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Most urban centres across Australia are facing water shortages. In part, these water 
shortages are due to the variability of supply and demand caused by variable climatic 
conditions. Permanent supply augmentation to meet periodic water shortages can be 
costly. Water trade between rural and urban areas, through urban water options 
contracts, may be a less costly way to meet variability.  

Urban water options could be used to improve system reliability and may reduce costs 
by delaying investment and reducing the frequency and severity of water shortages. 
This paper investigates the potential to use urban water options contracts, and develops 
a methodology for evaluation. 

                                                 

† The views presented in this paper, drawn from preliminary work in progress, are those of the authors 
and do not represent the official view of ABARE or the Australian Government. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7011036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Introduction 
Most urban centres across Australia are facing water shortages. These water shortages 
are due to a combination of increased aggregate demand and seasonal variability in both 
annual demand and inflows into storages. Over the past couple of decades population 
growth rates have generally been greater than the growth in water supplies, creating an 
imbalance between demand and supply (WSAA 2005). More recently drought has 
increased demand and decreased supply in increasingly overstretched water supply 
systems, exacerbating the supply demand imbalance.  

The imbalance between aggregate demand and capacity has occurred as the number of 
sites suitable for constructing new dams has decreased while both the capital and 
environmental costs have grown. Non-rain dependent supply alternatives, for example 
desalination plants or recycling plants, are significantly more expensive than dams and 
have until recently not been constructed on a large scale in Australia. Over time, as 
growth in water harvesting capacity has fallen behind the growth in aggregate demand, 
water supply systems have moved increasingly closer to full utilisation — with most 
currently having no excess supply capacity. A stylised example of the interaction of 
storage capacity and supply capacity with average aggregate demand and annual 
demand is shown in figure 1. When annual demand is more than supply capacity a 
shortage will result. 

Figure 1. A stylised model of an urban utility and water shortages 

 

Investment in excess supply capacity has previously been used to manage seasonal 
variability. Currently, however, little to no excess supply capacity remains in most 

2 



 

water supply systems and in some cases the amount of water that remains in storage for 
use the following year is declining. If drought occurs under these conditions it is likely 
that demand will exceed supply — resulting in a water shortage. The supply shortages 
in Australia have led to water restrictions in all but one of the mainland capitals 
(Quiggin 2005) with about half of the major cities using demand management to restrict 
use and encourage users to conserve water (Marsden and Pickering 2006). After all 
opportunities for demand management are exhausted, including the use of restrictions 
and price instruments, augmentation will need to occur. With the exception of Perth, 
little supply augmentation has occurred recently in Australia (WSAA 2005), although 
many cities have investigated supply augmentation alternatives and the costs of 
increasing supply.  

After water supplies are balanced with average aggregate demand the effect of seasonal 
variability on this balance will need to be addressed. In the absence of demand growth 
excess supply capacity will significantly reduce the probability of a water shortage, but 
investment in infrastructure that is seldom used is likely to be expensive. With demand 
growth excess capacity will eventually be utilised, however, it may not be efficient to 
invest in excess capacity. As investment in new water supplies tend to be lumpy it will 
not be efficient to invest in new supply until demand has grown to the point that the 
benefits of increased consumption outweigh the costs of supply augmentation. 
Consequently, it may be efficient to run the supply system with little excess capacity 
until it is efficient for the next lumpy supply investment to occur. In the interim period a 
possible alternative to investment in excess supply capacity would be to secure a source 
of supply, as needed, through water options contracts, and in so doing so reduce the 
impact of a water shortage and possibly delay investment in additional capacity.  

In rural Australia water trade has been taking place for over a decade with the most 
established markets in the regulated southern Murray Darling Basin. The trade of water 
in these intrastate markets has allowed water to move to higher value uses and improved 
efficiency. At the beginning of 2007 these markets were expanded to encompass 
interstate trade. 

To date there has been limited trade between urban and rural areas. However as markets 
deepen there may be an opportunity for water option contracts to be used in some urban 
areas. Water trade through option contracts will be possible in regions where rural water 
supplies can be accessed. However, they will not be suitable in regions where rural 
supplies cannot be accessed. 

The objective of this paper is to investigate the possibility of trade between urban 
centres and rural areas through urban water option contracts. In the first section 
background information regarding pricing and investment paths of urban water systems 
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is discussed along with the operation of urban water option contracts. In the second 
section a methodology to value urban water option contracts is presented and results 
discussed. The third section contains concluding remarks. 

Background 
Patterns of water consumption in Australia 
In the 2004-05 financial year Australia consumed 18 767 GL of water, with agriculture 
accounting for 65 per cent (12 191 GL) while households accounted for a much smaller 
share at around 11 per cent (2 108 GL), see table 1. Consumption of water in all usage 
categories was less for 2004-05 than the previous recorded year, 2000-01, with 
aggregate consumption decreasing by 14 per cent from 21 702 GL. 

