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Abstract

This paper develops the conceptual and empirical basis for a class of empirical economic
production models that can be linked to site-specific bio-physical models for use in integrated
assessment research. Site-specific data are used to estimate econometric production models, and
these data and models are then incorporated into a simulation model that represents the decision
making process of the farmer as a sequence of discrete or continuous land use and input use
decisions. This discrete/continuous structure of the econometric process model is able to simulate
decision making both within and outside the range of observed data in a way that is consistent
with economic theory and with site-specific bio-physical constraints and processes. An
econometric-process model of the dryland grain production system of the Northern Plains
demonstrates the capabilities of this type of model.



Econometric-Process Models for Integrated Assessment 
of Agricultural Production Systems 

Quantitative integrated assessment – i.e., the use of linked disciplinary simulation models

to evaluate complex natural and human systems – is becoming the standard methodology for

analysis of many leading environmental issues. The purpose of integrated assessment is often to

simulate behavior of a system outside the range of observed behavior, as in analysis of the

impacts of global climate change. To simulate non-linearities or discontinuities of complex

systems, biological and physical scientists use models based on their understanding of bio-

physical processes. These process-based models are able to simulate behavior outside the range

of observed data in ways that are consistent with established scientific understanding. Another

feature of bio-physical processes in agriculture is that they are dependent on site-specific soil and

climate conditions. 

This paper develops the conceptual and empirical basis for a class of empirical economic

production models — econometric-process models — that can be linked to site-specific bio-

physical models for use in integrated assessment research. Site-specific data are used to estimate

econometric production models, and these data and models are then incorporated into a

simulation model that represents the decision making process of the farmer as a sequence of

discrete or continuous land use and input use decisions. This discrete/continuous structure of the

econometric-process model is able to simulate decision making both within and outside the range

of observed data in a way that is consistent with economic theory and with site-specific bio-

physical constraints and processes.

The next section reviews the production modeling approaches that have been used in

integrated assessment research. The third section presents the conceptual foundations for the
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econometric-process simulation model and discusses the empirical procedures that can be used to

implement the approach. The fourth section presents an application of the econometric-process

approach to modeling the dryland grain production system in Montana. This application

demonstrates the capabilities of the econometric-process model to reproduce within-sample

distributions of land use and out-of-sample phenomena such as the conversion of cropland to a

conserving use. The example also shows that the econometric-process model can simulate

nonlinearilites and discontinuities in supply functions outside the range of observed data, such as

the shutdown point on the supply function, that are consistent with economic theory but are not

estimable with conventional, continuous econometric supply functions. 

Economic Production Models for Integrated Assessment

The integrated assessment paradigm for agricultural production systems is presented as

follows. Economic data are inputs into economic production models, and soils and climate data

are inputs into crop or livestock process models that calculate site-specific productivity. The

outputs of crop and livestock models may be inputs into economic models and environmental

process models (e.g., models of chemical leaching and runoff, soil erosion, or changes in soil

organic carbon). The outcomes of economic models also may be inputs into environmental

process models. If the bio-physical and economic data are statistically representative of the

population of land units and economic decision makers in a region, economic and environmental

outcomes can be statistically aggregated to assess tradeoffs at a regional scale (Antle, Capalbo

and Crissman, 1998).

A variety of production modeling approaches have been used in integrated assessment

research. One approach utilizes representative farm programming models to estimate optimal



 Econometric-Process Models for Integrated Assessment of Agricultural Production Systems 3 

resource allocations. Prato et al. use this approach to link economic models environmental

process models; Kaiser et al. developed a representative farm model for Minnesota to examine

the impacts of climate change; and Adams et al. (1995, 1998) utilize an aggregate model with

representative farms for U.S. regions to study the regional impacts of climate change on U.S.

agriculture. Kruseman et al. develop a bio-economic modeling approach that integrates bio-

physical information with linear programming models. These models allow for discrete choices

among technologies and land use. Another important feature of these models is that they

represent production technology explicitly, so they can be linked to bio-physical process models

of crop or livestock production. However, the reliance of these models on the representative farm

construct limits their usefulness for explaining spatial variation in economic behavior and linking

that behavior to spatially-explicit bio-physical process models. Another limitation of

programming models is that their technology parameters and related data are not usually derived

from statistically representative samples of the population. 

A second class of production models is based on econometric models that explain

observed outcomes, such as land use or net returns, as reduced-form functions of economic

variables (output and input prices) and bio-physical characteristics of land units. Mendelsohn,

Nordhaus and Shaw developed an econometric model that explains returns to land as a function

of economic and climate variables, using U.S. county-level data. Recent studies of land

allocation also use reduced-form models estimated with county-level data for regions of the U.S.

