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The random nature of soil loss under alternative land-use practices should be an important
consideration of soil conservation planning and analysis under risk. Chance constrained
programming models can provide information on the trade-offs among pre-determined
tolerance levels of soil loss, probability levels of satisfying the tolerance levels, and economic
profits or losses resulting from soil conservation to soil conservation policy makers. When
using chance constrained programming models, the distribution of factors being constrained
must be evaluated. If random variables follow a log-normal distribution, the normality
assumption, which is generally used in the chance constrained programming models, can bias

the results.

Many economic and policy analyses of soil con-
servation [Wade and Heady; Walker and Tim-
mons; Kramer, McSweeny, and Stavros] as well as
soil conservation planning have been conducted
based on the long-run average soil loss through
employing the University Soil Loss Equation
(USLE) [Wischmeier and Smith]. For instance, the
state and federal agricultural Best Management
Practice (BMP) cost-share programs in Virginia
require that participants have land that is either
rated in the top one-third of highly erodible land or
have a water quality index category rating of 5 or
greater [Virginia Department of Conservation and
Recreation]. The erodibility ranking and water
quality index are determined by the USLE used in
conjunction with the Virginia Geographic Informa-
tion System [Shanholtz et al.]. The tolerance of
soil loss in a particular area is, thus, implicitly
determined by the weighted erodibility ranking and
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water quality index of land in the area and avail-
able cost-share funds for that area.

While the long-run average amount of soil loss
is of a basic concern from a policy perspective, so,
too, is the probability distribution of annual soil
loss. It is known that rainfall related soil loss under
field conditions is stochastic. The amount of soil
loss depends on many factors including topog-
raphy, soil characteristics, rainfall rates and
amounts, cover, and management [Knisel]. The
amount of soil loss estimated by the deterministic
form of the USLE represents the long-run average
of a particular crop system in a given area. Since
the time period that individual farmers participate
in a given soil conservation program is generally
shorter than the long-run, the effectiveness of a
conservation program is influenced by the proba-
bility distribution of soil loss. From the govern-
ment’s perspective, trade-offs among the desire to
decrease the tolerance level of soil loss, increasing
the probability of achieving a certain soil loss tol-
erance level, and expanding the amount of land
with BMPs with limited cost-sharing funds may
exist. From the farmers’ perspective, increasing
the probability of satisfying tolerance levels re-
quires the adoption of more restrictive conserva-
tion practices, which may discourage their partic-
ipation in soil conservation programs. Therefore,
information on the relationship between changes in
tolerance levels of soil loss, probability levels, and
their economic impacts are useful for risk-based
economic and policy analysis of soil conservation.
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The objectives of this research are to: (1) discuss
the implications of using chance constrained pro-
gramming models for risk analysis; (2) develop a
chance constrained programming model with a
log-normal distribution for soil loss; and (3) com-
pare the results of this model with two approximate
approaches: a normal distribution of soil loss, and
a linearized normal distribution of soil loss.

Chance Constrained Programming Models
and Decision Making under Risk

Soil conservation planning consists of decision
making under risk because the results of conserva-
tion practices are, to a great degree, affected by the
weather related random variables. Typically, deci-
sion making under risk should involve the costs
and benefits of recourse; that is, the costs and ben-
efits of information from observed random vari-
ables [Hogan, Morris, and Thompson]. For exam-
ple, theoretically, the cost of the probability of
failure to achieve soil loss tolerances, including
on-site and off-site costs of soil loss, should be
explicitly included in risk-based economic and pol-
icy analysis of soil conservation.

Stochastic programming with recourse (SPR),
which directly couples the cost of recourse to the
objective function, has been recognized as a proper
method to address decisions under risk {Hogan,
Morris, and Thompson]. However, three limits to
the application of SPR to soil conservation analysis
exist. First, measurement of the cost of recourse is
difficult in that tons of soil loss cannot easily be
measured in the same units as a monetary objective
function, thus, a non-commensurable case exists.
Little research has been done on the application of
SPR to non-commensurable cases. Second,the
concept of recourse itself is inapplicable to current
soil conservation policies given that soil conserva-
tion programs are voluntary in the United States.
For example, when the government uses cost-share
payments to stimulate farmers to adopt soil con-
serving best management practices, the partici-
pants are subject to inspections for program com-
pliance to get government payment. Third, there is
a lack of sufficient monitoring to assess the per-
formance of individual farms’ conservation activ-
ities. Using an expected utility function as the ob-
jective function may be an alternative for applica-
tion of SPR to soil erosion [Keeney and Raiffa].
However, difficulties associated with the develop-
ment of a satisfactory utility function may be sig-
nificant.

