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Abstract

Understanding the role of health information in food and nutrient demand has become an
important issue over the last decade.  Endogeneity and measurement error are two empirical
problems that are inherent in this type of analysis.  While some type of instrumental variables
estimation would appear the obvious solution, this paper provides several theoretical and
empirical reasons why this is not the case in cross-sectional analysis.  An alternative estimation
strategy is pursued, an empirical example given, and the implications discussed.
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The Theory and Econometrics of Health Information in Cross-Sectional
Nutrient Demand Analysis

The perception of food is changing.  No longer is it the case that food merely provides

taste and sustenance.  Rather, medical researchers are rapidly discovering that foods with certain

nutrients can act as preventive medicines and this information is quickly reaching the public

domain (e.g., Cover Story.  Newsweek, November 30, 1998).  As this scientific information

becomes public knowledge, the potential impacts on the food and medical industries are expected

to be substantial.  The argument is simple.  As consumers become more knowledgeable about the

health benefits of certain foods and nutrients, the demand for those foods and nutrients will

increase.  As the health benefits from consuming those foods and nutrients are realized, the

demand for and cost of health care will decline.  The obvious public policy corollary then

follows: to decrease the future cost of health care, increase the amount of health information

knowledge (Fries, Koop, and Beadle).  The pivotal implicit assumption in this argument is that

health information knowledge has a significant impact on the demand for certain foods or

nutrients.

Over the last decade several authors have demonstrated a significant relationship between

health information and the consumption of certain foods or nutrients (e.g., Brown and Schrader;

Capps and Schmitz; Carlson and Gould; Chern, Loehmann, and Yen; Kinnucan, et al; Gould and

Lin; Jensen, Kesavan, and Johnson; Kim, Nayga, and Capps; Variyam, Blaylock, and

Smallwood).  Of course the significance of the results depend critically on addressing adequately

potential econometric problems and in any study of health information knowledge two

fundamental econometric problems are especially problematic.

First, since Grossman’s seminal work, it has been recognized in the health economics

literature that health information is likely an endogenous stock variable that the consumer can



alter through investment decisions.  Second, and also widely recognized in the health economics

literature, any measure of health information knowledge is likely to be measured with error.  An

instrumental variables (IV) type estimator is the standard procedure for handling both

endogeneity and measurement error and this is usually done in studies using cross-sectional data.

However, recent work in the econometrics literature now brings into question this strategy.

Because the potential industry and policy implications associated with increasing health

information knowledge could be substantial, it is important to explore and understand the limits

of the present theory and econometric procedures in determining the impacts of health

information knowledge.

This paper addresses three interrelated issues.  First, the paper points out some

fundamental but overlooked inconsistencies between the theory and econometrics of health

information and nutrient demand analysis using instrumental variables techniques.  Second, the

paper attempts to overcome these inconsistencies by exploiting some recent work found in the

econometrics literature.  Three, the paper also considers whether the solution is perhaps worse

than the original problem.  In the next section a rather general theory of nutrient intake behavior

is presented.  The following section discusses the empirical implications of the theory for the

estimation strategy in the light of cross-sectional data constraints.  In the following section, the

popular Continuing Survey of Food Intake of Individuals (CSFII) and Diet and Health

information Survey (DHKS) data is used to empirically explore the empirical consequences

following conventional practices.  The paper concludes with some suggestions for improving the

inferences from cross-sectional and time-series analyses of the relationship between health

information and food and nutrient intake.



Theoretical Background and Framework

Grossman’s model provides the theoretical foundation for analyzing the demand for

health services and his original model is an intertemporal utility maximization problem.  Because

the emphasis of the paper is on cross-sectional analysis, the theoretical model is simplified here

to be a static one period optimization model.  This is a common approach in cross-sectional

studies (e.g., Pitt, Rosenzweig, and Hassan or Sickles and Taubman).  Integrating the models of

Becker, Gawn, et al; Pitt, Rosenzweig, and Hassan; Pollak and Wachter; Rosenzweig and

Schultz; and Silberberg (1985) adds several refinements to Grossman’s model.

Consider a household that produces two final commodities: health services (H) and taste

(S).  Health services are produced using the intermediate outputs called nutrients N (e.g.,

cholesterol, fiber), other market inputs xH (e.g., medical services or exercise equipment), time tH,

and human capital associated with health knowledge kH.  Nutrient and taste are by their nature

joint products, so the technology constraints must reflect this jointness.  Consequently, the joint

nutrient/taste production technology depends on food inputs xf, other inputs used in nutrient and

taste production xN (e.g., cookbooks, utensils), time in preparation and consumption tN, and

human capital representing health knowledge kH.  Health information knowledge is produced

and obtained from two general sources: (i) inputs purposely chosen to increase health knowledge

regarding nutrient intake xk (e.g. a course in nutrition) and (ii) through other market inputs xE that

generate health information knowledge as an externality through the consumption of other goods

(e.g., commercials during entertainment consumption).

Formally, the optimization problem is

(1) Max U = U(H, S, x, t) :Utility function (Grossman; Ladd and

      Suvannunt; Pollak and Wachter)



Subject to

(2.1)    H  = H(N, xH, tH, kH; µµµµ) :Health services production (Grossman; Pitt,

Rosenzweig, and Hassan)

(2.2)    G(N, S, xf, xN, tN, kH; µµµµ) = 0 :Nutrient/Taste production (Gawn, et al, Silberberg

1985)

(2.3)    kH = K(xk, xE, tH; µµµµ) :Health capital knowledge (Rosenzweig and

Schultz)

(2.4)    T  = tE + tH + tN + tO + tw :Time Constraint (Becker)

(2.5)    I  + pw tw = px′′′′ x :Budget Constraint (Everyone),

where x = (xE, xf, xH, xk, xN, xO) with the corresponding price vector px and xO is a vector of

other market goods.  In addition, t = (tE, tH, tN, tO, tw) and tO is time allocated to other goods and

tw is time allocated to work.  The wage rate is pw, which is conventionally assumed to measure

the opportunity cost of time.  For notational ease let p = (pw, px) be the vector of all prices.  The

variables I and T represent nonwage income and total available time, respectively, and µµµµ is a

vector of demographic/endowment or environmental variables.  The theoretical model allows

subsets of the x and t vectors to provide utility directly and indirectly as inputs in the production

of H, S, N and kH (Pollak and Wachter).  Also, the nutrient/taste production function (2.2) is

written in implicit form to take into account the joint nature of production.