( Wu and Segerson; Hardie and Parks.). Because reduced-form models do not explicitly represent

the relationship between productivity and the physical environment, they cannot be linked to bio-

physical process models of crop or livestock production. This feature limits the usefulness of
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these models for integrated assessment. For example, studies of global climate change show that

increasing concentrations of atmospheric CO2 are likely to have substantial impacts on crop

yields, and thus should have significant impacts on economic decisions. This CO2 fertilization

effect cannot be incorporated into reduced-form economic models.

A third strand of the literature utilizes econometric methods to estimate neoclassical

production, cost, or profit functions (e.g., Chambers; Segerson and Dixon). These models can be

estimated and simulated with site-specific data, and thus can be used to represent spatial

variation in both bio-physical conditions and economic behavior. They can also explicitly

represent the impacts of bio-physical conditions on productivity. However, the parameters of

econometric models can only represent the range of behavior observed within the spatial and

temporal dimensions of the data used for their estimation. Moreover, econometric models that

incorporate mixed discrete and continuous choices are difficult to estimate and simulate.

Consequently, these models are not well suited to the simulation of discrete choices or behavior

outside the range of observed data.

Most empirical economic production models do not incorporate biophysical data and

information about growth processes. Leaving site-specific soil and climate variables out of a

production function may lead to biased and inconsistent parameter estimates, analogous to the

farm-specific management bias (Mundlak and Hoch). This bias can be avoided by estimating a

dual representation of the technology in which environmental effects are relegated to error terms,

but then cannot be linked to bio-physical data in simulation analysis. Some studies have included

bio-physical data in a production function model (e.g., Kaufman and Snell). This type of

procedure can introduce site-specificity into a production function model, and could be

incorporated into an econometric-process simulation model.
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Econometric-Process Simulation Models: Conceptual Foundations and Empirical Methods

The production process of activity j at site i in period t is defined by a technology set vi j t

0 T(zi j t,ei t) where v is a vector of variable inputs, z is a vector of allocatable quasi-fixed factors

of production and other fixed effects, and e is a vector of bio-physical characteristics of the site

(soils, topography, climate, etc.). The production function for each activity is non-joint in inputs

and can be written as qi j t = f(vi j t, zi j t, ei t), where f(&) and its parameters are independent of i and

t (random terms are suppressed here for notational convenience). For expected output price pi j t,

the profit function is �i j t = �j(pi j t, wi j t, zi j t, ei t). If a crop is not grown, the crop is in a conserving

use with a return of �i c t. Define /i j t =1 if the jth crop is grown at location i at time t and zero

otherwise. The land use decision on site i at time t is

                                      n                                                  n
(1)             max              �  /i j t �j(pi j t, wi j t, zi j t, ei t) + (1 - � /i j t ) �i c t.

(/i 1 t, ... ,/i n t)    j = 1                                            j = 1

The solution takes the form of a discrete step function

(2) /* i j t = /j(pi t, wi t, zi t, ei t, �i c t), 

where pi t is a vector of the pi j t and likewise for the other vectors. Using Hotelling’s lemma, the

quantity of the jth output on the ith land unit is given by 

(3) q*i j t  =  /* i j t 0�j(pi j t, wi j t, zi j t, ei t)/0pi j t = qi j t(pi t, wi t, zi t, ei t, �i c t).

Variable input demands are likewise given by 

(4) v* i j t  =  - /* i j t 0�j(pi j t, wi j t, zi j t, ei t)/0wi j t = vi j t(pi t, wi t, zi t, ei t, �i c t). 

Equations (2), (3) and (4) define the model of discrete, extensive margin (land use)

decisions and continuous, intensive margin (supply and input use) decisions. This analysis



 Econometric-Process Models for Integrated Assessment of Agricultural Production Systems 6 

assumes that net returns above variable cost are positive for at least one activity, otherwise the

land is left idle as in the conventional analysis of the firm’s shut-down decision.

The solution to (1) applies to a given land unit. Each land unit is managed separately

under the assumptions that farmers are risk-neutral, sell their products into a well-functioning

market (as opposed to subsistence farmers who produce for own consumption), and have access

to well-functioning rental markets for land and capital. Risk aversion, or the lack of well

functioning input or output markets (including rental markets for capital), may cause production

decisions to be interrelated across land units (de Janvry, Fafchamps and Sadoulet; Just,

Zilberman and Hochman). The above model can be generalized to address each of these cases.

However, the simpler model presented above is likely to be a good first-order approximation

under conditions of commercial agricultural production in countries like the United States where

markets for products and inputs are well-developed.

Incorporating Crop Rotations

Crop rotations play a critical role in maintenance of soil quality and productivity. The

effects of crop rotations can be accurately modeled only on a site-specific basis, because their

representation requires site-specific data on the history of land use. Aggregation across fields,

even at the farm level, prevents the dynamics of soil quality from being accurately represented in

both economic and bio-physical process models. Accurate representation of some processes may

even require sub-field analysis, as when soil erosion occurs at different rates within a field (Antle

and Stoorvogel).

