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Abstract: A new version of the Power-Series Algorithm is developed to compute the steady-

state distribution of a rich class of Markovian queueing networks. The arrival process is a Multi-

queue Markovian Arrival Process, which is a multi-queue generalization of the BMAP. It includes

Poisson, fork and round-robin arrivals. At each queue the service process is a Markovian Ser-

vice Process, which includes sequences of phase-type distributions, set-up times and multi-server

queues. The routing is Markovian. The resulting queueing network model is extremely gen-

eral, which makes the Power-Series Algorithm a useful tool to study load-balancing, capacity-

assignment and sequencing problems.

1 Introduction

Networks of queues without product-form solution are usually di�cult to analyze, both ana-

lytically and numerically. For Markovian networks, the steady-state distribution is determined

by the set of balance equations, but because of the size of the multi-dimensional state space

any numerical method to solve these equations is inevitably memory and time consuming. The

Power-Series Algorithm (PSA) aims to be an e�cient way to solve the balance equations. The

advantage of the PSA over other methods is that techniques like Pad�e-approximation can be

used to extrapolate the power series, and that the behaviour of the power-series can be studied

to assess the credibility of the results.

Networks of queues will be considered with unbounded queue sizes. Customers arrive accord-

ing to a Multi-queue Markovian Arrival Process (MMAP), which is a multi-queue generalization

of the Batch Markovian Arrival Process (BMAP) introduced by Lucantoni [?]. On top of the abil-

ity of the BMAP to model dependencies between interarrival times and batch sizes, the MMAP

can also model all kinds of dependencies between arrivals at the di�erent queues, like fork and

round-robin arrivals. At each queue the service process is a Markovian Service Process (MSP).
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This includes for example set-up times, sequences of phase-type distributions and multi-server

queues. The routing of customers is Markovian, which includes a large variety of network struc-

tures (like the class of Jackson networks, a small subclass of the networks considered here). The

extreme generality of the networks contained in this general framework makes the analysis below

a useful tool to study load-balancing, capacity-assignment and sequencing problems.

The basic idea of the PSA is like a homotopy: the transition rates of the original network

are transformed with a parameter 
, such that for 
 = 1 the transformed network is the original

network and the asymptotic network for 
 in a neighbourhood of 
 = 0 is easy to analyze. Then

the information from the problem near 
 = 0 can be used to solve the problem at 
 = 1. The basic

idea of the PSA stems from Keane (see [?]). It has been applied to queueing models with queues

in parallel [?, ?], the shortest-queue model [?], various polling models [?, ?], and the BMAP/PH/1

queue [?]. For an overview, see [?]. For all these models only the arrival process needed to be

transformed and the transformation parameter 
 could be interpreted as the load of the system.

Unfortunately, this procedure is only possible for feedforward networks. For non-feedforward

networks, sets of equations would have to be solved with a size that rapidly increases with each

step of the algorithm. Koole [?] suggests to prevent this by treating the queues asymmetrically.

The approach that will be used in the present paper, is to transform the routing process also. In

both approaches, the parameter 
 no longer has a clear interpretation. This could be overcome

by using more than one transformation parameter. For example, a parameter � could be used to

transform the arrival process, and a parameter � for the routing process. However, using several

parameters leads to power-series expansions in more than one variable. This implies that more

coe�cients need to be calculated and that multi-dimensional Pad�e-approximants are required.

For this reason, only a single parameter 
 will be used here.

In section 2, the network model is introduced. In section 3, the algorithm to calculate the

steady-state distribution and moments is described. In section 4, two examples are given. The

�rst considers the optimal order of queues in series. The second shows that for cyclic open

networks with symmetric arrivals and equal loads the expected total number of customers is

mainly determined by the sum of the second moments of the service-time distributions.

2 The Network Model

The number of queues is S. Unless indicated otherwise, the following notation is used. Vectors

are column vectors and written in bold face. The vector e is a vector of ones, 0 and e0 are vectors

of zeros, es are the unit vectors of size S for 1 � s � S and eS+1 = e1. For any vector n, de�ne

jnj = e
T
n. Matrices are written in capitals. The matrix O is a matrix of zeros and I` a unit

matrix of size `. The operator 
 denotes the Kronecker product of two matrices; the operator �

the Hadamard (or element-wise) product of two matrices of equal size.