Table 1.  Water consumption and use in Australia, 2004-05 
 2004-05 2000-01 

 GL % GL % 

Water consumptiona   
  

Total 18 767  21 702  

     Agriculture 12 191 (65) 14 989 (69) 

     Households 2 108 (11) 2 278 (10) 

     All other 4 468 (24) 4 435 (21) 

Distributed useb     

Total 11 336  12 934  

     Agriculturec 5 329 (47) 7 033 (54) 

     Households 1 874 (17) 2 056 (16) 

     All other 4 133 (36) 3 845 (30) 

Rainfall      

Run-off 242 779  385 924  
Source: ABS 2006 
a water consumption is equal to the sum of distributed water use, self-extracted water use and reuse water use less water supplied to 
other users less in-stream use and less distributed water use by the environment. b includes water supplied to a user where an 
economic transaction has occurred for the exchange of water. c supplied by irrigation authorities as is generally untreated. 
 

 

‘Distributed use’ is defined as the share of total water consumption that was supplied 
when an economic transaction occurred, and does not include self extracted water or 
reuse water use (ABS 2006). Distributed water is held in storage for use later in the 
year, when it is delivered by a ‘water provider’. A total volume of 11 336 GL of 
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distributed water was delivered in 2004-05 with agriculture accounting for 47 per cent 
(5 329 GL) and households 17 per cent (1 874 GL). For agriculture, water in this 
category is for the most part used by irrigated agriculture, with around 70 per cent of 
irrigated land located in the Murray Darling Basin. The Murray Darling Basin is located 
in the south east of Australia and extends over the jurisdictional boundaries of New 
South Wales (and the Australian Capital Territory), Victoria, Queensland and South 
Australia. Irrigated agriculture accounted for 23 per cent of the total gross value of 
agricultural commodities produced in Australia in 2004-05 (ABS 2006). 

Distributed water delivered to households decreased by 9 per cent over the period 2000-
01 to 2004-05. On average this represents a decrease in personal consumption from 120 
kL per person in 2000-01 to 103 kL per person in 2004-05. The decrease may be 
attributed, in part, to mandatory water restrictions in most States and Territories since 
2002 (ABS 2006). 

The water supply systems in Australia are highly dependent on seasonal conditions, 
with 96 per cent of distributed water in 2004-05 originating from surface water. The 
significant fall in both water consumption and delivery from 2000-01 to 2004-05 gives 
some idea of how seasonal variability can affect water availability, and hence its 
consumption. The runoff from rainfall fell almost 40 per cent from 385 924 GL in 2000-
01 to 242 779 GL in 2004-05. As large storages are used to store rainfall runoff to 
smooth water consumption across seasons, a particularly dry year results in greater use 
of stored water and a particularly wet year lowers use. Consequently, the repercussions 
of a particularly dry year are often felt for a number of years after — as storages are 
allowed to recover with rainfall returning to normal patterns. 

Pricing 
Rural water in the southern Murray Darling Basin can be traded and so the traded price 
reflects the value of water or the users’ willingness to pay. The traded price of water 
changes through out the season and from season to season, reflecting the relative 
scarcity of water. In urban areas, however, the ‘price’ paid for water is an administered 
charge and does not reflect the value of water to consumers, only the physical costs of 
supply and delivery. A scarcity fee for water is not charged during times of shortages, 
with excess demand generally being constrained by restrictions on use.  Of Australia’s 
eight capital cities, six had water restrictions in place in November 2006 with Hobart 
and Darwin the exceptions (WSAA 2006). 

There are a number of reasons as to why restrictions may have been used instead of 
price to ration demand in Australia. First, price determinations that are arbitrated by a 
price regulator can be lengthy, whereas restrictions can be implemented independently 
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of regulators (Byrnes et. al. 2006). Second, true quantity restrictions are theoretically 
more certain to meet a set demand target than price. For example, if price is used to 
ration demand the target may be exceeded if the price is not set high enough to 
sufficiently dampen demand — whereas true quantity restrictions limit consumption to 
the target.  

The water restrictions currently in place in Australia do not constitute true quantity 
restrictions. For example, water users may be restricted to watering outside every 
second day of the week using an ‘odds and evens’ system, however, there is no 
restriction on the volume of water that can be consumed. Users are likely to change 
behaviours to comply with restrictions, but not necessarily significantly reduce 
consumption. Pricing which reflects the scarcity value of water would provide 
additional incentive to reduce water consumption.  