 To illustrate, consider a simple crop/fallow rotation. The use of rotations and the length of

rotations is an economic decision involving a tradeoff between the management and opportunity

cost of the fallow and the productivity gains associated with the rotation. For each crop and
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location (deleting subscripts i and j for notational convenience) the production function takes the

form  q t = f(v t, z t, e , � t-1), where �t -1 = 1 if the previous use was a crop and equals zero if the

field was fallowed, hence f(v t, z t, e , 1) <  f(v t, z t, e , 0). If a unit of land was previously cropped,

the decision to fallow this season with the intent to crop again next season is based on net returns

above variable cost calculated as (p t+1q t+l - vc t+1)(1/1+r) - fct , where vc t+1 is variable cost of crop

production, r is the interest rate, and  fc t is the variable cost associated with fallow. The profit

function takes the form � fal (p t+l , w t+1, r, z t, e, � t-1 ). The returns to growing a crop in period t

after a crop was grown in period t-1  is equal to  p tq t - vc t, giving the profit function  �crop (p t, w t,

z t, e, � t-1). The farmer will use fallow if  � fal > � crop. The same logic can also be applied to the

case wherein the field was fallowed in the previous period. 

Incorporating Bio-Physical Data and Crop or Livestock Growth Processes

From an econometric point of view, we can interpret a process-based crop (or livestock)

model as producing a yield or production estimate qp(vi
0, zi

0, ei) for the ith site, where vi
0 and zi

0

are the management practices specified for the crop simulation model. For example, yields in the

widely-used DSSAT system of crop models are limited by water and nutrients but not pests, so

an optimum level of pest management is implicitly assumed when these models are used (Tsuji,

Uehara and Balas). Therefore, yield estimates from these models are not comparable to yields

measured under field conditions where farmers’ actual management practices are in use.

However, q p(•) does embody the process-based relationship between site-specific environmental

conditions ei and crop productivity, and thus can be interpreted as a site-specific index of

productivity. The Appendix shows, using the concept of the frontier production function, that the

site-specific production function can be expressed as

(5) qi = f(vi, zi, q
p(v0, z0, ei)),
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where the function f(•) has the properties of a production function and is increasing in qp. This

specification has two important implications for production analysis. First, it implies separability

between e and the other variables in the production function, a testable hypothesis. Second,

equation (5) shows that yield estimates may be appropriately interpreted as indicators of

productivity at one site relative to another site or relative to the population mean. Therefore, as

we shall discuss below, these yield estimates can be included in econometric production models

as explanatory variables, and they can subsequently be used to incorporate the effects of

unobserved bio-physical conditions on productivity and behavior outside the range of observed

data used in the econometric analysis. 

Econometric Procedures

Econometric specification and estimation of the production model described above must

account for the discrete structure of land use decisions, the dynamics of crop rotations, the spatial

variation in physical conditions, statistical properties of the spatial data, and features of the

farmer’s management behavior. Because of spatial variation in land use, a cross-section of data

will have an unbalanced property, i.e., not all production activities will be undertaken by all

producers. This means that a multi-product model that assumes positive values for all outputs on

all land units, as is typically assumed in duality-based multi-output production models in the

literature, is not appropriate. Huffman proposed an econometric methodology to address the zero

output problem for aggregate multi-product models that are joint in inputs. This model is not

appropriate under the assumption made here of non-joint production at the field level.

Another feature of production data, particularly at the farm-level and field-level, is that

observed net returns may be negative even though farmers choose to enter a unit of land into

production, thus implying that expected returns were positive. Consequently, most non-linear-in-
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parameters functional forms for profit functions, such as the Cobb-Douglas, constant elasticity of

substitution, and translog, are not amenable to applied production analysis at the farm or field

scale.

Another issue that arises is the specification of the model’s error structure to account for

the use of spatial data (Anselin). Climatic events may cause error terms to be correlated across

land units, and correct specification of these spatial correlations is required to obtain accurate

estimates of parameters’ standard errors. However, a number of factors limit the practicality of

using econometric models with non-diagonal error covariance matrixes to account for spatial

correlation. First, with the single cross-section of data typically available from surveys of site-

specific production practices, general covariance structures cannot be estimated, so some ad hoc

structure must be imposed on the spatial covariance structure (e.g., spatial autoregression

structures). These assumptions can be tested relative to the null hypothesis of no spatial

correlation (Anselin et al.). However, a second complicating factor is that agricultural production

does not occur uniformly distributed through space, so spatial covariances are not likely to follow

a regular structure such as is typically assumed in the literature. Under these circumstances, one

cannot argue that a model is necessarily better specified with an arbitrary non-zero spatial

covariance than with the assumption of zero spatial correlation. The use of the standard diagonal

covariance assumption is further reinforced by recent findings that show conventional F-tests and

t-tests to be robust to covariance misspecification (Banerjee and Magnus).