In the examples described below, a phase-type distribution has generator T , as initial distribu-
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tion the row vector � and T 0 = �Te (conform Neuts [?], but without probability mass at zero).

The class of phase-type distributions includes the Erlang and hyperexponential distributions as

well as �nite mixtures of these.

2.1 Multi-queue Markovian Arrival Process

The arrival process is a Multi-queue Markovian Arrival Process. It has an underlying irreducible

Markov process with J0 states. In this underlying process, a transition j ! h is made with rate

�jh (1 � j; h � J0 < 1). The set of possible batch arrivals is fbmj0 � m � Mg, with b0 = 0

and bm 2 INSnf0g for 1 � m �M � 1. A transition j ! h in the underlying process causes an

arrival of batch bm with probability qmjh.

A = f�jhg; �A = diag(Ae);

Qm = fqmjhg;
PM

m=0Qm = ee
T ;

Am = A� Qm;
PM

m=0Am = A:

The pure MMAP f(NMMAP
t ;Jt); t � 0g on state space INS � f1; : : : ; J0g is identical to the

BMAP if S = 1 and bm = m ( 0 � m � 1. It then has generator

QMMAP =

0
BBBBB@

A0 � �A A1 A2 � � �

O A0 � �A A1 � � �

O O A0 � �A � � �
...

...
...

. . .

1
CCCCCA
:

Lucantoni [?] lists a number of special cases of the BMAP, like the Poisson process, Markov-

modulated Poisson processes, PH -renewal processes and processes with correlated batch arrivals.

If each queue has an independent BMAP, this can be modelled as a MMAP. Other special cases

of MMAPs are:

1) Poisson arrivals: independent Poisson arrivals with rate �s at queue s:

M = S; A0 � �A = �
PM

m=1 �m;

bm = em; Am = �m; for 1 � m �M:

2) Round-robin arrivals: an arrival at queue s is followed by an arrival at queue s+ 1 with the

interarrival time exponentially distributed with rate �s:

M = S; A0 � �A = �diag(�);

bm = em; Am = �meme
T
m+1; for 1 � m �M:

3) Fork arrivals: simultaneous arrivals at each queue with phase-type interarrival times:

M = 1; A0 � �A = T;

b1 = e; A1 = T 0�:
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2.2 Markovian Service Process

The service processes at all queues are independent Markovian Service Processes. A MSP has an

underlying Markov process with J states, and the transition rates are allowed to depend on the

number of customers n at that queue. A transition j ! h is made with rate �jh(n) and such a

transition causes a service completion of ` customers with probability r`jh(n) ( 1 � j; h � J <1

; 0 � ` � n � 1 ).

B(n) = f�jh(n)g; �B(n) = diag(B(n)e);

R`(n) = fr`jh(n)g;
Pn

`=0R`(n) = eeT ;

B`(n) = B(n)�R`(n);
Pn

`=0B`(n) = B(n):

A pure Markovian Service Process f(NMSP
t ;Jt); t � 0g on state space IN � f1; : : : ; Jg has

generator

QMSP =

0
BBBBB@

B0(0)� �B(0) O O � � �

B1(1) B0(1)� �B(1) O � � �

B2(2) B1(2) B0(2)� �B(2) � � �
...

...
...

. . .

1
CCCCCA :

In this paper, a number of assumptions is made about this service process. First, it is assumed

that all non-empty states are transient, so from any initial state the empty states will eventually

be reached. Furthermore, it is assumed that when the MSP reaches the empty states, it returns

to state j with probability �j , where it remains. For this it is su�cient that

B`(`) = B`(`)e�
T ; B`(0) = O; for ` � 0:

For a queue this implies that at the end of each busy period the MSP returns to state j with

probability �j , where it remains until the next arrival at the queue. Finally, it is assumed that

customers are not served in batches:

B`(n) = O; for ` � 2:

This assumption is not essential, but is made because otherwise a more complicated routing

process needs to be de�ned and notation would be more involved. In the examples ofMSPs listed

below, the vectors e1 and e2 are the unit vectors of size 2.