Figure 2. The pricing of water 
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The stylised cost curves of an urban water utility are shown in figure 2. At D1 the 
efficient price is the marginal cost price PMCP and the efficient quantity QMCP. However, 
an urban water utility is a natural monopoly with large lumpy infrastructure costs and 
declining average cost. As marginal cost is lower than average cost at QMCP a loss 
would be made (shaded rectangle). This loss could be subsidised by the government or 
the average cost price PACP could be used. This average cost price (PACP) is higher and 
output (QACP) lower than under marginal cost pricing. When demand increases (from D1 
to D2) the capacity of the system is reached and if scarcity pricing is used the price rises 
to PS which clears the market and reflects the scarcity value of water.  It should also be 

6 



 

noted that when discussing the capacity of a water system being reached it usually 
refers to the supply capacity of water held in storage, not the capacity of the storages 
themselves. Generally utilities set a set supply target, so that consumption does not lead 
to the reduction of the volume of water in storage past a set target. For example, urban 
utilities may constrain demand as the amount of water left in reserve reaches 20 per 
cent.    

Investment 
If an efficient pricing system is in place the investment path for a utility can be 
determined. An efficient pricing system is one that charges for the marginal costs of 
supply and delivery as well as a scarcity fee when water is scarce. This pricing system 
will ration demand as capacity is reached, and will indicate when supply augmentation 
is necessary. As demand grows the price will continue to increase until a point is 
reached where the benefits of increased consumption outweigh the costs of supply 
augmentation.  

Although an efficient pricing system and investment path may ensure that supply 
balances with average aggregate demand, the water system will still be subject to 
seasonal variability. The effect of seasonal variability (for example due to decreased 
rainfall or increased temperature) will depend on the state of supply in the water supply 
system. In any year water supply capacity consists of two components, the amount of 
water in storage from the previous year and the inflows in the current year. In the past, 
seasonal variability has been addressed with excess supply capacity, however, the size 
of the stored component has decreased more recently, due to inflows being less than the 
long term average (Marsden and Pickering 2006) and a lower rate of growth in storage 
capacity (and hence supply capacity) relative to the growth in demand (WSAA 2005). 
Currently seasonal variability is being addressed with water restrictions — in many 
areas this has resulted in more punitive restrictions being imposed than the restrictions 
already in place to address the shortage due to the imbalance between average aggregate 
demand and supply. 

Investment in water supply augmentation is ‘lumpy’ as large capital works are built that 
are not divisible into incremental units. An investment is efficient when the benefits of 
increased consumption outweigh the costs. Sometimes, due to the lumpy nature of 
investment, an investment may be efficient and result in excess capacity. However, 
excess capacity that, on average, results in the costs of augmentation outweighing the 
benefits of increased consumption is inefficient. Figure 3 illustrates the case of a lumpy 
supply augmentation from S1 to S2. When demand increases from D1 to D2 the annual 
benefits of increased consumption (the black-outlined triangle) are outweighed by the 
annualised cost of the augmentation (the hatched rectangle). This augmentation would 
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result in excess capacity (Q2 to QK), however, because the cost of augmentation 
outweighs the benefits the investment would not be efficient. Over time as demand 
increases to D3 the annual benefits of increased consumption (the grey shaded triangle) 
will be greater than the annualised cost of the augmentation (the hatched rectangle). The 
augmentation would result in excess capacity (Q3 to QK) but because the benefits of 
increased consumption outweigh the costs of augmentation the investment would be 
efficient.  

Figure 3. Supply augmentation and excess capacity 
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Investments in excess supply capacity (although utilised during a water shortage and 
hence effective at reducing the probability or severity of a water shortage) may be 
inefficient and likely to be costly as a significant supply buffer may be required to 
remove the impact of seasonal variability. For example, the Economic Regulation 
Authority in Western Australia found that for the Water Corporation in Perth to 
eliminate the probability of a total sprinkler ban a supply buffer of almost 14 per cent 
would be required, while no supply buffer would result in a 3.75 per cent probability of 
a total sprinkler ban (Marsden and Pickering 2006). Investment in excess capacity that 
may be seldom used is likely to be expensive and inefficient. Instead, water options 
contracts may be a more efficient method to secure access to additional water, 
potentially lowering the cost of water restrictions to urban communities and delaying 
investment in additional capacity until it is efficient.  
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Moreover, delaying investment in additional capacity, even if the investment is 
efficient, may be beneficial. This is due to the intertemporal effects of annual changes in 
demand and supply. These small changes may mean that although it may be efficient to 
augment supply in the current period if the benefits of increased consumption are only 
just equal to the costs it may be prudent to wait until the benefits of augmentation 
significantly outweigh the costs of augmentation. Thereby delaying the investment by 
the length of time for which the options are used.  

Urban water option contracts 
Urban water options would be used for the purpose of increasing the reliability of the 
water supply system, as an alternative to acquiring permanent supplies on an annual 
basis. Option contracts would be used to tide over shortages caused by seasonal 
variability which may occur more frequently when little to no excess capacity is 
maintained. Options contracts could also be used for supply interruptions due to 
contamination or mechanical failure, however, they will have different probabilities of 
exercise and are not considered here. 