Assuming a quasi-concave utility function and convex production sets, the problem

satisfies the regularity conditions and the optimal solutions are:

(3.1) x =  x(p, I, T; µµµµ)

(3.2) t  = t(p, I, T; µµµµ).



Because these functions are expressed in terms of market prices and not marginal prices, they are

well defined regardless of whether or not the technology is constant returns to scale or nonjoint

(Pollak and Wachter).  Barnett refers to these as “reduced form” equations.

The implied optimal solutions for H, S, N and kH are

(4.1) H = H(p, I, T; µµµµ),

(4.2) S = S(p, I, T; µµµµ),

(4.3) N = N(p, I, T; µµµµ),

(4.4) kH = kH(p, I, T; µµµµ),

which can be considered reduced form demand functions for the commodities.  The indirect

utility function would be of the form V(p, I, T; µµµµ). Using duality theory, it is easy to establish that

the partial derivatives of (3.1) through (4.4) cannot be signed because all the exogenous variables

are in the constraints (Silberberg 1990 chap. 7).  Thus, any sign on a partial derivative is

compatible with the theory and compelling ex post explanations of parameter signs should not be

confused with the theoretical implications.

Within this optimization framework, because health information knowledge kH is

considered endogenously determined, nutrient demand is not explicitly a function of health

information knowledge.  However, health information knowledge kH may be actually exogenous

or predetermined at some other point in the optimization process.  In this case, kH would be a

quasi-fixed input in the conditional optimization problem.  The conditional and unconditional

optimization problems are easily reconciled through duality theory (e.g., Cornes) and the Le

Chatelier principle.

Let kH be considered a quasi-fixed input in the conditional optimization problem, which

amounts to ignoring the health capital knowledge constraint (2.3) and assuming interior

solutions.  In this case, there are conditional demand functions corresponding to (4.3) of the form
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with the corresponding conditional indirect utility function ).,;T,I,( µµµµHkpVV = 1  The

overstrike indicates that the price vector and expenditure and time constraints associated with the

conditional demand function are subsets of the arguments of the unconditional demand functions

(i.e., p ⊂  p, I ⊂  I, and T ⊂  T).  The complement vector of prices Cp (i.e., in set notation Cp  = p

−−−−p ) would consist of the prices of those goods that are used exclusively in the production of kH.
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and the indirect utility function and conditional indirect utility function are related as

));T,I,(;T,I,(V);T,I,(V µµµµµµµµ pkpp H= .  While the conditional optimization problem permits

health information knowledge kH to become an argument of the nutrient demand equations in a

theoretically consistent fashion, whether or not health information knowledge kH is endogenous

or exogenous is an empirical question that has important implications for how the empirical

model will be estimated.

If health information knowledge kH is actually endogenous or measured with error, then

estimating the conditional demand (4.3.1) requires some type of instrumental variables (IV)

estimator.  However, the IV estimator is unnecessary and only yields consistent parameter

estimates that are inefficient relative to ordinary least squares (OLS) if health information

knowledge is actually predetermined or properly measured.  More importantly, the response of

                                                
1 This formulation would be observationally equivalent to a Basmann varying preferences
approach to incorporating health information in the utility maximization problem.  Consequently,
the Basmann model can be considered a special case of Becker’s household production theory.



the conditional demand (i.e., with health information knowledge treated as exogenous) with

respect to the variables in p and µµµµ will be different than the response of the unconditional demand

(i.e., with health information knowledge treated endogenously) with respect to these same

variables, a point recently made by Variyam, et al.  Therefore, it is important for policy analysis

to determine the most appropriate estimation strategy.

Econometric Implications of the Theory

There are three observations concerning the interaction of cross-sectional data sets and

the above theory that at first may seem benign, but they ultimately make the Hausman pre-testing

strategy and the gains from IV estimation suspect.  One, in cross-sectional data sets there are

often no observations on certain desirable variables, such as the price vector p.  Two, equations

(3.1) through (4.4) are all theoretically functions of the same variables.  Three, the correlation

between variables in cross-sectional data sets is usually low and often less than .3.  The

interaction of these three facts are at the heart of the estimation difficulties.

Recall the Hausman test is designed to test endogeneity bias and is based on comparing

the IV estimator with the OLS estimator. The instruments for the IV estimator must satisfy two

conditions: (i) they should be highly correlated with the endogenous/ mismeasured variable (i.e.,

the relevance condition) and (ii) they should be uncorrelated with the disturbance term (i.e., the

exogeneity condition).  Unless both of these properties are satisfied, the asymptotic properties of

the IV estimator break down (Phillips) and the finite sample properties of the estimator can differ

greatly from their ideal asymptotic properties, even in very large samples (Bound, Jaeger, and

Baker).  To see how these requirements relate to the three observations made above, section 2 of

Hall, Rudebusch, and Wilcox is useful background.

