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The decision to adopt a potentially profitable but unfamiliar conservation technology is cast in a
multi-period Bayesian framework. Specifically, dairy farmers who are both risk-averse and susceptible
to peer group influence progressively learn about the true impact of adopting reduced phosphorus
dairy diets on their income distributions as they repeatedly experiment with this new technology.
Empirically calibrated simulations are used to examine the effects of a voluntary green payment
program on the rate of technological diffusion. Results suggest that (a) green payments can accelerate
learning and produce significant, permanent changes in behavior relatively quickly and for a reason-
able cost; (b) shorter contracts offering larger incentives may be more cost-effective when learning
plays an important role in behavioral change; and (c) unknown prior beliefs can reduce the efficacy
of a green payment program, implying efforts to verify these priors or to ensure against them by
increasing the payment level may be worthwhile.
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The Empirical Problem

Madison, Wisconsin—a city of 208,000 people—
has a 76,000-seat football stadium. The Wisconsin
livestock industry, primarily dairy farmers, produces
enough manure to completely fill the stadium each
day (The Economist, 2001). Among other problems,
this manure contains a high concentration of phos-
phorus. Phosphorus is good for dairy cows because
it is necessary for milk production and reproduc-
tion; but it is bad for the environment because it
eventually finds its way into lakes and streams
where it causes noxious blue-green algal blooms,
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decreased dissolved oxygen levels, fish kills, and
changes in aquatic vegetation and fish populations.

While livestock manure has been regulated based
on nitrogen content for many years, the phosphorus
problem has grown to the point where both state
and federal agencies are beginning to change their
focus (Connors, 2000; Ritchie, 2001). Recently two
important findings have been receiving increased
attention. First, animal scientists have known for
many years that phosphorus exhibits a threshold
effect in dairy cows: when cows are fed above
approximately 3.3S3.8 grams of phosphorus per
kilogram of dry matter (g/kg DM), it appears to
have no marginal effect on either pregnancy rates
or milk production; but below this concentration,
both appear to decline rather quickly (Satter, 2000;
Wu, Satter, and Sojo, 2000; Satter and Dhiman,
1996).

Second, agricultural extension agents have ob-
served recently that most dairy farmers appear to be
feeding their milking herds phosphorus concentra-
tions well above this threshold level, i.e., 4.8 g/kg
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DM on average (McGraw, 1999). Were the state’s
entire dairy industry (1.3 million cows) to adopt the
threshold level, phosphorus loading into the envi-
ronment would be reduced by approximately 30%
(a reduction of 27,000 kg daily). At the same time,
each farmer would save on average $13 annually
per cow (Satter and Dhiman, 1996), for a total cost
savings to the industry of nearly $17 million each
year. Considering the low profit margins in the
dairy sector, this is not a trivial sum of money.

Despite these findings, the vast majority of
farmers are not adopting reduced-phosphorus diets.
There are several candidate explanations for this
behavior. First, producers may perceive using a
higher level of phosphorus as an inexpensive form
of insurance against uncertain (but potentially
large) losses from milk yield and reproductive
deficiencies. This uncertainty is exacerbated by
the second candidate explanation: conflicting infor-
mation. Feed suppliers, veterinarians, extension
agents, crop consultants, and others all influence
the decisions made by farmers, but typically the
goals of these individuals are not aligned with
those of farmers. Feed suppliers clearly have an
incentive to recommend higher levels of phos-
phorus and other additives to the extent they can
charge higher prices for feed. Veterinarians may
recommend higher phosphorus levels either to
hedge against liability or as a convenient way to
rule out phosphorus deficiency as the cause of a
recurring problem. And even extension agents
may be reluctant to recommend the latest scien-
tific results if they are not convinced of their
validity and fear a loss of rapport with farmers if
they suggest counterproductive changes in farming
practices.

Finally, there is the possibility that many farmers
do not consider the amount of phosphorus in their
feed to be a decision worth making themselves, and
thus leave this decision to others. A recent survey
conducted by the University of Wisconsin asked 98
dairy farmers, “Do you usually feed your milk cows
supplemental phosphorus?” Eighty percent of
respondents said “yes,” 8% said “no,” and 12% said
“not sure.” Next the survey asked, “What percent of
phosphorus is usually included in a typical dairy
cow ration?” The average for those who reported a
value was 5.2 g/kg DM (high even by current stand-
ards), but 71% of respondents replied they were not
sure (Jackson-Smith, 2000).

Wisconsin regulators appear to have a Pareto
dominant solution to the state’s phosphorus prob-
lem: if dairy farmers were to adopt the recommended

level of phosphorus, they would reap higher net
incomes and the public would reap better envi-
ronmental quality. [One estimate (Stumborg,
Baerenklau, and Bishop, 2001) suggests the ben-
efits would be large—at least $43 million for
reducing the phosphorus load in a single watershed
near the city of Madison by 50%.] However, there
are no indications that such changes will take
place anytime soon. Although larger milk pro-
ducers in various parts of the United States have
started to use reduced-phosphorus diets (Satter,
2000), the vast majority of smaller farmers in Wis-
consin clearly have not yet given the issue much
attention.

A Possible Solution

Wisconsin agricultural producers, and in particular
dairy farmers, have significant lobbying power
within the state. Wisconsin long ago proclaimed
itself “America’s Dairyland” and most residents,
whether urban or rural, continue to feel compassion
for farmers. The history of agricultural regulation in
Wisconsin therefore is dominated by wealth trans-
fers from the public to farmers (often called “green
payments” when they aim to promote adoption of
conservation technologies) rather than the opposite,
and politicians understand that instruments like
taxes and standards involve significant imple-
mentation costs. A case in point: The current non-
point source pollution control program is based
primarily on voluntary cost-sharing agreements
for “best management practices,” and proposed
modifications of this program involve even more
subsidies.

Considering the scarcity of information associ-
ated with the phosphorus issue as well as the reality
of regulating the dairy sector in Wisconsin, this
problem would seem well suited for a green
payment program to promote adoption of reduced-
phosphorus diets. The subsidy would encourage
farmers to scrutinize their phosphorus input levels
in more detail and to consider reducing their input
levels at least temporarily. If scientists are correct
about the threshold level, farmers should learn this
from experience, and ultimately they should
become willing to keep phosphorus input levels
lower even after the incentive contract has expired.
Because little is known about how such an
incentive program might best be designed and
implemented, the goal of this study is to examine
this policy mechanism in detail with empirically
calibrated simulations.
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Literature Review1

Despite a significant body of work on technology
adoption theory and an ever-increasing number of
empirical applications, the existing literature has
rather little to say from a quantitative perspective
about how economic incentives can be used to con-
trol the rate of adoption of a new technology (Kemp,
1997). One exception is Jaffe and Stavins (1995),
who found evidence that technology subsidies may
have a greater potential to influence conservation
technology adoption than do input taxes. However,
their model does not allow for any uncertainty (and
therefore learning) regarding the new technology.
Another exception is Shampine (1998), who ad-
dresses subjective uncertainty and considers how a
social planner might hasten the rate of adoption
with subsidies. Although his simulations are not
empirically calibrated, Shampine concludes that net
gains attainable through subsidies are small; but
this result is largely due to the initially fast rate of
adoption without subsidies which, in turn, is a
result of the assumptions that agents are risk-neutral
and observe information perfectly from a very large
sample.

