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1. Intcoduction

The rolE~ of exogeneity as a fundamental concept in econometrics seems well
established by now. Ever since the early fifties [see e.g. Koopmans
(1950), Orcutt (195z). and Marschak (1953)] it has received considerable
attention from the econometrics profession, which became aware of the
necessarily ubiquitous nature of exogeneity assumptions in empirical work.
These largely intuitive notions were formalized and clearly defined in the
seminal paper by Engle et al. (1983), henceforth denoted by EHR, based on
the statistical concept of classical cut as described in Barndorff-Nielsen
(1978). A number of formal statistical tools prove extremely useful for
defining exogeneity in EHR, whb provide an extensive application to dyna-
mic simultaneous equation models.

E;conometric practice, however, is more and more inspired by microeconomic
theory, leading to models with usually more than one observational dimen-
sion and somewhat different structures than the pure time-series examples
found in EHR. Apart from the rapidly growing use of such micro models,
they can, in some cases, lead to direct economic interpretations of sta-
tistical properties like exogeneity, as is briefly mentioned in Section 6.
Therefore, we shall explicitly extend the framework used in ElíR to cover
such models, focusing in particular on error-components end spatisl auto-
regression models. A second major difference with EHR is the essentially
Dayesian character of the exposition, drawing on a strong statistical
LrHditlon in Bayesian cuts end reduction of Bayesian experiments, deve-
loped in a series of papera by Florens and Mouchart, henceforth denoted by
FM (1977. 1980a, 1980b, 1982, 1985). We distinguish four different types
of Dayesian cuts, depending on the model and the time period for which
they are defined, which leads to somewhat weaker exogeneity conditions
than found in EHR. It also provides a natural framework for the treatment
of models outside the time-series domain.

Note that the use of the conditional model as opposed to the joint one has
important advantages, both from the point of view of simplicity of presen-
tation and computation, and also for the sake of robustness with respect
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to misspecifications of the marginal process. In addition, the actual
modelling of this marginal process may be problematic, in practice, due to
the absence of relevant economic theories (just think of prices, interest
rates, income varíables, etc.). The intuitive content of weak exoReneity
is the same as in EHR, namely a set of conditions sufficient for conduc-
ting inference on the parameters of interest using only the conditional
model.
The formal definition, however, is different from the one adopted in giR
in two respects (apart from the Bayesian versus classical background). Our
definition dces not necessarily hold for each period in time, only for the
sample period observed, and -is weaker in that sense. In addition, the
definition used here applies to both sequential models (as in EHR) and to
joint or initial models (to be defined in Subsection 2.2), and is broader
than its EHR counterpart in that sense.
In view of the "predictivist" tendencies in Bayesian econometrics [see
e.g. Poirier (1988)], strengthened by de Finetti's (19~4, 1975) represen-
tation theorem, we define a concept of predictive exoE[eneitv as a set of
sufficient conditions that validate forecasting solely on the basis of the
conditional model and the posterior density of its parameters. Parameters
of interest do not appear in this definition, which clearly illustrates
that we can still validly predict with the conditional model, even though
our (structural) paremeters of interest can not be recovered from it.
We then define s third type of exogeneity that validates both inference
and forecasting conditionally on a subset of the variables, as the union
of both weak end predictive exogeneity. The result of combining these sets
of conditions is called stronR exogeneitv, as it has the same intuitive
meaning as its namesake in EEíR, but its formal definition is, of course,
different: again, it is both weaker (not for sll time periods) and broader
(for sequential and initiel models).
Thus, our three definitions require rather weak conditions and are direct-
ly suited for the treatment of models pooling time-series end cross-sec-
tion data. Also, particular attention is paid to the issue of prediction,
to which we devote a special type of exogeneity, quite distinct from the
property of noncausality, used in EHR to extend weak to strong exogeneity,
and which has no exogeneity message in itself.
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In ttre type of error-components and spatial models considered here it is
not uncommon (as opposed to current practice in time-series models) to
assume independence over time in the sampling process. In this special
cnse it is found that prior independence is enough for predictive exoge-
neity, whereas strong exogeneity holds if, in addition, the parameters of
interest can be deduced from those of the conditional model. Remark that
independence is also the only case where the ordering of the observations
becomes irrelevant and similar tools can be used over individuals as over
time. If, however, individuals are linked, these dependences are ususlly
not unidirectional, so that sequential concepts do not naturally apply. In
the examples of Section 5 we shall illustrate that such individual links
can often prevent a cut and destroy exogeneity.