Consider the linear model



(5) y = Xβ + ε

where y is a (T×1) vector of observations on the dependent variable, X is a (T×n) matrix of

regressors having rank equal to n, ε is a (T×1) vector of the error process, which has a zero mean

and homoskedastic variance σ2IT, and β is the (n×1) vector of unknown parameters.  The IV

estimator is given by

(6) yPXXPX zz ′′= −1)(β̂

where Pz = Z(Z′ Z)-1Z′ and Z is the (T×k) matrix of instruments with k ≥ n.  The regularity

conditions required for the instrumental variable to be consistent are

(C.1) XZMZXT
p

1 →′− : a finite constant matrix with rank n;

(C.2) ZZMZZT
p

1 →′− : a finite constant matrix with rank k;

(C.3) ),0( 2
D

2/1
ZZMNZT σε →′− .

Condition C.1 relates to the relevance condition and implies that at a minimum n of the k

instruments must each have some unique explanatory power for the regressors.  Condition C.2

requires the instruments be linearly independent and condition C.3 expresses the exogeneity

condition.  To see why the relevance condition C.1 is especially important, recall the IV

estimator can be obtained by minimizing with respect to β

(7) QT(β) = [y - Xβ]′ PZ [y - Xβ]

 and following Bowden and Turkington (1984, p. 36)

(8) )1()()()( 0
1

0
1

pTT oVQT +−′−= −− βββββ

where β0 is the true value of β and VT = T(X′PZX)-1.  Note equation (8) is identified only if the

asymptotic limit of VT exists and is positive definite, and condition C.1 guarantees this, in part.  If



the rank condition expressed in C.1 is not satisfied or “close” to not being satisfied, then β0 is not

identified or close to not being identified and the distribution of the IV estimator breaks down.

This econometric theory relates to the three observations made above as follows.

Matching the econometric model notation with the theoretical model notation,  N=y and X

= ),,;T,I,( µµµµHkp so the instrument matrix Z must contain variables other than those in X if the

rank condition is going to be satisfied.  Clearly there are potentially more exogenous variables in

the unconditional demand equations (4), which are (p, I, T; µµµµ), because p ⊂  p, I ⊂  I, and T ⊂  T.

However, as stated in the first observation, in cross-sectional data sets there often are no

observations on prices ( p or p), and no information on time or expenditures allocated to all

goods not used in the production of health information knowledge (i.e., T or I ), so consequently

these variables are often not available as instruments and the X matrix is reduced to X = (I, µµµµ).

Can some of the abundantly available demographic\endowment or environmental

variables constituting µµµµ serve as instruments?  As indicated by the second observation, all these

variables enter all the equations in the same manner.  Consequently, using some subset of these

variables as instruments implies the rank condition is not satisfied because the rank of Z – a

subset of X – would not be greater than the rank of X, so legitimate instruments cannot come

from the X matrix — theoretically.  The real problem is clear.  While the theory is extremely

explicit about how the choice variables enter the objective and constraint functions, it is

extremely vague about how the demographic\endowment or environmental variables enter the

objective and constraint functions, and in fact, this theoretical model is much more explicit than

many.2

                                                
2 This lack of specificity can lead to a feeling of justification for employing some ad hoc a priori
procedures for omitting certain elements of the environmental vector µµµµ in some equations and
including certain elements in other equations (see discussion below).  However, recognizing the



However, suppose one is willing to ignore these internal inconsistencies and selects a

subset of µµµµ as instruments.  It is at this point where the third observation of low correlation

between variables in cross-sectional data comes into play.  From the econometric discussion

above it is clear that if the correlation between the instruments and the endogenous/mismeasured

variable is low, then the parameter is “nearly unidentified” and the IV estimator will have poor

finite sample properties and the standard statistical inferences will be very misleading (e.g., Buse;

Bound, Jaeger, and Baker; Hall, Rudebusch, and Wilcox; Nakamura and Nakamura; Nelson and

Startz; Staiger and Stock).  In particular, the IV estimator will be biased in the same direction as

the OLS estimator and the loss of efficiency relative to OLS can be substantial.  Of particular

concern is the fact that when the true coefficient on the endogenous/mismeasured regressor is

zero, the IV estimate can be highly significant.  This result makes it important to recognize the

potential limitations of IV estimators for interpreting the impact of health information knowledge

on nutrient demand.  However, if this is not bad enough, the low correlation causes more

problems.

Nakamura and Nakamura demonstrate that the power of the Hausman statistic is

positively related to the correlation between the instruments and the endogenous/mismeasured

variable or the degree of relevance.  As the instruments become less relevant, the power of the

                                                                                                                                                            
lack of specificity of the theory regarding which elements of µµµµ should enter which equations and
hoping to avoid a rather arbitrary choice of instruments, one may be tempted to conduct a
statistical search procedure for instruments by looking for variables in µµµµ that are significant in the
health information knowledge equations but not significant in the nutrient demand equations and
use them as instruments.  But a moment’s reflection indicates that this strategy leads to an
infinite regress because the appropriate estimator to use for the specification search in the
nutrient demand equation (i.e., IV) depends on variables (i.e., the instruments) being sought.
Furthermore, Hall, Rudebusch, and Wilcox demonstrate that using a statistical search procedure
for highly correlated instruments can actually exaggerate the poor properties of the IV estimator.
In addition, as Nakamura and Nakamura discuss, if some variables are chosen as instruments that
are actually endogenous then there will exist an endogeneity problem even after instrumentation
which may be worse than the original endogeneity problem.



Hausman test decreases, so the likelihood of falsely accepting exogeneity increases (i.e., the

probability of a Type II error increases). Furthermore, as Nakamura and Nakamura also

demonstrate, the Hausman test is a test for the existence of endogeneity/measurement error, it is

not a test of the severity of endogeneity/measurement error bias.  Consequently, the Hausman test

may be significant and yet the OLS bias relatively small or the Hausman test can be insignificant

and the OLS bias relatively large. In addition, given that there are usually several missing

variables from the design matrix as stated, the model is inherently misspecified and, as Rhodes

and Westbrook show, in such cases OLS is likely to be superior to an IV estimation technique.

