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Sustainability as Intergenerational Fairness:
Efficiency, Uncertainty and Numerical Methods

By Richard T. Woodward

1. Introduction

Throughout the history of economic thought there has been enormous interest in
the issue of intergenerational equity (Ramsey 1928, Koopmans 1960).  In recent years,
most of this discussion has taken place using the terms sustainable development or
sustainability and has paid particular attention to the role of natural resources and the
environment in sustaining economic wellbeing.  Both optimal control (e.g., Solow 1974)
and overlapping generations (e.g., Howarth 1991) models have been used to address
whether a sustainable economy is feasible and efficient.  An excellent review of this
literature is provided by Toman, Pezzey and Krautkraemer (1995).

The present paper contributes to this literature in three ways.  First, we incorporate
into our model an interpretation of sustainability based on the Foley's (1967) principle of
fairness -- a generation is defined as behaving sustainably if it does not expect to be envied
by future generations.  Given Rawls' (1971) characterization of justice as fairness, our
approach is conceptually quite similar to a Rawlsian maximin objective that has
predominated in the economics literature.1  Following Riley (1980) and similar to writings
by political philosophers (Laslett and Fishkin, 1992), sustainability is treated as an
obligation of the current generation to future generations.  Since the welfare of each
generation is assumed to be altruistic, we obtain results similar to those of Calvo (1978).

Second, we explicitly incorporate risk into the analysis.  Ironically, although long-
term uncertainty is one of the central issues associated with sustainability, it has received
scant treatment in the economics literature.  Notable exceptions are Howarth (1995, 1997),
Toman (1994) and Asheim and Brekke (1993).  While Howarth (1995) suggests the use a
sustainability criterion equivalent to the one we propose below, both he and Toman end up
appealing to rules of thumb for policy formation to achieve sustainability.  Although such
rules may be useful in practice, in this paper we seek to understand their theoretical
underpinnings so as to better evaluate their ability to achieve the goals of efficiency and
sustainability.  Our framework has many similarities to Asheim and Brekke (1993), though
they use a non-altruistic framework.

Finally, we show that numerical methods can be used to find optimal-sustainable
policies.  This represents an important contribution in that it substantially broadens the
scope of the problems that economists can consider.  Analytical methods are limited
because closed-form solutions can be obtained only for relatively simple problems.  The
introduction of numerical methods, therefore, can broaden the spectrum of problems that

                                               
1 The problem of intergenerational equity has been studied using a maximin objective at
least since Solow (1974) and continues to this day (Lauwers 1997 and Pezzey and
Withagen 1998).
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might be considered.  These methods are then used to evaluate sustainability in simple one-
and two-dimensional economies.

2. The Model

We assume that the welfare of generation t can be written as an additive function of
the infinite stream of utility of all future generations, i.e.,

( ) ( )∑∞

=

−=
ts sss

ts
tttt xzuExzU εβε ,,,, (1)

where xt∈X is a vector describing generation t's endowment, zt is the vector of choices
made by the tth generation and εt∈Λ is the vector of i.i.d. stochastic shocks that occur after
the choices, zt, have been made.  The notation tz indicates the infinite series of choices,
zt, zt+1, zt+2, …, and likewise for tx and tε.  The parameter β<1 is the societal discount
factor2 and Et is the expectation operator contingent on the information available to
generation t as captured in the endowment vector xt.  The functions u(⋅) and U(⋅) will be
called the generational utility and welfare functions respectively.  We assume that there is
a set of m stationary transition functions, ( )ttt

ii
t xzgx ε,,1 =+ , i=1,…, m, which we will

frequently write in vector notation

( )tttt xzgx ε,,1 =+ . (2)

The set of feasible choices depends on the state of the economy, Γ(xt)⊂ún.

Assuming each generation chooses to maximize its welfare, (1) can be rewritten
recursively,

( )
( )

( ) ( )1,,max +Γ∈
+= tttttt

xz
t xVExzuExV

tt

βε  s.t. (2). (3)

Sustainability as intergenerational fairness

Most of the economic analysis concerned with sustainability has taken its
motivation from Rawls' principle of justice.3  Accordingly, economists have evaluated
numerous problems in which the objective is to maximize the minimum utility across all
future generations (e.g., Solow 1974, Hartwick 1977).  A significant contribution to this
literature was made by Calvo (1978) who modified the model by assuming that welfare is
equal to the discounted sum of future utility (see also Rodriguez 1981 and Asheim 1988).

                                               
2 Pezzey (1997) explores conditions where the discount factor may vary over time.  While
this innovative approach merits further investigation, we follow the standard approach of
using a constant-discount factor.
3 Chichilnisky (1996, 1997) provides an important alternative approach to the issue of
sustainability.  Using two axioms that rule out dictatorship of either the present or the
indefinite future, she derives an objective function made up of the weighted sum of a
present-value function and the least utility of the distant future.  Neither a Rawlsian
objective function nor the sustainability-constrained objective put forth here satisfy these
axioms.  On the other hand, Chichilnisky's objective does not necessarily lead to
intergenerationally fair outcomes as defined here.
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Calvo's extension allows optimal maximin plans to be dynamically consistent and can lead
to growth over time.

In the present paper we use a slightly different approach, basing our analysis on the
principle of intergenerational fairness.  Foley (1967) defines an allocation as fair, "if and
only if each person in the society prefers his [or her] consumption bundle to the
consumption bundle of every other person in the society" (p. 74).  In a static economy, an
allocation of a multidimensional endowment x between n individuals is fair if each
individual, i, j, prefers his or her bundle to that of every other individual, i.e., ui(xi)≥ui(xj)
for all i, j.4

Following Foley, we define choices by the current generation as
intergenerationally unfair if, given zt, either the current generation envies future
generations or future generations envy the present, and there exists an alternative feasible
choice such that there is no envy.  We define a set of choices, zt, as sustainable or
consistent with sustainability if they are intergenerationally fair.