Chance constrained programming (CCP) is a
possible alternative to SPR for risk-based decision
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making and it was widely applied in 1960°s and
1970’s. The CCP model maximizes the objective
function subject to constraints that must be main-
tained at a prescribed level of probability [Charnes
and Cooper]. Advocates of CCP argue that CCP is
a simple technique to analyze risky decisions with
recourse, while opponents of CCP deny that it is a
viable alternative to SPR. The debate centers
around whether the chosen risk level can capture
the complexities of the costs and benefits of re-
course' [Hogan, Morris, and Thompson].

In spite of this controversy, CCP still can be an
alternative model for risk analysis of soil conser-
vation. The CCP model provides information on
the trade-offs among the objective function value,
tolerance values of the constraint, and the pre-
scribed level of probability, which could be valu-
able to policy makers and farmers.

A typical CCP model can be expressed as fol-
lows:

e)) maximize f(c,X)
Subject to: PrlAX = b] = «
X=0

where: f(c, X) is the objective function; X is the
decision variable vector; A is matrix of technical
coefficients; b and c are vectors of coefficients;
and a is the prescribed level of probability. Not all
of the coefficients in A or b are necessarily random
in empirical CCP models. Assuming that the soil
loss coefficient is the only random variable in the
model, then the soil loss constraint is the only
chance constraint in the model. Let the i row of
the A matrix represent the soil loss constraint in
this study. The model can be rewritten as:

f(e,X) = DX,
;

maximize

Subject to: Pr[zaijxj = bi} = q
i

Q@ SagX;sb, Vk#i

X=0

where: the objective function coefficient, c; is net
returns, X; is decision variable, crop rotation, 1 —
o; represents the acceptable risk of not meeting the
soil loss constraint, and the a;; represent soil loss
coefficients, which are functions of a random vari-
able, the rainfall and runoff factor, R.

' A summary of advocates’ and opponents’ views of CCP modeling
can be found in Hogan, Morris, and Thompson. CCP models are used to
explore the trade-offs, but not the cost of recourse in this study.
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The USLE can be expressed as follows:
®) a; = RKLSCP;

where: a;; is the tons of soil loss per acre per year
associated with the crop rotation j; R is the rainfall
and runoff factor; K is the soil erodibility factor; L
is the slope-length factor; S is the slope-steepness
factor; and C; and P, are the cover and management
factor and the conservation support practice factor
associated with the rotation j, respectively [Wisch-
meier and Smith]. In the area where the amount of
thaw and snowmelt are not significant,2 the rainfall
and runoff factor, R, is equal to Rainfall Erosion
Index, EL R, K, L, S, C;, and P; are typically used
in a deterministic fashion by using their mean val-
ues.

Rainfall related soil loss under field conditions
is, however, stochastic. The large number of pos-
sible combinations of the levels of R, K, L, S, C;,
and P; could make accurate measurement of soil
loss infeasible. Wischmeier and Smith found that
for a particular rainfall area, when the probability
of R can be calculated, the USLE can be used for
estimation of the probable range of soil loss if
other factors are at known levels. That is, if K, L,
S, Cj, and Pj can be treated as known parameters
for a given area, the distribution of soil loss coef-
ficient, a;;, depends on the random variable, R.

The soiution to the CCP model in equation (2)
maximizes the objective function subject to total
soil loss being less than or equal to the tolerance
level of soil loss, b;, at a probability greater than or
equal to a preassigned level, o, as well as satis-
fying other constraints in the model such as labor
and land. The double inequality of the soil loss
chance constraint can be reformulated as:

i kK

where: @; is the mean value of a;;, oy, is the vari-
ance-covariance matrix of the a;;’s, and 0 is a con-
stant that depends on the distribution of random
variable, a;; [Merrill]. While 6 can be determined
through either Tchebysheff’s approximation or as-
suming the distribution of the random variable,
most previous researchers used the latter method of
assuming, implicitly or explicitly, that the random
variable has a normal distribution since this as-
sumption leads to a linear problem that is readily
solvable [Kirby].