For these reasons, the gains from pursuing a Hausman pre-test strategy and IV estimation when

the instruments are weak becomes questionable.

Recognizing the possible limitations of both the IV and non-IV approaches in such cases,

Nakamura and Nakamura recommend the more pragmatic approach of doing out of sample

comparisons of the two estimators and looking for some consensus among parameter estimates

across different models.  Yet to follow this pragmatic advice still requires finding legitimate

instruments that do not lead to theoretical and statistical consistency problems.  Fortunately,

Lewbel recently proposed a procedure that is designed for such situations.

In the next section, Lewbel’s procedure is implemented to obtain instruments that avoid

some of the theoretical pitfalls mentioned and a Hausman specification test is conducted.  Prior

to conducting the Hausman specification test, two other specification tests are conducted.  First,

the R2 on the instrumental variables regression is checked to provide an indication of the

relevance of the instruments and the power of the Hausman test.  Second, because as already

mentioned it is likely that several important variables are omitted due to data shortcomings, the

Godfrey-Hutton testing procedure for distinguishing specification error/instrument problems

                                                                                                                                                            



from errors-in-variables/ endogeneity is implemented. Out of sample forecasting tests are then

conducted to determine whether the IV or OLS estimates are preferred.

Data and Results

The utilized data came from the 1994-1996 Continuing Survey of Food Intake of

Individuals (CSFII) and Diet and Health Information Knowledge Survey (DHKS) conducted by

the Human Nutrition Information Service of the USDA. These two data sets are rather well

known and have been utilized in several studies on nutrition.  The CSFII was a multistage,

stratified area probability sample of noninstitutionalized individuals in the U.S.  The CSFII data

includes detailed information about the individuals’ socioeconomic variables and nutrient intake

over two nonconsecutive days.  The DHKS was designed so it could be linked with the CSFII.

Around three weeks after CSFII was conducted, adults 20 years and older who completed the day

1 interview in the CSFII were contacted. The sample was designed such that there was no more

than one DHKS respondent per household.  The DHKS survey asked questions addressing

individual knowledge, awareness, and attitude on diet and health issues. The responses to this

follow-up survey constitute the DHKS data.

 In an attempt to reduce measurement error, the measure of health information knowledge

is constructed in a manner similar to Kenkel.  In the DHKS, respondents were asked 17 questions

pertaining to the relationship between specific nutrients and certain diseases.  Each question

gives a disease as a possible answer to a question of the general form: What health problems are

related to eating too much (little) nutrient A: Disease B? The respondent answered yes or no. For

example, one question was, What health problems are related to eating too much fat: cancer? 3

                                                
3 The seventeen general health problems asked if they were associated with each nutrient intake
were: heart disease problems, arthritis problems, bone problems, breathing problems, cancer



Obviously, for some questions the correct answer would be yes and in other questions it would

be no.  To gauge the accuracy of their individual health information knowledge, a professor of

nutrition also completed the survey, and each individual was then assigned a grade from 0 to100

based on the nutritionist’s answer key.

Three nutrients are considered here: Fiber, Cholesterol, and Total Fat.  Table 1 gives the

variable definitions used in the analysis and their means and standard deviations for 1994.  The

data for 1994 is used in estimating the model and out of sample forecasts comparisons are made

for 1995 and 1996.  No pretest specification search was conducted to search for significant

variables because of the pretest bias problems mentioned and the desire to have an accurate idea

of the nominal size of the overall specification test (see discussion below).

In table 1 Fiber, Cholesterol, and Total Fat intake all have standard deviations at least half

the size of the mean, indicating a wide range of intake across the sample.  In terms of health

information knowledge, the average score is highest for Cholesterol (68.25), followed by Total

Fat (49.99), and then Fiber (32.92). The average household size is about three, with the age of the

main meal planner being almost 50.  The average annual income is $33,070 and the average

hours of watching television is about three hours a day.  The average body mass index is roughly

27.  The remaining variables in table 1 are dichotomous variables so they indicate the percentage

of the respondents satisfying the stated condition and are rather self-explanatory.

The general specification for estimation is

(5) y1 = y2β + XΓ + ε = Wδ + ε

(6) y2 = ZΠ + ν.

                                                                                                                                                            
problems, colon problems, tooth problems, blood sugar problems, water retention problems,
fatigue problems, high cholesterol problems, high blood pressure problems, hyperactivity
problems, kidney disease problems, obesity problems, stroke problems, and other problems.



Equation (5) represents the equation for nutrient demand, where y1 is the nutrient intake, y2 is

health information knowledge and X is the matrix of variables considered exogenous.  That is, X

= (1, household size, age, income, tv, bmi, job, college, female, nonwhite, male/female

household head, female household head, smoker, special diet, vegetarian, program, disease,

region1, region2, region3, central, suburb, quarter2, quarter3).  The matrix W = (y2, X) and ε is

the residual term.  Equation (6) is the instrumental variables equation for health information

knowledge and, for IV estimation, the rank of Z must be greater than the rank of X.  As

discussed, this condition is not satisfied by the theory and available data (i.e., Z = X).

Lewbel’s solution to the problem of insufficient instruments is to use second and third

moments of variables as instruments.  Following Lewbel, if xi is an element of the X matrix,

then )y)(yy(yq 22111 −−= and )y)(yx(xq 22iii −−=  are all legitimate instruments, in addition

to the xi variables, and the IV estimator is consistent.  In the present context, all continuous

variables in the X matrix are used to form instruments of this type.  This gives one instrument of

the q1 form and five variables of the qi form for each nutrient equation (i.e., i = 2,3,…,6).  So if Q

= (q1, q2,…,q6), then the instrument matrix is Z = (X,Q) and theoretically satisfies the

identification conditions.

