

CBM

CBM R

8414 1990 A

for

No. 9047

CHANGES IN REGIME AND THE TERM STRUCTURE: A NOTE

R 51 by John Driffill (73) 336.781.5 330.115.15

August 1990

ISSN 0924-7815

Changes in Regime and the Term Structure: A Note.

John Driffill

CentER, Tilburg University, P O Box 90153, 5000 LE Tilburg, The Netherlands. Phone: +31 13 663046

Department of Economics, Queen Mary and Westfield College, London University, Mile end Road, London E1 4NS Phone: +44 71 975 5083

CEPR, 6 Duke of York Street, London SW1Y 6LA

June 1990 Revised July 1990

Keywords: Term structure, structural stability, regime switching.

JEL Classification numbers: 023, 311.

Acknowledgements

This paper was produced with assistance from the CEPR research programme in International Macroeconomics supported by grants from the Ford Foundation and the Alfred P Sloan Foundation whose help is gratefully acknowledged. I am grateful to Cas van der Horst for extensive and excellent research assistance in Tilburg. I would also like to thank James Hamilton for kindly providing programs and data, and for very helpful comments and suggestions.

Introduction

In a recent paper, James Hamilton (1988) has, with apparent success, modeled the term structure of interest rates in the US using a remarkably simple modification of the expectations model. He allows for stochastic change of regime in the model which determines the short rate of interest. The regime change affects the mean and variance of the short rate, and is governed by a Markov switching process. The long rate is governed by the expectations model in which future expected short rates are generated by the regime—switching model.

Hamilton argues that this structure is better able to account for the behaviour of long rates relative to short rates during the period between 1979 and 1982, in which the Federal Reserve changed its operating procedures, within the context of an expectations model of the term structure, than alternative models have been able to do. In particular, a linear term structure model with no regime shift would tend to under predict the increase in the mean and variability of the long rate which occurred in the period 1979 to 1982.

Hamilton's general approach to modelling time—series models with structural breaks or non-stationarity as log-linear with stochastic changes of regime (Hamilton, 1989) has been applied to a number of different phenomena, such as GDP growth and exchange rates as well as interest rates, with apparent success, and seems to be a promising approach to situations of this kind.

However, in the case of the term structure model (Hamilton, 1988), some of his empirical results do not survive scrutiny, because it appears that his data for the long term rate of interest, his variable R_* , the yield to maturity on 10-year US government bonds,

which is listed in Table 1 of his paper, is actually the same as the raw data for the 3-month treasury bill rate (his variable rr_t discussed in his footnote 8 on page 401) divided by 2. As a consequence, his results for the long rate of interest are based on inappropriate data. His results for the regime change in the time-series model for the short rate, of course, are unaffected by this.

The purpose of this short note is to recalculate some of his estimates using appropriate data. It appears that while the regime shift in the process for the short rate between 1979 and 1982 is a robust result, the model for the long rate which Hamilton uses has a number of unsatisfactory features. It is not clear that the regime change can account adequately for important features of the data.

Data

The data used in this paper are taken from from Chase Econometrics' database for 3 month US treasury bill rates and the Federal Reserve Board's 10-year constant maturity government bonds, quarterly, for the period 1953 quarter 2 - 1989 quarter 2. Figure 1a plots the data and Figure 1B compares Hamilton's short rate data (his r_t multiplied by four to bring it approximately to an annual rate) with the Chase Econometrics data.