How the option contract would work 
An urban water option contract would involve an urban water utility buying a ‘call’ 
option contract from an irrigator. An option premium would be paid annually that gives 
the urban utility the right, but not the obligation, to buy (call) a set quantity of water 
from the irrigator at a set exercise price. The irrigator would retain ownership of the 
permanent entitlement.  

A standard financial option is valuable, and would be exercised, when the market price 
of the asset exceeds the exercise price of the option contract. In the case of urban water 
option contracts there are two steps to the urban utility exercising the option. First, the 
scarcity value of water in the urban area must be greater than the exercise price and 
second, the exercise price must be lower than the market price in the rural area. If the 
urban scarcity value is higher than the exercise price, but the exercise price is higher 
than the market price, the option would not be exercised and the urban utility would buy 
water in the market.  

The scarcity value of water would be the trigger for the option contract as it is the urban 
utility’s supply situation that is used to trigger the option — as scarcity values are not 
actually observed (currently at least). The scarcity value of water is recognised in rural 
markets and is observed in the traded price of water. In the urban utility the supply 
demand balance provides a good proxy for the scarcity value of water. As a shortage 
increases the scarcity value of water may increase to a point where the value of water to 
the urban community is greater than the marginal value of water to irrigators.  
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For both parties (the irrigator and the urban utility) to enter the option contract they 
must have different expectations about the future value of water in the rural market. If 
they have the same expectations the option contracts will not work. In this case, if the 
exercise price is set higher than the expected market value of water the urban utility will 
not enter the contract on the expectation that the water can be bought for less in the 
market. If the exercise price is set lower than the expected market value of water the 
irrigator will not enter the contract on the expectation they would not be compensated 
(by way of the exercise price) for the marginal value of water. Hence, when entering an 
option contract the urban utility must have expectations of what the traded price of 
water will be at the time the water shortage occurs in the urban area.  

In practice it is unlikely that the urban utility would not exercise the option contract, in 
favour of buying water in the market. This is because it is likely to be difficult for the 
urban utility to enter the market and buy a large quantity of water. Further, this strategy 
would not provide an adequate level of supply security. The use of option contracts 
allow the urban utility to know in advance the quantity that would be available and the 
cost of sourcing the water. If the urban option contracts can not be valued in relation to 
the market another form of valuation is needed. As water can not be bought from the 
market the costs of other supply alternatives may be compared to the cost of exercise. 
The valuation of option contracts using this technique would still require two steps. 
First, the option contract is valued in relation to the other supply alternatives available 
— this analysis is in the following section. Second, the option contract is valued in 
relation to the market value of water and whether the benefits generated from accessing 
the option water would outweigh the costs of exercise. That is, at the point that the 
scarcity value of water in the urban area is greater than the exercise cost the increase in 
consumer surplus will be greater than the costs. In this way the change in consumer 
surplus may also be referred to as the value of the option.  

An urban water option contract is a multiple exercise option. The option period or 
duration is determined by the nature of the variability the urban utility is trying to 
reduce. A long term contract, over a number of decades may be used to modify release 
rules from storages — maintaining less reserves in storage than would otherwise be 
held, to manage seasonal variability, or to delay augmentation (Lund et. al. 1995). 
Intermediate contracts, over three to 10 years, may be used to help reduce the 
susceptibility of the supply system to seasonal variability during the period prior to the 
completion of augmentation. The expected frequency of the variability will determine 
the probability of exercise. 
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The benefit of option contracts 
The benefit to urban water consumers from the urban utility entering into the option 
contract is that more water is available which will either lead to an easing of 
restrictions, with the size of the saving dependent on the cost of meeting the restrictions, 
or a lower price if scarcity pricing is used. The absence or easing of water restrictions 
will reduce the opportunity costs of peoples time since a major cost of water restrictions 
is the time it takes to abide by restrictions (for example, hand watering instead of using 
automated sprinklers). If a scarcity fee were used to ration demand then the cost of 
water supplied through the option contracts would be lower than the scarcity fee 
(otherwise the options would not be exercised).  