In contrast to Shampine’s purely theoretical
approach, other studies have estimated empirical
models of technology adoption and conservation
program participation, but these efforts generally
tend to oversimplify the adoption decision. Exam-
ples here include a static logit analysis of partici-
pation in a Tennessee forest stewardship program
by Bell et al. (1994), a similar probit analysis of
participation in an Indiana forestry program by
Nagubadi et al. (1996), a bivariate probit analysis
of conservation technology adoption by Cooper and
Keim (1996), and a static multinomial logit analysis
of irrigation technology adoption by Green et al.
(1996). While these studies draw similar conclusions
regarding the importance of education, economic
incentives, attitudes, awareness, and agent-specific
characteristics in the adoption (or participation) de-
cision, none provides reliable quantitative insights
into the cost-effectiveness of incentive programs
for promoting environmental quality. Two recent
papers which do examine this issue directly are
Khanna, Isik, and Zilberman (2002), and Isik and
Khanna (2003), but each of these uses a single-
period framework and does not incorporate endog-
enous learning or any type of agent interactions.

The topics these empirical papers have failed to
consider have been examined in more theoretical
models of technology adoption. With regard to
endogenous learning, the literature has recognized
two types: learning by doing and learning from
others. Learning by doing is the simpler of the two
processes to model and was first addressed by
Lindner, Fisher, and Pardy (1979), and Stoneman
(1981). Each of these models is based on the idea
that when a new technology is introduced, agents
initially are unfamiliar with it, and therefore attach
subjective beliefs to the output distribution. By
experimenting with the new technology, individual
agents learn about the true output distribution from
their own experiences, and then update their beliefs.
An agent’s optimal adoption decision therefore
changes with the evolution of his or her subjective
beliefs, and an intra-firm diffusion curve is gener-
ated. Jensen (1982) extended this thinking to a
population of agents who differ with respect to their
subjective prior beliefs regarding the new technol-
ogy. In this model, the entire population continues
to receive new information over time from an
exogenous source. As private subjective beliefs are
updated, an aggregate inter-firm diffusion curve
emerges.

Learning from others is similar but relatively
more complicated and has been addressed most
recently. When potential adopters are uncertain
about a new technology and the outcomes of others’
experiments with the technology are observable, it
may become rational for a forward-looking agent to
postpone adoption (at least to some extent) until
new information regarding the expected benefit of
adoption becomes available. This means we should
expect to observe agents tending to “wait and see”
what happens to their neighbors (i.e., tending to
free-ride on their neighbors’ experiences) before
they assume the private cost of experimenting with
a new idea themselves. The result is an information
externality that produces an inefficiently slow rate
of adoption.

Because the effects of this information external-
ity are realized only in future periods (i.e., through
the posterior distribution of beliefs), agents must be
modeled as forward-looking to examine the impact
of these effects on their behavior. And because the
optimal action by any agent is thought to depend on
the actions of all other agents, agents should be
modeled as strategic, as well. Unfortunately, solving
for the equilibria of these strategic-dynamic games
is difficult unless simple analytical forms are
chosen for all relevant functions. But because such

1  More details regarding the discussion here and in the “behavioral
model” section that follows are available in Baerenklau (2003).
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simplifications have undesirable consequences for
empirical work, there has been extremely limited
use of such models with actual data. Manski
(1993a), and Bolton and Harris (1999) both examine
dynamic models, but only in theoretical aspects.
Munshi (2000), and Conley and Udry (2000) both
use empirical data, but restrict their agents to myopic
behavior.

Two papers which do estimate empirical strate-
gic-dynamic models are Besley and Case (1997),
and Foster and Rosenzweig (1995). Both take
advantage of painstakingly collected data that track
changing agricultural practices in developing coun-
tries in great detail over several years. But despite
having high-quality data and employing structural
models, both studies found only very weak evi-
dence of forward-looking behavior. One candidate
explanation for these negative results is the pos-
sibility that although this dynamic information
externality may be relevant for modeling large,
capital-intensive, irreversible decisions, it may be
of secondary importance for smaller, less costly,
reversible decisions (such as which type of seed to
plant, as is the case for both of these earlier papers;
or how much feed additive to use, as is the case for
this study). For adoption decisions of the latter type,
an alternative and nondynamic type of behavioral
interaction—commonly referred to as a neighbor-
hood effect—may have greater relevance, but has
yet to receive much attention in the resource eco-
nomics literature.

Neighborhood Effects

Besley and Case (1997) chose a model with for-
ward-looking noncooperative behavior in an attempt
to measure the effect on behavior of waiting to see
how well a new technology works; Foster and Ros-
enzweig (1995) did the same to measure the effect
of waiting to see how best to use a new technology.
But these are not the only ways to model social
interactions under uncertainty. There is also the pos-
sibility that, although agents may be very concerned
with how well something works and how best to
use it, they may be more directly influenced by the
contemporaneous decisions made by their peers. As
Banerjee (1992) states:

There are innumerable social and economic situations in
which we are influenced in our decision making by what
others around us are doing. Perhaps the commonest
examples are from everyday life: we often decide on
what stores and restaurants to patronize or what schools
to attend on the basis of how popular they seem to be.

But it has been suggested by Keynes [1936], for exam-
ple, that this is also how investors in asset markets
behave (the famous ‘beauty contest’ example). In the
literature on fertility choices it has frequently been
suggested that various fertility decisions (how many
children to have, whether or not to use contraception,
etc.) are heavily influenced by what other people in the
same area are doing. It has also been suggested that the
same kind of factor also influences the decision to adopt
new technologies. Voters are known to be influenced by
opinion polls to vote in the direction that the poll pre-
dicts will win; this is another instance of going with the
flow. The same kind of influence is also at work when,
for example, academic researchers choose to work on
a topic that is currently ‘hot’ (pp. 797S798, emphasis
added).