Results

A linear model for interest rates with no cross-equation restrictions, with two equations estimated jointly, for the period 1963 1 to 1987.3 yields the following results:

SE = 1.0812, \overline{R}^2 = .8539. LM tests: for serial correlation $\chi^2(4) = 4.7616$; for normality (the Jarque-Bera test) $\chi^2(2) = 131.0206$; for heteroskedasticity, $\chi^2(1) = 17.8259$. Standard errors are recorded in parentheses beneath parameter estimates.

$$R_{t} = \underbrace{1.3472 + .3792r}_{(.2674)} \underbrace{1.3472 + .3792r}_{(.0948)t} + \underbrace{1.1409r}_{(.1251)t-1} + \underbrace{1.1277r}_{(.1251)t-2} + \underbrace{1.3321r}_{(.0939)t-3} + \widehat{\epsilon}_{Rt}$$

SE = 1.0007, $\overline{\mathbf{R}}^2$ = .8767. LM tests for: serial correlation, $\chi^2(4)$ = 71.085; normality, $\chi^2(2)$ = 6.6105; heteroskedasticity, $\chi^2(1)$ = 3.0076; 1st order ARCH process in residuals, $\chi^2(1)$ = 40.9305.

The results for the short rate are very similar to those of Hamilton. Small discrepancies arise because of differences in the data. The equation betrays signs of non-normality in the residuals and heteroskedasticity, as would be expected if there was a regime shift of the kind suggested between 1979 and 1982. The results for the long rate are, as one would expect, considerably different from Hamilton's. In particular, the residuals display a lot of serial correlation, and there is evidence that they follow a first order ARCH process. This may of course result from the attempt to fit a constant linear structure to the entire sample period when in fact there have been structural changes as Hamilton argues.

When the above equations are estimated jointly, with the cross equation restrictions implied by the expectations model of the term structure imposed, as described in Hamilton (1988) on page 398 in equation (3.13), the following results are found:

T-statistics are given in brackets under the parameters. The estimated standard error of

the equation, $\sigma_0 = 1.122510$.

$$R_{t} = 1.347118 + .637014r_{t} + .0524288r_{t-1} + .146518r_{t-2} + .104809r_{t-2},$$

Estimated standard error of equation $\sigma = 1.061738$.

The log-likelihood of the restricted model is -116.372 whereas the unrestricted model (with the equations estimated jointly) produces a log likelihood of -101.670. The reduction associated with the 4 restrictions is 14.702, so the $\chi^2(4)$ likelihood ratio test statistic for their validity is 29.404. Clearly the restrictions are rejected.

The alternative proposed by Hamilton is to include the possibility of a change of regime for the process driving the short rate. He proposes that the short rate be represented by

$$\mathbf{r}_{\mathbf{t}} = \boldsymbol{\alpha}_0 + \boldsymbol{\alpha}_1 \mathbf{S}_{\mathbf{t}} + \mathbf{z}_{\mathbf{t}} \tag{1}$$

where $z_t = \varphi_1 z_{t-1} + \varphi_2 z_{t-2} + \varphi_3 z_{t-3} + \varphi_4 z_{t-4} + [\omega_0 + \omega_1 S_t] \nu_t$ $\nu_t \in N(0,1)$, S_t takes values zero or one, denoting the state of the world. The evolution of S_t is a markov process with constant transition probabilities, $Prob[S_t=1|S_{t-1}=1]=p$, and $Prob[S_t=0|S_{t-1}=0]=q$. The state determines the mean and variance of the short rate. Under the expectations model of the term structure, the long rate is a linear function of the current value and three lags of the short rate, and of the best currently available estimates of the state in the current and last three preceding periods. Viz,

$$R_{t} = \kappa_{R} + \beta_{0}r_{t} + \beta_{1}r_{t-1} + \beta_{2}r_{t-2} + \beta_{3}r_{t-3} + \gamma_{0}P[S_{t}=1|r_{t},r_{t-1},...] + \gamma_{1}P[S_{t-1}=1|r_{t},r_{t-1},...] + \gamma_{2}P[S_{t-2}=1|r_{t},r_{t-1},...] + \gamma_{3}P[S_{t-3}=1|r_{t},r_{t-1},...] + \epsilon_{Rt}$$
(2)

where the coefficients of (2) are functions of the coefficients of (1) above. More details are given in Hamilton (1988). The most general model within this framework allows for the regime-switching in the short rate equation, and allows the long rate to depend on the inferred state of the world without any cross equation restrictions imposed. I. e., (1) and (2) are estimated with no restrictions on the coefficients of (2). A value of the log likelihood function of -65.813931 was achieved. There are 20 estimated parameters.