2 A detailed description of the R value for thaw and snowmelt can be
found in Wischmeier and Smith. In the rest of this article, thaw and
snowmelt will not be considered since they are not important factors
affecting soil loss in the study area.
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However, Wischmeier and Smith analyzed 20 to
25-year rainfall records from 181 weather stations
across the United States, and showed that the an-
nual El, and therefore also R, tends to follow a
log-normal distribution rather than a normal distri-
bution. Applications of CCP to soil conservation
have to assume a normal distribution or a new CCP
model with a constraint that includes a random
variable that follows a log-normal distribution
must be developed. In this article, a CCP model
with a log-normal distribution is introduced and
comparisons among the results of CCP models
with a normal distribution, linearized-normal con-
straint, and log-normal distribution are provided
with an empirical CCP model. These three models
are discussed below.

Chance Constrained Programming Model with a
Normal Distribution

Following Segarra, Kramer, and Taylor and for
ease of exposition, it will be assumed that the co-
efficients a; are mutually independent. Equation
(4) can be rewritten as:

(5) 2 ainj + 0 20‘3)(} = bi
i V i

where o, is the variance of a;. When the distribu-
tion of random variables is assumed to be normal,

equation (5) becomes:

© 2%+ Ky, | Do b
j j

where: (chjxfj)"” is the standard deviation of
Za;x;, and K, is the standardized normal value
with an o percent probability; that is, the con-
straint will be met o; percent of the time. Given
left hand side of equation (6) is non-linear, non-
linear programming would have to be used to ob-
tain a solution. Also, it should be noted that the
function in equation (6) is neither strictly convex
nor concave. Thus, the feasible region for an em-
pirical problem may not be a convex set.

Chance Constrained Programming Model with a
Linearized Normal Chance Constraint

Segarra, Kramer, and Taylor demonstrated that the
non-linear chance constraint of equation (6) could
be linearized, and would result in the following
constraint:

Y 2 3% + Ko, 203%; = by
i i
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They pointed out that this would be a conservative
constraint, as EcruxJ in equation (7) is greater than
(20'lJ J)‘/2 in equation (6). The advantage of this
approach is that linear programming may be used

to solve the problem.

Chance Constrained Programming with a
Log-normal Distribution

When the random variable such as the rainfall and
runoff factor, R, follows a log-normal distribution,

(8) In(R) ~ N(mg,02) and R ~ A(Ug,D3)

where: my, is the mean value of the correspondmg
normal distribution of In(R); O'R is the variance of
the corresponding normal distribution of In(R); Ug
is the mean of the log-normal distribution of R; and
D3 is the variance of the log-normal distribution of
R. Here, my and o3 can be calculated based on
historical rainfall records and U and D3 can be
calculated based on the definition of the log-
normal distribution [Crow and Shimizn], as fol-

lows:
2
) Ug = e@“““)
and
(10) D} = el**2m(es — 1)
Since a; = R[KLSC P], a; ~ A(Ug, KDR),
where: k; = KLSC;P;, an
(11) agx; ~ Akx;Ug, k'x?D})

Numerical convolution of the log-normal distri-
bution has shown that the sum of such a distribu-
tion, Za;x;, is a distribution that approxxmately
follows ti'ne log-normal law. That is, Za;x; is not
identically a log-normal distribution, but an equiv-
alent log-normal distribution can be found that has
the same first and second moments as the exact
sum distribution [Fenton; Crow and Shimizn; Sarin
and Srivastaval. Assuming this equivalent log-
normal distribution has a mean value of U and
variance of D*:

(12) Zaﬁxj ~ A(U,DY
]

(13) U= DkxUs, and:
3

(14) D? = ijzszDf{, sO:
J

(15)

ln[Eaijxj] ~ N(m,a?)
i
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where: m = In(U) — (¢%/2), and 0? = In(D*U?
+ 1). Therefore, ln(Eauxj) follows a normal dis-
tribution with mean value m and variance o, both
of which are a function of my and oy,

Taking the logarithm of both sides of the soil
loss constraint, and since Za, jX; 1S a monotonic
function, the soil loss constramt can be rewrit-

ten as:
lﬂ[zaij)(j] =Inb
i

(16)
Since ln(Eaijxj) has a normal distribution, the
chance constraint can be expressed as:

an m+ Ky o=<Inb

where: m is the mean value of ln[EauxJ], m =
E[In(Za;x;)]; o is the standard deviation of
ln[Ea1 x;}; and K, is the standardized normal value
with a o; percent probablllty When written out in
detail, the chance constraint based on the log-
normal distribution of R has the following form:

Ekz Z(cUR _ 1)

(E-§+mk) 1
In ijxje 2 -5 <2 )2 +1
) ijj
j

Ekijz(e"'z‘ -1
+Kqo, | W] 5 +1
(18) :

At Q; =
hand side of equation (18) is zero because K, is
zero. Thus, given the skew of the log-normal dis-
tribution to the right, the soil loss constraint is less
restrictive than might otherwise be anticipated at o
= 50 percent, because with the third term being
zero, the first term on the left-hand side has the
second term subtracted from it. Noting of this
skewness effect is important for interpretation of
the results later in this article. In this case as in the
case of the normal distribution, non-linear pro-
gramming would have to be used to obtain a solu-
tion and given the nature of equation (18), the
feasible region may not be a convex set.

50 percent, the third term on the left-

Empirical Model

In order to compare the results among these three
CCP models that employ chance constraints based
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on a log-normal distribution, a normal distribution,
and linearized version of the normal distribution,
this analysis uses the data on the farming practices
from a study by Segarra, Kramer, and Taylor.
Storm data from gauge records of rainfall intensity
from Blacksburg, VA, from 1943 to 1971 are em-
ployed to calculate the annual rainfall erosion in-
dex, EI> and develop the distribution of soil loss
coefficient a;;.

In brief, Segarra, Kramer, and Taylor’s model
consists of an objective function, which maximizes
net returns to land, management, and capital on a
representative farm in south-central Virginia. Con-
straints, in addition to the soil loss constraint, in-
clude 174 acres of land, monthly labor availability,
and a tobacco allotment of 37,800 pounds. The
model contains production activities for various
crop rotations, selling activities for each crop, and
labor hiring activities. The crops considered in the
model are: conventional tillage corn (CT); no-till
corn (CNO); wheat (W); barley (BA); grass (G);
soybeans (8S); tobacco (TB); double cropped wheat
and soybeans (DWS); and tobacco with a cover
crop (TB/c). The sixteen crop rotations incorpo-
rated in the model include: (1) two year rotations
of: conventional tillage corn—winter wheat
(CTW), no-till corn—winter wheat (CNOW), con-
ventional tillage corn—tobacco (CTBA), no-till
corn—barley (CNOBA), tobacco—winter wheat
(TBW); tobacco—barley (TBBA), conventional
tillage corn—double cropped wheat and soybeans
(CTDWS), and no-till corn—double cropped
wheat and soybeans (CNODWS); (2) three year
rotations of: conventional tillage corn—wheat—
soybeans (CTWS), no-till corn—wheat—soybeans
(CNOWS), conventional tillage corn—barley—
soybeans (CTBAS), and no-till corn—barley—
soybeans (CNOBAS); (3) four year rotations of:
tobacco with a cover crop—tobacco—barley—
grass (TB/cTBBAG) and tobacco with a cover
crop—tobacco—wheat—grass (TB/cTBWG); and
(4) continuous tobacco (TB) and continuous grass
(G). Soil loss was constrained to 5, 6, 8, and 10
tons per acre per year. For illustration, four levels
of «;, 50 percent, 80 percent, 90 percent, and 95
percent, were employed.

To find the optimal solution of the normal and
log-normal models, different starting values were
employed for each scenario since their feasible re-
gions may not be convex sets. First, to start the
solution at the boundary of the feasible region, a
starting value of 174 acres was assigned to one

3 A detailed description of calculation of EI values can be found in
Wischmeier and Smith.
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rotation and zero was assigned to the others. This
process was repeated until each of the sixteen ro-
tations had started at 174 acres. More than ten
stochastically selected interior starting points were
also examined. The results at each starting point
for a given soil loss tolerance and probability level
were the same, indicating that the optimal solution
is unique. All the solutions being the same from
different starting points suggests that the normal
and log-normal models did, in fact, have a convex
feasible region in this empirical analysis.