The paper is organized in the following way: in Section 2 we discuss Baye-
sinn cuts and noncausality, whereas Sections 3 and 4 apply these concepts
to, respectively, the posterior and the predictive analysis, defining our
three types of exogeneity in the process. Section 5 contains four exam-
ples, two of which are directly taken from the literature: the stochastic
prodirction function analysed in Zellner et al. (1966), and a model descri-
bing schooling, occupation, and income with unobserved individual effects
found in Chamberlain and Griliches (1975). The final section groups some
conclusions.

The notation used is kept in close correspondence with the conventions
adopted in F.IIR and in the FM papers, whereas for density functions we
refer the reader to Appendix A in Drèze and Richard (1983). The basic
statistical tools for the reduction oF Bayesian experiments are condi-
tional independence, measurable separability, and strong identlfication,
which are discussed in detail in Mouchart and Rolin (1984). Here only the
first of these concepts is used extensively (the second one is briefly
mentíoned in Subsections 2.3 and 4.3) and the emphasis is not on statisti-
cal rigour (for this we refer to the paper by FM), but rather on the
application to econometric models, so that proofs are often only sketched.
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2. Bayesian Cuts

2.1. Preliminaries

In order to define and discuss the various concepts of cut and noncausal-
ity that we shall use in this paper, we first establish some notational
conventions. As we noted in the introduction, we shall focus upon models
with two observational dimensions, one of which we ahall usually call
"time", denoted by an index t- 1,...,T, whereas the other observational
dimension will be assumed to be over "individuals" i- 1,...,N. Although
this nomenclature is not crucial at all, since we can easily think of
other names for the observational dimensions,l) there is an important
difference between both dimensions as a well-defined natural ordering
exists in time, but usually not over individuals. This, of course, implies
that both indices are not generally interchangeable, except in special
cases of independence between observations. Therefore, we shall require
different types of cuts for different observational dimensions. Such defi-
nitions already exist in the statistical literature, e.g. in FM (198oa,b;
1985), which we shall simply ádapt for our purposes and state with brief
comments in this section.

Let us assume that we possess observations on m variables for N indivi-
duals at each time period t, i.e. we are implicitly restricting both m and
N to be constant over time, without, however, preventing things like rota-
ting samples in panel data. We group the observations at time t in an mN-
dimensional vector xt, ordered as
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"Nt)

x(m)Nt

(2.1)

where superscripts in parentheses denote the different variables observed.
The time index t runs from 1 to T for the sample and from T.1 to T.s if we
wish to forecast s periods ahead. In line with the notation in EHR, let us
define the matrix

rXt -(xr...xt)' for r s t, (2.2)

which implies Xt E R(t-r'1)xmN, and denote the full information set avail-
ahle at time t by

XO
Xt-1 - 1

Xt-1
(2.3)

where XO is e matrix of possibly infinite dimension describing all initial
~onditions relevent to the process. As discussed in Richard (1979) and
Engle et el. (1980), their treatment can be rather difficult, but, for our
present purposes we shall consider them given, líke in EHR.
Next, we partition xt into

(2.4)

with yt -(xtl)~...xtp)~)' containing the first p variables and zt -
,(xtp 1...xLm)~)' grouping the last q variables ( ptq - m), and confor-

mably, vt,
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Xt - (Yt Zt) - f~Y~l~Z~l .
L J J ~ (2.5)

IC is obvious from the above that a pure time-series framework as in EHR
corresponds to N-1, whereas a strictly cross-section analysis implies that
T-1.

Although much of the statistical literature was written in terms of condi-
tional independence among o-fields, we shall, for expository purposes,
remain in the less general framework of probability densities [indicated
by D(.~.)], as this is much closer to the existing econometrics tradition.
Conditional independence of random variables, say, d and e, given g, is
denoted by d 1 e~g.

2.2. Cuts and NoncausalitY--Definitions--------------------

As noted in the previous subsection, the entire analysis will be conducted
conditionally on the initial conditions X~, so that our joint data density
becomes

D(~CÍ.~X~.S). (2.6)

where B E 6 denotes e vector of parameters. The model in (2.6) is called
an "initisl model" in F'M (1985) and it serves to define the concept of
initial cut. We shall also define a global cut on (2.6), a terminology
found in F7~! (1980a).
If we concentrate on the factorization of (2.6) into a product of "sequen-
tiel models":

T
D(XTIXD.e) - R D(xtlXt-l.s).t-1

(2.7)

it is natural to define seguentiel and one-shot cuts, again based on the
FM terminology.
In a Bayesian framework we wish to treat both observations and parameters
in a symmetric way and, therefore, extend the sampling theory model in



(2.6) or (2.~) with a so-called prior probability on the parameter space
~, denoted by D(B~XQ) as it may very well depend on the initial conditions
(which can e.g. include a previous sample). The Bayesian model then be-
CUIqCS

D(~..s~xo) - D(~,Ixo.s)D(B~xo). (2.8)

from which both posterior densities D(B~XT) and predictive densities
1D(XT~X~) can be derived, as well as their reductions obtained by marginal-

izing and conditioning.
To complete our description of the model in (2.8), we can consider any
onc-to-one transformation or reparameterization from 8 to some parameter
vector a E A, if the latter is more appropriate for our purposes at hand.