Figure 4. The benefit and costs of using option contracts during a drought 
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The effect of obtaining water from option contracts during a drought induced shortage is 
shown in figure 4. Supply falls from (S1 to S2) due to decreased inflows (while 
temperature and demand remain unchanged). The reduction of supply (S1 to S2) results 
in a water shortage (Q1 to Q2). The water shortage may result in either water restrictions 
or a scarcity fee for water (of the size P1 to P2). The option contracts will only be 
exercised if the costs of doing so are outweighed by the benefits. This is assessed by 
comparing the cost of the exercising the option contracts (the hatched rectangle), 
including both the exercise price and annual premium, with the size of the consumer 
surplus (the shaded triangle). In this example the benefits of increased consumption 
(consumer surplus) outweigh the costs of exercising the options and the option contracts 
would be exercised until the quantity of water Q2 to Q1 had been sourced to ease the 
water shortage. This may involve a number of contracts. 
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Conditions of option contracts 
Option contracts will be possible in regions where rural water supplies can be accessed. 
Given this access it is likely (although not necessary) that the urban centre is located 
relatively close to the rural supply, perhaps in the same catchment or basin, and may 
experience similar climatic conditions. For example, a drought may decrease inflows 
into both urban storages and rural storages simultaneously. Such a correlation of inflows 
would mean that lower reliability entitlements would have relatively low allocations 
and that rural water prices would be high at the same time as the water shortage in the 
urban area. Hence, in the presence of this correlation the option contracts would need to 
be over rural water entitlements with high reliability. For example, high security water 
entitlements in New South Wales. Option contracts over high reliability entitlements 
will increase the likelihood that water is available in dry conditions. If the option 
contracts are over lower reliability water there is a greater chance that the option 
contract will not be honoured. For example if the allocation against the general security 
entitlement is not enough to honour the option contract, if it were exercised, the irrigator 
would need to buy water on the market to supply to the urban utility.  

While the exercise price would have to be relatively high in a dry year to reflect the 
marginal value of water to irrigators this does not mean that options are not cost 
effective — this will be determined by comparison to other supply alternatives. If the 
relationship was permanently characterised by low correlation option contracts for 
lower values of water could be sought, or on lower reliability entitlements. 

The seller of the option contract, here the irrigator, receives the annual option premium 
plus the exercise price for any water called when the option contract is exercised. In 
addition to the monetary compensation for surrendering water when called, the irrigator 
retains ownership of the permanent entitlement. 

The underlying idea of the option contract is to create a risk sharing mechanism that 
ensures that the risk transferred from the urban utility to the irrigator is mutually 
beneficial (Gomez-Ramos and Garrido 2003). Irrigators are rewarded for bearing risk 
and urban utilities can increase system reliability at a more competitive cost than other 
supply alternatives. 

The model 
The valuation of an urban option contract is from the perspective of the urban utility 
because the purchaser must perceive benefits for options contracts to be feasible 
(Michelson and Young 1993). The objective of the urban purchaser is to minimise the 
expected cost of meeting an anticipated water shortage for a period of selected 
frequency.  
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The value of an urban option contract is derived by comparing costs of an option 
contract with the costs of the most likely supply alternatives. The valuation of option 
contract occurs in this way because the options can not be valued in relation to the 
market price for water as it is not possible to purchase the volumes required. The 
present value of an option contract is calculated using the following formula and 
follows the method used by Michelson and Young (1993). 

∑
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Where:  t    = year 

 T = contract termination year 

 tρ  = discount factor, where ( )1 1 t
t rρ = +  

 V = present expected value of the contract ($/ML) 

 I = investment cost of alternative to secure urban water ($/ML) 

 r = annual interest rate 

 M = annual maintenance cost of the alternative ($/ML) 

 R = residual value of water in non shortage years ($/ML) 

  = exercise price ($/ML)  tE

  = annual probability of exercising option (tP 0 1tP≤ ≤ ) 

 α  = annual rate of depreciation of alternative investment (per cent) 

The present value of the option contract (V) indicates whether options are less or more 
costly than the supply alternatives. A positive present value indicates option contracts 
are less expensive than the alternatives, while a negative present value indicates that 
option contracts are more expensive than the alternatives and that the value of the 
option contract is worthless. 
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The alternative investment cost to secure water is the cost of the water infrastructure 
(It=0). In this analysis, the investment cost of the alternative is estimated from the 
levelised (annualised) cost of a range of representative infrastructure investments from 
three Australian cities; Adelaide, Perth and Sydney (Marsden and Pickering 2006). 
Although urban water option contracts may not currently be possible for Sydney, due to 
its lack of connectivity to a major irrigation system, the costs of supply alternatives for 
this city are included as an indication of the range of costs around Australia. The per 
mega litre infrastructure cost was calculated as the present value of a series of levelised 
(annualised) cost. A discount rate of five per cent and an economic life of 50 years were 
assumed‡. The per mega litre levelised cost and the calculated capitalised cost of the 
infrastructure for a range of augmentation alternatives are given in table 1. The per 
mega litre capitalised cost for the five lowest cost alternatives were used in the model; 
$2000, $4000, $11000, $15000 and $20000.  