Several econometric specifications are available for field-scale models. A first choice

would be to specify a multi-output production model along the lines in the literature discussed

above. These models generally assume that all outputs are produced by all farms, thus they fail to
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account for discrete choice among production activities and the unbalanced data that result from

these discrete choices. 

Another approach would be to utilize a multinomial discrete choice model (e.g., logit or

probit) to estimate the vector of reduced-form land use functions analogous to equation (2), and a

system of factor demand equations such as (4) to represent management decisions conditional on

land use decisions. While this approach provides an efficient means to estimate the probability of

each land use alternative in a consistent manner, it has several practical limitations. 

First, the discrete choice model is in reduced form and thus faces the limitations of

models in which productivity is not represented explicitly. This problem could be solved by

replacing the vector e with a yield estimate from a crop model as discussed in the Appendix. A

second, related problem is that yields are observed only for the crop that is produced at the site,

whereas the decision between alternative crops involves a comparison of productivity between all

possible crops. This difficulty is magnified in an integrated assessment that involves simulation

of unobserved conditions, e.g., a perturbed climate scenario, in which existing crops may be

uncompetitive and new crops may become profitable. The productivity of alternative crops could

be estimated using either a statistical model (e.g., an econometric supply function) or a bio-

physical simulation model, subject again to the limitations discussed earlier (simulated yields are

not directly comparable to actual yields). 

Several other practical problems complicate the use of an explicit discrete choice model.

The estimation and simulation of multi-dimensional probability distributions required for the

discrete land use decision problem poses difficult computational problems, and available

software limits this type of analysis to the logistic and normal distributions without any clear

justification of these functional forms. Adaptation of these models to account for spatial
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dependence would be even more challenging than with conventional linear statistical models. A

final limitation is that this approach would provide only reduced-form estimates of land use

choices, but would not provide estimates of production, cost and net returns that are of interest to

policy makers.

Design of Econometric-Process Simulation Models 

The approach to production modeling for integrated assessment proposed here is closely

related to the models discussed above, with an important difference. The econometric-process

approach combines econometric production models, represented by the system of supply and

demand functions (3) and (4), with a process-based representation of the discrete land use

decision represented by (1) and (2). This combination of econometric and process-based models

overcomes the various limitations associated with other modeling approaches, as we now show.

The general structure of an econometric-process simulation model is illustrated in Figure 1. The

upper part of the figure shows the key steps in estimation of the econometric models, while the

lower part shows the structure of the simulation model. The model simulates the farm manager’s

crop choice defined in equation (1), and the related output and cost of production for that crop

choice, at the field scale, over space and time. This simulation model utilizes the stochastic

properties of the econometric models and the sample data, so its output can be interpreted as

providing a statistical representation of the population of land units in an agricultural region. By

operating at the field scale with site-specific data, the simulation can represent spatial and

temporal differences in land use and management, such as crop rotations, that give rise to

different economic outcomes across space and time in the region.

 The econometric production models are used to calculate expected net returns in the

simulation of the land use decisions (more generally, objectives that incorporate risk and other
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decision criteria could be used). Since observed net returns may be negative, a system of a supply

function, cost function and corresponding input demand functions is used rather than a profit

function. The revenue component of expected returns is equal to the output price times the

supply function derived from the restricted profit function, and cost computed with the cost

function. This system of a supply function and a cost function is theoretically equivalent to a

profit function, and joint estimation produces efficient parameter estimates. 

For the simulation model, each field is described by total acres, location, and a set of

location-specific prices paid and received by producers, and quantities of inputs. Using sample

distributions estimated from the data, draws are made with respect to expected output prices,

input prices, and any other site-specific management factors (e.g., previous land use). The

econometric production models are simulated to estimate expected output, costs of production,

and expected returns. The land use decision (1) for each site is made by comparing expected

returns for each production activity. If the selected land use is a production activity, the

corresponding system of factor demand equations is simulated to determine input use at the site.

This system of factor demand equations may be specified in static form as in equation (4), or a

dynamic system may be derived from a sequential decision model (Antle, Capalbo and Crissman,

1994). These spatially and temporally explicit land use and management decisions may be

subsequently used as input into biophysical process models in an integrated assessment (e.g.,

erosion, chemical leaching, changes in soil carbon). Land use and other decisions in each period

are used to initialize the computation of expected returns for the subsequent period as the

decision making process is simulated through time.

By carrying out these simulations for a statistically representative set of fields or farms,

the economic and environmental outcomes of the simulations can be interpreted as characterizing
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the empirical joint distribution of these outcomes in the population of land units or farms. This

empirical joint distribution corresponds to the theoretical joint distribution of outcomes as

described by Just and Antle, and by Antle and Just. The site-specific economic and

environmental outcomes can be statistically aggregated to assess impacts at larger spatial scale.