Let us now focus on the concept of cut. In general, a cut is defined in
terms of a factorization of the likelihood function of x into a conditio-
nal process of y given z, for which b- b(a) E B is a sufficient paremeter
vector, and a marginal process describing z, which has c- c(a) E C as a
sufficient parameterization. In the absence of links between b and c, we
can then limit ourselves to only the conditional process for the purpose
oF conducting inference on b. This is exactly the formalization of the
intuitive exogeneity concept which was given in EfiR and which led to their
definition of weak exogeneity.
In a Dayesian analysis, the absence of links between b and c has a very
natural and direct interpretation in terms of prior independence, which,
of course, implies "equivalence" of D(b,c~X~) and D(b~X~).D(c~XO) [i.e.
the joint prior distribution has the same null sets as the product of the
marginal distributions; see Florens et al. (198~)], which, in its turn,
implíes the classical concept of "variation free"-ness. The latter concept
was used in EFiR, but seems, at least to the present authors, e much less
natural requirement than prior independence,2) which also explicitly
allows for stochastic links between both sets of parameters and is often
very easy to check (however, see footnote 6).
A Bayesian cut is thus charactecized by both a factorization of the
likelihood function and prior independence between the parameters in both
processes, which implies a total separation of both types of information
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nnd naturally leads to posterior independence, so that for inference on b
we do not have to specify the marginal process with parameters c, nor the
prior distribution of c.

Depending upon the situation at hand, we can either focus on initial [see
(2.6)] or sequential [see (2.7)] models, and we also distinguish between
cuts that hold for all time periods or just for one. This classification
gives us four possible cuts, which are formally defined in Table 1.

Table 1. Types of Bayesian Cuts'

applies to:
holds for:

sequential model
(Z,~)

initial model
(2.6)

sequential cut initial cut
b 1 c~XO b 1 c~XO

all t 2 1 g 1 zt~c.Xt-1 8 1 , 'Ic'XI O

a 1 xtlb'zt'Xt-1 a 1~I'~b.~.XC

one-shot cut global cut
(over individuals) (t-T)

b 1 clXt-1 b 1 c~XO
one t a j zt~c'Xt-1 a 1~f~c'XO

a 1 xtlb'zt'Xt-1
1 1

a 1 X.I'~b'Z1"XO

The situations and models in which each of these four cuts is most appro-
priate will be discussed ín Subsection 3.3.

Finally, we define the concept of noncausality,3) a version of which was
used in EtiR to characterize "strong exogeneity". We say that y does not
cause z given v if and only if vt 2 1

(Z-9)
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which, basically, states that the past of y does not inFluence the mar-
ginnl process of z, once we know the past of z, the initial conditions,
and the parameters in v. Note that EHR use the special case of (2.9) where
v-a, which is called Granger noncausality.

2.j. Connections Between Cuts------------------------

If we know how the four Bayesian cuts of the previous subsection are in-
terrelated, we might use this to our advantage both in understanding and
in applying the theory.

FM (1980a) show that the relations between sequential and initiel cuts can
be described in terms of noncausality. In particular, they prove that
(i) a sequential cut and noncausality given c is exactly equivalent to
(ii) an initial cut and noncausality given a(i.e. Granger noncausality).

Using the posterior independence of b snd c for any Bayesian cut [FM
(1985), Theorem 2.8] we can prove that a sequential cut implies a one-shot
cut over individuals (vt), whereas the converse holds by definition if we
have the one-shot cut for all t.
Similarly, an initiel cut implies s global cut, end is only equivalent to
it if the global cut holds For all sample periods T.