Table 1.  Investment costs and capacities of supply augmentation investments 
 
City Supply alternative  

Quantity 
GLa

Levelised 
$/ML 

Capitalised 
$/ML b

Sydney Appliance standards and labelling 13 100 2000 

Sydney Leak reduction 30 200 4000 

Perth Groundwater from Yanchep 10 600 11000 

Perth Groundwater from South West Yarragadee  50 800 15000 

Adelaide Piping from Clarence  60 1100 20000 

Sydney Desalination  180 1800 c   33000 

Adelaide Desalination  50 2200 41000 

Adelaide Water recycling – localised  60 5200 c   96000 

Perth Piping from Ord 150 6600 122000 

Adelaide Piping from Ord  220 7000 130000 
Source: Marsden and Pickering 2006 
a Quantities rounded to nearest 5.  b Prices rounded to nearest 1000.  c The lowest price was taken from the given band.  

 

                                                 

n

n
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+
−+
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P = present value ($/ML), A = annualised payment ($/ML/year), i = discount rate, n = economic life in 
years 
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The opportunity cost of capital is calculated assuming an annual interest rate, r, of five 
per cent. This is the rate of interest that could be earned if the capital was invested in 
another asset with a similar risk profile. 

The annual maintenance cost of the supply alternative (M) is assumed to be one per cent 
of the capital cost of the alternative investment. Anecdotal evidence indicates that this 
may be used as a rough approximation for water infrastructure, however, the 
maintenance costs for specific infrastructure were difficult to obtain. The maintenance 
costs may vary substantially across different infrastructure alternatives and is an area for 
further research and inclusion in future work. The effect of the maintenance cost is to 
increase the overall cost of the alternative, hence high maintenance costs would 
decrease the competitiveness of the alternative compared to the option contract.  

The value of water secured with the alternative during non shortage periods (1-Pt)R, is 
assumed to be stored and sold at the corresponding levelised cost (see table 1) for that 
alternative (assuming that the price of water reflects the cost of supply). The effect of 
storing this water in years when there is not a shortage would be expected to decrease 
the probability of exercising the option contract, however, this was not accounted for in 
the model and is an area for further development of the model. The effect of this water 
is non shortage years is to decrease the overall cost of the alternative, and the higher the 
value of the water from non shortage years the more competitive the alternative 
compared to the option contract. 

For each option contract the exercise price (Et) is set in relation to the expected value of 
water to the urban utility. In this analysis a somewhat conservative approach was taken 
in valuing the option contract by using the marginal value of high security water as the 
option exercise price. The following exercise prices were used; $200, $400, $600, $850 
and $1100 per ML. These prices reflect the marginal value of high security water at 
varying levels of announced allocations for high security water allocation in New South 
Wales, see figure 5. In using these values we are essentially assuming that the option 
contracts would be exercised when only a very small volume of general security water 
is available and hence market prices reflect the marginal value of high security uses (for 
example, horticulture). These marginal values for water were obtained from a model of 
irrigated horticulture, the method is described in Appendix A. A conservative exercise 
price may be used when valuing the option contracts in relation to other supply 
alternatives, to provide a prudent estimate of the value of the option contracts. However, 
in practice, it would be expected that the majority of option contracts held in the urban 
utility’s portfolio would have exercise prices that reflect the marginal value of water 
when there are also general security allocations. 
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Figure 5. Marginal value of water and allocations for high security water in New South Wales 
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The annual probability of exercise (Pt) is assumed to be 0.3. This figure is the expected 
number of shortages over a ten year period for Canberra (CIE 2005). While this 
probability of exercise may be an over estimate the value of this parameter does not 
significantly changes the results, as reflected in the sensitivity testing below. It should 
be noted that it is possible that the option contracts could be exercised in sequential 
years, for example, two years in a row.  

The annual rate of depreciation of the infrastructure (α) is assumed to be two per cent, 
assuming flat line depreciation over a 50 year economic life. Little information on 
depreciation rates for water infrastructure was found in the literature.  

The analysis is conducted for a ten year and a thirty year contract period (T). 

The value of the option is the difference between the investment cost of infrastructure, 
to provide excess supply capacity (after netting out the value of the asset at the end of 
the contract period and any benefits of water stored during non shortage periods) and 
the cost of buying the option contract. This value is calculated for the entire contract 
period by treating all variables in present value terms in two steps. First, for each year 
except the first and last, t = 1,2,…,T–1, the net benefit is calculated by taking the 
opportunity cost of the alternative (I t = (0)r) plus maintenance costs (M) less the value of 
water stored in non shortage periods (1-Pt)R and subtracting the expected cost of 
exercising the option (EtPt). For the first year, t=0, the outlay on the infrastructure 
alternative, It =0 , was added to this value, while for the last year, t = T  the cost of the 
infrastructure alternative at the end of the contract period [It =0(1-α)T]t=T

  was subtracted 
from this value. Second, the value of the option is obtained by summing the discounted 
annual net benefits over the contract period. The value of the investment alternative is 
expected to decrease due to depreciation. By buying an option contract the urban utility 
does not incur the loss of value in the alternative. This addition of the change in the 
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value of the investment is more of a ‘book’ entry for the sake of comparison, as it is not 
likely that an urban water utility would be able to sell unwanted infrastructure — such 
as a desalination plant.  