1) Independent phase-type service-time distributions:

B0(n)� �B(n) = T; for n � 1;

B1(n) = T 0�; for n � 1;

� = �T :
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2) As 1), but with set-up: after each idle period the �rst service time has initial distribution

�1, all other service times have initial distribution �2:

B0(n)� �B(n) = T; for n � 1;

B1(1) = T 0�1;

B1(n) = T 0�2; for n � 2;

� = �T
1 :

Any pair of phase-type distributions ( ~T1; ~�1) and ( ~T2; ~�2) can be modeled by a single

generator T with two di�erent initial distributions �1 and �2, by taking T block diagonal:

T = e1e
T
1 


~T1 + e2e
T
2 


~T2;�1 = e1 
 ~�1 and �2 = e2 
 ~�2.

Examples 1 and 2 are special cases of sequences of phase-type distributions f(T`;�`); ` � 1g.

Because the number of phases J of the MSP is �nite, such sequences must, after a number of

set-up distributions, start repeating itself, either in a deterministic or in a probabilistic sense.

Because the MSP starts anew at the beginning of each busy period, also mixtures of sequences

are possible. This could be used to model for example a situation where at the beginning of each

busy period, either a fast or a slow server is chosen. Other examples of MSPs are multi-server

queues:

3) c identical exponential servers with rate �:

B0(n)� �B(n) = ��minfc; ng; for n � 1;

B1(n) = �minfc; ng; for n � 1;

� = 1:

4) c identical phase-type servers:

B0(n)� �B(n) =
Pn

s=1 Is�1 
 T 
 Ic�s; for 1 � n � c;

B0(n)� �B(n) =
Pc

s=1 Is�1 
 T 
 Ic�s; for c < n;

B1(n) = [(
Pn

s=1 Is�1 
 T 0 
 In�s)(In�1 
�)]
 Ic�n; for 1 � n � c;

B1(n) =
Pc

s=1 Is�1 
 T 0�
 Ic�s; for c < n;

� = (�
 : : :
�)T :

Here, Is is a unit-matrix with size `s for 0 � s � c, where ` is the number of phases of

the phase-type distribution. The transitions are de�ned such that if there are no waiting

customers in the queue (n � c), then the �rst n servers are active and the other c�n servers

are idle; when server s completes service, then the customers at servers s+1; : : : ; n move to

servers s; : : : ; n � 1, continuing service in the same phase. Server n becomes idle, with the

service phase distributed according to �. This way, no variables need to be added to keep

track of which servers are active, and when a new customer arrives, service can be started

without changing the state of the MSP. With non-identical servers this is not possible.
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2.3 Markovian Routing Process

The routing is Markovian: after service completion at queue s the customer joins queue t with

probability �st and leaves the network with probability �s0 ( 1 � s; t � S ).

X = f�stg; �0 = f�s0g; Xe+ �0 = e:

2.4 Markovian Network Process

The above described arrival, service and routing processes determine the network process f(N t;J t); t �

0g on state space


 =
n
(n; j)

���n 2 INS; 1 � js � Js for 0 � s � S
o
:

The state (n; j) 2 
 denotes that there are ns customers at queue s, the arrival process is in state

j0 and the service process at queue s is in state js ( 1 � s � S ). To introduce matrix notation,

it is convenient to map the (2S+1)-dimensional state space 
 onto the (S+1)-dimensional state

space

�
 =
n
(n; i)

���n 2 INS; 1 � i � I
o
;

where I = J0 � : : :� JS . This can be done 'lexicographically' with the mapping

i(j) = 1 +
SX

s=0

(js � 1) �Js+1;

where �Js = Js � : : :� JS for 0 � s � S and �JS + 1 = 1. The reverse mapping is

js(i) = 1 +
�
(i� 1) mod �Js

�
div �Js+1; for 0 � s � S;