To summarize, we can identify the following relationships:

~ noncausality
sequential cut ~ initial cut

given c given s

! j each t 1 t each T
one-shot cut global cut

Clearly, if we are in a pure cross-section framework (t-T-1), the concept
of no~icausality, which is specifically time-oriented, becomes vecuous, and
all cuts coincide, which can be seen directly from the definitions in
Table 1.
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Note that a sequential cut and Granger noncausality do not generally lead
to an initial cut, i.e. to separation into data densities. The latter
separation is of interest as it greatly facilitates prediction (discussed
here in Subsection 4), which formed the object of the definition of strong
exogeneity in EfiR. FM (1980a) show that such a separation is then achieved
under the additional condition of ineasurable separability, a rather tech-
nical requirement which, roughly, says there should be no information "in
common" between the parameter set a and Xt, given (c,Zt,XO). Florens et
el. (1987) stress that this is a very weak condition indeed, as it is
always verified under equivalence of probabilities (in other words, when
the joint distribution has the same null sets as the product of the mar-
ginal distributions).



3. Posterior Analysis: Weak ExoReneitY

3.1. Posterior Inference-------------------

In Subsection 2.2 we introduced the full Bayesian model (2.8), from which
the posterior distribution is simply obtained by conditioning on the ob-
served sample, giving

D(9~x1.) ~ D(x,ij,IXO.a)D(81x0). (3.1)

If tliere exists some reparameterization from 9 to a-(b,c) which operates
a Bayesian cut, then b and c are independent a posteriori and any poste-
rior inference on b or some function thereof can be conducted solely on
the basis of the conditional process and the prior distribution of b.

In particular, under a lobal cut for a given sample period T, we obtain

D(b~)C,I,) a D(YT~~..XD.b)D(bIXD). (3,2)

which clearly shows that there is no need to use the full data density
D(3C~,~3(~.a), nor the joint prior density D(a~X~) for the purpose of in-
ference on b(or any function of b).
An initial cut will give us (3.2) for any T 2 1, by definition.

In the sequentiel model, the weaker condition that does the job is to have
a one-shot cut over individuals at each t E[1,T), which implies

T
D(b~)C,I,) a R D(Yt~zt.xt-l~b)D(b~XO).

t-1 (3.3)

whereas the strongec condition is e sequential cut, leading to a complete
separation of information for all sample periods T x 1.

This explains the crucial role of Bayesian cuts in any discussion of con-
ducting inference based on a reduction oF the joint model, although cuts
are not strictly necessary as is stressed in the discussion of "mutuel
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exogeneity" in FM (1985). Such ideas were already present in FM (1977) and
cuts were also used in EFffi, albeit in a classical fremework. The next
subsection will address the isaue in more detail.

3.2. A-Description-of-Weak-Exogeneity

We shall adhere to the terminology of EEQi in using the name "weak exoge-
neity" for the concept that validates inference based solely on the condi-
tional model, without taking the marginal model in consideration. Obvious-
ly, it then becomes s crucial issue what exactly we want to learn from
this conditional model, which leads EHR to introduce the concept of para-
meters of interest as those parameters that have a specific meaning. The
latter may e.g. be derived from economic theory in which case inference on
them may constitute evidence in favour of or against certain theories
concerning the outaide world. An alternative source of interest might be
their relative stability in changing environments, a vital requirement for
conducting "out-of-sample" policy simulations and predictions.
Combining the issue of parameters of interest, say Y' - f(a), with a com-
plete separation of prior and sample information, i.e. a Bayesian cut, we
are led to the following definition of weak exogeneity in our Bayesian
framework, where we define z to be the relevant set of observations, i.e.
zt in the sequentiel model (2.7) and Zt in the initial model (2.6).

Definition 1: z is weakly exogenous over the given sample period [1,T] for
`Y if and only if there exists a reparameterization from 9 to a-(b,c)
such that
(i) a one-ahot cut over individuals holds for each t E[1,T] or a global

cut holds (for t-T).
(ii) Y' - f(b).

Condition (ii) makes sure that we can infer about the paremeters of in-
terest from the paremeterization of the conditional model onlY, whereas
condition (i) gives us the required separation of information between the
conditional and marginal processea.
If we strengthen (i) to a sequentiel or initial cut, combined with (ii),
then z is weakly exogenous for Y' for a~ sample period, like in EHR.
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However, if all we want is valid inference on Y~ from the conditional model
over the fixed sample period [1,T], conditions (i) and (ii) are suffi-
cient.
Finally, note that if we wish to consíder subperiods of [1,T], e.g. for
parameter stability tests, we can still validly use the conditional model
undec a one-shot cut for each t E[1,T], but not under a global cut for T.
In the latter case, an ínitial cut seems more appropriate.