Though a 3SLS or system generalized method of moments (GMM) estimator could be

used in estimating the equations for Fiber, Cholesterol, and Total Fat, a single equation GMM

estimator is implemented here for two reasons.  First, the efficiency gains in moving from a

single equation estimator to a systems estimator increases as the exogenous variables

(instruments) across equations become less correlated.  Though there are some instruments that

differ across equations, a large number of the instruments are common across equations, so the

efficiency gains would be attenuated.  Second, and more importantly, the equations are likely to

be misspecified to different degrees and a systems estimator will propagate these



misspecifications throughout the entire system.  For these reasons, the single equation GMM

estimator is implemented in the IV estimation because it automatically accounts for

heteroskedasticity by implementing White’s heteroskedasticity consistent covariance estimator.

In the equations estimated by OLS, heteroskedasticity is also accounted for by implementing

White’s heteroskedasticity consistent covariance estimator.4

The specification tests results are given in table 2.  The second column shows the R2 from

regressing the health information knowledge variable on the appropriate instruments.  None of

the auxiliary R2 values are above .06, indicating that the instruments are weak and the relevance

condition is problematic.  Furthermore, these values indicate that the predicted health

information knowledge values generated by these regressions will unlikely capture much of the

actual variation in the health information knowledge variable.  Most importantly, this indicates

that the IV estimator will likely have poor sample properties and the power of the Hausman test

will be low.

The third column gives the Godfrey/Hutton J statistic.  This statistic is defined to be J =

Nℜ 2, where N is the sample size and ℜ 2 is the coefficient of determination from a regression of

the IV residual vector e = y1 - W δ~ on Z, where δ~ is the IV estimate of δ.  This test also can be

considered a Lagrange multiplier test of overidentification (Hausman p. 433) and is the first test

in a two step testing procedure.  If J is large, then the specification of the model and/or the

instruments are questionable and the results from the IV estimation are of little value.  In this

case, the specification and/or instruments need to be reconsidered before conducting the

Hausman test.  If J is small then the next step is to conduct a Hausman test.  The J statistic is

distributed as a Chi-squared distribution with the degrees of freedom equal to the number of

                                                
4 Of course, OLS with White’s covariance matrix is equivalent to using a GMM estimator where
the variables in the equation serve as their own instruments.



elements in Q less the number of endogenous variables in the equation, so in this case there are

five degrees of freedom.  With five degrees of freedom, the critical value for the J statistic is 9.23

at the .10 confidence level and 11.07 at the .05 confidence level.  The null hypothesis of no

specification/instrument problem is only rejected for the Cholesterol equation, so only the

Cholesterol specification seems suspect.  However, for comparative purposes the Hausman test

also will be conducted for the Cholesterol equation.

The low auxiliary R2 statistics imply the power of the Hausman test is likely low, so the

nominal size of the Hausman test should be increased (Lehmann).  In addition, the nested nature

of the Godfrey/Hutton testing approach implies that the overall significance level is α = 1 – (1 -

αJ)(1 - αH), where αJ and αH are the nominal significance levels of the J test and Hausman test,

respectively.5  So, for example, if  αJ = .05 and, following Lehmann’s advice letting αH = .20,

then the probability of pursuing the wrong estimation strategy is .24 (i.e., making a Type I error).

This Type I error would be even higher if one first pursued a specification search for significant

variables before implementing the Godfrey-Hutton procedure.  The overall conclusion reached

from table 2 is that there are endogeneity/measurement error problems in the Fiber and Total Fat

equations, but the Cholesterol specification is suspect.  Without following the Godfrey/Hutton

testing strategy and just conducting the Hausman test, the problematic Cholesterol specification

would not have been detected.  However, even for the Total Fat and Fiber equations, the

Hausman test results only indicate that an endogeneity/ measurement error problem exists.  The

results do not indicate the degree of the OLS bias.  For these reasons, the pragmatic advice of

Nakamura and Nakamura is followed and both the OLS and IV results are reported.

                                                                                                                                                            

5 This formula is exact if the tests are independent and Godfrey and Hutton show this is indeed
the case.



Table 3 shows the OLS and IV estimates for Fiber, Cholesterol, and Total Fat.  Before

considering the health information knowledge parameters in some detail, a few general

observations can be made.  There are a total of 78 OLS parameter estimates and therefore 78 IV

parameter estimates in table 3.  Of these 78 parameter estimates, 30 of the OLS parameters are

significant and 25 of the IV parameters are statistically significant at the 10% level, and 22 of

these overlap and have the same sign on the parameter.  For those that do not overlap, there are 7

parameter estimates that are significant under OLS but insignificant under IV and 4 parameters

that are significant under IV but not significant under OLS.  In terms of the signs across

estimation methods, of the 78 parameters estimated both ways, 11 differ in sign between OLS

and IV.  With one exception (nutrient disease knowledge for Fiber), these differences are all

associated with insignificant parameter estimates.  Furthermore, note, as is common in cross-

sectional studies, all of the R2s are low and with the exception of the OLS model for Total Fat,

all R2s are less .1.

Focusing on the health information knowledge parameter point estimates, they show large

discrepancies across estimators, in terms of magnitude and significance.  For the Fiber model, the

OLS parameter estimate for nutrient/disease knowledge is a positive .05 and significant at the 1%

level, while the IV estimate is a negative -.25 and not significant at the 10% level.  For the

Cholesterol model, a similar result is found where the OLS parameter estimate for

nutrient/disease knowledge is a negative -.65 and significant at the 1% level, while the IV

estimate is also negative but is about five times as large (-3.54) and is significant at the 10%

level.  For the Total Fat model, the OLS parameter estimate for nutrient/disease knowledge is -

.07 and not significant at the 10% level, but the IV estimate is about 25 times as large (-1.83) and

is significant at the 10% level.  With the exception of the IV estimate for Fiber, the signs on the

parameters concur with intuition: Fiber intake increases with an increase in health information



knowledge and Cholesterol and Total Fat decrease with an increase in health information

knowledge.