The impacts of alternative policy or technology scenarios can be analyzed by changing

corresponding parameters in the economic and bio-physical process models.

Real-world behavior of farmers — in terms of land use and management — is highly

spatially variable in most cases due to spatial variability in soil, climate and economic conditions.

The econometric-process simulation model (Figure 1) differs fundamentally from a deterministic

optimization model (e.g., a linear or non-linear programming model) in the way that land

allocation decisions are represented, and as a result, it provides a more realistic representation of

the spatial distribution of land use. In a deterministic optimization model, expected returns are

compared for alternative activities as functions of prices, technology parameters and resource

constraints. The same economically optimal activity is attributed to all land units that are

represented by a given parameterization of the model, hence, the same decisions are attributed to

these land units with probability one. In the econometric-process model, economic decisions are

based on the spatial and temporal distributions of expected returns associated with each

alternative land use or input choice. There is a positive probability that each feasible activity will

be selected at each site. Thus, as repeated draws are made from the underlying statistical

distributions, a realistic spatial and temporal distribution of competing activities is obtained.

Unrealistic outcomes such as corner solutions can only be obtained as a limiting case in which

one activity economically dominates other activities at all sites or all time periods. 
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An Application to Dryland Grain Production

This section describes the application of the modeling approach to the dryland grain

production system of Montana, using farm- and field-level production data collected in a survey

designed to be statistically representative of the grain producing areas of the state, stratified by

the USDA’s Major Land Resource Areas (MLRA). Detailed descriptions of the data and

summary statistics are found in Johnson et al., and in Antle, Capalbo, Johnson and Miljkovic. 

The econometric production models for Montana grain crops (winter wheat, spring wheat,

and barley) were specified as log-linear supply functions and variable cost functions. A log-linear

equation was also included to represent machinery operating costs. The supply and machinery

cost equations are functions of prices for fertilizer and herbicide inputs normalized by output

price, field size, and a land use indicator (fallow or crop). The MLRAs were stratified into high

and low precipitation sub-zones according to historical climate data (Paustian et al.). Dummy

variables for these zones were included to capture systematic differences in productivity across

sites. A variety of herbicides are used by farmers, and a hedonic procedure was used to quality-

adjust these input data (Antle, Capalbo and Crissman, 1994). Expected crop prices were defined

as average prices received in a farmer’s region net of transportation costs to the nearest grain

elevator.

Sample Selection Bias and Production Risk

The problem of unbalanced data is solved in the econometric-process modeling approach

by estimating a non-joint production model for each crop. The decision problem in (1) implies a

sample selection process based on expected returns that may give rise to sample selection bias in

the estimation of the individual crop production models. Application of the Heckman two-stage

procedure to test for sample selection bias showed that there was sample selection bias only in
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the barley supply equation and in the machinery cost equation for spring wheat. However, the

supply and cost function parameter estimates were virtually identical to the parameters estimates

obtained without use of the Heckman procedure. It was concluded that sample selection bias did

not have a discernible effect on the parameter estimates.

A plausible alternative to the risk-neutral (profit-maximization) model used here is an

model with risk aversion. It is often suggested that farmers use a crop/fallow rotation to reduce

production risk associated with low soil moisture. This hypothesis was tested applying the

production risk models of Just and Pope (1978) and Antle (1983). This analysis did not support

the hypothesis that crops grown on fallowed fields had lower yield risk than crops grown after a

crop. This evidence implies that farmers use the crop/fallow rotation when and where the

expected profitability is higher than continuous cropping, not because yield risk is lower for the

crop/fallow rotation, so the risk-neutral model was maintained in the following analysis. 

Econometric Production Model Estimates

 The econometric models for winter wheat, spring wheat and barley crops were specified

in log-linear form, and were estimated using non-linear three-stage least squares with linear

homogeneity of the cost function and zero-degree homogeneity of the supply function imposed.

The parameter estimates in Table 1 show that the quantity supplied and machinery costs are

approximately proportional to field size. Supply (and thus yield) and machinery cost also vary

significantly by sub-MLRA. Using sub-MLRA 52-low as the basline, the yields are significantly

lower for less productive regions (MLRAs 53a, 54, and 58a) and higher for the more productive

sub-MLRA 52 high. Costs differ by sub-MLRA although not in a systematic way. The fertilizer

and pesticide price parameters in the supply functions have the theoretically predicted negative

sign. Noting that the supply functions are estimated with linear homogeneity in prices imposed,
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these parameters imply short run supply elasticities with respect to the output price of about 0.36

for winter wheat, 0.14 for spring wheat, and 0.35 for barley.

Table 1 also shows that winter wheat, spring wheat and barley yields are about 31, 23 and

9 percent higher when the crop is grown after fallow (these percent changes are calculated as

ed - 1, where d is the parameter of the fallow dummy variable). In the cost function, the fallow

dummy variable shows that variable costs of production are about 40 percent lower for all three

crops after fallow. These results confirm the hypothesis that fallowed fields are more productive

than those that are continuously cropped. When fallow costs are considered, the data show that

the crop/fallow system and the continuous cropping system yield similar net returns on average,

explaining the fact that land in the region is allocated to each type of system in roughly equal

proportions. 