A set of choices, zt, is fair to future generations if

FFt: ( ) ( ) ( )
t

t z
jtjtjttztttttttt xzUExzUExzuE εεβε ++++++ ≤+ ,,,,,, 111  for all j=1, 2, … .5  (4)

To take the expectation in (4), generation t must make some assumptions about how future
generations will make choices.  For example, the endowment of generation t+2 depends
not only on the choices and endowment of generation t, but also on the choices of
generation t+1.  The assumption regarding future choices would typically take the form of
a policy rule, a mapping from the endowment vector, x, to a choice vector, z.  In this paper
we will assume that future generations follow a rule that treats their descendants fairly.

Assumption a. FFs is satisfied for all future generations, s=t+1,t+2, … .

If assumption a does not hold, then virtually any effort to treat distant generations fairly
might be undone by the unfair choices of intervening generations and choices made in t
would be dynamically inconsistent.  The following proposition shows that if assumption a
holds then sustainability is achieved if each generation is incrementally fair to the
following generation.

Proposition 1: FFt is satisfied for all t if and only if

IFFt: ( ) ( ) ( )
tt zttttztttttttt xzUExzUExzuE εεβε 111111 ,,,,,, ++++++ ≤+ (5)

is satisfied for all t.

                                               
4 Following Foley's original definition, the issue of fairness received substantial attention
from economists during the 1970s, leading to a number of alternative definitions (Varian
1974, Pazner 1977, Pazner and Schmeidler 1974, 1978).  See Thomson and Varian (1985)
for a summary.  Chavas (1994) represents a recent application of the framework of fairness
to policy analysis in agriculture.
5 This definition was also proposed by Howarth (1995) and is the discrete-time and
stochastic analogue of Riley's (1980) definition.
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Proof: FFt⇒IFFt:  FFt requires that the fairness inequality hold for all j=t+1, t+2,…, while
IFFt requires only that the fairness inequality is satisfied for j=t+1.

IFFt⇒FFt:  IFFt+1 implies

( ) ( ) ( )
11

222122211111 ,,,,,,
++

++++++++++++ ≤+
tt zttttztttttttt xzUExzUExzuE εεβε .

Taking expectations based on the information available to generation t and contingent on
the decision zt, we have,

E E u z x E U z x E E U z xt t t t t t t t t z
z

t t t t t z
zt

t
t

t

+ + + + + + + + + + + ++ ≤
+ +

1 1 1 1 1 2 2 2 1 2 2 2
1 1

, , , , , ,ε β ε εb g b g b g (6)

Using the law of iterated expectations, this inequality can be rewritten

E U z x E U z xt t t t z t t t t zt t
+ + + + + +≤1 1 1 2 2 2, , , ,ε εb g b g

Hence, IFFt and IFFt+1 together imply 

E u z x E U z x E U z xt t t t t t t t z t t t t zt t

, , , , , ,ε β ε εb g b g b g+ ≤+ + + + + +1 1 1 2 2 2 .

By induction, the same relationship holds replacing t+2 with t+3 and so on.  ||

For non-altruistic preferences, β=0, Proposition 1 is equivalent to Asheim and
Brekke's (1993) Lemma 3.  This proposition leads to what Howarth (1992) refers to as a
"chain of obligation" in which an obligation to treat our immediate descendants fairly
implies an obligation to all future generations.  But Proposition 1 is more general -- not
only does an obligation to the next generation imply that all future generations should be
treated fairly, but an obligation of fairness to all future generations is satisfied if each
generation is suitably fair to the following generation.

As we have defined it, sustainability is a symmetric criterion, implying a lack of
envy by future generations of the present and vice versa.  The problem of intergenerational
choice, however, is fundamentally asymmetric.  While the present is able to act without
regard to the interests of the future, the future has no choice but to accept the actions of the
present (Bromley 1989).  If the present generation is acting in its best interest it will
maximize its welfare, minimizing the extent to which it envies future generations.  This
temporal advantage ensures that, to the extent possible, the present should not envy the
future.

The temporal disadvantage of the future, on the other hand, means that there is no
guarantee that optimal behavior will lead to choices that are fair to future generations.
Laslett (1992) maintains that the rights of earlier generations must be matched by duties to
generations yet to come.  However, there is nothing in the standard present-value
optimization criterion that would require that future generations be treated fairly.  To
ensure that sustainability is achieved, therefore, the optimization problem that the current
generation solves must be altered.
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3. Sustainability-constrained optimization

Intergenerational fairness requires that, to the extent possible, the current
generation is both fair to the future and to fair to itself.  This is achieved if all generations
solve the following sustainability-constrained optimization problem,

( ) ( ) ( )

( )
( )

( ) ( ).)iii

,,)ii

)i

..,,max

1

1

1

+

+

+

≤

=

Γ∈

+=

t
S

tt
S

tttt

tt

t
S

ttttt
z

t
S

xVExV

xzgx

xz

tsxVExzuExV
t

ε

βε

(7)

The first and second constraints identify intra- and intertemporal feasibility respectively.
The third constraint is the sustainability constraint.  We denote the value function of this
problem VS(x) to differentiate it from V(x) defined in (3).

The existence of a solution to (7) is ensured by an assumption of free disposal.  Let
u be the lowest possible level of instantaneous utility across the entire domain, i.e.,

( )ε
ε

,,inf
,,

xzuu
xz

= .

Assumption b.  For all x∈X there exists some z∈Γ(x) such that u(z,u,ε)=u
for all ε∈Λ.

Assumption b simply means that any generation can always reach the lowest possible level
of utility by acting in a suitably wasteful manner.  It can easily be shown (see Lemma 3 in
Appendix 1) that choosing z forever satisfies the three constraints of (7).

Incorporating sustainability as a constraint will be disconcerting to some readers.  It
might be argued that if society chooses to constrain itself then there must be some other,
more fundamental, objective function that it is truly maximizing.6  Dasgupta and Mäler
(1995) argue that this underlying function should be modeled to allow the consideration of
tradeoffs between sustainability and other goals.  Sen (1997) provides two reasons why
explicit analysis of the constraint might be useful.  First, he shows that modeling self-
imposed constraints directly can be functionally important.  Secondly,

Even if it were the case that -- 'ultimately' -- everything were determined by
'basic' preferences exclusively over culmination outcomes, it would still be
interesting and important to see how the derived preferences ("nonbasic"
but functionally important) actually work in relation to the choice act (p.
749, emphasis in original).