Results

The results for 50 percent probability with the lin-
earized-normal model and normal model represent
the solution to the deterministic linear program-
ming model. Comparing these results to the results
with other probability levels indicates the impacts
of coupling soil loss probability on the soil con-
servation decision and incomes of farmers. The
acreage of each rotation, resulting from the mod-
eling, is presented in Table 1. Several points from
Table 1 are: (1) more restrictive soil loss tolerances
lead to the use of less erosive rotations and can
lead to the idling of land. For example, with the
log-normal model and a probability level of 90
percent, no acreage is assigned to the more erosive
rotation, TB, and 26.72 and 67.08 acres of land
must be idled in order to meet the six and five tons
per acre soil loss levels, respectively, while no
land needs to be idled when the soil loss tolerances
are ten and eight tons. (2) A higher probability of
meeting the chance constraint also has similar ef-
fects on land use as more restrictive soil loss tol-
erances. For example, with the log-normal model,
when soil loss tolerance is five tons, the acreage of
land that must be idled increases from 34.63 to
88.87 acres when the probability levels increase
from 80 to 95 percent. (3) When the soil loss con-
straint is binding, the log-normal model results in
a more restricted land use than a model with the
normal distribution. For example, with a probabil-
ity level of 95 percent and a soil loss tolerance of
five tons, the log-normal model idles 88.87 acres
of land while 39.75 acres are idled with the normal
model. (4) Finally, when the soil loss constraint is
binding, the linearized-normal model results in the
use of less erosive rotations and the idling of more
land at all soil loss tolerance and probability levels
than the model with the normal distribution since
the linearized-normal chance constraint is more re-
strictive than the normal distribution chance con-
straint.

The economic consequences of these different
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Table 1. Distribution of Acreage Among the Rotations for the Three Models by Soil Loss
Constraint and Probability Level®
Soil Loss Limit TB/c TB/c
o; (%) (Tons/Acre) CNOW  CNOBA TBBAG TBWG TB CTDWS CNODWS Idle (G)
LOG-NORMAL DISTRIBUTION
10 18.00 39.95 116.05
50 8 18.00 39.95 116.05
6 18.00 39.95 116.05
5 3,28 16.36 0.08 153.55
10 18.00 156.00
80 8 18.00 156.00
6 12.28 12.85 5.44 143.44
5 17.96 18.04 103.37 34.63
10 18.00 156.00
90 8 1.50 1.95 16.27 154.27
6 17.97 18.03 111.28 26.72
5 17.98 18.02 70.92 67.08
10 18.00 156.00
95 8 13.44 13.62 4.47 6.28 136.19
6 8.23 8.42 17.98 18.02 0.45 73.79 47.11
5 1.69 1.81 17.99 18.01 45.63 88.87
NORMAL DISTRIBUTION
10 18.00 156.00
50 8 18.00 156.00
6 18.00 156.00
5 13.66 11.17 149.17
10 18.00 156.00
80 8 18.00 156.00
6 3.39 4.24 14.19 152.87
5 17.93 18.07 129.25 8.75
10 18.00 156.00
90 8 18.00 156.00
6 9.94 10.45 7.80 145.81
5 17.96 18.04 110.70 27.30
10 18.00 156.00
95 8 18.00 156.00
6 15.19 15.53 2.64 140.64
5 17.97 18.03 98.25 39,75
LINEARIZED NORMAL DISTRIBUTION
10 18.00 156.00
50 8 18.00 156.00
6 18.00 156.00
5 13.66 11.17 149.17
10 18.00 156.00
80 8 18.00 156.00
6 17.93 9.03 147.04
5 36.00 110.24 27.76
10 18.00 156.00
90 8 18.00 156.00
6 - 34.50 0.75 138.75
5 36.00 81.26 56.74
10 18.00 156.00
95 8 18.00 156.00
6 36.00 116.77 21.23
5 36.00 60.93 77.67

& CNO = no-till corn; W = winter wheat; BA = barley; TB/c = tobacco with a cover crop; TB = tobacco; CT = conventional
tillage corn; DWS = wheat-soybean double-crop; G = grass.