This mapping determines the network process f(N t; It); t � 0g on state space �
. If the network

is stable, the steady-state probabilities of this process

Pi(n) = lim
t!1

Pr f(N t;It) = (n; i)g

exist for all (n; i) 2 �
. They are independent of the initial state (N 0;I0) and uniquely determined

by the balance and normalization equations. For any matrix A, let double brackets denote the

Kronecker product

[[A]]s = IJ0�:::�Js�1 
A
 IJs+1�:::�JS ; for 0 � s � S:

Then the balance equations are(hh
�A �AT

0

ii
0
+

SP
s=1

hh
�Bs(ns)�BT

s0(ns)� �ssB
T
s1(ns)

ii
s

)
P (n)

=
MP

m=1

hh
AT
m

ii
0

P (n � bm)

+
SP

s=1

SP
t = 0

t 6= s

�st

hh
BT
s1(ns + 1)

ii
s

P (n+ es � et);
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for n 2 INS, with P (n) = 0 for n 62 INS. The matrices A0 and Bs0(ns) in the left-hand side

correspond to changes in the arrival and service processes without arrival or service completion,

and �ssBs1(ns) with the event that a customer joins the same queue again, which does not change

the queue lengths. The �rst expression in the right-hand side corresponds to an arrival and the

second with a service completion followed by either a departure from the network (t = 0) or a

transition to another queue (t 6= 0; s).

3 The Power-Series Algorithm

The arrival and routing process of the network described above will be transformed with a trans-

formation parameter 
 in [0,1], in such a way that for 
 = 1 the transformed network process is

equal to the original network process. This will be done is such a way that the steady-state prob-

abilities as function of 
 are analytic at 
 = 0 and the coe�cients of the steady-state probabilities

can be calculated recursively.

Let rm = jbmj denote the number of customers in batch bm, for 1 � m � M . Replace the

probability matrices Qm by

Qm(
) = 
rmQm; for 1 �m �M;

Q0(
) = Q0 +
MP

m=1

(1� 
rm)Qm = eeT �
MP

m=1


rmQm:

The probability of an arrival of r customers is multiplied by 
r, and the remaining probability mass

is added to the probability of no arrival, so
PM

m=0Qm(
) = eeT for 
 2 [0; 1] and Qm(1) = Qm

for 1 � m � M . For smaller 
 less arrivals occur on average and for 
 = 0 no arrivals occur at

all.

Let Xd denote the diagonal matrix with the same diagonal as the routing matrix X, and Xo

the o�-diagonal part of X , so Xd + Xo = X. In the transformed network process, the routing

probabilities X and �0 are replaced by

X(
) = Xd + 
Xo; �0(
) = 
�0 + (1� 
)(I �Xd)e:

The probability to go from queue s to queue t, with t 6= s, is multiplied by 
, and the remaining

probability mass is added to the probability to leave the network, so X(
)e + �0(
) = e for


 2 [0; 1] and X(1) = X , �0(1) = �0. For smaller 
, the customers on average visit less queues,

because after each service completion they leave the network with higher probability. For 
 = 0,

customers only visit a single station, possibly several times.

The arrival rates at the queues from outside the network are equal to

�(
) =
MX

m=1


rmbm�
TAme;



8

where � is the steady-state distribution of the Markov process underlying the MMAP, which can

be calculated from ( �A�AT )� = 0;eT � = 1. The arrival rates both from outside the network and

from the other queues are equal to

�(
) =
h
I �XT (
)

i�1
�(
) =

(
1X
r=0


r
h
(I �Xd)

�1XT
o

ir)
(I �Xd)

�1�(
):

This power series converges and since it has only non-negative coe�cients, �(
) is increasing in


: for larger 
 there are more arrivals and customers leave the network less often. The service

process at each queue does not depend on 
. From this it is easily seen that if the original

network is stable, the transformed network is also stable for all 
 in [0,1], and the steady-state

probabilities are, up to a constant, uniquely determined by the balance equations. These can be

rearranged into(hh
�A �AT

ii
0
+

SP
s=1

hh
�Bs(ns)�BT

s0(ns)� �ssB
T
s1(ns)

ii
s

)
P
(n)