                                               
6 While many economists view a constraint-based approach with suspicion, one referee has
pointed out that using a social welfare maximization approach to address principles of
fairness is "out of fashion in moral philosophy and political theory."  In that literature the
constraint-based approach is quite well developed.
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Hence, while we do not discard the objective function approach as irrelevant, we argue that
modeling sustainability as a constraint, can yield important insights into how policy might
evolve if intergenerational fairness is held as a generational obligation.7

4. The solution of sustainability-constrained optimization problems

Having proposed (7) as an interesting social optimization problem, we now need to
consider whether such a problem can actually be solved.  This is not a trivial question.  The
sustainability-constrained value function, VS(x), appears four times in the statement of the
problem, on both the right- and left-hand sides of the objective function and twice again in
the sustainability constraint.  Yet this function, like the unconstrained value function in
standard dynamic programming problems, is unknown a priori.  Except in very restrictive
cases, it is impossible to solve (7) analytically and typically there will be no closed form
for VS(⋅).8  Fortunately, as we discuss here and prove in Appendix 1, a unique
sustainability-constrained value function exists for a wide variety of economies and can be
found using numerical methods.

The algorithm that can be used to solve sustainability-constrained optimization
problems proceeds in two basic steps.  The first step is to find the solution to the
unconstrained optimization problem, i.e., (7) without the sustainability constraint, (iii).9

We will call the value function associated with the unconstrained optimization problem
V*(x).

Then, using the unconstrained value function as our initial guess, V0=V*, the
sustainability-constrained value function, VS(x), is found by recursively solving the
problem

( ) ( ) ( )

( )
( )

( ) ( ) ( ).,,)iii

,,)ii

)i

..,,max

1
1

1
1

1

1
1

+
−

+
−

+

+
−

≤+

=

Γ∈

+=

t
k

t
k

ttt

tttt

tt

t
k

ttt
z

t
k

xEVxEVxzEu

xzgx

xz

tsxEVxzEuxV
t

βε

ε

βε

(8)

at each point in the state space.  Proposition 4 in Appendix 1 proves that this algorithm
leads to the unique sustainability-constrained value function, VS, as k→∞.

                                               
7 Since the constraint is self-imposed it is possible that a generation may choose to violate
it if sustainability were in conflict with some other objective such as Pareto efficiency.  We
discuss the possibility of such a conflict below.
8 Two examples of simple stochastic models for which an analytical solution is possible
are provided by Asheim and Brekke (1993) for the case with β=0.  Under certainty, the
Dasgupta and Heal (1974, 1979) capital-resource economy that has been studied by many
authors can also be solved analytically (e.g., Stiglitz 1974, Pezzey and Withagen 1998).
9 This problem could be solved by a number of methods (see Judd 1998) including
successive approximations of the value function (Bertsekas 1976).
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While numerical methods can be used to solve many problems, they do face some
notable limitations.  Most importantly, since computers must operate in finite space, only
problems that are bounded can be solved using these methods.

Assumption c. The sets X, Λ, and Γ(x) are all closed and bounded and the
instantaneous utility function u(x,z,ε) is defined over the entire domain.

This assumption is not met in all economies of interest.  For example, it rules out the use of
a logarithmic utility function defined over the non-negative real numbers since ( )

0
lim ln
x

x
→

is

undefined.  Furthermore, it rules out problems in which the solution requires unbounded
accumulation of one or more assets as in Dasgupta and Heal's (1974, 1979) capital-
resource economy.  Nonetheless, some problems that are naturally unbounded can be
solved approximately by innocuously modifying state space and/or utility function.

5. Sustainability under uncertainty

It is worth pausing momentarily to consider the role of uncertainty in our
sustainability-constrained model.  While the use of the expectation operator seems a
natural extension of the subjective expected utility framework to the problem of
intergenerational fairness, two conceptual complications arise.  First, zt and εt determine
not only the endowment in t+1 but, in effect, the very generation that arrives in t+1.
Howarth (1995, 422) argues, therefore, that the expectation operator is adding across
"logically distinct state-contingent generations."  If this is true and sustainability requires
the current generation to be fair to any possible future generation, then a sustainability
criterion must hold not on average, but for all possible values of ε.  A disadvantage of such
a criterion is that it could be impossible to achieve or could require choices that would in
most states leave both current and future generations worse off than without a
sustainability obligation.  Moreover, a requirement that V(xt)≤V(g(zt,xt,εt)) for all possible
εt would likely be unfair to the current generation.  Such a constraint would almost
certainly lead to a situation in which the current generation envies the future.

The second complication that arises in the treatment of uncertainty is the
applicability of the subjective expected utility (SEU) framework to represent the
preferences of each generation.  There is an enormous body of evidence suggesting that
individuals frequently violate the axioms of the SEU hypothesis (see Machina 1987).  This
is particularly true when faced with highly uncertain problems and the normative
foundation for policy choice in such problems has been questioned (Manski 1996,
Woodward and Bishop 1997).  Asheim and Brekke (1993) point out that the tendency to
place extra weight on highly negative consequences with small probabilities is also
relevant when considering the issue of sustainability.  While we believe that these
problems with the SEU structure are important and merit further discussion, we retain the
SEU framework here on the belief that improved understanding of sustainability will be
achieved incrementally.

Our definition of sustainability has direct implications for the time-path of welfare
under risk.  Consider the case where x is one-dimensional.  The sustainability constraint
requires that ( ) ( )t

S
t

S
t xVxVE ≥+1 .  If VS(⋅) is monotonically increasing and strictly concave,
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then, by Jensen's inequality, sustainability is satisfied only if the current generation expects
the endowment to grow.

The extension of this result to the case of a multiple dimensional state space
requires more careful specification of what is meant by growth.  Let the endowment vector
xt be composed of m elements, xt

1,…xt
m, each of which is defined so that in the

neighborhood around the actual current endowment, xt, sustainable welfare is increasing in
i
tx  for all i.  Taking a first order approximation of the change in VS(⋅) with respect to a

change from xt to xt+1 yields

( ) ( )∑ −⋅≈∆ +
i

i
t

i
ti

t
S

S xx
x

xV
V 1∂

∂
.