Simulation Model Calibration and Validation

The simulation model was calibrated to predict the observed mean frequencies of crops

produced in the sample data. The model was calibrated using three parameters: the expected

yield variability, the discount rate, and the expected future crop price. The expected yield

variability refers to the variance of yield expectations in the population. The estimated

econometric supply function provides an estimate of the population mean supply and yield, but it

seems doubtful that all farmers form the same yield or output expectations, even when they face

the same economic and bio-physical conditions. Presumably, the variance of yield expectations

in the population of farmers is less than the variance of observed yields. The base simulations

used an expected yield variance that is 90 percent of the observed variance. Analysis showed that

the simulation results were not highly sensitive to this parameter.
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As discussed earlier, the expected present value of returns to a crop/fallow rotation

depends on a nominal discount rate. In the base model simulations, this discount rate was set at

7 percent. The net returns for crops produced after fallow also involve expected future crop

prices. Because these prices will not be realized until the end of the next crop year, they are

highly uncertain. To represent this uncertainty, and to account for the fact that in 1995 prices

were above the long-run trend in real crop prices, the expected future crop prices were assumed

to be less than the average observed market price in 1995. The base simulations utilized the

assumption that the future crop prices were random variables with a mean 10 percent below the

1995 average market price, and with a variance equal to the observed variance prices. Analysis

showed that the choice between continuous cropping and a crop/fallow rotation is sensitive to

both the discount rate and future expected prices. This finding reflects the fact that the two

systems are competitive, so that small changes in expected future prices relative to current prices

can induce a farmer to modify the choice between continuous cropping and the use of fallow.

To provide a validation of the model, the observed proportion of each land use in each

sub-MLRA was computed and compared to the simulated proportions. Figure 2 shows that the

plot of observed and simulated mean land use falls along a 45-degree line, an indication that the

simulation model does reproduce the observed data without a systematic bias. It is useful to note

that the site-specific land-use data follow a binomial distribution for each use (i.e., the data are

coded 1 if use j  occurs and zero otherwise). It follows that the sample proportions plotted in

Figure 2 are sufficient statistics for the entire distribution (all of its moments are functions of this

proportion). Thus, Figure 2 shows that the distributions of land use across the region are well

represented by the econometric-process simulation model. 
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Additional validation of the model can be made by testing its ability to predict observed

phenomena that were not represented in the data used to estimate and calibrate the model. For

this purpose, the model was used to simulate the percentage of acreage allocated to conserving

uses (as in the Conservation Reserve Program operated by the U.S. Department of Agriculture)

as levels of payments for the conserving use are varied. This exercise showed that the model

correctly predicts that larger amounts of land are allocated to conserving uses in the sub-MLRAs

where crops are less profitable, and it also correctly predicts that approximately 20 percent of

acreage in the region is allocated to the conserving use when simulated payments are in the range

of actual payments for CRP contracts in Montana (Antle, Capalbo, Mooney, Elliott and

Paustian).

Implications for Economic Models in Integrated Assessment

In this section we further explore the ability of the econometric-process model to

represent (1) the spatial variability in economic behavior, and (2) discontinuities and non-

linearities in behavior implied by the structure of the model but not observed in the data used to

estimate the model. For this purpose the model described above was subjected to changes in

relative output prices. A base simulation scenario (observed prices) is contrasted with output

price distributions for which the mean price of spring wheat is 30 percent and 60 percent below

and above the observed mean price. Each simulation consisted of a four-year production cycle

replicated five times. A four-year cycle was found adequate to represent the dynamics of the crop

rotation. Years 3 and 4 of the simulations were used to represent the equilibrium in land use in

response to the changes in relative prices. 
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Spatial Variability in Net Returns

Figures 3, 4, and 5 show the means, coefficients of variation, and skewness of the

distributions of net returns by sub-MLRA for the spring wheat price scenarios. Sub-MLRAs

52-high and 52-low exhibit higher productivity, and hence higher mean returns, than the other

sub-MLRAs (Figure 3). The less productive areas exhibit a higher degree of variability for each

price scenario, and that these differences are amplified by low prices (as prices decrease, means

and standard deviations of net returns decrease, but means generally decrease faster than standard

deviations) (Figure 4). In all cases net returns distributions are positively skewed. In the more

productive regions, skewness tends to decrease as prices increase, because the means of the

distributions increase and the distributions become more symmetric. Some of the less productive

regions show an increase in skewness at higher prices (Figure 5). 