=
MP
m=1


rm
hh
AT
m

ii
0

fP
(n� bm)� P
(n)g

+
SP
s=1

SP
t = 1
t 6= s


�st

hh
BT
s1(ns + 1)

ii
s
fP
(n+ es � et)� P
(n + es)g

+
SP
s=1

(1� �ss)
hh
BT
s1(ns + 1)

ii
s

P
(n + es);

(1)

for n 2 INS. Clearly, the steady-state probabilities are functions of 
. Because arrivals of batches

of size r have a rate that is O(
r), for 
 # 0, the steady-state probabilities satisfy

P
(n) = O
�

jnj

�
; for 
 # 0;n 2 INS: (2)

Notice that, for 
 = 0, only the empty states have non-zero probability, because there are depar-

tures from the network but no arrivals. In a future paper several statements about convergence

and analyticity in the present paper will be proved for a much wider class of Markov processes,

among others that the steady-state probabilities are analytic functions of 
, in a neighbourhood

of 
 = 0, so they can be represented by their power-series expansions:

P
(n) =
1X

r=jnj


rUr(n); for n 2 INs: (3)

The transformed network process is such that the coe�cient vectors Ur(n) of these power-series

expansions can be calculated recursively by the PSA. This will be shown �rst for the empty states,

and then for the non-empty states.

The process underlying the MMAP is not in
uenced by the queue-length and the service

processes. Summing the steady-state probabilities of the network over all possible queue lengths
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and states of the service processes must therefore render the steady-state distribution of the

arrival process: h
IJ0 
 eT

i X
n2INS

P
(n) = �;

where e is a vector of ones with size J1 � : : :� JS . When the network is empty, the states of the

service processes at the queues are distributed according to the initial distributions �s:

P
(0) =
h
IJ0 
 eT

i
P
(0)
 �;

where � = �1 
 : : :
 �S . Combining both renders

P
(0) =

8<
:� �

h
IJ0 
 eT

i X
n>0

P
(n)

9=
;
 �:

Inserting the power-series expansions (??) and equating the coe�cients of corresponding powers

of 
 on either side of the equality sign shows that the coe�cients of the expansions of the empty

states P
(0) satisfy

U0(0) = � 
 �;

Ur(0) = �

(h
IJ0 
 eT

i P
0<jnj�r

Ur(n)

)

 �; for r � 1:

(4)

Notice that eTU0(0) = 1, so for 
 = 0 all probability mass is at the empty states.

Inserting the power-series expansions (??) into the balance equations (??) and equating

the coe�cients of corresponding powers of 
 on either side of the equality sign, shows that the

coe�cients of the power-series expansions of the non-empty states satisfy the following recurrence

relations:(hh
�A�AT

ii
0
+

SP
s=1

hh
�Bs(ns)�BT

s0(ns)� �ssB
T
s1(ns)

ii
s

)
Ur(n)

=
MP
m=1

hh
AT
m

ii
0

fUr�rm(n � bm)� Ur�rm(n)g

+
SP
s=1

SP
t = 1
t 6= s

�st

hh
BT
s1(ns + 1)

ii
s
fUr�1(n+ es � et)� Ur�1(n+ es)g

+
SP
s=1

(1� �ss)
hh
BT
s1(ns + 1)

ii
s

Ur(n + es);

(5)

for n 2 INS; r � jnj. The matrix in the left-hand side,

hh
�A�AT

ii
0
+

SX
s=1

hh
�Bs(ns)�BT

s0(ns)� �ssB
T
s1(ns)

ii
s
;

is invertible for all n 2 INS
nf0g. The coe�cients U~r(~n) in the right-hand side either have ~r < r

or have ~r = r and j~nj > jnj. All coe�cients U~r(~n) with j~nj > ~r are zero because of the order
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property (??). Together, this implies that the coe�cients of the expansions of the steady-state

probabilities up to the R-th power of 
 can be calculated recursively, for increasing values of r

and, for each �xed r, for decreasing values of jnj, starting with jnj = r:

Power-Series Algorithm

Calculate U0;0 from (??)

for r = 1; : : : ;R do

for N = r; : : : ; 1 do

for all n 2 INS with jnj = N do

Calculate Ur(n) from (??)