Most generally, a neighborhood effect captures
the idea that an agent’s behavior can be influenced
by exposure to the behavior of other agents. Such
effects have been discussed and examined by social
scientists for decades and have been thought to be
important in a variety of situations. One earlier
example is Coleman et al. (1966), who argued that
academic performance by disadvantaged students
could be improved far more easily through exploit-
ing peer group dependencies than through increased
school expenditures. Another example is Schelling
(1971), who derived one of the first quantitative
models of interactions to help explain racial segre-
gation. Labov (1972a, b) examined the choice of
spoken dialect in an interactions framework, and
Loury (1977) derived a theory of persistent racial
income differences that was in part based on spill-
overs. Consumer demand, charitable contributions,
the behavior of political parties and scientific com-
munities, smoking habits, teenage pregnancy, crime,
school dropout rates, and other emergent social
phenomena all have been examined in some part of
the social interactions literature.2

Relevance to This Study

As noted above, previous researchers have specu-
lated that neighborhood effects would be expected
to influence technology adoption decisions. For
example, the notion of a “network externality” would
apply to situations in which the benefit derived
from using a technology is a function of the total
number of users of that technology.3 Alternatively,

2  Refer to Brock and Durlauf (2001), and Manski (1993b) for citations
and additional discussion.

3  Manifestations of this effect include the predominance of the
“QWERTY” keyboard (David, 1985), VHS tape players, and the Micro-
soft Windows operating system.
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the idea of an “informational cascade” would apply
to situations in which agents who receive noisy
signals regarding expected payoffs of different
technologies choose to emulate the choices of
“first-movers” who act relatively quickly because
they have received more precise signals. And pure
“conformity preference” would seem appropriate
for modeling choices that produce ancillary benefits
from social acceptance, being part of the “in-crowd,”
or the existence of a support group.

However, due in part to identification problems,4
there remains a relative dearth of empirical research
which incorporates social interactions like these
into modern decision-theoretic behavioral models
in order to measure the impacts of these interactions
on technology adoption. But both intuition and anec-
dotal evidence suggest such an approach is highly
relevant for modeling adoption behavior, especially
among Wisconsin dairy farmers. Intuitively, for any
technology (whether conservation or otherwise),
making the “mainstream” adoption decision pro-
duces private benefits to the extent that it allows a
producer to participate more integrally in his or her
farming community. While this may be of lesser
importance in areas dominated by large “factory”
farms, it would seem to have greater relevance in
the state of Wisconsin with its smaller farms and
their attendant farming cooperatives and local com-
munity orientations.

Furthermore, for conservation technologies in
particular, pressure to “do what’s right” for the
environment and to “be a team player” should
enhance these interaction effects to the extent that
farmers dislike being perceived by their commun-
ities as selfish holdouts who are unwilling to coop-
erate. And last, there also appears to be a mentality
among farmers that while it is unwise to operate a
farm as a slave to fads, no one wants to be last to
adopt a new innovation shown to be truly worth-
while. According to one Wisconsin Cooperative
Extension agent, “Two drivers determine whether
a farmer will adopt a new technique: if he thinks
it’s profitable and if his peers accept it” (Andersen,
2001).

Derivation of the Behavioral Model

The adoption model used here incorporates three
appealing elements: risk preferences, endogenous
learning, and neighborhood effects. Risk preferences

are included to account for the propensity of eco-
nomic agents to care not only about the expected
level of income, but also about higher moments of
the income distribution as well. Endogenous learn-
ing is included because rational farmers clearly
have a greater propensity to use a technology that
has produced good results for them in the past, as
opposed to one that has not (learning by doing), and
because of the abundance of empirical evidence
suggesting the importance of farmer-to-farmer
communications in technology adoption decisions
(learning from others). And neighborhood effects
are included to capture the possible influence of
contemporaneous social interactions on the rate of
diffusion.

The adoption model is best presented in layers.
First, a net farm income function is posited that ex-
hibits locally constant returns to scale with respect
to the size of the milking herd (hit) and captures the
effect of various farmer and production character-
istics on farm profits:5

(1)
πit

hit

' κi % xitβ % yitβy

% exp(zitγ % yitγy) ½ @ uit % vt ,

where the left-hand side, πit /hit, is annual profit per
milk cow. Because panel data are used to estimate
the model, the first term on the right-hand side, κi,
is a farm-specific fixed effect used to account for
persistent unobservable characteristics of individual
farms that would tend to bias the estimates of β and
γ. The next term includes a vector of farm and oper-
ator characteristics, xit, which are thought to influ-
ence the mean income level and an associated
parameter vector, β. The third term breaks out the
technology choice of concern, yit, and its associated
coefficient, βy, which expresses the estimated “true”
impact of the technology on mean profit. If panel
data on phosphorus input levels were available,
these data would enter equation (3) as yit. However,
as mentioned previously, these data currently do not
exist. Therefore, in order to obtain estimates of the
parameters needed to conduct the simulations that
follow, an alternative adoption scenario is utilized.
Details regarding this adoption scenario are pro-
vided after the model has been fully introduced.

The remaining two terms on the right-hand side
of (1) are the error components. The first shock, uit,

4  Refer to Brock and Durlauf (2001), and Manski (1993b) for discus-
sions of identification issues associated with neighborhood effects.

5  Note that risk preferences, learning, and social interactions do not
play a role in the estimation of the profit function. These factors enter into
the choice model shown in equation (2).
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is a time- and farm-specific shock, assumed to be
drawn independently from a standard normal distri-
bution, representing the combined idiosyncratic
effect of unobservable characteristics on profits. The
variance of this shock is assumed to exhibit the com-
monly used multiplicative form of heteroskedasticity
and therefore is given by exp(γzit + yitγy). Here, as
before, zit is a vector of farm and operator charac-
teristics which are thought to influence the variance
of income, and γ is an associated parameter vector.
The second term in the exponential breaks out the
technology choice of concern, yit, and its associated
coefficient, γy, that expresses the estimated “true”
impact of the technology on the variance of income.
The second shock, vt , is a time-specific shock
which is common to all farms and accounts for the
expected correlation in farm profits that may be
caused by weather events or factor price fluctua-
tions. This shock is assumed to be normal with mean
zero and variance σ2

v .
The next layer of the model concerns adoption

behavior. To derive a reduced-form model for
empirical estimation, assume each farmer exhibits
preferences over the first two moments of his or her
income distribution and over a measure of peer
group influence. Denote each farmer’s anticipated
wealth level by Πit / Wit + E[πit], and the farmer’s
anticipated standard deviation of this wealth level
by Σit, where Wit is nonrandom wealth (here, non-
farm net worth plus nonfarm income) and E [πit] is
(subjective) expected farm profit. Each farmer’s
optimization problem is then expressed as:

(2) y *
it / arg max

yit

(Πit)
α1 & (Σit)

α2

% ρ @ max 1
nit& 1 j

j…i
y *

jt & yit , 0
2

.

In each period t, each agent i selects yit to maximize
this reduced form.