Note, finally, that, as mentioned in EHR, a cut is not necessary for
obtaining full efficiency from the conditional model, as e.g. we can have
prior independence between Y' snd c, but not between b and c, yet in some
cases no loss of information may occur.
Even in the case where we are interested in Lhe entire parameter set b, a
Bayesian cut is not strictly necessary, as is clearly stated e.g. in FM
(198i), where Lhe concept of "mutual exogeneity", introduced in FM (19~7),
is used, which is weaker than a Bayesian cut, but validates inference for
functions of b on the basis of the conditional model. Unfortunately, it
depends on the specific form of the prior density D(c~b,XO),whereas a cut
is much more robust with respect to the prior structure, as it only requi-
res prior independence of b and c.
1'herefore, we prefer to use the stronger concept of Bayesian cut, as in
EHR.

Let us stress, however, that the notions of cut and weak exogeneity used
here are not necessary, but only sufficient for our purposes of valid
inference based on the conditional model alone.

3.3. Which Cut for Which Model?--------------------------

The definition of woak exogeneity given in the previous subsection was
based on four different types of Bayesian cuts. This subsection will in-
vestigate which type of cut is called for in a number of different situ-
ations.

Pure time-series data {i-N-1) have a natural ordering in which information
is accumulated, and, thus, a se4uential cut seems most appropriate here.
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Cross-section data (t-T-1) lack such a natural ordering of observations
and if observations are dependent, this is usually not in a unidirectional
way. We are then led to consider a one-shot cut over the sample size N.

Time-series of cross-sections or, more generally, models with two observa-
tional dimensions are the focus of this paper. Here we can use a sequen-
tial cut over time, a one-shot cut over individuals or a~lobal cut--only,
depending on the structure-of-our model.
If we have independence over time, i.e. the following holds

~(xt~Xt-l.a) - D(xt~a). vt. (3.4)

then under the additional conditions:4)

o(xtla) - n(ytlZt.b)~(Ztl~). dt,

D(a~Xp) - D(bIX~)D(c~XC~.

we obtain both

(3.5)

(3.6)

(i) an initial cut and noncausality given a, and (since it is equivalent,
see Subsection 2.3)

(ii) a sequential cut and noncausality given c.

This gives us separation into sample densities and validates (provided Y' -
f(b)) both inference from the conditional model and its use for forecas-
tinó (see Section 4). Interestingly, under independence the (time) orde-
ring becomes irrelevant and we can simply use the saee approach for models
with independence over individuals (just interchange the meaning oF the
indices).
Such en approach can be applied to e.g. the following models with two
error components:
- models with time effects and independence over time (see our example in
Subsection 5.2);

- models with individual effects and independence over individuals (see
our example in Subsection 5.4).
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In models with e time effect without independence over time, we should
]ook for a sequential cut, while for prediction purposes we then still
have to check noncausality given c, as will be discussed in Section 4. In
other cases, like models with three error components, only a global cut
can be examined.
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4. Predictive Malysis and StronR Exogeneity

4.1. Forecastin~-and-Predictive Exo~eneit~

Let us first consider forecasting over time, whereas we shall briefly
mention forecasting over individuals at the end of this section.
We are basically interested in "conditional forecasting", i.e. forecasting
certain values for the variables we condition on and then use the condi-
tional model for predicting future values of the other variables.

Specifically, if we wish to forecast s periods ahead (over all N indivi-
duals for each period), we start from the following Bayesian model in
terms of the original parameterization 9

D(~,s.B~Xp) - D(Xftg~7(Z..B)D(?c,j~X~.B)D(9IX0).
(4.1)

where D 1()C,1,IXD,B) and D(B~XD) have already been introduced in Subsection2.2 as the sample data density and the prior density, respectively. Thepost-sample predictive density is then obtained by weighting the otherfactor in (4.1) using the posterior density

D(~C1.4g~X1.) - .f D(~ig~~CI..B)D(8~~C1.)d8.
e (4.z)

Using a partitioning similar to (2.5) we are now really interested in the
conditional ~redictive density

T.1
D(YT.1 T41 D(~~s~X.l.)

T4sl~rs,~) - f ( XT}1~X )dYTtl ' (4-3)
D T~s T T.S

where the last integration ia over the "forecasting" sample space of YT~s.This density ( 4.3) can be obtained without considering the marginal pro-cess for TflZ.l,ts (i.e. for purposes of conditional forecasting) under the
following ( sufficient) conditions, which will define the concept of ~-
dictive exoE[eneítv:
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Definition 2: z is predictively exogenous over the forecasting period
[T.I,'I'a ] if and only if there exists a reparameterization From 9 to a~ -
(b,~,c„) such that