Calculate Ur(0) from (??)

Usually one is not so much interested in the steady-state probabilities, but more in moments of

the process. The expansions of moments can be obtained from the expansions of the steady-state

probabilities:

lim
t!1

E
 ff(N t;It)g =
X

(n;i)2�


f(n; i)P
i(n) =
1X
r=0


r
X

(n;i)2�
: eTn�r

f (n; i)Uri(n);

for functions f : �
! IR. Examples are

f (n; i) = jnj, the expected total number of customers in the network,

f (n; i) = nts, the t-th moment of the queue length at queue s,

f (n; i) = nsnt, the cross-product of the queue lengths at queues s and t.

The storage requirements of the algorithm can be substantially reduced if the maximal batch

size �r = supmrm is �nite. From (??) it can be seen that in step r of the algorithm, coe�cients

U~r(~n) with ~r < r � �r are then no longer needed to calculated the remaining coe�cients.

The MSP at queue s depends only on the queue length at queue s. The state dependence

could be made more general, not only for the service processes but also for the arrival and routing

processes. The state dependence of the service and routing processes must be such that, for 
 = 0,

all non-empty states of the transformed network process are transient, so eventually the empty

states are reached. Then the service processes must be stopped and the distribution � over

the service-phases must be known (but � need not be the Kronecker product �1 
 : : : 
 �S).

The Markov process underlying the MMAP must be state independent to calculate �, but the

probability matrices Qm can be state dependent. This way, the coe�cients of the empty states

can still be calculated from (??) and the coe�cients of the non-empty states can be calculated

from (??) if the parameters are replaced by the state dependent parameters.

Suppose that by the algorithm described above, for either probabilities or moments, the

coe�cients fvr; 0 � r � Rg are obtained. To compute these �rst R coe�cients the number of

coe�cients of the state probabilities that need to be calculated is

#
�
(r;n; i) 2 IN � �
 j jnj � r � R

	
= I �

 
R+ S + 1

S + 1

!
:
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Because this number grows fast in R, it will be obvious that it is worthwhile to obtain as much

information from the coe�cients fvr; 0 � r � Rg as possible. That is why techniques to make

series converge or converge faster form an essential part of the PSA. The epsilon algorithm and

bilinear mapping will shortly be discussed. For a more thorough discussion, see [?]. De�ne the

partial and in�nite sum

VR(
) =
RX
r=0


rvr; V (
) = lim
R!1

VR(
):

Since for 
 = 1 the transformed network is equal to the original network, one is interested in

V (1). The radius of convergence of V (
) is always strictly positive but can be arbitrarily small,

so V (1) need not converge. One way to obtain convergence is by the epsilon algorithm, which

is an e�cient and stable way to calculate Pad�e-approximants. Pad�e-approximants replace the

partial sum VR(
) by a quotient of partial sums V 1
S (
) and V 2

R�S(
), in such a way that they

coincide in all �rst R coe�cients:

VR(
) =

P
0�r�S


rv1rP
0�r�R�S


rv2r
+ O(
R+1); for 
 # 0:

This way, singularities of V (
) can be included in the denominator. The epsilon algorithm usually

improves the speed of convergence considerably, as can be seen from the examples in section 4.

Another way to remedy singularities is by using the bilinear conformal mapping

�(
) =
(1 + G)


1 + G

; 
(�) =

�

1 + G(1� �)
; for G � 0:

This mapping maps the unit interval [0,1] onto itself and for G!1 it maps the disk j
� 1
2
j �

1
2

onto the unit disk. If V (
) has no singularities in j
� 1
2
j �

1
2
, this mapping can be used to map

all singularities outside the unit disk, to make the power-series expansions converge at 
 = � = 1.