Equation (2) has two components. The first is a
function of agent wealth that captures the combined
impact of risk preferences and income uncertainty
on technology choice. This functional form
( known as “nonlinear mean standardΠα1&Σα2),
deviation utility,” was proposed by Saha (1997) and
has been used recently by Isik and Khanna (2003).
It is attractive because of its inherent flexibility: it
can exhibit risk aversion, neutrality, and affinity
corresponding to α2 > 0, α2 = 0, and α2 < 0; it can
exhibit decreasing, constant, and increasing abso-
lute risk aversion corresponding to α1 > 1, α1 = 1,

and α1 < 1; and it can exhibit decreasing, constant,
and increasing relative risk aversion corresponding
to α1 > α2, α1 = α2, and α1 < α2. Therefore, instead of
imposing a type of risk preferences on the model,
the data are used to derive α̂ / [α̂1, α̂2] with which
hypothesis tests may be conducted. Furthermore, this
functional form easily accommodates heterogeneity
in risk preferences. The form of heterogeneity used
here is kept relatively simple due to model tractabil-
ity concerns: one set of coefficients ] is esti-[α̂H

1 , α̂H
2

mated for farmers who have completed some kind
of post-high school degree program (i.e., higher edu-
cation, including trade school, college, and graduate
school), and one set of coefficients ] for those[α̂L

1, α̂L
2

who have not (i.e., lower education).
The expectation of net farm income, E [πit], is

taken over two random vectors. The first is the
vector of shocks to income that enter through the
profit function: [ui, v]. The second is the vector of
subjective beliefs regarding the profitability of the
new technology: [βy, γy]. These beliefs are assumed
to be commonly held by all agents6 and evolve
through time as new information regarding the
technology is revealed through agents’ adoption
decisions in each period. Each belief is represented
by a normal random variable with equations of
motion for the mean and variance derived from
Bayes’ rule (Box and Tiao, 1973):

(3.1) βyt%1 '
τ @ σ̃2

βyt
@βyt % σ

2
βyt
@ β̃yt

τ @ σ̃2
βyt
% σ2

βyt

,

(3.2) σ2
βyt%1

'
τ @ σ̃2

βyt
@σ2

βyt

τ @ σ̃2
βyt
% σ2

βyt

,

(3.3) γyt%1 '
τ @ σ̃2

γyt
@ γyt % σ

2
γyt
@ γ̃yt

τ @ σ̃2
γyt
% σ2

γyt

,

and

(3.4) σ2
γyt%1

'
τ @ σ̃2

γyt
@σ2

γyt

τ @ σ̃2
γyt
% σ2

γyt

,

where any quantity denoted by a tilde (~) represents
either the new information (the signal) revealed
about that quantity in time period t, or the variance
(the noise) of that new information. The parameter

6  This assumption is made primarily for model tractability, but seems
plausible based on the extent of information sharing exhibited by the
study group. Besley and Case (1997) proceed similarly.
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τ is an additional scale factor: the larger is τ, the
more noisy is the signal and the more weight is
given to the prior belief rather than the signal. This
parameter is needed because empirical estimation
of the noise component is problematic. Specifically,
although the analyst may be able to use the sample
data to generate an unbiased estimate of the signal
received by the agents in each period (here, andβ̃yt

estimating the noise associated with that signalγ̃yt),
would require knowledge of each agent’s effective
sample size. Therefore, τ specifies a data-driven
relationship between the noise perceived by the
agents and the noise perceived by the analyst in
each period (here, σ̃2

βyt
and σ̃2

γyt
).

The second component of equation (2) represents
the impact of social interactions on individual
choices. Following Brock and Durlauf (2001), this
component is adapted from mean-field theory, where
the relevant neighborhood effect is assumed to be
a function of the deviation from the mean behavior
exhibited by an agent’s peer group. Here, ρ is a
parameter to be estimated; yit is the choice made by
agent i in period t;7 nit is the total number of mem-
bers of agent i’s peer group at time t; and is they *

jt
expected choice (from agent i’s perspective) made
by member j of agent i’s peer group at time t. When
ρ is negative, this framework implies an agent
suffers a utility loss when he or she is perceived by
his or her peer group as a “laggard” with regard to
adoption (specifically, when the agent’s adoption
level is less than the peer group average).8 This
specification is consistent with the anecdotal evi-
dence presented earlier, and furthermore does not
penalize “innovators” whose relatively early adop-
tion decisions generate benefits for other farmers
through information sharing. Moreover, a positive
value for ρ implies an agent incurs a utility gain by
lagging behind his or her peers, which could be
interpreted as evidence of the type of strategic be-
havior investigated by Besley and Case (1997), and
Foster and Rosenzweig (1995).

Parameter Estimation

Because adoption of low phosphorus diets remains
a hypothetical scenario in Wisconsin, the behavioral
model presented above must be calibrated with an

alternative adoption scenario for which data are
available. Provided certain key characteristics of this
alternative scenario mimic those of the phosphorus
scenario, this approach should produce parameter
estimates for risk preferences and neighborhood
effects which are applicable to the phosphorus
scenario and can be used in the policy simulations
that follow. This approach essentially treats the
phosphorus scenario as an out-of-sample prediction
problem; but instead of predicting how a different
group of agents would behave when faced with the
same adoption problem, it predicts how the same
group of agents would behave when faced with a
different (but similar) adoption problem.

The only other approach for providing regulators
with ex ante information about expected adoption
behavior would be to ask farmers to state how they
would behave if offered various incentives. The
debate regarding stated versus revealed preference
methods continues in the field of applied economics,
and further research is needed to determine the
merits of each approach for technology adoption
policy guidance. But because so few farmers appear
to know anything about their phosphorus levels
(Jackson-Smith, 2000), a stated preference method
is not used here. Instead, an alternative scenario
involving the selection of improved (non-native)
forage varieties by Wisconsin dairy farmers is used
to obtain parameter estimates. This adoption scenario
exhibits several of the same key characteristics as
the phosphorus scenario: it focuses on animal nutri-
tion, it requires low capital costs, and it is easily
reversible. Furthermore, this scenario shows signif-
icant variability in adoption rates during the study
window—average adoption levels grew from 11.6%
in 1996 to 29% in 2000—which greatly facilitates
parameter identification in a model with both risk
preferences and endogenous learning. And finally,
the adopters of these improved varieties have organ-
ized themselves into distinct professional networks
that serve as convenient indicators of peer group
membership.

The behavioral model is estimated in three
sequential stages. First, the error structure specified
in equation (1) requires the use of a maximum-
likelihood method (as developed by Griffiths and
Anderson, 1982) to obtain estimates for the profit
function parameters. Then the profitability signals
in equation (3) are estimated by replacing βy and γy
in equation (1) with time-specific versions of these
parameters in order to permit the technology to have
different observable impacts on profits in each year.
Given these signals, a total of 10 coefficients must

7  For notational simplicity, yit in the second component of equation (2)
is understood to represent the extent of adoption of the new technology
(0 = no adoption, 1 = full adoption).