(i) b. 1 c.l~

(ii) a T.1. 1 ~,.,a I c.. xr

(iii) a T`1 b T~1
. 1 ~ts~ w.~ts.~

which, in terms of densities, implies that (4.3) becomes

D(YTf1I 7T~~tl )' J D(YT.1 T.1
b D b (4.4Tt5 ,i'rg'Z.i. B T~g~Z.j.ts.x7,. s) ( .IX.j.)dbw )

w

if bw E BM. This means that we can focus on the conditional part only, and
treat ZTts as if it were fixed. Treating XZ, as initial conditions for the
forecasting period, we can, of course, interpret (i)-(iii) as a global cut
for the period we want to predict.
1'he posterior independence between b~ and c~ [condition (i)] is implied by
any Dayesian cut over the observed sample period in this parameterization
(b,,,c~) [see FM (1985)]. but such a Hayesien cut is not strictly necess-
ary, as (i) is also satisfied under the weaker conditions of prior in-
dependence and "parameter unrelatedness" of b~ end c„ as in Basu (1977).
Remark that the posterior density of b~ is now not used for inference
purposes on Y' ( it just serves as a"weighting function"), and therefore
the issue of parameters of interest does not appear i n Definition 2.

4.2. StronB-5xo8eneitY

We have seen that the concept of predictive exogeneíty is sufficient for
purely predictive issues, which occur rather often in Bayesian analyses
[see e.g. Zellner (1971), Zellner and Hong (1988), Chib et al. (1988), and
Poirier (1988)]. If, however, we wish to combine both inferences on Y' on
the basis of the observed sample and prediction over some future period,
the conditions mentioned in Definition 2 are no longer sufficient. In
particular, we need to join the concepts of weak exogeneity for Y' over the
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observations and that of predictive exogeneity over the forecasting
period. The union of both sets of conditions under the same parameteriza-
tion (i.e. b- b„ and c- c„) will define stronQ exoReneitv. The equality
of parameterizations basically implies that we use the same parameteriza-
tion of the conditional model for both inference and prediction and seems
a practical requirement (although not a logical one!).

Definition 3: z is strongly exogenous for inference on Y' over the sample
period [1,T] and for prediction over [T.1,T4s] if and only if there exists
a reparameterization from 8 to a-(b,c) such that

(i) a one-shot cut over individuals holds for each t E[1,T] or a global
cut holds for the sample period (t-T)

(ii) `Y - f(b)

Ttl(iii) s 1 T.,j,is~c'~,

(i~) a 1 Kftg~b,ZT;s,XZ,.

Of course, condition (i ) of the present definition ensures also that con-
dition (i) of Definition 2, i.e. posterior independence, is satisfied and
its extension to s sequential or an initial cut again allows for valid
inference on Y' based on any sample period, i .e. for any T 2 1.

4.3. Cuts and Prediction-------------------

Some implications of sequentiel and initial cuts will be examined in the
prediction context.
One-shot end global cuta are, in principle, formulated for fust one time
period, so that these are not very natural concepts to consider for pre-
diction, unless we explicitly define the latter to hold over the forecas-
ting period (remember that predictive exogeneity can be interpreted as e
global cut for the forecasting period). Several considerations here are
well-known and documented in e.g. FM (1980b); however, we adapt them to
our particular framework.
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Consider first a seguential-cut and note thaT, this is sufficient for one-
perlud nhead forecasting [compare FT1 (lyAOb)J.

In other words, z is predictively exogenous over [T~1,T.1] ( s-1), since
(in terms of densities)

D(zT~llx.l,.a) - D(zT.ll T'c) (4.5)

D(Y.I.r1Iz.1.~1.X.l,.a) - D(Y.l.~l~zl.al,xl.,b)

and we have posterior independence

(4.6)

~(a~XT) - D(blx.L)D(c~x.l.). (4.7)

which corresponds to the conditions in Definition 2 for s-1. If, in addi-
tion, Y' - f(b) alone, then a sequential cut even gives us strong exogenei-
ty for inference on `Y based on [1,T] and prediction to period Ttl for any
T21.

If we wish to predict further ahead, a sequential cut by itself is not
enough; we shall also use the noncausality conditions that lead to the
equivalence of sequential end initial cuts (and thus to a separation into
data densities). We need, in particular, that the following holds

D(zT4S~x.I..a) - D(~~s~~Cl..c) - ,Rl D(zTt~~~.~-1'c) (4.8)

and

T.1 T.1 T.1 T~1 s X~D(YT.s~~.ts.x.l..a) ~ D(Y,1,ts~7.I.ts,x,l..b) - R D(YT~jIZT.~'-Tfj-l~b)jrl
(4.9)

which are both satisfied under noncausality given c, i.e. from (2.9) for
all t ~ 1:

D(Zt.l~xt.c) - D(Zt~l~zt,xo.c). (4.10)



zo

The proof of this assertion is simply obtained after writing out Lhe den-
sity for XT~S given X,I, and a.