Dividing through by the ∂VS/∂x1 yields an approximate change in the value of the
endowment measured in terms of the marginal value of x1,

( ) ( )



 −⋅≈∆ ∑ +
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i
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t
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t
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S
xxp
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1

~
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p

S
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i
t ∂∂

∂∂
=  and 1~

tp =1.   Generation t's expectation of the change in the value of

the endowment can, therefore, be approximated,

( ) ( )[ ] ttt
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ttt
ii

t
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t

t
S

S
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xxV

VE
εεε

∂∂ ε

);(,,~
1 ∫ ∑ 



 −⋅≈

∆
, (10)

where h(⋅) is the joint probability density function of εt conditional on xt.  If the right-hand
side of (10) is equal to zero then, measured in period t prices, the expected value of
generation t+1's endowment is approximately equal to the value of generation t’s
endowment.  However, if VS(⋅) is strictly concave the sign of the error due to the linear
approximation (10) is negative.  Hence, if concavity holds, then sustainability is not
satisfied if generation t expects that, on average, the value of generation t+1's endowment
will be just equal to that of its own endowment.

There has been substantial attention of the use of the framework of national
accounting to evaluate the sustainability of economies (e.g., Hartwick 1977, 1990; Solow
1993).  The basic lesson of this literature (under very restrictive conditions regarding
population, technology and preferences and with an important caveat due to Asheim
(1994) and Pezzey (1994)10) has been that the maintenance of the value of an economy's
endowment is an indicator of sustainability.  We find here a new implication for planning:
under risk, sustainability can typically be achieved only if planners aim not for the
maintenance of the economy's value, but for its growth.

                                               
10 Asheim (1994) and Pezzey (1994) show that if the economy's value is calculated using
market prices, then the value of the economy's assets can be growing over a period during
which the consumption is at a level that cannot be sustained indefinitely.
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6. Sustainability-constrained optimization and Pareto efficiency

Having proposed an alternative to the standard present-value optimization problem,
we now consider the compatibility of this norm with Pareto efficiency.  Let zt

S be the
optimal-sustainable policy for generation t.  One way this policy might be inefficient is if
there is an alternative policy, zt that would either increase the welfare of generation t, or
that of generation t+1, without diminishing the welfare of the other.  That is, zt is stepwise
Pareto superior to S

tz  if

( ) ( )( ) ( ) ( )( )tt
S
t

S
ttt

S
ttttt

S
ttttt xzgVExzuExzgVExzuE εβεεβε ,,,,,,,, +≥+  (11a)

and

( )( ) ( )( )tt
S
t

S
tttt

S
t xzgVExzgVE εε ,,,, ≥ (11b)

with a strict inequality holding in at least one case.  If such an inefficiency were identified,
then it seems likely that policy makers would want to reconsider their commitment to
sustainability.  As Proposition 2 shows, such inefficiencies are possible and are revealed in
the shadow price on the sustainability constraint, λ.

Proposition 2: Assuming that the solution to the sustainability-constrained
optimization problem (7), ( )λ,S

tz , is a saddle point,11 then, if λ>1, this

solution is not efficient and, if λ<1, the solution is stepwise efficient.

The proof is provided in Appendix 1.

Stepwise inefficiencies arise if the sustainability constraint rules out Pareto superior
choices.  This conflict between efficiency and sustainability might occur for a variety of
reasons.  First, it can occur if the VS(x) is bounded.  For example, consider an infinite-
horizon cake-eating economy in which z represents consumption of a single nonrenewable
stock, x, so that xt+1−xt = z, and with u(z=0)=0 and u'>0.  Since no finite level of
consumption can be sustained indefinitely, the sustainability-constrained optimal level of
consumption is zero for all generations so that VS(x)=0 for all x≥0.  A Pareto improvement
over the sustainability-constrained optimum, therefore, would be for any generation to
consume a portion of the stock.  But if zt>0 then, generation t's welfare will exceed the
sustainable welfare of all future generation's, violating the sustainability constraint.  As we
will see when we consider a renewable resource economy below, when the sustainability-
constrained value function is bounded from above, the potential for inefficiencies is great.

In a diverse economy, however, it is quite unlikely that stepwise inefficiencies will
arise.  We will show that if there exists in an economy a means by which the welfare of all
future generations can be increased, then the sustainability-constrained optimum cannot be
stepwise inefficient.  It is common for such opportunities to exist.  For example, consider
an economy in which utility is solely a function of the amount of corn consumed, ct.  Next
period's seed stock, Rt+1, is inversely related to the amount of corn consumed today,

                                               
11 This restriction is satisfied in many, but by no means all problems of interest.  See
Takayama (1985) for a discussion of conditions when a saddle point is not guaranteed.
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Rt+1=rRt−ct, where r>1 is the crop's rate of growth.  In such an economy, it is possible to
increase consumption in all future periods by (r−1)∆ct simply by reducing consumption
today by ∆ct≤ct.  Proposition 3 shows that when such an asset exists, the sustainability-
constrained optimum will be efficient.

A sustainably-productive alternative to a choice zt, given the endowment xt, is an
alternative zt'∈Γ(xt), such that for some δ>0

( ) ( )
'

, , , ,t t j t j t j t t j t j t j
t tz z

E U z x E U z xε ε δ+ + + + + +≥ +  for all j=1,2.,….

where the expectation operator on both sides is based on the same policy rule.

To ensure continuity, we make the following assumptions.
Assumption d: Utility can be discarded so that for any combination of zt, xt

and ε t, and for any α∈[u, u(zt, xt, ε t)], there exists an alternative choice zt'
such that u(zt', xt, ε t)=α  and gi(zt', xt, ε t)=gi(zt, xt, ε t) for all i.

Proposition 3: Suppose assumption d holds and there exist sustainably-
productive alternatives for all zt∈Γ(xt).  If zt

S is the sustainability-constrained
optimal choice at xt, then it is stepwise Pareto efficient.