8  Squaring the deviation from the group mean implies the marginal util-
ity loss is increasing in the magnitude of the deviation, and maintains
continuous differentiability of the utility function.
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then be estimated in equations (2)S(3): βy1 and γy1,
the initial values for the subjective beliefs regarding
the new technology; the initial valuesσ2

βy1
and σ2

γy1
,

for the subjective uncertainty regarding these
beliefs; four values for the risk preference vector, α;
τ, the scale factor for new information; and ρ, the
social interaction parameter. Recent work has esti-
mated technology and risk preference parameters
jointly (e.g., Isik and Khanna, 2003), but has ex-
cluded the roles of endogenous learning and social
interactions. Introducing either of these factors
complicates the estimation problem significantly
and motivates the use of a sequential approach.9

Estimation of (2)S(3) is accomplished using max-
imum entropy (Golan, Judge, and Miller, 1996).
This approach requires reparameterizing the esti-
mable coefficients and the error terms whereby each
is defined by a discrete support space and a prob-
ability distribution over that support space. Then,
given a prior distribution specified by the analyst,
the maximum entropy principle determines a
posterior set of probability distributions that are as
“close” as possible to these priors but that also are
consistent with the observed data. Integrating these
posterior distributions over the support spaces gives
the coefficient point estimates.

The main advantage of the entropy framework
over traditional estimation approaches is that,
because the entropy metric is globally concave and
the parameter space is compact, it guarantees a solu-
tion regardless of the complexity of the model and
whether or not the regression system is identified in
the traditional sense. This enables the analyst to say
at least something instead of nothing about the infor-
mation content of a complex system and/or a sparse
data set. Furthermore, it facilitates the incorporation
of ex ante information into the model by allowing
the analyst to specify both the supports and the prior
distributions for the parameter spaces.10 Empirical
applications of maximum entropy in the economics
literature include Kaplan, Howitt, and Farzin (2003);
Fernandez (1997); and Golan, Judge, and Karp
(1996). Additional details regarding this application
are provided in Baerenklau (2003).

Summary statistics for the regressors used to esti-
mate the profit function are given in table A1 of the
appendix; estimation results for the profit function

are given in table A2, for the profitability signals in
table A3, and for the risk preference and neigh-
borhood effects parameters in table A4. The point
estimates for the profit function generally have the
correct signs and magnitudes, and those for the
adoption model suggest that agents exhibit increas-
ing absolute and relative risk aversion as well as a
negative neighborhood effect. However, confidence
intervals are large enough such that it is not
possible to reject other forms of risk aversion or a
positive neighborhood effect at the typical signif-
icance levels. But because the model does an
adequate job of predicting average annual adoption
levels (table A5), these point estimates are used to
calibrate the simulations that follow.

Model Calibration

To simulate the effects of changes in phosphorus in-
put levels and the incentive mechanism on net farm
income, the behavioral model must be modified
slightly. First, some new terms must be introduced
into equation (1):

(4) πit ' κi % x1it(ψit) @ β1 % xitβ % C(ψit)

% exp(zitγ)
½
@ uit % vt @ hit .

For notational simplicity, yitβy and yitγy are now sub-
sumed by xitβ and zitγ, respectively. The first struc-
tural change involves the revenue term (regressor x1
in table A1). In equation (1), this term is calculated
as x1it = pitwit, where pit is the reported price per
pound of milk received by agent i in time period t,
and wit is the reported average daily milk produc-
tion per cow (in pounds). In equation (4), this term
and its associated coefficient has been extracted from
xitβ to emphasize that milk revenue now depends
on the chosen phosphorus concentration, ψit.

Specifically, the effect of phosphorus on revenue
per cow is given by:

(5) x1it(ψit) ' pit @wit @ λ(ψit, θ, ψ̂),

where is a normalized loss func-λ(ψit, θ, ψ̂)0 [0, 1]
tion that depends on the chosen phosphorus
concentration (ψit), the threshold level (θ), and a
lower-bound concentration below which it(ψ̂ < θ)
is assumed a farmer would never decrease phos-
phorus concentration due to the risk of serious health
problems affecting the milking herd. This loss func-
tion takes a value of one when ψit $ θ, declines at
an increasing rate as ψit is reduced below θ, and
reaches zero when ψit ' ψ̂.

9  Note that inclusion of the social interactions term requires solving for
a Nash equilibrium in each period. In a similarly complex model, Besley
and Case (1997) use an analogous sequential estimation procedure which
is motivated by concerns regarding tractability and identification.

10  This is a particularly useful property here because initial attempts to
use maximum likelihood produced nonsensical coefficient estimates.
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Equation (4) also includes a term to account for
the effect of phosphorus concentration on production
costs. The annual per cow cost savings a farmer can
earn by reducing the phosphorus concentration fed
to his or her herd is given by:

(6) C(ψit) ' (cP % cI ) @ max ψ0
it & ψit , 0

& cR @ 1 & λ(ψit, θ, ψ̂) ,

where cP is the annual savings per cow per g/kg DM
of phosphorus reduction, cI is the additional per unit
incentive offered by the regulator, is the farmer’sψ0

it
initial baseline phosphorus concentration, and cR is
the cost to replace a milk cow after a failed preg-
nancy in order to maintain a constant herd size. The
first component of equation (6) captures the cost
savings from phosphorus reductions and the second
component employs the same loss function from
equation (5) to capture the additional cost of in-
creased pregnancy failures. Equations (5) and (6)
incorporate the observations presented earlier,
namely that phosphorus appears to have no marginal
effect on either milk production or pregnancy rates
when the feed concentration exceeds the threshold
level; but below this level, both begin to decline.

Note, as specified in equations (4)S(6), phos-
phorus affects the mean but not the variance of
income.11 When data become available from animal
scientists regarding the impact of phosphorus on the
variance of milk production, including this effect
would be a useful extension of the model. Also note
that the loss function is assumed to beλ(ψit, θ, ψ̂)
quadratic. The actual shapes of these phosphorus-
induced losses in milk production and pregnancies
are not yet well known, but the quadratic form has
several appealing properties. First, unlike a linear
approximation, it generates a continuously differ-
entiable function for both milk production and
pregnancy rates. This is both beneficial for the
optimization routine and perhaps more realistic than
“kinked” functions. Second, because each function
is anchored at two points—one point corresponding
to the threshold input level (θ) and the baseline milk
production/pregnancy rate, and the other point cor-
responding to the minimal feed concentration )(ψ̂
and no milk production/reproduction—using a
higher order exponent tends to make each function
flatter near θ and steeper near thereby shiftingψ̂,
the effective threshold level down. Because animal
scientists believe the threshold is near θ, this is an

undesirable effect. Smaller exponents (e.g., 3/2) and
sigmoid-shaped functional forms had little effect on
the simulation results, so the quadratic specification
is adopted.