Under an initial cut conditions (i) and (iíi) of Definition 2 can easily
be shown to hold for all pairs (T,s). We also obtain that

D(~~1~~.XG.e) - D(7T~1~~.XG.c)is Tis (4.11)

which implies that c is sufficient for ZT4S given its own past (and XG)
and this is not equivalent to (ii) in Definition 2. Let us now add the
condition of noncausality given a(Granger), which can also be written as
[see FM (1982)]

zm`1 j Yt~zt,xG,a,

implying for any pair (T,s)

D(~.,Slxz..a) - D(~,sl~.xG.a).

(4.iz)

(4.13)

which, combined with (4.11), shows that c is a sufficient parameterization
for the proces of ZT43 given the whole sample of observations XT, i.e.
condition (ii).
Thus, under an initial cut and Granger noncausality (i.e. given a) or,
equivalently, under a sequential cut combined with noncausality given c, z
is predictively exogenous for all pairs (T,s). This means we can focus on
the conditional model for prediction purposes based on any sample of ob-
servations and for any future period.
If, in addition, our paremeters of interest Y' are a function of b only, z
is strongly exogenous for any T 2 1 and for any s 2 1, validating also
inference on Y'. Remark that the extension to all future periods instead of
just a fixed s, as in the original Definition 3, is a direct consequence
of the noncausality conditions, combined with initial or sequential cuts,
of course, which, themselves, extend the atrong exogeneity concept to any
sample period T.



This, in our frnmework, strnngesC versinn uf stronq exoqeneity is in fact
Lhe dcfiniLion adopted in EHA, nlthough they use the combination of
sequential r.ut end Granger noncausality.
As briefly mentioned in Subsection 2.3, this is only equivalent to the
strong version of our definition if we make an additional assumption. FM
(1980a) introduce the very weak concept of ineasurable separability to
bridge this theoretical gap, and note that such a condítion often holds in
practice. In fact, the issue is so subtle that even Basu (1955) overlooked
it, until it was corrected by himself in Hasu (1958). It is, however, not
surpc-ising that EHR use the Granger concept as they operate in a sampling-
theory framework, i.e. without defining a measure over the parameter
space, so that everything is naturally stated given the whole set of para-
meters a and it becomes notoriously difficult to get rid of "nuisance
parameters" (b), as was described in Basu (1977).

As stated in Subsection 3.3. an independent sampling process together with
(3.5) and (3.6) will give us e.g. a sequential cut and noncausality given
c, and, therefore, predictive exogeneity for ell T and s. Of course, it
then depends on our parameters of interest whether this also guarantees
strong exogeneity for all pairs (T,s).
Under independence over time, its specific feature of possessing a fixed
ordering no longer matters. Thus, in the case of independence over indivi-
duals (even with any Form of dependence over time for each individual),
the approach discussed here for forecasting over time also applies to pre-
dicting over individuals by simply interpreting t as the index for indivi-
duals.
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5. Exemples

5.1. A Cobb-Douglas-Production Fiuiction------- -------------

In Zellner et al. (1966), henceforth denoted by ZKD, we find an interes-
ting production function model of the Cobb-Douglas type, where profits are
formulated in a stochastic way and firms maximize the expected value of
profits. This model will be used here to exemplify some of the issues that
can arise in the practical application of concepts like Bayesian cut end
exogeneity, and to atress the role of the prior distribution in distin-
guishing these concepts from their classical counterparts.

In their notation, the production function of firm i is given by

Xi - ALi1Ki2eu0i~ (5.1)

where Xi, Li and Ki denote output, labour and capital inputs, respective-
ly, for firm i, whereas the atochastics are introduced through u0i, re-
flecting unpredictable disturbances, assumed Normally distributed with
variance o00'
Denoting by p, w and r the respective prices of output, labour and capi-
tal, we cen write the resulting model for i: 1~ n as

x01 - alxli - ~2x2i - ~0 L u0i

(~1-1)xli } a2x2i - kl - uli

~lxli ` (~2-1)x2i - k2 - u2i'

with5)

x0i - log Xi

(5.2)

(5.3)