64  April 1994

Agricultural and Resource Economics Review

Table 2. Total Net Income for the Representative Farm as Influenced by Chance Constraint
Formulation, Levels of Soil Loss Permitted, and Probability Level

Soil and Loss Limit (Tons/Acre)

Chance Probability

Constraint (o) 5 6 8 10

Log-Normal 50% 42,944 42,944 42,944 42,944
80% 29,958 40,425 42,944 42,944
90% 21,168 32,099 42,598 42,944
95% 15,089 25,732 40,229 42,944

Normal 50% 41,576 42,944 42,944 42,944
80% 36,965 42,180 42,944 42,944
90% 31,943 40,900 42,944 42,944
95% 28,571 39,865 42,944 42,944

Linearized-Normal 50% 41,576 42,944 42,944 42,944
80% 31,821 41,149 42,944 42,944
90% 23,972 39,490 42,944 42,944
95% 18,467 33,589 42,944 42,944

approaches to constraining soil loss are summa-
rized in Table 2. The objective function value of
$42,944 indicates that the soil loss constraint is not
binding. Therefore, with a soil loss limit of ten
tons per acre, the chance constraint is not binding
for any probability level or model. At eight tons of
soil loss, the constraint is binding for the log-
normal model at a probability of 90 percent and
higher. At six tons per acre, the constraint is bind-
ing at probability levels greater than 50 percent.
Finally, at five tons per acre of soil loss, the con-
straint is binding at all probability levels for all
models, except for the 50 percent probability level
with the log-normal model due to the rightward
skew of log-normal distribution. Given that the
more erosive rotations, such as tobacco, have
higher net returns in the study area, the farmer’s
net returns decreases with lower soil loss tolerance
and higher probability levels. Decreases in net re-
turns from these three models, however, are dif-
ferent. The log-normal model results in the most
decrease in net returns and the normal model re-
sults in the least decrease in net returns when the
soil loss constraint is binding. For example, with a
95 percent probability level and a five tons per acre
soil loss restriction, the log-normal chance con-
straint produces an income of $15,089 while with
the normal distribution, the income is $13,482
higher, and with the linearized-normal approach,
income is $3,378 higher than the log-normal re-
sults. The approximations of the log-normal distri-
bution with the normal distribution and linearized
chance constraint, therefore, allow more soil loss
than the log-normal model at higher probability
levels of meeting the lower soil loss tolerance level.

Conclusions

Chance Constrained Programming models provide
quantitative trade-offs associated with soil conser-

vation among net returns, tolerance levels of soil
loss, and the probability of meeting that tolerance
level, which can provide valuable information to
farmers and policy-makers. Given the random na-
ture of soil loss, limited cost sharing funds, and
non-commensurability between the quantity of soil
loss and net returns, selection of land targeted for
soil conservation programs and the determination
of cost-share payment eligibility could be im-
proved by using information on these trade-offs.

This analysis also demonstrates that when using
a CCP model, attention must be given to the dis-
tribution of the factors being constrained. While
normality is often implicitly, if not explicitly, as-
sumed, it needs to be tested rather than assumed.
With chance constrained programming, assuming
normality when the distribution is not normal bi-
ases the results of the analysis. An a priori direc-
tion to this bias cannot be assigned because it de-
pends upon the behavior of the actual distribution
compared to the normal distribution. In the empir-
ical example of this study, assuming normality un-
derestimates the amount of soil erosion once the
chance constraint becomes binding, and thus al-
lows for more adverse environmental impacts than
the probability level would suggest. Also, when
the constraint is binding, maintaining the normal-
ity assumption consistently overestimates farm in-
come compared to the actual log-normal distribu-
tion.

To avoid non-linear programming, researchers
have often linearized the chance constraint. While
the linearized-normal chance constraint produces
results closer to the log-normal distribution than
the normal distribution does in this study when the
soil loss constraint becomes binding, the precision
of the linearized approximation can be expected to
vary from case to case depending on the actual
distribution of the random variable. Given the
availability of powerful non-linear programming
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software such as GAMS? [Brooke, Kendrick, and
Meeraus], it is possible to model the actual distri-
bution in order to enhance the accuracy of results.

The log-normal model introduced in this article
could be empirically employed for soil conserva-
tion analysis and policy formulation. However, at-
tention must be given to evaluating whether a local
or global optimal solution has been obtained.

Finally, this study provides important informa-
tion to policy analysts using stochastic program-
ming. In particular, when evaluating policy asso-
ciated with reducing adverse environmental im-
pacts of agriculture relating to pesticide and
nutrient leaching and runoff, it is likely that data
associated with these problems will not be nor-
mally distributed, because runoff and leaching are
driven by rainfall.
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