Supply Functions

The econometric-process simulation model can be used to determine site-specific supply

functions, and the data can be aggregated to the sub-MLRA level or to the level of the entire

region. To illustrate the properties of the supply functions generated by the econometric-process

model, points on the aggregate supply function for spring wheat were derived by varying the

price from a low value of about $1.60 per bushel to a high value of about $6.70 per bushel and

aggregating the results (a cubic function is fit to the points in the figure to approximate the shape

of the continuous supply function) (Figure 6). At the low price of $1.60 per bushel, production of

spring wheat approaches the shut-down point where most producers have substituted into other

crops or taken the land out of production. At low prices, the econometric-process model

generates a highly elastic supply curve for spring wheat, as land is substituted from other uses
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into spring wheat, with the elasticity in the range of 4.0. At higher prices, the elasticity declines

and approaches the value near zero obtained in the spring wheat supply function of Table 1. 

The inelastic supply response behavior is obtained with the econometric-process model at

high prices because available land is in production and most of it is being allocated to spring

wheat. Thus, at a high relative price of spring wheat the only source of supply response is

through intensification of the spring wheat crop. Along this section of the supply function the

supply response behavior is similar to the behavior estimated with econometric supply-response

models that do not account for site-specific land use decision making. For purposes of

comparison, a constant elasticity supply function with an elasticity of 0.5 (a value typical of the

literature) is plotted in Figure 6 so that it intersects the econometric-process model’s supply

function at the base price level. However, as the spring wheat price declines relative to winter

wheat and barley, the econometric-process model shows that land would be reallocated to the

other crops and production would decline substantially before reaching the shut-down point at

the price of $1.60. The constant-elasticity function underestimates price responsiveness relative

to the econometric-process model, and predicts that as price declines production would decline

little. This example demonstrates that the econometric-process model is capable of simulating a

non-linear property of the supply function (the cubic shape shown in Figure 7) and

discontinuities in behavior (the shut-down point on the supply function) in a way that a

conventional econometric supply function cannot. 

Conclusions

This paper develops a new approach to agricultural production analysis that combines

conventional econometric production models with simulation models that embed both discrete

and continuous choices of the farmers. These econometric-process models are well suited for use
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in integrated assessment of agricultural production systems: they can link land use and

management decision making with bio-physical crop growth and environmental processes on a

site-specific basis; they can realistically represent the spatial variability in economic behavior;

and they can simulate discontinuities and non-linearities implied by the logic of the decision

making process that are outside the range of observed behavior. 

The application of this methodology to the dryland grain production system of Montana

was used to demonstrate some of the properties and capabilities of this type of model. The model

was validated in two ways. The model was able to reproduce the within-sample distributions of

land use decisions, and also able to predict out-of-sample phenomena such as the conversion of

crop land to a conserving use. The spatial variability in net returns was simulated, and it was

found that the distributions of net returns vary according to the productivity levels between sub-

MLRA zones. The econometric-process model produced a non-linear characterization of supply

response that is different from a conventional constant-elasticity supply function. This difference

is due to the explicit representation of the discrete land use decision in the econometric-process

model. Finally, this example showed that the econometric-process model represented a

discontinuity in behavior (the shut-down point on the supply curve) that is not observed in the

data and not represented in a conventional, continuous econometric supply function model.

Several methodological issues raised in this paper deserve further attention by

researchers. The validation of economic models for simulation analysis remains a largely

unexplored but important topic. Also the question of how to extrapolate economic models

beyond the range of observed data should be further explored. In this paper we showed that crop

simulation models could be linked to economic models for both estimation and extrapolation.

These procedures need to be investigated and their predictive capability needs to be compared to
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extrapolation based on purely statistical models. Finally, the statistical properties of spatial

agricultural production data need to be further explored, using some of the recent results in the

spatial econometrics literature.
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Appendix: Frontier Production Interpretation of Crop Models

Following Aigner, Lovell and Schmidt, the frontier production function h(vi, zi) is written as

being related to observed output qi  by an efficiency factor h(0i) such that qi = h(vi, zi)h(0i), where

vi and zi are variable and fixed input vectors for sites i = 1,..., N and 0i is an error term

representing technical inefficiency at site i such that 0 �h(0i) �1. Under the hypothesis that site-

specific productivity is determined by bio-physical characteristics ei, the conventional (mean)

production function f(vi, zi, ei) is related to the frontier function by

(A1) f(vi, zi, ei) = h(vi, zi)E[h(0i)|ei],

where E[.] is the mathematical expectation operator over the probability distribution of 0 given ei.

The genetic potential of the crop can be represented by the crop’s maximum yield

qp(v0,z0) under specified management (v0, z0) and optimal environmental conditions. A crop

growth model produces an estimate of yield under bio-physical conditions ei and management

(v0,z0), and can be summarized by a model of the form qp(v0, z0, ei). It follows that 0 � qp(v0, z0,

ei)/q
p(v0, z0) �1. Thus, we can interpret the crop growth model for a specific site as providing an

index of site-specific productive efficiency, and for some monotonic function g(.) such that g(0)

= 0, g(1) = 1, and g’ > 0, we hypothesize that 

(A2) E[h(0i)|ei] = g[qp(v0, z0, ei)/q
p(v0, z0)].