Perhaps more informative than the point estimates on the parameters are the point and

interval estimates on the elasticities with respect to the health information knowledge variables.6

For Fiber, the OLS elasticity with respect to health information knowledge is .11, with a 95%

confidence interval of [.08, .14], whereas the IV elasticity is -.54 with a 95% confidence interval

of [-1.12, .04].  For Cholesterol, the OLS elasticity with respect to health information knowledge

is -.16 with a 95% confidence interval of [-.24, -.08] and the IV elasticity is -.88 with a 95%

confidence interval of [-1.62, -.09].  For Total Fat, the OLS elasticity with respect to health

information knowledge is -.05 with a 95% confidence interval of [-.10, -.00] and the IV elasticity

is –1.25 with a 95% confidence interval of [-2.44, -.06].  Clearly, and not surprisingly, the IV

intervals are wider.  For Fiber, there is no overlap in the IV and OLS 95% confidence intervals,

but there is some overlap in the IV and OLS 95% confidence intervals for Cholesterol and Total

Fat.

If a decision must be made between the two estimators or models, sample forecasts tests

can be utilized.  There are 1889 and 1858 observations available for 1995 and 1996, respectively,

that can be used for out of sample comparisons and table 4 gives the comparisons.  The R2

reported in table 4 is the square of the coefficient of correlation between the actual and fitted

values.  Overall, the OLS models tend to perform better than the IV models, especially for the

Total Fat model.  The distance metrics also indicate that OLS is preferred to IV.  The root mean

square error, mean square percentage error, and mean absolute deviation comparisons all indicate

that OLS outperforms IV.

                                                
6 The elasticities are evaluated at the means of the data.



To test whether the OLS forecast are statistically preferred to the IV forecast, a forecast

encompassing test was conducted (Harvey, Leybourne, and Newbold).  Let eOLS and eIV be the

residuals associated with the OLS estimator and the IV estimator, respectively.  The forecast

encompassing test involves testing the null hypothesis λ = 0 versus the alternative λ > 1 in the

model eOLS = λ( eOLS – eIV) + ξ, where ξ is the error of the combined forecast.  If the null is not

rejected then the OLS forecast encompasses the IV forecast and is preferred to the IV forecast.

As Harvey, Leybourne, and Newbold demonstrate, once the sample size exceeds about 250, this

hypothesis can be tested as powerfully with the nonparametric Spearman rank correlation test as

with any other test.  Given both samples have over 1500 observations, this condition is easily

satisfied so the forecast encompassing test reported in table 4 is the Spearman rank correlation

test.  The null hypothesis that the OLS forecast encompasses the IV forecast is not rejected at the

5% level for any of the models and thus the OLS models are statistically superior to the IV

models out of sample.  Given the weakness of the instruments and resulting weakness of the

Hausman pre-testing strategy, if an estimator had to be chosen the results tend to favor OLS

estimation over IV estimation, despite the results to the contrary from the Hausman tests in table

2.

A simple policy example can be used to demonstrate the importance of these results.

Suppose in a preventive attempt to reduce health costs, the government follows the advice of

Fries, Koop, and Beadle and attempts to decrease the cost of coronary heart disease associated

with cholesterol intake by increasing health information promotion.  Coupling the elasticity

estimates for Cholesterol with some estimates and assumptions found in Gray, Malla, and

Stephen, a ten percent increase in health information knowledge would decrease coronary heart

disease related costs by 3.2 percent based on the OLS point elasticity but by 17.6 based on the IV

point elasticity.  The corresponding ranges based on the 95% confidence intervals would be to



decrease coronary heart disease related costs between 1.6 and 4.8 percent based on the OLS

interval, but between 1.8 and 32.4 percent based on the IV interval.7  While all the empirical

evidence points to the superiority of the OLS estimator, ignoring the internal consistency

problems and the relevance condition would lead to pursuing an IV estimation procedure.  The

policy implications would be that if the policy target was to decrease coronary heart disease cost

by some fixed percent by funding health education programs, it would seem likely such programs

would be severely underfunded or the actual percentage reduction would be severely below the

target if based on unquestioned IV estimates.

Summary and Conclusions

The purpose of this paper has been to determine the econometric implications that are

forthcoming from the economic theory of health information and nutrient demand in a cross-

sectional data setting.  The rather general household production theory presented here implies

that theoretically there are no instrumental variables available in most cross-sectional data sets to

correct for endogeneity/measurement error problems and specification searches for instrument

candidates are likely to lead to spurious results.  To overcome this problem a procedure recently

advocated by Lewbel for such situations was implemented.  However, the Lewbel instruments

proved to be rather weak and in such circumstances the recent econometric literature questions

the usefulness of the standard instrumental variables approach.  When instruments are weak, the

asymptotic properties of the IV estimator are poor and can be misleading.  More importantly, the

standard Hausman pre-test strategy becomes questionable because the power of the Hausman test

is low when the instruments are weak and the Hausman test really only test for the existence of

                                                
7 Based on a medical literature review, Gray, Malla, and Stephen find an elasticity of about 2
between coronary heart disease and cholesterol.  They assume that the elasticity between the



OLS bias, not its degree.  Given these caveats, the pragmatic advice of Nakamura and Nakamura

was followed and both OLS and IV results reported and out of sample forecast comparisons

made.  If a choice had to be made between the OLS and IV estimators, the OLS results would be

preferred despite the significant Hausman test results.

For cross-sectional analysis, a pragmatic way to proceed is to openly acknowledge these

theory and data limitations and report multiple model specifications rather than operating under

the false pretense of a single specification being correct.  In addition, more research needs to be

done on the theory of health information and nutrient demand and the advantages and

disadvantages of alternative measures of health information knowledge.  Regardless, reporting

alternative model results will help give an indication of how robust results are across alternative

estimators or specifications.  The only work we are aware of that takes this progressive and

pragmatic approach is the recent work by Variyam et al.