The proof is provided in Appendix 1.

Proposition 3 shows that the potential for stepwise inefficiencies is quite limited.  If
there exists any way to increase the welfare of all future generations, regardless of the
relative cost to the current generation, then this type of inefficiency is avoided.  Hence, if
there is an asset in the economy like corn in the example above that allows future
production possibilities to be increased at the cost of current utility, then this conflict
between efficiency and sustainability cannot arise.

7. Optimal-sustainable management in a one-dimensional resource economy

We now demonstrate the properties of sustainability-constrained economies in one-
and two-dimensional economies.  We begin with an economy dependent upon a single
renewable resource, x.  In each period the decision maker chooses zt, the portion of the
available stock to consume immediately.  The remaining stock, ( )( )1 t t t tz x xε− + = % , grows

according to a logistic growth function,

1 1 t
t t t

x
x x x

x
ρ+

 = + − 
 

%% % (12)

where ρ is the growth rate, x  is the unexploited steady state and εt is a normally
distributed i.i.d. shock with mean zero and standard deviation σ.12  The portion of the stock
that is consumed in t yields utility, u(zt,xt,εt)=(zt(xt+εt))

1-γ with γ<1.

                                               
12 For this model, the normal distribution is approximated using a third order Gaussian
quadrature approximation using values from Miranda (1994).
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We consider first the case of a policy maker in a deterministic economy (σ=0).
Figure 1 presents the time path of the resource that would follow from the maximization of
each generation's welfare without imposing a sustainability constraint (which we call the
PV-optimal policies).  As expected (Clark 1976), the PV-optimal trajectory converges to a
steady-state level, in this case xm=1.253, less than the level at which the maximum
sustainable yield is achieved, xmsy=1.40.
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Figure 1: Evolution of the resource endowment in the unconstrained one-dimensional
resource economy.  Parameters of the model: β=0.9, ρ=0.8, x =2, γ=0.9.  Parameters of the
numerical program (see Appendix 2): order of the Chebyshev polynomial, 30; bounds on
state space, 0.3 and 2.5; convergence criterion 10-8.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50
Period

x
 -

 R
es

ou
rc

e

0

0.5

1

1.5

2

2.5

3

x m

x msy

Figure 2: Resource endowment over time in the sustainability-constrained one-dimensional
resource economy.  For parameter values see Figure 1.

Some of the implications of imposing a sustainability constraint can be anticipated
immediately and are equivalent to Calvo's (1978) results.  Because the unconstrained value
function is monotonically increasing in x, at any point from which the PV-optimal policy
leads to growth in the resource stock over time, the sustainability constraint would not
bind.  Over this range, therefore, the PV-optimal and sustainability-constrained optimal (S-
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optimal) policies would coincide.  Sustainability and PV-optimality only diverge,
therefore, for initial stocks above xm.

Figure 2 presents the paths for this economy that follow from applying the S-
optimal policy rule.  As anticipated, paths that begin below xm are identical to those in
Figure 1.   For initial stocks between xm and xmsy, the S-optimal policy leads to the exact
maintenance of that stock level, coinciding with Calvo's (1978) maximin criterion.
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Figure 3: Value functions as a function of the resource stock in unconstrained and
constrained optimation problems.  For parameter values see Figure 1.

If the initial stock is above xmsy, then the S-optimal policy rule leads to a gradual
decline in the resource stock toward xmsy -- these paths merit special consideration.  By
definition, no path can lead to a constant stream of harvests that is higher than the
maximum sustainable yield.  Hence, VS(x) must reach a maximum at xmsy (Figure 3).  If the
initial resource stock is above xmsy, therefore, the S-optimal policy cannot lead to an initial
level of utility levels greater than the maximum sustainable level.  Hence, if x0>xmsy, then
the only policy consistent with the sustainability constraint is to waste the excess stock.
This is obviously inefficient since a Pareto superior path would involve immediately
consuming the stock in excess of xmsy, followed by the maximum sustainable level of
consumption from the second period onward.   This inefficiency is confirmed in Figure 3
where the values of the λ are shown to be equal to 1.0 when x>xmsy.

13

                                               
13 The small range of values greater than xmsy for which λ is slightly less than 1.0 is due to
approximation errors in the numerical algorithm.
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Figure 4: Selected paths of the resource stock value in the unconstrained one-dimensional
resource economy under risk (σ =0.05).  For other parameter values see Figure 1.
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Figure 5: Selected paths of the resource stock value in the sustainability-constrained
resource economy under risk (σ = 0.05).  For other parameter values see Figure 1.

Figures 4 and 5 present the PV- and S-optimal paths for the resource-based
economy under risk (σ =0.05).  The PV-optimal paths follow a pattern similar to that
observed in Figure 1 but with noise due to the shocks.  The addition of risk to the
constrained model, however, leads to an important difference in the S-optimal path.  Under
certainty, S-optimal management of the resource led to a range of steady-states from xm to
xmsy.  However, when risk is introduced in Figure 5, there is a gradual upward trend in the
resource stock over time.  In period 10, for example, the average resource stock across the
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twenty paths presented is 1.41 and by the end of the fifty-period simulation this average
has increased to 1.64.14

The gradual increase in the stock under risk confirms the theoretical expectation of
growth in sustainability-constrained problems.  It also suggests, however, that the presence
of risk increases the likelihood that the sustainability constraint can lead to inefficiencies.
We have seen that if the stock is greater than xmsy there is a conflict between efficiency and
sustainability.  The S-optimal policy under risk leads the economy toward this point.

8. Optimal-sustainable management of a two-dimensional resource economy

We now consider a two-dimensional capital-resource economy in which, in
addition to the renewable resource now identified as x1, the economy is also dependent
upon a reproducible capital stock, x2.  Using a Cobb-Douglas production function, the
existing capital stock and withdrawals from the resource stock, z1(x1+ε), together produce a
fungible output.  This output can then either be consumed, say c, or invested in the capital

stock for the next period, z2, so that ( )( ) ( ) ααε −+=+ 1
2112 xxzzc  and x2t+1=x2t+z2t.  Again

utility is a concave function of consumption, u(c) = c1-γ.
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Figure 6: Selected paths of the capital-resource economy in the unconstrained economy.
Parameters used: the order of the Chebyshev polynomial is 20 in each dimension; the
bounds are 0.5 and 2.5 and on x1 and 1.0 and 15.0 on x2; and α=0.5.  For all other
parameters see Figure 1.