Combining (A1) and (A2) it follows that the conventional mean production function f(vi, zi, ei)

can be expressed as a function of the frontier production function h(vi, zi) and the crop growth

model’s yield estimate as

(A3) f(vi, zi, ei) = h(vi, zi)g[qp(v0, z0, ei)/q
p(v0, z0)] = f(vi, zi, q

p(v0, z0, ei)).

Equation (A3) is the basis for equation (5) in the text.
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Table 1.  NL3SLS Estimates Of Supply Function, Machinery Cost, and Cost Function Models

Winter Wheat Spring Wheat Barley

Supply Function
Intercept 2.448 (5.32) 3.185 (11.49) 3.615 (9.47)

Land 1.003 (20.73) 0.993 (38.89) 0.910 (16.76)

Fallow Dummy 0.268 (3.12) 0.211 (6.06) 0.089 (1.45)

Fertilizer Price -0.350 (-2.70) -0.124 (-1.56) -0.320 (-2.61)

Pesticide Price -0.014 (-0.43) -0.015 (-0.61) -0.033 (-1.10)

MLRA 52 - High 0.041 (0.53) 0.004 (0.06) 0.056 (0.69)

MLRA 53A - Low -0.024 (-0.08) -0.286 (-4.90) -0.351 (-3.30)

MLRA 53A - High -0.327 (-1.70) -0.423 (-7.26) -0.544 (-5.26)

MLRA 54 - Low -0.348 (-2.63) -0.679 (-9.82) -0.506 (-3.42)

MLRA 54 - High -- -0.486 (-5.31) -0.318 (-1.57)

MLRA 58A - Low -0.294 (-2.11) -0.428 (-5.65) -0.201 (-1.26)

MLRA 58A - High -0.168 (-2.04) -0.429 (-5.75) -0.287 (-2.97)

Machinery Cost

Intercept -0.304 (-0.14) -1.054 (-0.45) 2.447 (2.80)

Land 1.109 (22.93) 1.104 (33.44) 1.085 (20.35)

Fallow 0.022 (0.26) -0.101 (-2.25) -0.013 (-0.22)

Crop Price 1.716 (1.10) 2.170 (1.36) 0.186 (0.18)

Fertilizer Price -0.063 (-0.47) -0.147 (-1.35) 0.110 (0.84)

Pesticide Price 0.040 (1.12) 0.002 (0.05) -0.001 (-0.04)

MLRA 52 - High 0.130 (1.59) 0.069 (0.87) 0.151 (1.79)

MLRA 53A - Low 0.613 (1.88) 0.082 (0.81) -0.143 (-1.03)

MLRA 53A - High 0.272 (1.30) -0.148 (-1.47) -0.019 (-0.14)

MLRA 54 - Low -0.117 (-0.76) -0.294 (-2.58) -0.111 (-0.64)

MLRA 54 - High -- -0.031 (-0.20) -0.145 (-0.61)

MLRA 58A - Low 0.053 (0.33) -0.019 (-0.16) -0.325 (-1.64)

MLRA 58A - High 0.106 (1.12) 0.133 (1.11) -0.005 (-0.05)

Cost Function

Intercept 0.784 (1.02) -0.702 (-1.17) -1.522 (-1.44)

Fertilizer Price 0.885 (55.06) 0.827 (46.80) 0.868 (52.49)

Output 1.014 (11.10) 1.129 (15.83) 1.200 (9.71)

MLRA 52 - High -0.356 (-2.40) -0.225 (-1.36) -0.292 (-1.68)

MLRA 53A - Low -0.053 (-0.09) -0.079 (-0.49) -0.200 (-0.84)

MLRA 53A - High 0.113 (0.31) 0.000 (0.00) -0.181 (-0.74)

MLRA 54 - Low -0.421 (-1.60) 0.304 (1.54) 0.111 (0.34)

MLRA 54 - High -- 0.570 (2.25) -0.117 (-0.26)

MLRA 58A - Low -0.060 (-0.22) 0.061 (0.28) -0.139 (-0.41)

MLRA 58A - High -0.053 (-0.33) 0.296 (1.40) -0.048 (-0.23)

Fallow Dummy -0.546 (-3.25) -0.575 (-5.88) -0.482 (-3.71)

Note: t-statistics in parentheses.
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Figure 2.  Observed vs. Simulated Land Use by Sub-MLRA 

Figure 3.  Mean Net Returns by Sub-MLRAs for Spring Wheat Price Scenarios
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Figure 5.  Skewness of Net Returns by Sub-MLRA for Spring Wheat Price Scenarios
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