If V (
) is analytic at 
 = 0, the power-series expansion in � is

V (
(�)) =
X
r�0

[
(�)]rvr =
X
r�0

�rwr;

where
w0 = v0;

wr =
�

G
1+G

�r rP
s=1

�
r�1
s�1

�
vs
Gs
; for r � 1:

Instead of calculating the coe�cients of the expansion in � from the expansion in 
, they can also

be calculated directly. An advantage of direct calculation is that the sequence fvr; r � 0g grows

faster in r than the sequence fwr; r � 0g, so calculation of fwr; r � 0g will normally be more

stable. Because the mapping is conformal and maps 0 onto 0, the steady-state probabilities as a
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function of � also satisfy the order property. Moreover, the P�(n) are analytic in �, so they can

be represented by their power-series expansions

P�(n) =
X
r�jnj

�rWr(n); for n 2 INS:

As before, the coe�cients of the empty states Wr(0); r � 0, satisfy (??). Because the mapping

is a quotient of �nite polynomials, the coe�cients can still be calculated by a linear recursive

algorithm. Assume that �r = supmrm is �nite. Replacing 
 by 
(�) in the balance equations (??),

multiplying both sides by [1 + G(1 � �)]�r, and equating coe�cients of corresponding powers of

� renders the new recursive equations for the non-empty states. The mapping was not used in

the examples in section 4, because the power series were regular enough to obtain convergence

by means of only the epsilon algorithm.

4 Examples

The examples in sections 4.1 and 4.2 consider the optimal order of queues in series and the

dependence on higher moments of the service-time distributions of the total number of customers

in cyclic networks.

4.1 Optimal Order
- j- j-

An important design problem in queueing theory is how, for a given arrival process and service-

time distributions, the queues should be ordered in series, such that the mean sojourn time of

customers is minimized, or equivalently the mean queue length. Exact analysis is in general

very di�cult, even for 2 queues. Whitt [?] proposes a heuristic based on the approximation

of the departure process of each queue by a renewal process, characterized by the �rst two

moments of the renewal interval. Greenberg and Wol� [?] proposed a heuristic based on light

tra�c behaviour and gave some examples where both heuristics did not give the same solution.

They warned that extreme caution must be used in applying approximations to develop design

procedures and stated that a heuristic based only on mean and squared coe�cient of variation

cannot be expected to work well. However, they did not indicate how large the di�erence in

performance of both suggested solutions would be.

Consider the following model. According to a Poisson process with rate �, customers arrive

to obtain service from two servers. Both servers have an Erlang(2) service-time distribution, one

with mean 1 and the other with mean 4. Should the customers �rst visit the fast or the slow

server and does the optimal order depend on the arrival rate � ? According to Whitt the optimal

order is to visit the fast server �rst; Greenberg and Wol� suggest that, in light tra�c, the slower

server should be visited �rst. In the table below, the expected total number of customers is

shown for both orders and di�erent loads. The indicated load is the load of the slower server and

corresponds to arrival rates 0.4, 1.2, 2.0, 2.8 and 3.6.
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�1; �2 � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:9

1, 4 0.1337 0.4745 1.009 2.118 7.231

4, 1 0.1335 0.4734 1.005 2.111 7.218

To visit the slower server �rst is better in all cases, but clearly the di�erence is negligible. Nu-

merical experiments indicate that visiting the slower server �rst is still slightly better when the

exponential interarrival times are replaced by Erlang or hyperexponential distributions or when

the means of the service-time distributions are taken further apart (but with equal coe�cient of

variation).

Convergence of the power series was slowest for the model with � = 0:9 and the fast server

�rst. In the table below the original series and the series after applying the epsilon algorithm are

shown.

R 1 5 10 20 40 60

VR(1) 0.2250 1.766 3.245 4.877 6.410 6.945

�[VR(1)] 0.2250 1.766 7.362 7.232 7.231 7.231

The original series seems to converge monotonically, but after applying the epsilon algorithm,

convergence is much faster. In general, convergence is slower if the load of the original network

is higher and the parameters of the model are more extreme. For example, hyperexponential

distributions result in slower convergence than Erlang distributions.

4.2 Insensitivity for Higher Moments

j j j

? ? ?

