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ABSTRACT

We discuss the choice of approximations for unobserved expectations
underlying consistent estimators in linear RE models with future expec-
tations. We show how estimators which are more efficient than the commonly
used GMM estimators can be obtained if it is assumed that the future expec-
: tation depends on a finite number of variables only. Numerical results for

a simple model illustrate the relative efficiency of various estimators.
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1. INTRODUCTION

Models with expectational variables are widely used in empirical econo-
metric research. Various estimators have been put forward to estimate the
parameters in these models (see e.g. Pesaran (1987)). Many of these esti-
mators belong to the general class of GMM estimators proposed by Hansen
(1982). If a GMM estimator is used, the unobserved expectations are
approximated by the corresponding realization following a suggestion of
McCallum (1976). For static models an alternative referred to as the
substitution approach by Wickens (1982) consists in fitting an auxiliary
regression and approximating the unobserved expectation by the projection
from the auxiliary equation. In this note we show how to approximate the
future expectation by the projection from an auxiliary regression and
obtain a generalized least squares estimator (GLS) that is at least as
efficient as the GMM estimator based on future realizations as proxies for
the future expectations, provided one is willing to assume that the future
expectation depends on a finite number of variables only.

Although both the GLS estimator defined in this way and the GMM estimators
are not fully efficient, in general they have many advantages over the
efficient maximum likelihood (ML) estimator. For instance, they do not
require a fully specified model and are therefore expected to be more
robust with respect to specification uncertainty than full information
methods. Moreover they are often computationally much more attractive than

ML estimation.

The paper is organized as follows. In section 2 we introduce the GLS esti-
mator and compare it with GMM estimators. In section 3 numerical results
on the relative efficiency of the various estimators illustrate the argu-

ment. Finally section 4 contains some concluding remarks.



2. THE GLS ESTIMATOR

Consider the following linear model

Yt = P E[yea1lIe] + 8'x¢ + €, € ~ IN(o,og), (1)
P

x¢ = Z Tj xp_j + vy, vy ~ IN(0,Q), 2)
i=1

assume that €; and vg are independent for all t and s, that vy is indepen-
dent of Xy_], X¢_2, ... and define Iy = {yt, X¢, Y¢t-1, X¢-1, ---}. Equation
(1) describes a standard RE model with future expectation while equation
(2) states that the k-dimensional vector of exogenous variables is
generated by a vector autoregression, possibly with restrictions on the
parameter matrices Fi. If x; is stationary and |p| < 1 the model has a

unique stationary solution which can be characterized by
P
Yeel = £ Wg Xeog + ug, (3)
i=0
where uy is independent of x¢, xy_), etc. and Y; is often a highly nonli-

near function of the structural parameters in (1) and (2). By construction

the error term u, satisfies
E upup_y = 0 if k # 0; E u% - 03 ;

Eug€ry = 0 if k# 1; E ug€ey = 02. (4)

P
As (3) implies E[7t+1|1t] = Z Vi x¢_i, ML estimation comes down to joint
i=0 Y3

estimation of (2) and



p
e = (PVp + 8")xp + P Z W) xp_5 + € (5)
i=1

imposing all the restrictions on the II's which can be computationally very
demanding. Even if these restrictions are neglected simultaneous estima-

tion of (5) and (2) may not be computationally very attractive.

The class of GMM estimators is based on the substitution of (3) into (1)

which yields
Yo = P Yeal + 8'x¢ + €¢ - puy (6)

from which p and 8§ can be consistently estimated using IV methods because
Xt, Xt-], -.. are orthogonal to €y and up. As €; - Puy is autocorrelated
(see (4)), the standard IV estimators can be improved upon by taking into
account the properties of this error term as proposed by Cumby, Huizinga
and Obstfeld (1983) and Hayashi and Sims (1983) for the present linear
model and by Hansen (1982) for the general case. Note that all GMM estima-
tors are based on the fact that x¢_x (k 2 0) is orthogonal to yg,] -

E[yt+1|1t] but do not use the restrictions on (3).