Given these changes to the profit function, the
optimization problem in equation (2) becomes:

(7) ψ*
it / arg max

ψit

Πit(ψit)
α1
& Σit(ψit)

α2

% ρ @ max 1
nit & 1 j

j…i
ψ*

jt& ψit , 0
2

,

where is the optimal phosphorus concentrationψ*
it

chosen by agent i at time t, again expressed as the
extent (or percentage) of adoption of the new tech-
nology; and Πit and Σit are as defined previously.
Compared with equation (2), this expression differs
primarily in terms of its sources of uncertainty. The
first random vector over which expectations are
taken [ui, v] is unchanged. But the second now rep-
resents the subjective and uncertain belief regarding
the true phosphorus threshold, θ. As before, this
belief is commonly held by all agents and evolves
through time as new information regarding the true
threshold is revealed through agents’ phosphorus
decisions in each period.

The threshold belief is represented by a normal
distribution with equation of motion given directly
by Bayes’ rule:

(8) ft%1(θ*ξt) /
R(ξt*θ) @ ft(θ)

mR(ξt*θ) @ ft(θ) @ dθ
.

Here, ξ t represents the set of new information re-
vealed at time t and includes farm characteristics (xt
and zt), phosphorus input levels (ψt), and realized
net income (πt); ft(θ) is the belief at time t that θ is
the true threshold; and R(ξ t |θ) is the conditional like-
lihood function for ξ t.

The equations of motion derived from Bayes’
rule and shown in equation (3) are not applicable
here because agents now are learning about a thresh-
old level. The implication of this is the following.
If, in any period t, all new observations occur above
the true threshold level, the signals used in equation
(3) to update beliefs will not be identified. Rather,
an infinity of signals will describe the new infor-
mation equally well. However, direct application of
Bayes’ rule remains possible because it is not
necessary to determine these signals in order to
calculate the posterior distribution in equation (8).
In addition, this methodological change does not

11  However, partial adoption remains possible (and likely) due to the
combined effects of risk aversion and uncertainty.
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affect the fundamental learning structure assumed
in the previous estimation—in both cases, learning
is Bayesian.

Policy Simulations

To incorporate additional key features of the Wis-
consin dairy industry and of the phosphorus decision
faced by dairy farmers, the following assumptions
are made:

P The farms used to calibrate the behavioral model
presented above constitute a single peer group and
are contained in a single watershed. The relevant
characteristics of these farms (including baseline
milk yields and herd sizes) are set equal to re-
ported values for the year 2000.

P The true threshold level for phosphorus in feed
is assumed to be 3.5 g/kg DM, but farmers are
uncertain about this true level and initially be-
lieve it is significantly higher.

P The lower-bound concentration, in equationsψ̂
(5) and (6), is assumed to be 1.5 g/kg DM (Valk
and Šebek, 1999; Call et al., 1987).

P The annual savings per cow from reducing phos-
phorus by 1 g/kg DM is set equal to $10 (Satter,
2000; Satter and Dhiman, 1996).

P The cost to replace a milk cow after a failed preg-
nancy in order to maintain a constant herd size is
set equal to $335, the difference between the cost
of a replacement heifer and the price received for
a slaughter cow (Wisconsin Agricultural Statis-
tics Service, 2001).

The first set of simulations presented here char-
acterizes a baseline scenario from which to measure
the effects of a green payment program on the adop-
tion process. All simulations are conducted over
15-year time horizons, and a discount factor of 0.96
is used to calculate the present value of program
costs. Other simulation parameters characterizing
this baseline scenario are summarized in table 1. As
shown in table 1, prior beliefs are assumed to be
normal with a mean of 4.5 g/kg DM and a variance
of 0.09 in the baseline scenario. No payment is
offered in this scenario, and therefore the contract
length is not applicable. The scale parameter adds
a small random disturbance to each agent’s optimal
choice to simulate the unexplained portions of these
decisions. Both risk preferences and neighborhood

Table 1. Simulation Parameters for the Baseline
Scenario

Parameter Value

Initial mean belief about threshold level 4.5 g/kg DM

Measure of initial uncertainty about
threshold level (variance of initial belief) 0.09

Incentive for reducing phosphorus none

Number of years incentive is offered NA

Scale parameter for choice disturbances 0.1

effects are permitted to influence adoption decisions
in the baseline scenario, and therefore the estimates
reported in table A4 of the appendix are used in this
simulation.

Before presenting the results for this scenario, it
is important to note that although there is no incen-
tive payment here, it should not be considered
analogous to the case of no government inter-
vention. This is because the current scenario
regarding phosphorus use in Wisconsin—the true
“no intervention” case—is characterized by the fact
that most farmers do not yet consider the amount of
phosphorus in their feed to be a decision worth
making themselves, and consequently leave this
decision to others. The first scenario presented here
instead should be thought of as a baseline condi-
tional on farmers examining their phosphorus input
decisions in more detail. Achieving this higher level
of scrutiny itself may require some form of govern-
ment intervention.

The baseline scenario in table 1 produces initial
phosphorus choices in the first period of the simu-
lations which are well within the realistic range:
these initial feed concentrations vary between 4.28
and 5.20, with an average of 4.74 g/kg DM. Figure
1 shows the subsequent evolution of the mean
threshold belief and the mean choice level for each
period in the baseline scenario, as well as the results
for the same model with no social interactions (“no
group effect”). In both models, agents clearly are
learning that the true threshold level is less than 4.5
g/kg DM, but their rate of learning is rather slow
and appears to diminish over time. The neighbor-
hood effect has only a small impact on behavior,
but it has relatively more importance later in the
simulations after uncertainty about the threshold
level has been reduced. While this implies risk
aversion and subjective beliefs may be the primary
determinants of this adoption decision, social
interactions are nonetheless retained as part of the
baseline scenario.
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Green Payments: Uniform Input 
Reduction Subsidy

To hasten the rates of learning and adoption, a
uniform input reduction subsidy is considered. This
mechanism most closely resembles the cost-sharing
arrangements currently used in Wisconsin and other
states. Here, the regulator chooses a uniform per
unit payment for phosphorus reductions and a com-
mon contract length in order to achieve a desired
pollutant load reduction. Table 2 shows the param-
eters characterizing these simulations, and figure 2
presents the results graphically along with the orig-
inal baseline from figure 1.