Results 
Results for 10 year option contracts are presented in table 2. It can be seen that the value 
of option contracts are generally positive. For example, an option contract with an 
exercise price of $400/ML (which corresponds to the level of scarcity when high 
security announced allocations are 80 per cent) and an alternative investment cost of 
$11000/ML, is $5495/ML less expensive than the alternative in present value terms. 
This is equivalent to an income stream of $711 per year over ten years. The value of the 
option contract is negative when the alternative investment cost is relatively low and the 
exercise price relatively high. For example, an alternative investment cost of $2000/ML 
and an exercise price of $850/ML indicate that an option contract would be $840/ML 
more expensive than the alternative, and thus the option contract is worthless. A 
negative value indicates that the urban utility would be better off investing in the 
alternative investment, although for the majority of augmentation options positive 
values would be expected (the alternatives considered in the model are the lowest cost 
alternatives from table 1).  

Table 2.  The value of option contract ($/ML) – 10 year duration 
      
Alternative 
investment 
cost  

                     Option  exercise price  $/ML 
  

$/ML 200 400 600 850 1100 
2000 741 255 -232 -840 -1448 
4000 1969 1482 996 388 -220 
11000 5982 5495 5009 4401 3793 
15000 8437 7951 7464 6856 6248 
20000 11223 10736 10250 9642 9034 

 

Results for the 30 year option contracts indicate that they are more valuable than ten 
year contracts for all combinations of alternative investment cost and exercise price (see 
table 3). However, the perceived risk to the irrigator would be expected to increase with 
a longer commitment. For both the ten year and 30 year contracts the value of the option 
contract decreases as the exercise price increases, and increases as the cost of the 
alternative investment increases. 
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Table 3.  The value of option contract ($/ML) – 30 year duration 
      
Alternative 
investment 
cost 

                     Option  exercise price  $/ML 
  

$/ML 200 400 600 850 1100 
2000 1568 600 -369 -1579 -2790 
4000 4105 3136 2168 957 -253 
11000 12418 11449 10481 9270 8060 
15000 17491 16523 15554 14344 13133 
20000 35696 22299 21331 20120 18910 

 

The value of the option contract for all results omits the cost of the option premium. 
The option premium would be expected to be negotiated by the urban utility and the 
irrigator. It is expected that the benefit to the urban utility from entering into the option 
contract would be split with the irrigator in such a way that the irrigator is compensated 
for their risk while the urban utility retains a benefit large enough to make the contract 
valuable. The transaction costs of the contract are not explicitly accounted for by the 
model and would reduce the overall value of the option contract.  

Given the significant benefit that the urban utility would receive from entering into 
option contracts, it is expected that after taking into account the effect of the option 
premium and contract transaction costs that option contracts would still be a more 
competitive method of sourcing water during a shortage caused by seasonal variability, 
for most combinations of alternative investment cost and exercise price. 

Sensitivity testing 
Given that seasonal variability can be unpredictable and that long term climatic change 
may result in changes to the nature of seasonal variability, the sensitivity of the results 
to changes in the probability of exercise is tested. The sensitivity test is conducted by 
holding all other variables constant while changing the expected probability of exercise. 
Both decreased and increased probabilities of exercise are considered, including a 
probability of 0.1 (one year in every ten) and 0.5 (five years in every ten). 

The results for a ten year option contract, with the alternative investment cost of 
$15000/ML, is shown in figure 7. It can be seen that for each probability of exercise the 
value of the option contract decreases as the exercise price increases. This is because the 
exercise price increases the costs of the option contract relative to the alternative 
investment making the option contract less competitive. In addition to the downward 
trend in value for each probability of exercise, the values of the option contracts change 
in relation to each other as the exercise price changes. For example, when the exercise 
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price is low (for example $200/ML) the low probability option (0.1) is the least valuable 
relative to the higher probability option contracts. When the exercise price is high 
however, (for example $1100/ML) the low probability option (0.1) is the most valuable 
relative to the higher probability option contracts. These changes are due to the 
changing relationship between exercise price and total exercise cost (which is 
determined by the probability of exercise) with the cost of the alternative investment.   

Figure 7. Values of option contract with different probabilities of exercise, $15000/ML alternative 
investment cost 
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The probability of exercise is likely to change over time as the mix of rain dependent 
and rain independent water supply technologies changes. For example, the water 
production capability of a desalination plant is not affected by surface water inflows 
produced by rainfall. Although desalination plants, being energy intensive, are 
susceptible to energy supply and so a water supply system dominated by desalination 
plants may have an water option contract that relates the probability of exercise to 
energy supply variability to the plants (if energy supply variability was a problem).  