An alternative class of estimators starts by accounting for the exclusion

restrictions on the regression in (3) by writing

Yesl = zéﬂ + ug, (&)
where z¢ is the vector of all elements of (x!, ..., xé_p) with nonzero
coefficient in (3) and T is a corresponding vector of parameters. As

E[Yt+1|1t] = zéﬂ, a natural approximation for the unobserved expectation
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of yt4) which can be used instead of the approximation Yt+1 used in (6) is
given by z'ﬁt, where T is the OLS estimator in (7). This approximation

yields
e = P z{ﬁ + 8'xp + €p + pzé(ﬂ—ﬁ). (8)

If p and 8§ are estimated from (8) wusing OLS the resulting estimator
obviously coincides with the IV estimator from (6) when z; is the vector of
instruments because of the two stage least squares interpretation of IV
estimators. The parameters in (8) however can alternatively be estimated
by GLS which yields a more efficient estimator. In obvious vector notation
(8) reads as

p
y = [z(z'z)-1z'y, | x] + € - p z(2'2)"1z'y. (9)
§

In the appendix we present expressions for the inverse of the covariance
matrix of € - p z(z'z)-lz'u which can be used to obtain the GLS estimator.
Of course unknown parameters in the covariance matrix have to be replaced
by consistent estimates, but these can easily be obtained and do not affect

the limiting distribution.

An important point to note is that the GLS estimator is at least as effi-
cient as any GMM estimator which is based on the orthogonality conditions
in (6) only. This is true because the estimator proposed by Cumby,
Huizinga and Obstfeld (1983) can be interpreted as an estimator based on
premultiplication of (9) by Z' and therefore cannot be more efficient than
GLS on (9). Moreover it is well known (see e.g. Hansen (1982)) that a GMM
estimator based on (6) only, cannot be more efficient than the estimator

proposed by Cumby et.al. if the number of instruments used in that estima-



tor tends to infinity. The GLS estimator can of course be more efficient
than GMM estimators because the zero restrictions in (3) are exploited. A
GMM estimator which simultaneously imposes the orthogonality restrictions

in (3) and (6) in a bivariate model will probably be as efficient as the
GLS estimator, but this estimator is no longer computationally

attractive.
3. NUMERICAL EXAMPLE

In order to illustrate the argument in the previous section we present
numerical results on the relative asymptotic efficiency of the various
estimators for the very simple case where p = 2 and k = 1, with k being the
number of exogenous variables in (1). It can be easily checked that in

this case

Mo = 8(Yy + PY2) {1 - pY; - p2¥p}-!

T o= 8Yy {1 - pY; - p2Yy}-! (10)
and
up = €gyg + (P + 8) vy,

where lower case letters Y and W indicate that we consider a scalar case.
Using (6) it is straightforward to evaluate the asymptotic variances of the
estimators. Moreover it can be shown that the relative efficiency does not
depend on all six parameters in the model but on p, Y;, Y2 and R2 =

E(yt—et)z/EyZ only.

In table 1 the asymptotic efficiency of four estimators of P and 8§ is pre-
sented. The efficiency is defined as the ratio of the large sample
variance of an estimator over that of the ML estimator. The first estima-

tor considered is the IV estimator when xy and x;_)| are used as instruments
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in (6). It is evident that increasing the number of instruments does not
change the asymptotic variance of the IV estimator. The second estimator
applied to (6) has been proposed by Cumby et.al. (1983), denoted by CHO,
with x¢, x¢_) and xy_) being the instruments. 1In this case increasing the

number of instruments would lower the asymptotic variance. Irrespective of
the number of instruments, in this model, the CHO estimator will be less
efficient than the third estimator that we consider which has been proposed
by Hayashi and Sims (1983), HS. It is the efficient estimator within the
class of GMM estimators based on the orthogonality restrictions in (6)
only. Finally in table 1 we present the relative efficiency of the GLS
estimator proposed in section 2 when it is a priori assumed that p = 3. The
GLS estimator based on the more restrictive assumption that p = 2 (which
coincides with the data generating process) is in this special case fully
efficient and therefore the relative efficiency of this estimator is not

presented in the table.