A more restrictive assumption is that the long rate is unaffected by the state of the world S_t as seen by agents. This involves estimating (1) and (2) jointly, with the restrictions imposed that $\gamma_i = 0$, i = 0, 1, 2, 3. This produces a log-likelihood of -79.430732, with 16 estimated parameters.

Within the nonlinear framework, the most restrictive hypothesis is that the restrictions on the parameters of (2) implied by the expectations model of the term structure are imposed. Hamilton (1988) describes these in detail in section 3.3, pages 398-400 of his paper. When these restrictions are imposed, the results are as follows:

Parameter	Estimate	S. E.
α_0	5.922321	.718084
α_1	754550	0.542263
р	.963121	.024163
q	.991127	.008659
ω_0	0.682035	0.060875
ω_1	1.808523	.537403
φ_1	.893882	.094030
φ_2	193094	.134809
φ_3	011355	.128689
φ_4	.195085	.078944
σ	1.060250	.081365
κ	1.060023	.480676

Log likelihood = -94.597159. 12 parameters estimated.

A summary of results for this exercise, equivalent to Hamilton's table 2 is as follows:

Table 1

Model	Short Rate ^r t	Long Rate R _t	Cross Equation Restrictions	No.of parameters	Log likelihood
1	linear	linear	no	12	-101.670
2	linear	linear	yes	8	-116.372
3	non-lin	linear	no	16	- 79.430732
4	non-lin	non-lin	no	20	-65.813931
5	non-lin	non-lin	yes	12	- 94.597159

The restrictions in the term structure model within the non-linear framework are clearly rejected. Testing model 5 against 4 gives an LR test statistic of 57.6 (distributed as $\chi^2(8)$). Thus it appears that the non-linear model put forward by Hamilton does not rescue the expectations model of the term structure for this US data.

On further inspection of the data, the term-structure model with regime switching appears to perform very poorly largely because the long-term interest rate does not behave as predicted by the model. Figure 2 shows actual and predicted values of the long term interest rate obtained from the restricted non-linear model above (model 5 in Table 1). The estimated residuals clearly contain a lot of autocorrelation. Introducing the possibility of regime-switching has clearly not corrected the shortcomings of the linear model reported above. This suggests that equation (2) above may not be a good representation of the long rate. A possible explanation for the poor performance of (2) is that (1) is not an appropriate model for the short rate. However this does not seem to be the case, as can be seen by looking at OLS estimates of the linear model for the period up to and including 1978(3) in which there appears to have been no switch in regime.

Hamilton's result that the world appears to have been in state 0 during the sample period except in the period 1979 (4) to 1982 (3) seems to be robust. Figure 3 shows the smoothed probability that the world is in state zero in each period, using the Chase econometrics data, and using the restricted non-linear model (model 5 in Table 1 above). There are substantial departures from one only in the period 1979 (3) to 1983 (3). The estimated probability of a switch from regime zero to regime one is 0.031. During the period up to and including 1978 (3), there appears ex post to have been no switch of regime. For that period of time, the short rate might be satisfactorily modeled by an ordinary AR(4) process without any possibility of a regime change. OLS estimation for the period 1963 (1) - 1978 (4) gave the following results:

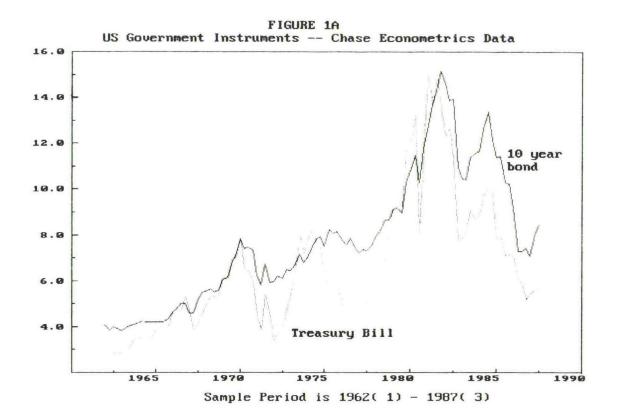
$$\mathbf{r}_{t} = .7835 + 1.0261 \mathbf{r}_{t-1} - 0.1894 \mathbf{r}_{t-2} + .3097 \mathbf{r}_{t-3} - .2870 \mathbf{r}_{t-4}$$
(2.49) (8.08) (1.05) (1.71) (2.26)

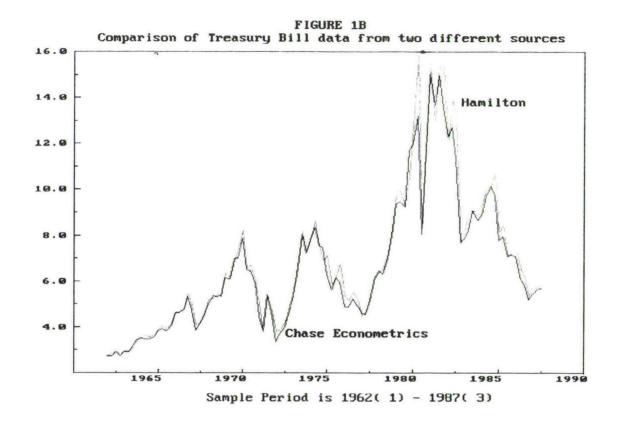
 $R^2 = .8191; \chi^2(4)$ test for serial correlation: 2.2774; $\chi^2(1)$ test for heteroskedasticity: 6.4083; $\chi^2(5)$ test of constancy of regression coefficients: 4.0952; $\chi^2(2)$ test for normality of residuals .6411; $\chi^2(1)$ test for functional form 3.3445. Thus there is evidence of heteroskedasticity, but the parameter estimates seem stable and the residuals are not serially correlated. However, the corresponding equation for the long rate is not so successful. OLS regression for the same sample period gives:

$$\begin{split} \mathbf{R}_{t} &= 1.5377 + .4977\mathbf{r}_{t} - .0869\mathbf{r}_{t-1} + .0162\mathbf{r}_{t-2} + .4839\mathbf{r}_{t-3} \\ & (3.68) \quad (3.05) \quad (.37) \quad (.07) \quad (2.93) \end{split}$$
 $\mathbf{R}^{2} &= .6971; \ \mathbf{DW} = .2467; \ \chi^{2}(4) \ \mathbf{LM} \ \text{test for serial correlation: 52.76; } \ \chi^{2}(1) \ \mathbf{LM} \ \text{test for 1st} \\ \text{order ARCH process in the residuals: 22.096. } \mathbf{T}\text{-statistics are in parentheses under} \\ \text{estimated parameters. There is very strong evidence of serial correlation in the residuals of} \\ \text{this equation. Since it is estimated over a period for which the short rate had followed a} \end{split}$

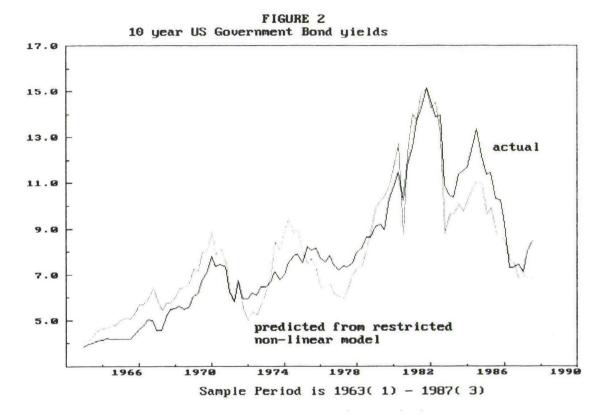
stable AR(4) process, with no apparent shift in regime, it would have been stable also, had the expectations model of the term structure been valid. It may be possible that time-varying risk premia explain this serial correlation. It may reflect departures from efficiency in the bond market, in the form of excess volatility of long rates, or fads, though this seems unlikely, *a priori*.