Concluding remarks 
Urban water option contracts are not valued in the way standard option contracts are —
in relation to the market price of the asset. This is because in the case of urban option 
contracts the market can not be used to source water with an adequate level of supply 
security. Instead, the option contracts are valued in comparison to other supply 
alternatives and in terms of the changes to consumer surplus from their use. 

Urban option contracts could be used to smooth seasonal variability and possibly delay 
investment in new infrastructure. Once familiarity with option contracts is gained and 
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probabilities of exercise and exercise costs were better understood it may be possible for 
urban utilities to modify water release plans and hold less in reserve.  

Option contracts offer a number of benefits. They provide a risk sharing mechanism that 
rewards irrigators for entering the contract and surrendering water when called, and 
improves the supply reliability of the urban water system. This benefits the urban 
consumers by reducing the opportunity cost of restrictions, reducing the price of water 
if scarcity pricing is used to clear the market, and by increasing consumer surplus by 
allowing consumption to be higher than it would be during a water shortage.  

As noted in the model specification, the model could be developed further and a number 
of parameters could be refined. These include the benefit of the water in non shortage 
years, maintenance costs and depreciation rates for different infrastructures, the effect 
on the probability of exercise from water being stored in non shortage years if the 
alternative investment were made. Finally, the potential to use option contracts to 
modify release rules from urban storages, helping to further smooth urban supply.  
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Appendix A: Estimation of the marginal value of high 
security water in permanent horticultural crops 
 

The marginal value of water in a horticultural region at different levels of allocation of 
high security entitlements was estimated by taking in to account that water is efficiently 
allocated between trees of different ages for each crop and between crops for the whole 
region. The approach taken thus implies that water trading occurs within the 
horticultural region and consequently the marginal values estimated represents the 
common market price for high security water in the region. The marginal values are 
derived by solving a model of the regional horticultural industries which incorporates, 
for each crop and age, a short run yield response to added water. An algebraic 
representation of the model is given as follows. 

 

(
,

Max  
it it

o w
it it i it it itX Y it

)A Y P X P Y C= − −∑π  (1) 

subject to 

 

( )2
it it i i it i itY R a b X c X= + + ; for ∇  i and t (2) 

it it
it

A X ≤∑ ϖ  (3) 

 

Where;  

 π  = short run annual profits from horticultural industries or returns to 

   land, water and the fixed investment ($/year). 

  = area of trees of age t of crops i (ha). itA

  = yield of trees of age t of crops i (tonne/ha). itY

 itR  = ratio of yield of trees of age t to yield of prime bearing age of crop 
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   i (tonne/ha). 

 itX  = Volume of water used for trees of age t of crop i (Ml/ha). 

  = Price of product of crops i ($/tonne). o
iP

  = Delivery charge for water ($/ML). wP

  = Variable production cost for trees of age t of crop i ($/tonne). itC

  = intercept term of yield response for trees of prime bearing age of  ia

   crop i (tonne/Ml). 

  = linear slope term of yield response for trees of prime bearing age of  ib

   crop i (tonne/Ml). 

  = coefficient on the quadratic term of yield response for trees of  ic

   prime bearing age of crop i (tonne/Ml2). 

 ϖ  = high security water allocation for the horticultural region (Ml/year) 

 

For each crop and age, the production technology or yield response to water is given in 
equation (3). The equation (4) states that the quantity of water applied for trees of all 
ages and crops in the region cannot exceed the regional water allocation. First order 
conditions for this short run profit maximization problem are derived as follows. 

 and  0it it it it
it it

A X A X⎛≤ ⎜
⎝ ⎠

∑ ∑ϖ λ ϖ ⎞− =⎟  (4) 

The complementarity slackness condition for the efficient allocation of water between 
trees of different ages and crops given in equation (4) states that sum over trees of all 
ages and crops, the annual water use cannot exceed the annual high security allocation 
for the region. If the annual water use in the region is less than the allocation then the 
value of water associated with this allocation constraint, λ is zero. 
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The optimization problem given in (1)—(3) is solved for a range of values for high 
security water allocation, ϖ  and the resulting values for λ  which are the marginal 
value water measured. The data used for various parameters are given in table A1. 

Table A1 Data used 

 

Crop Parameter 
Pome 
fruits 

Stone fruits Citrus Wine grapes 

Area ( ) itA 5705 14000 19871 70291 
Output price( ) o

iP 1200 475 500 550 
Water delivery charge ( ) wP 40 40 40 40 
Variable cost ( C ) it 800 294 200 238 
Average water use (Ml/ha) 12 7.5 15 10 

ia  -7.09 -8.64 -3.78 0.95 
ib  8.26 10.23 4.45 4.10 
ic  -0.36 -0.70 -0.14 -0.20 
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