Increasing the payment level has two related
effects. First, it promotes faster learning. Figure 2
shows that as the payment increases from $0 to
$200, beliefs converge faster toward the true value
of the threshold. But after the contracts expire in
the tenth period, learning rates slow and are (not
surprisingly) similar in nature to the path for the
baseline scenario with no subsidy payment. Second,
increasing the payment level promotes lower phos-
phorus input levels both during and after the con-
tract window. For sufficiently high payment levels
(e.g., $200), farmers temporarily choose input levels
that are below the true threshold level, thereby
incurring temporary production losses for which
they are compensated via the payment mechanism.
But regardless of the payment level, choice levels

Table 2. Simulation Parameters for the Subsidy
Mechanism

Parameter Value

Initial mean belief about threshold level 4.5 g/kg DM

Measure of initial uncertainty about
threshold level (variance of initial belief) 0.09

Incentive for reducing phosphorus: annual
payment per cow for reducing phosphorus
concentration in feed by 1 g/kg DM a $50, $100, $200

Number of years incentive is offered b 10

Scale parameter for choice disturbances 0.1

a For example, if a farmer with 100 cows reduced phosphorus con-
centration from 4.8 to 3.8 g/kg DM, this farmer would receive a total
annual subsidy payment of $5,000, $10,000, and $20,000 in each
respective simulation.
b Ten years is a typical contract length for Wisconsin’s nonpoint
source water pollution control program.

“rebound” when the contracts expire and the pay-
ments are discontinued.12

The expected post-contract choice levels are of
particular importance to a regulator who is tasked
with meeting an exogenously imposed load reduc-
tion standard within a fixed amount of time. Also
of interest are the expected total (present value)
costs to achieve each of these post-contract levels

12  Note that to attain the socially optimal pollution level indefinitely,
payments also must continue indefinitely. But questions of social effici-
ency are not the focus here.

Figure 1. Evolution of mean threshold belief and mean choice level
in baseline scenario
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(summarized in table 3). By the end of the fifteenth
period, the $50 contract achieves an expected per-
manent load reduction of 9,049 kg of phosphorus
per year for an expected total cost of $535,179 to
the regulator. The $100 contract achieves an
expected annual load reduction of 11,751 kg of
phosphorus for an expected cost of $1,425,875.
And the $200 contract achieves an expected annual
load reduction of 15,070 kg of phosphorus for an
expected cost of $3,948,617. Each of these may be
compared with an expected annual load reduction
of 4,716 kg of phosphorus with no incentive pay-
ment in the baseline scenario.13

As a “reality check,” the results of these simu-
lated policies also may be compared with figures
from an actual watershed currently enrolled in Wis-
consin’s nonpoint program.14 The Lake Mendota
Watershed is a 590 square-kilometer drainage basin
located in south-central Wisconsin. Land use in this
region is dominated by agricultural activity which
accounts for 60% of the total area and is the main
cause of several different water quality problems in
the basin. To address these problems, the Wisconsin

Table 3. Summary of Load Reductions and Total
Present Value Costs for Contracts Presented in
Figure 2

Payment
($/g/kg DM)

Total Load
Reduction (kg P)

  Total Cost
  ($)

    0   4,716 0      

  50   9,049 535,179      

100 11,751 1,425,875      

200 15,070 3,948,617      

Department of Natural Resources (WDNR) added
this watershed to its priority list in 1993, and has
since developed a pollution control plan for the
watershed expected to cost $17.8 million over 10
years.

Although this figure includes the costs to achieve
several different water quality objectives, the water-
shed’s namesake, Lake Mendota, is the predominant
receiving body in the drainage basin and is a main
focus of the pollution control plan. Lake Mendota’s
primary pollution problem is excessive phosphorus
loading. Based on WDNR estimates, the lake re-
ceives approximately 34,000 kg of the nutrient each
year. The control plan specifies that this load must
be reduced by 17,000 kg within 10 years. Consider-
ing the total cost of the control plan, even a con-
servative estimate of the WDNR’s cost to achieve

13  Each of these load reductions is calculated as in Wu, Satter, and Sojo
(2000) by converting phosphorus in feed to manure phosphorus. Also
note that very little load reduction occurs after the tenth year in any
scenario.

14  This discussion is taken from Stumborg, Baerenklau, and Bishop
(2001).

 Figure 2. Evolution of mean threshold belief and mean choice level
 for varying subsidy payments
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this single objective likely would exceed the $3.95
million needed to achieve the 15,070 kg load reduc-
tion after 10 years in the $200 contract simulations,
implying a voluntary program may be a viable cost-
effective alternative for the WDNR.15

In addition to altering the payment level as in
figure 2, the simulations also permit examining the
impact of varying the contract length on beliefs and
behavior. For example, it may be more cost-effective
to achieve the same load reduction by offering a
larger incentive over a shorter period of time than
a smaller incentive over a longer period of time.
Figure 3 provides two scenarios for comparison:
$200 over ten years and $325 over five years.16 The
long-run effects of the two scenarios are similar,
but the shorter contract is slightly more cost-
effective. The $200, ten-year contract achieves a
permanent load reduction of 15,070 kg for a total
cost of $3,948,617, and the $325, five-year contract
achieves a permanent load reduction of 15,177 kg
for a total cost of $3,833,387. These results suggest
the WDNR should consider offering shorter con-
tracts with larger incentives when learning plays an
important role in adoption.17

The simulations also permit examination of the
effect of alternative prior beliefs on the outcome of
the incentive mechanism. This would be of particu-
lar interest to a regulator who is unsure of the priors
held by the agents who will be offered the incentive
(a likely scenario) to the extent that an incorrect
assumption regarding these priors can have a det-
rimental impact on the efficacy of the incentive
scheme. To explore this possibility, the $100-for-10-
years contract with prior mean and variance of 4.5
g/kg DM and 0.09 (as in figure 2) is used as a base-
line. Two alternative sets of priors which produce
similar distributions of initial choices are then con-
sidered: mean = 4.4 g/kg DM and variance = 0.16,
and mean = 4.6 g/kg DM and variance = 0.04.

Figure 4 shows the results for all three scenarios.
It is apparent that the final outcome of the incentive
program is fairly sensitive to the initial beliefs (note
how the paths for each scenario diverge through
time), implying this type of miscalculation by the
regulator could be costly, and suggesting that efforts
to discover the actual initial beliefs rather than
relying on the initial distribution of choices may be
worthwhile. An alternative approach when a regu-
lator is uncertain of the prior beliefs would be to
increase the incentive payment to ensure against
priors that would produce relatively slow rates of
learning (such as those given by the third scenario
in figure 4). Though not shown here, additional
simulations demonstrate that the $200-for-10-years
contract appears sufficient for each set of priors
considered above: the mean post-contract choice
levels for all scenarios are between 3.59 and 3.68
g/kg DM, while the expected program costs remain
between $3.9 and $4.1 million.

Summary and Conclusion

The simulation results presented here are based on
a novel microeconomic model of rational choice
under uncertainty which incorporates three key
behavioral elements: risk preferences, endogenous
learning, and peer group influence. Because data are
unavailable for the hypothetical situation addressed
by the simulations, parameter calibration is accomp-
lished using an alternative but structurally similar
adoption decision faced by the sample population.
The calibration results generally are good and sug-
gest all three elements affect adoption behavior, but
peer group influence is of lesser importance.