Finally, though the paper focuses on cross-sectional analysis it has implications for time

series analysis as well.  Many of the empirical difficulties identified here in a cross-sectional

analysis are not a factor in time series analysis.  Specifically, in time series analysis lagged

variables, such as quantities and prices, often can be used as instruments and low R2s are not a

problem in time series analysis.  Consequently, instrumental variable procedures could be useful

in such situations.  However, most of the time series analyses that have appeared in the

agricultural economics literature have not treated health information as endogenous or measured

with error.  This observation can likely be explained by comparing the theoretical frameworks

across time series and cross-sectional studies.  In general, the cross-sectional studies tend to

implement theoretical frameworks that are much more sophisticated, better connected with the

health economics literature, and treat health information as endogenous and/or measured with

                                                                                                                                                            
cases of coronary heart disease and the costs of coronary heart disease is 1.



error.  Alternatively, the theoretical frameworks found in the times series studies usually just

augment a classical static demand system with a health information variable that is treated as

exogenous or a preference shifter and not measured with error.  This leads to a somewhat

paradoxical observation regarding the different estimation procedures used in time series and

cross-sectional studies: where instrumental variables type estimators may be most useful (time

series data) they have not been used and where they are likely to be less useful they have been

used (cross-sectional data).  Though the fundamental empirical problems may be similar across

time series and cross-sectional studies, the solutions are not.
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Table 1. Variables, Definitions, and Summary Statistics for 1994*
Variable Definitions and Units Mean and Standard

Deviation
Fiber Two day average intake of Fiber in

grams
15.48
(7.91)

Cholesterol Two day average intake of Cholesterol
in milligrams

267.32
(183.13)

Total Fat Two day average intake of Total Fat
in grams

73.22
(38.24)

Fiber/disease knowledge Grade on Fiber/Disease questions
relative to nutritionist

32.92
(23.83)

Cholesterol/disease
knowledge

Grade on Cholesterol/Disease
questions relative to nutritionist

68.25
(26.11)

Total fat/disease knowledge Grade on Total fat/Disease questions
relative to nutritionist

49.99
(19.94)

Household size Number of members of household 2.63
(1.47)

Age Age of main-meal planner in years 49.604
(17.31)

Income Total household income in $1000 33.07
(25.37)

TV Average hours of TV watching per
day

2.77
(2.23)

Body mass index Ratio of body weight in kilograms to
height squared in meters

26.38
(5.29)

Job 1 if employed in part or full time job;
zero otherwise

.55
(.49)

College 1 if attending school beyond 12th

grade; zero otherwise
.43

(.49)

Female .51
(.50)



Table 1.  Variables, Definitions, and Summary Statistics for 1994 (Cont.)

Variable Definitions and Units
Mean and Standard

Deviation
Non-White 1 if Non-white; zero otherwise .18

(.39)

Male-Female
Household Head

1 if male and female head household;
zero otherwise

.69
(.48)

Female Household Head 1 if female head household; zero
otherwise

.23
(.42)

Smoker 1 if smoker; zero otherwise .26
(.44)

Special Diet 1 if on a special diet; zero otherwise .18
(.38)

Vegetarian 1 if a vegetarian; zero otherwise .03
(.17)

Program 1 if participate in food assistance
program; zero otherwise

.11
(.31)

Disease .42
(.49)

Region 1 1 if in Northwest ???; zero otherwise .19
(.39)

Region 2 1 if in Southeast ???; zero otherwise .27
(.45)

Region 3 1 if in Northeast ???; zero otherwise .34
(.47)

Central 1 if in Central/metropolitan area; zero
otherwise

.33
(.47)

Suburb 1 if in Suburb area; zero otherwise .41
(.49)

Q1 1 if interviewed in first quarter; zero
otherwise

.21
(.41)



Table 1.  Variables, Definitions, and Summary Statistics for 1994 (Cont.)

Variable Definitions and Units Mean and Standard
Deviation

Q2 1 if interviewed in second quarter;
zero otherwise

.24
(.43)

Q3 1 if interviewed in third quarter; zero
otherwise

.28
(.45)

Sample Size is 1778 in 1994 and standard deviations are in parentheses.



Table 2.  Summary Statistics*

Variable 1994 1995 1996

Observations 1778 1934 1896

Fiber 15.43
(7.88)

15.76
(8.88)

16.38
(9.03)

Cholesterol 267.07
(182.43)

269.03
(187.96)

272.46
(184.77)

Total Fat 72.84
(38.21)

71.92
(38.61)

74.48
(39.73)

Fiber/disease knowledge 32.99
(23.82)

30.77
(24.39)

30.34
(24.41)

Cholesterol/disease
knowledge

68.15
(26.15)

62.45
(31.07)

64.21
(29.60)

Total fat/disease knowledge 50.05
(19.85)

45.42
(22.86)

47.93
(20.83)

Job .54
(.49)

.51
(.50)

.57
(.49)

College .42
(.49)

.43
(.49)

.48
(.49)

Non-White .19
(.39)

.16
(.37)

.19
(.39)

Region 1 .19
(.39)

.19
(.39)

.18
(.38)

Region 2 .27
(.44)

.23
(.42)

.24
(.43)

Region 3 .34
(.47)

.38
(.48)

.35
(.47)

Central .33
(.47)

.27
(.44)

.28
(.45)

Suburb .41
(.49)

.46
(.49)

.43
(.49)





Table 2.  Summary Statistics* (Continued)
Q2 .24

(.42)
.23

(.42)
.27

(.45)

Q3 .73
(.44)

.74
(.43)

.76
(.42)

Special Diet .18
(.38)

.18
(.38)

.15
(.35)

Household Size 2.65
(1.48)

2.49
(1.44)

2.63
(1.46)

Age 49.53
(17.26)

54.32
(16.98)

48.64
(16.82)

Income 33.05
(25.35)

34.36
(25.29)

37.89
(27.89

*Standard deviations in parentheses.