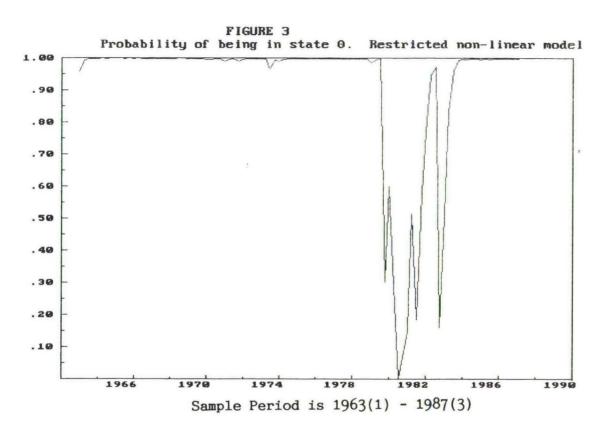
Conclusion


James Hamilton has made a bold attempt to fit an explicit model for the time-series properties of short and long term interest rates in the US, and thereby to rehabilitate the expectations model of the term structure. His regime-switching model is intuitively very appealing for situations like that in the US where a distinct change of the policy rule occurred, and its success is borne out by the results for the short term rate of interest. His conclusions are confirmed in this paper which has used a slightly different data set.


However, it does not appear to have solved the empirical puzzles generated by US term structure data. His results were obtained with erroneous data for the 10 year bond yield. Using more appropriate data, the weakness of the model is manifested in two straightforward ways. Firstly, the cross-equation restrictions implied by the expectations model are rejected by the data. Secondly, the residuals produced by the model for the 10 year bond yield are highly serially correlated. The results raise questions as to how these data might be modeled, and whether some modified form of the expectations model might account for them. It may be, for example, that the serial correlation reflects time-varying and serially correlated risk premia. An alternative possibility might be that bond markets are inefficient, given to excess volatility, fads, and predictable excess holding yields on long bonds. However these questions lie beyond the scope of this brief note.

References


Hamilton, James D., 1988, "Rational Expectations Econometric Analysis of Changes in Regime: An Investigation of the Term Structure of Interest Rates," Journal of Economic Dynamics and Control, vol 12, 385–423.


, 1989, "A New Approach to the Analysis of Non-Stationary Time-Series and the Business Cycle," Econometrica, vol 57, no 2, 357-384.

13

ú

Discussion Paper Series, CentER, Tilburg University, The Netherlands:

(For previous papers please consult previous discussion papers.)

No.	Author(s)	Title
8932	E. van Damme, R. Selten and E. Winter	Alternating Bid Bargaining with a Smallest Money Unit
8933	H. Carlsson and E. van Damme	Global Payoff Uncertainty and Risk Dominance
8934	H. Huizinga	National Tax Policies towards Product- Innovating Multinational Enterprises
8935	C. Dang and D. Talman	A New Triangulation of the Unit Simplex for Computing Economic Equilibria
8936	Th. Nijman and M. Verbeek	The Nonresponse Bias in the Analysis of the Determinants of Total Annual Expenditures of Households Based on Panel Data
8937	A.P. Barten	The Estimation of Mixed Demand Systems
8938	G. Marini	Monetary Shocks and the Nominal Interest Rate
8939	W. Güth and E. van Damme	Equilibrium Selection in the Spence Signaling Game
8940	G. Marini and P. Scaramozzino	Monopolistic Competition, Expected Inflation and Contract Length
8941	J.K. Dagsvik	The Generalized Extreme Value Random Utility Model for Continuous Choice
8942	M.F.J. Steel	Weak Exogenity in Misspecified Sequential Models
8943	A. Roell	Dual Capacity Trading and the Quality of the Market
8944	C. Hsiao	Identification and Estimation of Dichotomous Latent Variables Models Using Panel Data
8945	R.P. Gilles	Equilibrium in a Pure Exchange Economy with an Arbitrary Communication Structure
8946	W.B. MacLeod and J.M. Malcomson	Efficient Specific Investments, Incomplete Contracts, and the Role of Market Alterna- tives
8947	A. van Soest and A. Kapteyn	The Impact of Minimum Wage Regulations on Employment and the Wage Rate Distribution
8948	P. Kooreman and B. Melenberg	Maximum Score Estimation in the Ordered Response Model