Based on the simulation results, a green payment
program can accelerate learning and produce signif-
icant, permanent changes in behavior relatively
quickly and for a reasonable cost. In addition, the
simulations suggest that, compared with typical cost-
sharing arrangements, shorter contracts offering
larger incentives may be able to achieve load reduc-
tion targets more cost-effectively when learning
plays an important role in behavioral change. But
they also demonstrate the potential impact of
unknown prior beliefs on the efficacy of a green
payment program, implying that efforts to verify
these priors or to ensure against them by increasing
the payment level may be well justified.

Although a green payment program appears to be
a viable approach to Wisconsin’s current phos-
phorus problem, additional research is needed to
determine the best course of action. Possible topics

15  This comparison assumes reductions in excess manure phosphorus
(i.e., the load reductions calculated for these simulations) produce equiva-
lent reductions in ambient phosphorus (i.e., the load reductions referenced
for Lake Mendota), and therefore represents a best-case scenario. If only
a fraction of excess manure phosphorus eventually migrates to the
receiving water body, the cost of a voluntary program that meets the
ambient loading objective would increase. However, Ebeling et al. (2002)
recently have shown that converting to a low phosphorus diet can reduce
runoff concentrations by up to 90%, implying actual program costs may
not be much higher than those calculated here.

16  The first scenario is identical to that in figure 2.
17  Additional present value cost savings of approximately $700,000 can

be obtained by postponing implementation of the shorter contract (i.e.,
offering the five-year contract during years 6S10 instead of during years
1S5). The drawback of this approach is higher interim pollution damages,
but it nonetheless attains a post-contract pollution level similar to the 10-
year contract.
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Figure 3. Evolution of mean threshold belief and mean choice level
for varying contract lengths
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include: (a) obtaining better information on current
phosphorus input levels and willingness to adopt
reduced phosphorus diets, (b) targeting incentives
at a subset of the population to reduce program
costs, (c) examining alternative specifications of the
adoption model and/or the learning mechanism, and
(d) investigating how “green insurance” might be
used to achieve the same pollution reduction goals.
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Appendix

Table A1. Summary of Regression Variables in Net Farm Income Function (n = 34, t = 5)

Variable Definition Sample Mean Std. Deviation

π /h Reported net farm income per cow 449.268 474.413
Mean Function:

κi Farm-specific fixed effect 0.029 0.169
x1 Estimated daily farm revenue per cow from milk sales

(price per pound × pounds produced per cow per day) 6.491 1.408
x2 Acres of farmable land per cow 3.648 1.709
x3 Acres of pasture per cow 1.545 0.725
x4 Percent Holsteins × acres of pasture per cow 1.204 0.758
x5 Dummy for use of a computerized record keeping system 0.471 0.499
x6 Dummy for use of freestall housing 0.271 0.444
x7 Percent of farm assets owned by operator 0.725 0.280
x8 Acres of pasture planted with improved grasses per cow 0.301 0.371

Variance Function:
z1 Dummy for farms located in the southwest region 0.471 0.499
z2 Dummy for farms located in the north-central region 0.352 0.478
z3 Dummy for farms located in the east region 0.176 0.381
z4 Years of experience as a dairy farmer 17.647 10.742
z5 Pounds of milk produced each day per cow 47.046 9.469
z6 Acres of farmable land per cow 3.648 1.709
z7 Acres of pasture per cow 1.545 0.725
z8 Percent Holsteins × acres of pasture per cow 1.204 0.758
z9 Dummy for use of a computerized record keeping system 0.471 0.499

 z10 Dummy for use of freestall housing 0.271 0.444
 z11 Percent of farm assets owned by operator 0.725 0.280
 z12 Acres of pasture planted with improved grasses per cow 0.301 0.371
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Table A2. Maximum Likelihood Estimates for Net Farm Income Function

Coefficient
      Point

      Estimate
  Asymptotic

  Standard Error
     Asymptotic
     Z-Statistic 

      Asymptotic
      p-Value

Mean Function:
β1     117.775 12.776 9.218 < 0.01
β2     !31.403 24.696 !1.272 0.20
β3     22.191 48.139 0.461 0.64
β4     !154.815 45.771 !3.382 < 0.01
β5     14.993 50.775 0.295 0.77
β6     !141.637 53.858 !2.630 < 0.01
β7     !30.045 113.319 !0.265 0.79
β8     171.889 45.319 3.793 < 0.01

Variance Function:
γ1     9.986 0.807 12.378 < 0.01
γ2     9.732 0.816 11.925 < 0.01
γ3     8.112 0.934 8.686 < 0.01
γ4     !0.008 0.014 !0.575 0.57
γ5     !0.011 0.015 !0.709 0.48
γ6     0.109 0.074 1.460 0.14
γ7     0.105 0.256 0.410 0.68
γ8     !0.506 0.233 !2.168 0.03
γ9     !0.202 0.257 !0.786 0.43

 γ10     1.328 0.307 4.322 < 0.01
 γ11     0.443 0.437 1.013 0.31
 γ12     0.422 0.339 1.244 0.21

Common Variance Component and Model Fit:
    =  242.531                            σ2

v
   Adjusted R2 =      0.638                            

Table A3. Estimated Profitability Signals, 1996SSSS2000

Year           β̃yt σ̃2
βyt

γ̃yt σ̃2
γyt

1996     228.085   3,395.159 !0.238 0.644
1997       89.701   3,267.265 !0.347 0.568
1998       75.482   6,287.221 1.342 0.385
1999     235.496   2,431.771 0.193 0.307
2000     163.989   1,721.005 0.273 0.172

Notes: are the signals received in each period; are the associated variances.β̃yt and γ̃yt σ̃2
βyt

and σ̃2
γyt

 Table A4. Maximum Entropy Estimates for Adoption Model with
 Neighborhood Effects

 Coefficient   Description
Point

Estimate
Asymptotic
Std. Error

        Risk coefficient on mean income forαL
1

   higher education level 0.631  0.313    
        Risk coefficient on mean income forαH

1
   lower education level 0.681  0.246    

        Risk coefficient on standard deviationαL
2

   of income for higher education level 0.897  0.460    
        Risk coefficient on standard deviationαH

2
   of income for lower education level 0.967  0.303    

       ρ    Neighborhood effects coefficient !3,583.5  9,748.6    

Table A5. Actual and Predicted Annual
Mean Adoption Levels in Calibration
Scenario, 1996SSSS2000 (%)

Year Actual Predicted

1996 11.6 12.2
1997 14.9 19.9
1998 21.6 21.4
1999 23.5 19.9
2000 29.0 28.0