                                               
14 The shapes of neither the constrained nor the unconstrained value functions change
significantly by adding the uncertainty.  Since for x>xmsy V

S(x) is horizontal, growth
beyond xmsy would not be expected.
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We consider first the deterministic case.  In the absence of the sustainability
constraint, the optimal trajectories lead to a single steady-state equilibrium as seen in
Figure 6.  For the parameter values used, the steady state occurs at about x1=xm=1.25 and
x2=7.90.15  The value function for this model is monotonically increasing in both x1 and x2.
Hence, paths that increase both assets are consistent with sustainability while paths that
reduce both assets violate sustainability.  Paths beginning in the northwest or southeast
corners lead to increments in one asset and reductions in the other.  It is along these paths
that the question of sustainability is most interesting.

The S-optimal trajectories in the two-dimensional economy are displayed in Figure
7.  For any path beginning in the state space below the dotted line, the sustainability
constraint does not bind and the PV-optimal and S-optimal paths coincide.  When starting
above the dotted line, any reduction in one asset must be compensated by increments to the
other.  Because of the opportunities for substitution, the effect of the constraint on the
management is slight when compared with the one-dimensional case.  For all initial points
considered, the S-optimal paths lead to equilibrium stocks of x1 near xm, increasing only
slightly for higher initial capital stocks.  Because of the ability to substitute capital for the
natural resource, the S-optimal use of the natural resource is much more efficient in this
model.  The constraint does, however, substantially alter the management of x2.  The
consumption of capital that is seen in Figure 6 is disallowed in the sustainability-
constrained model.  In effect, therefore, the sustainability constraint becomes a constraint
on capital stock, rather than a constraint on the resource.
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Figure 7: Selected paths of the capital-resource economy in the sustainability-constrained
economy.  For parameter values see Figure 6.

                                               
15 While the specific results are sensitive to parameter values chosen, the trends exhibited
in the figures are insensitive to parameter choice over a wide range.
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Because current consumption can always be converted into a greater capital stock,
there are always sustainably-productive alternatives in this economy.  Hence, we know
from Proposition 3 that the solution to the problem will be stepwise Pareto efficient.  This
is reflected in the Lagrange multiplier on the sustainability constraint, which reaches a
maximum of only 0.25 in the state-space considered.

The introduction of risk in this model is illustrated in Figure 8.16  Averaging across
twenty simulated paths, we find that, as anticipated, risk again leads to growth in the value
of the resource endowment over time.  In this case, the growth in value is due entirely to
increases in the capital stock as the path of the resource stock is nearly identical in the two
models.
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Figure 8: Average of the state variables and values of the endowment, V(xt) and VS(xt),
across 20 policy paths following the PV- and S-optimal policies in a stochastic two-
dimensional economy.  For parameter values see Figure 6 and footnote 16.

9. Conclusions

Sustainability continues to be prominent in public debates about economic
development and natural-resource management.  Economics has much to offer to these
debates.  The discipline can offer clarity as to its meaning, explore the implications of
commitments to sustainability, and provide guidance as to how sustainability can be
achieved.  This paper contributes in each of these areas.

                                               
16 In the numerical solution εit is approximated by a third order Gaussian quadrature
approximation in each dimension using values from Miranda (1994).  In both dimensions
the εit is assumed to have a mean of zero and a standard error of 0.01.  Greater variability
in ε did not change the qualitative nature of the results but introduced significant "noise",
making it more difficult to see the relevant trends.
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First, we argue that the principal motivation behind concerns about sustainability is
a concern that current policies are intergenerationally unfair.  We posit, therefore, that the
meaning of sustainability can be clarified using Foley's (1967) economic definition of
fairness.  Assuming policy makers hold intergenerational fairness to be a generational
obligation, we arrive at our framework of sustainability-constrained optimization.  We find
two advantages to this model.  First, we believe that our recursive framework is a
intuitively attractive mathematical formalization of arguments made by others that there is
an obligation to treat future generations fairly (e.g., Weiss 1989).  Secondly, the model has
a practical advantage in that it can be solved numerically by adapting common tools of
dynamic programming.

Two theoretical implications of sustainability are discussed.  First, we find that
under risk, planning for sustainability requires the expectation of growth.  This means that
policies in pursuit of sustainability must actually seek sustainable growth.  Secondly, we
consider the possibility that the norm of sustainability might conflict with the pursuit of
economic efficiency.  While we find that the sustainability constraint can lead to conflicts
with the norm of Pareto efficiency, we also show that such conflicts are avoided in
economies with productive opportunities.  Hence, we are confident that in most situations
policy makers can pursue the goal of sustainability without conflicting with the goal of
efficiency.

Finally, we provide the groundwork for models that might advance the search for
sustainable policies in more complex economies.  The numerical methods introduced here
vastly expand the types of problems that can be considered in analysis of sustainability.
Clearly, the range of problems that might be considered using these methods is still
limited, but it is enormous compared to those for which analytical solutions can be
obtained.
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Appendix 1

Propositions and Proofs

10. Proof that the successive approximation algorithm will solve (7).

Proposition 4: Under assumptions b and c, the iterative solution of (8) with
V0(x)=V*(x), converges to VS(x) as k→∞.

The final proof is provided below.  We develop the proof following the basic
structure put forth by Bertsekas (1976).  If Vk is the solution to (8), we can write

Vk =T(Vk−1), (13)

where T is defined by (8) and maps from the function Vk−1 onto the function Vk.  T is
referred to as the sustainability-constrained Bellman’s operator.  The operator T has an
important monotonicity property.

Lemma 1.  For any bounded functions VA:X→ú1,  and VB:X→ú1, such that
VB(x)≥VA(x) for all x∈X

T(VB(x))≥T(VA(x)) for all x∈X.

