfeld (1980), Wei (1984) , and
Lancaster (1990).
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stochastic variance process vi(k) where

    ( ) 1 ( , ) 1 ( , )i k k k kv k I K k I C k        x x .

Suppose the data is observed over M periods and let αdenote the vector of ( , )k k x for

k=1,…, M.  If the model is estimated by maximum likelihood then under suitable conditions

(See McCall, 1994) the test statistic

2 1ˆ ˆN   -
0xΣx

is asymptotically chi-square distributed with rank( -
0Σ ) degrees of freedom where

1

ˆ ˆ
N

i

 ix x and îx are M vectors of xi(k), k=1,…,M evaluated at ̂θand

 1 1 1( / ) ( ) ( ) ( / ) ( ) ( ) ( / ) ( ) ( / )P P P P P P P P PE E E E E E E E E                     0 0 0 0 0 0 0 0 0 0 0Σ V p I sx p I sx p I p

with 0s the score vector of the log-likelihood function, I0 the Hessian matrix of second

derivatives of the log-likelihood function and V0 equal to the M x M diagonal matrix with

(m,m)th element

     ( ) 1 ( , ) 1 ( , ) .P i P m m m mE v m E I K m I C m        x x
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