- - -�



�
	

?? ?
A
AAU

A
AAU

A
AAU

Consider the following model. Customers arrive according to a process

that is a mixture of independent identical Poisson arrival processes

and fork arrivals. The independent Poisson processes have rate �1,

the simultaneous fork arrivals have exponential interarrival times with

rate �2:

I = 1; �11 = S�1 + �2;

M = S + 1; bm = em (1 � m � S); bS+1 = e;

q0;1;1 = 0; qm;1;1 =
�1

S�1+�2
(1 � m � S); qS+1;1;1 =

�2
S�1+�2

:

The routing is such that, after service completion at a queue, customers either leave the network

with probability p, or go to the next queue with probability 1� p:

�st =

8>><
>>:

p t = 0;

1� p t = s mod S + 1;

0 otherwise.

Depending on the coe�cient of variation, the service-time distributions at the di�erent queues

are either Erlang or hyper-exponential with balanced means. In the table below, the probability

of an empty network and the mean queue lengths are given for four di�erent models with 3
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queues, �1 = �2 = 0:09; p = 0:2 and �1 = �2 = �3 = 1. This way, all queues have identical

load �1 = �2 = �3 = 0:9. The di�erence between the four models is in the variance �2s of the

service-time distributions at the queues.

�21; �
2
2; �

2
3 PrfN = 0g E fN1g E fN2g E fN3g E fjN jg

1; 1; 1 0.0033 10.28 10.28 10.28 30.84

2; 1
2
; 1
2

0.0038 12.95 9.928 7.760 30.63

11
2
; 1; 1

2
0.0035 11.39 10.97 8.426 30.78

1

2
; 1; 11

2
0.0035 9.141 9.701 11.95 30.79

The convergence of the power series of E fjN jg in the second model was poorest:

R 1 5 10 20 40 60

VR(1) 0.2700 2.007 4.326 8.387 14.79 19.37

�[VR(1)] 0.2700 -0.2523 0.1951 32.41 30.59 30.63

Again, both series seem to converge, but more coe�cients need to be calculated to stabilize than

in section 4.1.

It can be seen that the mean queue length of each queue is increasing in the variance of the

service-time distribution of both the queue itself and the preceding queue. From the last column

it can be seen that the expected total number of customers in the network is approximately equal

for all four models. For p = 1, this follows immediately from the Pollaczek-Khintchine formula,

because then all queues are M/G/1 queues with identical load and mean service time, so:

E fjN jg = S�1 +
�21

2(1� �1)

 
1 +

1

�21

SX
s=1

�2s

!
:

The variances of the service-time distributions are chosen, such that their sum is equal to 3 for all

four models. Numerical experiments indicate that the property that the mean total queue length

is mainly determined by the sum of the variances also holds for more general models, namely for

networks with a symmetric arrival process, cyclic routing and equal loads at the di�erent queues.

Here, symmetric means that I and A can be arbitrary, but if bm is a possible arrival, then each

permutation b ~m of bm is also a possible arrival and Qm = Q ~m (more intuitively, that at each

arrival of a batch, an arrival of any permutation of this batch would have been equally likely). A

cyclic routing matrix X is a matrix such that

�s;t = �
s mod S+1;t mod S+1

; for 1 � s; t � S:

If the arrival process is symmetric and the routing cyclic, then the loads at the queues are iden-

tical if the mean service times are identical. For such networks the following hypothesis can be

formulated:
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For networks of ./G/1 queues, with a symmetric arrival process, cyclic routing and equal

loads at all queues, the expected total number of customers in the network is mainly deter-

mined by the sum of the variances of the service-time distributions, and not so much by

their shapes.

Of course such a hypothesis could never be proved by the PSA, but it can be used to evaluate

various 'randomly' chosen models and models that are likely to be counter-examples.

5 Conclusions

A method was proposed to analyze a wide class of Markovian queueing networks. Because of the

'curse of dimensionality', the size of the networks must necessarily be moderate. Networks of up

to 4 or 5 queues can be analyzed if the algorithm is programmed carefully, methods to improve the

convergence of power series are employed and the parameters of the model are not too extreme.

With a good user interface to determine the parameters for a particular model, the Power-Series

Algorithm provides a means to easily evaluate many di�erent models. Therefore, it can be an

aid for studying the interaction between queues and for testing and developing approximations

of performance measures and heuristics.
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