Proof:  For a particular point, xt, let Problem A be the maximization of
Eu(z,xt,ε)+βEVA(g(z,xt,ε)) subject to the associated feasibility and sustainability constraints,
and let Problem B the similar problem with VB substituted for VA.  Suppose zA solves
Problem A and zB solves Problem B.  Since VB(x)≥VA(x), for all x and zA satisfies the
sustainability constraint, it follows that

( ) ( )( ) ( ) ( )( )εβεεβε ,,,,,,,, t
AB

t
A

t
AA

t
A xzgEVxzEuxzgEVxzEu +≤+ .

and, for β<1, that

( ) ( ) ( )( ) ( ) ( )( )εβεβε ,,1,,1,, t
AB

t
AA

t
A xzgEVxzgEVxzEu −≤−≤ .

Hence, zA is also a feasible solution to Problem B.  By definition of the maximization,
therefore, it follows that for all points in xt∈X

( ) ( )( ) ( ) ( )( )εβεεβε ,,,,,,,, t
AA

t
A

t
BB

t
B xzgEVxzEuxzgEVxzEu +≥+  ||

Lemma 2: If V0(⋅)=V*(⋅), the solution to the unconstrained optimization
problem, then  Vk+1(x)≤Vk(x) for all x∈X, k=0,1,….

Proof:  Let T*(V) be the standard Bellman's operator, equivalent to the sustainability-
constrained Bellman's operator in (13) without the sustainability constraint.  Because of the
additional constraint in T, for any function V:X→ú1, T*(V)≥T1(V).  V* is defined by the
functional fixed point where T*(V*)=V* (Bertsekas, 1976).  Hence, it follows that
T1(V*)≤V*.  By Lemma 1 it follows that T2(V* )≤T(V*) and, by induction, Tk+1(V)≤Tk(V) for
all k. ||

For purposes of discussion, it is now helpful to define
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( )*lim VTV k

k ∞→

∞ ≡ . (14)

We now prove the existence and uniqueness of V∞ and then show that this limit is equal to
VS, the solution to (7).

Lemma 3.  If assumptions b and c are held, then V∞ is bounded from above
by V* and from below by u/(1−β).

Proof: The upper bound on V∞ follows immediately from Lemma 2.

The lower bound on V∞ is guaranteed by assumption b.  If u(z,x,ε)=u for all x and ε,  then
the worst possible stream of utility has a present value of stream of

( ) Vuu
t

t ≡−=∑∞

=
ββ 1

0
.  (15)

We need only show that z satisfies the sustainability constraint.  Using (15), the
sustainability constraint for a choice of z can be written

u=(1−β)V≤(1−β)EVk−1(g(xt,z,εt)).

This holds since Vk−1(x)≥V  for all x.  ||

Proposition 4a: If assumptions b and c hold, then V∞= ( )*lim VT k

k ∞→
 exists.

Proof: By Lemma 3, for all k, Tk(V*) ∈[V,Tk−1(V*)].  By Lemma 2, at the kth stage of the
algorithm, for all x∈X there are two possible outcomes, either Tk+1(V*(x))<Tk(V*(x)) or
Tk+1(V*(x))=Tk(V*(x)).  If the former holds for all k, then the algorithm will converge to the
lower bound V.  If the later case holds for some k, then Tk+j(V*)=Tk(V*), for all j=1,2, ... .||

Proposition 4b:  If assumptions b and c hold, then V∞ is equal to VS, the
solution to (7).

Proof: If  VS(x)<V∞(x), for a given x∈X, then it is possible that there exists a policy that
satisfies the constraints of (7) and yields a higher value than VS(x).  But this contradicts the
fact that VS is the maximum value.  Hence, VS≥V∞.

By definition Tk(VS)=VS and by Lemma 1, Tk(V*)≥Tk(VS).  Hence, for all k, Vk≥VS and,
accordingly, V∞≥VS.  ||

Proof of Proposition 4: Propositions 4a and 4b imply that Proposition 4
holds.  ||

11. Proof of Proposition 2, the relationship between efficiency and λλ.

In the proof of Proposition 2 we use the following lemma.
Lemma 4: If the sustainability constraint is binding at the optimum of  (7),
then an alternative policy, zt∈Γ(xt), can be stepwise Pareto superior to the
optimal policy S

tz  only if ( ) ( )tt
S
tttttt xzuExzuE εε ,,,, > .

 Proof: For generation t, the policy zt is preferred to S
tz  if (11a) and (11b) are satisfied, one

with a strict inequality.  There are three ways that such an inefficiency might occur:
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 i. (11a) holds with a strict inequality and (11b) with an equality;

 ii. (11a) holds with an equality and (11b) with a strict inequality;

 iii. (11a) holds with a strict inequality and (11b) with a strict inequality.

 If ( ) ( )tt
S
tttttt xzuExzuE εε ,,,, ≤ , then (11a) can only hold with a strict inequality if

( )( ) ( )( )tt
S
t

S
tttt

S
t xzgVExzgVE εε ,,,, > , ruling out i.

 Since S
tz is the solution to (7), ( ) ( ) ( )( )tt

S
tttt

S
tt xzgVExzuE εβε ,,1,, −≤ .  Suppose that

( ) ( )tt
S
tttttt xzuExzuE εε ,,,, ≤ , and  that (11b) holds with a strict inequality. Then

 ( ) ( ) ( )( )ttt
S

tttttt xzgVExzuE εβε ,,1,, −< .

 Hence, zt does not violate the sustainability constraint, contradicting the assumption that
S
tz is optimal. ||

Proof to Proposition 2:  Let L (zt,λ) be the Lagrangian of (7), i.e.,

( ) ( ) ( ) ( ) ( ) ( )[ ]11 1,,,,, ++ −+−+= t
S

tttttt
S

ttttttt xVExzuExVExzuEz βελβελL .