No.	Author(s)	Title
8949	C. Dang	The D ₂ -Triangulation for Simplicial Deformation Algorithms for Computing Solutions of Nonlinear Equations
8950	M. Cripps	Dealer Behaviour and Price Volatility in Asset Markets
8951	T. Wansbeek and A. Kapteyn	Simple Estimators for Dynamic Panel Data Models with Errors in Variables
8952	Y. Dai, G. van der Laan, D. Talman and Y. Yamamoto	A Simplicial Algorithm for the Nonlinear Stationary Point Problem on an Unbounded Polyhedron
8953	F. van der Ploeg	Risk Aversion, Intertemporal Substitution and Consumption: The CARA-LQ Problem
8954	A. Kapteyn, S. van de Geer, H. van de Stadt and T. Wansbeek	Interdependent Preferences: An Econometric Analysis
8955	L. Zou	Ownership Structure and Efficiency: An Incentive Mechanism Approach
8956	P.Kooreman and A. Kapteyn	On the Empirical Implementation of Some Game Theoretic Models of Household Labor Supply
8957	E. van Damme	Signaling and Forward Induction in a Market Entry Context
9001	A. van Soest, P. Kooreman and A. Kapteyn	Coherency and Regularity of Demand Systems with Equality and Inequality Constraints
9002	J.R. Magnus and B. Pesaran	Forecasting, Misspecification and Unit Roots: The Case of AR(1) Versus ARMA(1,1)
9003	J. Driffill and C. Schultz	Wage Setting and Stabilization Policy in a Game with Renegotiation
9004	M. McAleer, M.H. Pesaran and A. Bera	Alternative Approaches to Testing Non-Nested Models with Autocorrelated Disturbances: An Application to Models of U.S. Unemployment
9005	Th. ten Raa and M.F.J. Steel	A Stochastic Analysis of an Input-Output Model: Comment
9006	M. McAleer and C.R. McKenzie	Keynesian and New Classical Models of Unemployment Revisited
9007	J. Osiewalski and M.F.J. Steel	Semi-Conjugate Prior Densities in Multi- variate t Regression Models

No.	Author(s)	Title
9007	J. Osiewalski and M.F.J. Steel	Semi-Conjugate Prior Densities in Multi- variate t Regression Models
9008	G.W. Imbens	Duration Models with Time-Varying Coefficients
9009	G.W. Imbens	An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling
9010	P. Deschamps	Expectations and Intertemporal Separability in an Empirical Model of Consumption and Investment under Uncertainty
9011	W. Güth and E. van Damme	Gorby Games - A Game Theoretic Analysis of Disarmament Campaigns and the Defense Efficiency-Hypothesis
9012	A. Horsley and A. Wrobel	The Existence of an Equilibrium Density for Marginal Cost Prices, and the Solution to the Shifting-Peak Problem
9013	A. Horsley and A. Wrobel	The Closedness of the Free-Disposal Hull of a Production Set
9014	A. Horsley and A. Wrobel	The Continuity of the Equilibrium Price Density: The Case of Symmetric Joint Costs, and a Solution to the Shifting-Pattern Problem
9015	A. van den Elzen, G. van der Laan and D. Talman	An Adjustment Process for an Exchange Economy with Linear Production Technologies
9016	P. Deschamps	On Fractional Demand Systems and Budget Share Positivity
9017	B.J. Christensen and N.M. Kiefer	The Exact Likelihood Function for an Empirical Job Search Model
9018	M. Verbeek and Th. Nijman	Testing for Selectivity Bias in Panel Data Models
9019	J.R. Magnus and B. Pesaran	Evaluation of Moments of Ratios of Quadratic Forms in Normal Variables and Related Statistics
9020	A. Robson	Status, the Distribution of Wealth, Social and Private Attitudes to Risk
9021	J.R. Magnus and B. Pesaran	Evaluation of Moments of Quadratic Forms in Normal Variables