Table 1 : Relative efficiency of the maximum 1likelihood estimator

compared with alternative estimators for p and 8§ if k=1, p=2 and p= 0.9.

Rel.Eff. P Rel.Eff. &
R2 Y1 Y2 v CHO HS GLS v CHO HS GLS
.5 [.2 =.35 1.87 1.45 1.32  1.19 2.01 1.53 1.37 1.22
.5 « 1.4 —.45 2.30 1.62 1.30 1.13 2.43 1.69 1.33 1.15
.5 L5 =56 2.29 1.63 1.34 1.17 2.45 1.71 1.39 1.19
.5 1.7 ~72 2,01 1.89 1.32 (1.12 3.06 1.96 1.34 1.13
.9 142 -3 1,23 1.18 1.18 1.13 1.23 1.18 1.17 1.16
.9 1.4 -.45 1.46 1.30 1.28 1.23 1.46 1.30 1.28 1.23
.9 1.5 -.56 1.35 1.24 1.22 1.20 ¥:33 1:22 4:21  1.19

.9 1.7 -.72 1.54 1.31 1.27 1.20 151 1;30 1.25 1.19




efficiency between the various estimators can be considerable. In this
example, the asymptotic variance of the CHO estimator with x¢_j included as
additional instrument is substantially smaller than that of the standard IV
estimator. Moreover it pays either to use more instruments in the com-
putation of the CHO estimator or to use the HS estimator. Finally it is
clear from table 1 the GLS estimator proposed in section 2 can in turn be

substantially more efficient than the HS estimator.

7. CONCLUSIONS

In this note we showed how the assumption that a future expectation depends
on a finite number of variables only can be exploited to increase the effi-
ciency of simple consistent estimators. In the example, the ML estimator
appeared to be only about 20 percent more efficient asymptotically than the
GLS estimator which is computationally more easy to implement. This
finding suggests that in empirical work, it is more appropriate to approxi-
mate the unobserved future expectations by a conditional expectation based
on a finite number of past observations and then apply GLS than to substi-
tute the future observation and apply some IV method. The result can be
extended to more general models where for example lagged endogenous

variables are included in (2).
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APPENDIX : Details on the computation of the GLS estimator.

In this appendix we show how to find a weighting matrix which can be used
to compute the GLS estimator described in section 2. If (9) is rewritten

y=W0 +w, (A1)
where W = [2(2'Z)~}z'y, |X], ' = (p,§') and w = € - pz(2'2)~12'y, the
problem is to find a matrix -1 such that

Vr wf-lw)-1 wl-ly ~ N(O, plim T(W'@-1w)-1), (A2)

a

where T denotes the sample size. A matrix Q! which is appropriate in
this respect is the inverse of the covariance matrix Q of w assuming that Z

is deterministic,

Q - 021y - po2 {z(z'2)~12! 4z (2'2)"12'} + p202 z(z'z)-1z', (A3)
if unknown parameters are replaced by consistent estimates. As Q is a

(TxT) matrix, it is computationally attractive not to invert Q directly but

to define

Q=0 Q,0-1q¢
I+ B

- 02Im - o%0-2 -1
R = 0gIy - 0goz4z_y(2'2)7 2],

(a%)
Q =2z - p-logoazz_l

- p-20-27"
N3 =p 03%z Z

and to use the matrix inversion lemma



- 11

-10ny-1 o -1 _ -1 -1 0-1 -10:0-1
(Ql + 9293 02) Ql Ql QZ(Q3 + QZQ]. Qz) QZQI (A5)

which only requires inversion of (kxk) dimensional matrices if the matrix

inversion lemma is applied in a similar way to invert Ql.
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