For notational convenience, let ( )tt
S
tt

S
t xzuEu ε,,= , ( )( )tt

S
t

S
t

S
t xzgVEV ε,,1 =+ ,

ut=Etu(zt,xt,εt) and Vt+1=EtV
S(g(zt,xt,εt)), where zt∈Γ(xt).  The saddle-point condition

implies that

( ) ( )[ ] ( ) ( )[ ] S
t

S
ttt VuVu 11 1111 ++ −++−≤−++− βλβλβλβλ . (16)

By Lemma 4, zt we need only consider zt such that S
tt uu > .  Introducing such a case, (16)

can be simplified to

( )
( )

( )
( )

1 1 1

1

S
t t

S
t t

V V

u u

λ

β λ β
+ +− −

≤
 + −−  

.17 (17)

Call the left- and right-hand sides of (17) LHS and RHS respectively.  If for some zt∈Γ(xt),

LHS≥0 then S
tz  is stepwise Pareto inefficient.  LHS≥0 ⇒RHS≥0, which for 0<β<1, holds

only if 1≥λ .

Similarly, 1<λ  ⇒ RHS<0 ⇒ LHS<0 for all zt∈Γ(xt) such that S
tt uu >  .  Hence, S

tz  is

stepwise Pareto efficient.  ||

12. Proof of Proposition 3, that productive economies are stepwise Pareto efficient

Before proving Proposition 3, we need to show that under the stated conditions the
sustainability-constrained value function will not be bounded at the current endowment.

                                               
17 Note that the denominator of the RHS of (17) is strictly positive for all values of 0<β≤1
and λ≥0 and the denominator of the LHS is strictly positive by the assumption that ut>ut

S.
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Lemma 5: If assumption d holds and there exists a sustainably-productive
alternative to the optimal choice zt

S at xt then VS(x) is not bounded at VS(xt).

Proof: Because of the sustainability constraint, if zt
S is the solution to (7), then

EtV
S(xt+1)≥VS(xt).  We need only consider the possibility that EtV

S(xt+1)=VS(xt) since only
then is it possible that VS(xt) is the upper bound on VS(x).  However, if a sustainably-
productive alternative exists, then there is some choice zt'∈Γ(xt) such that

( ) ( )
'

, ,
t

S
t t j t j t j t

z
E U z x V xε δ+ + + ≥ +  for all j.  Since utility is disposable, all future

generations can achieve welfare equal to VS(xt)+δ, implying that EtV
S(g(zt',xt,εt))>VS(xt) and,

therefore, there are some εt such that VS(g(zt',xt,εt))>VS(xt). ||

We can now prove the proposition, which we restate here for completeness.
Proposition 3:

Proof: Suppose not. By Lemma 4, if  zt
S is stepwise inefficient, then there must exist some

alternative, zt, such that ( ) ( )tt
S
tttttt xzuExzuE εε ,,,, >  and

( )( ) ( )( )tt
S
t

S
tttt

S
t xzgVExzgVE εε ,,,, ≥ .  However, using assumption d and Lemma 5, if

the economy has sustainably-productive potential then there exists a choice, zt', alternative

to zt, such that ( ) ( )tt
S
tttttt xzuExzuE εε ,,,, =′  and ( )( ) ( )( )' , , , ,S S

t t t t t t t tE V g z x E V g z xε ε> .

This implies that ( ) ( )( ) ( ) ( )( )tt
S
t

S
ttt

S
ttttt

S
ttttt xzgVExzuExzgVExzuE εβεεβε ,,,,,,,, '' +>+

and that the sustainability constraint is not violated, contradicting the assertion that zt
S is

optimal.||
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Appendix 2:
Technical details of the numerical algorithms for the

solution of sustainability-constrained optimization problems

The algorithm used to solve sustainability-constrained optimization problems
requires the repeated solution of (8).  Discrete dynamic optimization problems, where the
state variables take on a finite number of values, can be solved exactly.  However, if the
state space is continuous, as in the problems considered here, the solution is only an
approximation of the true solution.  The reason for this is that T must be applied point by
point and, therefore, can only be evaluated at a finite number of points.  Because there is
no closed-form specification of the value function, Vk, interpolation or rounding is
required.

In the models solved here, the value function is approximated over the entire
domain using a Chebyshev polynomial of the state variables.  This approximation method
is preferable in many circumstances because a higher degree of precision can be obtained
at less computational expense (Judd 1998).  The use and implementation of Chebyshev
polynomials are discussed in Press et al. (1989).  In the kth iteration of the algorithm, (8) is
solved at a finite set of points in the state space, X̂ , and then, based on these points,
coefficients, ck, are calculated that can be used to estimate the value function across the
entire range of X.  The approximate Bellman's operator, therefore, is essentially a mapping
from ck to ck+1, so that

( ) ( ) ( ) XxcxVxzEUcxV k
z

k
ˆ allfor  s,constraint s.t. ;ˆ,max;ˆ

1 ∈+=+ δ . (18)

This procedure is repeated until a convergence criterion, || ( )1;ˆ
+kcxV - ( )kcxV ;ˆ ||<τ, is met.

The optimization problems at each point in the state space are solved using NPSOL (Gill et
al. 1986), a sequential quadratic programming algorithm.  The unconstrained problem was
solved using the successive approximation method (Bertsekas 1976).

Many of the results presented are of simulated time-paths from a variety of starting
points in the state space.  NPSOL is used again here to determine the policies at each point
using the final estimate of the value function.  The optimal policy is then fed into the state
equations to determine the state in the next period.

In the two-dimensional model the reproducible capital stock, x2, has no natural
upper bound and optimal strategies sometimes lead to accumulation of that asset beyond
any arbitrarily established bound.  This is problematic since it is impossible to guarantee
that the resulting value functions and policies are not functions of the numerical bound that
must be chosen.  Sensitivity analysis was used to verify that the results were not sensitive
to the bounds imposed.  In the simulated paths, paths are frozen if they reach the boundary
of the defined state space.

In the solution of the models an additional choice variable is used.  This variable
simply scales utility between zero and one, thereby satisfying assumption b.  Except where
the sustainability constraint was inconsistent with stepwise Pareto efficiency, the optimal
value of this variable is always 1.0.  Where values less than one are chosen, the shadow
price on the sustainability constraint is equal to 1.0.
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