Table 2.  Specification Tests
Equation Auxiliary R2 Godfrey/Hutton J Tests Hausman Tests

Fiber .04 2.44 -1.78*

Cholesterol .06 23.21* -2.29*

Total Fat .03 4.18 -2.16*
*Significant at 5% level.



Table 3.  Estimation Results

Fiber Cholesterol Total Fat

Variables OLS IV OLS IV OLS IV

Constant 17.00
(10.02)

27.56
(4.41)

315.84
(8.19)

491.52
(3.77)

98.34
(12.58)

185.14
(3.61)

Nutrient/Disease
Knowledge

.05
(6.65)

-.25
(-1.55)

-.65
(-3.37)

-3.54
(-1.86)

-.07
(-1.58)

-1.83
(-1.73)

Household Size -.05
(-.36)

-.14
(-.69)

2.83
(.94)

2.40
(.75)

-1.19
(-1.94)

-1.24
(-1.76)

Age .003
(.19)

.01
(.35)

-.26
(-.84)

-.20
(-.57)

-.29
(-4.69)

-.31
(-3.75)

Income -.01
(1.27)

-.01
(-1.15)

-.14
(-.73)

-.13
(-.63)

.09
(2.63)

.08
(1.95)

TV -.05
(-.52)

-.41
(-1.78)

5.63
(2.42)

4.87
(2.07)

.49
(1.36)

-.001
(-.001)

Body Mass Index .003
(.83)

.003
(.07)

-.70
(-.89)

-.38
(-.45)

.42
(2.25)

.39
(1.88)

Job .06
(.14)

-.41
(-.57)

14.80
(1.53)

15.72
(1.36)

1.82
(.92)

-1.34
(-.39)

College .54
(1.33)

1.11
(1.73)

6.26
(.66)

6.76
(.61)

-1.91
(-1.08)

-1.74
(-.67)

Female .22
(.57)

.01
(.02)

-13.50
(-1.59)

-7.79
(-.71)

-29.34
(-17.79)

-27.77
(-10.71)

Non-White -.35
(-.68)

-.12
(-.16)

-.48
(-.04)

-7.38
(.49)

-4.16
(-1.85)

-.12
(-.03)

Male/Female
Household Head

-2.54
(-3.82)

-1.26
(-1.13)

-33.35
(-2.40)

-13.08
(-.66)

3.40
(1.46)

10.45
(1.83)

Female Household
Head

-5.25
(-7.40)

-4.67
(-4.72)

-105.07
(-7.06)

-102.23
(-5.76)

-1.57
(-.59)

.41
(.10)

Smoker -.58
(-1.40)

-.23
(-.38)

16.57
(1.55)

16.70
(1.38(

6.08
(2.97

5.23
(1.82)



Table 3. Estimation Results (Cont.)

Fiber Cholesterol Total Fat

Variables OLS IV OLS IV OLS IV

Special Diet -.02
(-.05)

-.56
(.76)

-15.00
(-1.35)

-17.34
(-1.33)

-14.54
(7.51)

-16.37
(-5.00)

Program -.29
(-.44)

.37
(.38)

-30.37
(-2.30)

-40.18
(-2.32)

7.09
(2.16)

4.87
(1.12)

Disease -.47
(-1.08)

-.27
(-.45)

24.55
(2.22)

27.34
(2.23)

-1.66
(-.82)

-1.18
(-.42)

Region 1 -.52
(-.88)

-.68
(-.82)

6.86
(.49)

.06
(.00)

-1.16
(-.45)

-3.53
(-.87)

Region 2 .14
(-.24)

.97
(.99)

29.93
(2.31)

24.73
(1.67)

5.98
(2.36)

7.86
(2.14)

Region 3 -.39
(-.72)

.49
(.55)

24.30
(1.99)

25.63
1.75

-1.21
(-.53)

-1.70
(-.52)

Central -.26
(-.49)

-.47
(-.65)

19.52
(1.68)

16.71
(1.55)

-4.37
(-1.99)

-6.86
(-2.02)

Suburb .14
(.29)

-.22
(-.31)

26.10
(2.50)

27.47
(2.28)

-3.38
(-1.58)

-2.29
(-.75)

Q1 -.17
(-.32)

.12
(.16)

8.52
(.72)

15.74
(1.09)

-4.08
(1.76)

-.99
(-.26)

Q2 -.66
(-1.28)

-1.17
(-1.49)

15.01
(1.18)

11.46
(.79)

-2.19
(-.94)

-1.68
(-.51)

Q3 -.05
(-.10)

-.46
(-.63)

7.75
(.70)

6.25
(.48)

-5.25
(-2.45)

-5.62
(-1.79)

R2 .07 .01 .07 .04 .25 .06





Table 4.  Out of Sample Comparisons
1995 1996

Equation OLS IV OLS IV

Fiber:

    R2 .55 .55 .04 .03

    Root Mean Square Error .89 1.00 .56 .57

    Mean Percent Square Error         3313        3381         3947         4163

    Mean Absolute Deviation .43 .43 .44 .44

Cholesterol:

    R2 .01 .00 .01 .004

    Root Mean Square Error .48 .53 1.12 1.18

    Mean Percent Square Error           605          685            580           695

    Mean Absolute Deviation .58 .66 .59 .67

Total Fat:

    R2 .17 .14 .20 .13

   Root Mean Square Error .48 .53 .48 .53

    Mean Percent Square Error          210.20       255.20            226           247

    Mean Absolute Deviation .37 .41 .38 .41

Encompassing Test:

    Fiber .030 -.01

    Cholesterol -.004 .003

    Total Fat .010 -.04
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