No.	Author(s)	Title
9022	K. Kamiya and D. Talman	Linear Stationary Point Problems
9023	W. Emons	Good Times, Bad Times, and Vertical Upstream Integration
9024	C. Dang	The D ₂ -Triangulation for Simplicial Homotopy Algorithms for Computing Solutions of Nonlinear Equations
9025	K. Kamiya and D. Talman	Variable Dimension Simplicial Algorithm for Balanced Games
9026	P. Skott	Efficiency Wages, Mark-Up Pricing and Effective Demand
9027	C. Dang and D. Talman	The D ₁ -Triangulation in Simplicial Variable Dimension Algorithms for Computing Solutions of Nonlinear Equations
9028	J. Bai, A.J. Jakeman and M. McAleer	Discrimination Between Nested Two- and Three- Parameter Distributions: An Application to Models of Air Pollution
9029	Th. van de Klundert	Crowding out and the Wealth of Nations
9030	Th. van de Klundert and R. Gradus	Optimal Government Debt under Distortionary Taxation
9031	A. Weber	The Credibility of Monetary Target Announce- ments: An Empirical Evaluation
9032	J. Osiewalski and M. Steel	Robust Bayesian Inference in Elliptical Regression Models
9033	C. R. Wichers	The Linear-Algebraic Structure of Least Squares
9034	C. de Vries	On the Relation between GARCH and Stable Processes
9035	M.R. Baye, D.W. Jansen and Q. Li	Aggregation and the "Random Objective" Justification for Disturbances in Complete Demand Systems
9036	J. Driffill	The Term Structure of Interest Rates: Structural Stability and Macroeconomic Policy Changes in the UK
9037	F. van der Ploeg	Budgetary Aspects of Economic and Monetary Integration in Europe

No.	Author(s)	Title
9038	A. Robson	Existence of Nash Equilibrium in Mixed Strategies for Games where Payoffs Need not Be Continuous in Pure Strategies
9039	A. Robson	An "Informationally Robust Equilibrium" for Two-Person Nonzero-Sum Games
9040	M.R. Baye, G. Tian and J. Zhou	The Existence of Pure-Strategy Nash Equilibrium in Games with Payoffs that are not Quasiconcave
9041	M. Burnovsky and I. Zang	"Costless" Indirect Regulation of Monopolies with Substantial Entry Cost
9042	P.J. Deschamps	Joint Tests for Regularity and Autocorrelation in Allocation Systems
9043	S. Chib, J. Osiewalski and M. Steel	Posterior Inference on the Degrees of Freedom Parameter in Multivariate-t Regression Models
9044	H.A. Keuzenkamp	The Probability Approach in Economic Method- ology: On the Relation between Haavelmo's Legacy and the Methodology of Economics
9045	I.M. Bomze and E.E.C. van Damme	A Dynamical Characterization of Evolution- arily Stable States
9046	E. van Damme	On Dominance Solvable Games and Equilibrium Selection Theories
9047	J. Driffill	Changes in Regime and the Term Structure: A Note