(5.~)

xli - log Li
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wRl v~
Aalp - 2

rR2 a~
k2 - log Aa2p - 2 '

whore R~ and u~i reflect, respectively, systematic (if Rj t 1) end random
errors made in satisfying the jth first order condition (j - 1,2). The
vectors ui -(u0i uli u21)' are independently identically distributed
(i.i.d.) and joint Normality is assumed with covarience matrix E-(a~)
(k,.L - 0,1,2), where rather convincing economic reasons exist for
constraining a0i and o02 to zero, as they represent covariances between
"acts of nature" in u0i and "human errors" in uli and u2i.
If we impose these zero restrictions, we have nine parameters left in the
model, namely 9- (a0'al'a2'Q00'611'a12'Q22'kl,k2) which is exactly the
number of free parameters in an unrestricted trivariate Gaussian process.
The difference with the latter as it was used e.g. in Example 3.1 of EkIR
(but then bivariate) is that here we start out from a structural form of
the model, instead of its reduced form. The presence of the two structural
parameters al and a2 is, however, compensated by the two zero restrictíons
on the error covariances so that the model is not overparameterized, nor
restricted, and a(classical) cut seems easy to obtain.

The model in (5.2)-(5.4), together with the assumptions on ui, implies the
following Factorization in terms of the original parameterization 6

0(x0i1x11'x21'el) - fN(x0ila0~alxliia2x21'o00)

D((Xli)I82) - fN((Xli)IR 1(kl).B-1~wR,-1).
2i 2i 2

(5-5)

(5.6)

where



24

B -

a~ 0 0

L - 0 all a12
0 a21 a22

ocl-1 a2

al a2-1J
.

Since 91 -(a0,al,a2,a~) and 82 -(al,a2,kl,k2,ïw) are not variation-
free, this factorization dces not operate a classical cut, nor a Bayesian
one. Consider, however, the following reparameterization from 8 to a

lk2J ~ ~d2J - B-1 ~k2J

FM ~ ~ - B-lEwB,-1

(5.7)

(5.8)

giving us b- 91 -(a0'al'a2'a00) in the conditional model (5.5), as be-
fore, but c-(dl,d2,~) as a sufficient parameter set for the marginal
model ( 5.6). Remark that b and c are variation free, leading to a classi-
cal cut and possibly a Bayesian one, provided b and c are prior indepen-
dent. As discussed in Subsection 4.3, independence over individuals sllows
us to use the same approach as for independence over time, just by rena-
ming the indices. Moreover, grovided we impose prior independence as in
(3.6)

D(alXO) - D(blXO)D(c~XO).

we obtain an initial cut and Granger noncausality (or, equivalently, a
sequential cut and noncausality given c) over individual firms. This vali-
dates both the use of (5.5) for inference about eny function of b(e.g.
the returns to scale parameter u- al.oc2) and its use For conditional
predictions. Under (3.6) we thus always have predictive exogeneity and
both weak and strong exogeneity for Y' a f(b) over eny sample of individusl
firms.

ZKD, however, remain within the original 6 parameterization, which preclu-
des a cut, yet they find that the conditional model suffices for efficient
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inference on 81, which concurs with our conclusions above based on the
concept of Bayesian cut (in terms of a).
'ftie reason For this lies in the fact that they choose a Jeffreys' type
prior structure (with independence between location and scale parameters),
which takes the form

D(g~XO) a ~B~ l~oo~~~~-312.

and which corresponds to the following prior measure in terms of a

D(e~XO) , ~~~~~-312.

(5.9)

(5.10)

Remark that (5.10) does not link the parameters b and c of both processes,
which accounts for the full separation of information.ó) This is a direct
consequence of the use of Jeffreys' rule, which is invariant with respect
to differentiable one-to-one transformations of 8[see Zellner (19~1, p.
~19)).~) end would riot be discovered with a general prior structure on 8.
In particular, any prior density on 8 implying stochastic links between b
and c could invalidate ZKD's conclusions in their Section 5 as a Bayesian
cut would no longer be operated. A classical cut, however, completely
ignores such stochastic links and would still exist (conform to the re-
sults in Section 4 df ZKD).

The advantage of working in a parameterization for which a cut obtains is
that from the outset we know which prior structure [namely the one in
(3.6)] will validate focusing on the conditional model only, without first
having to conduct our posterior analysis on the whole joint model.

5.2. A-Simele-Model-with-Time Effects

5.2.1. The Reduced Form

Let us consider a very simple error-components model with only time-speci-
fic effects, where observatíons on xit -(yit zit)~ are generated indepen-
dently over time by
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xit - H ~ wt ~ ~it~

where wt 1 ~it with

wt -~ fN(wtl~,H).

and

vit ~ fN(vitlO,C)

independently over individusls. Covariance matrices B and C are both of
dimension 2X2 and, respectively, PSDS and PDS. Using the notational
convention (2.1)-(2.4), we can write

Xt ~ fNN(Xtlu fl eN, B 6 eNeN t C 0 IN).

where eN is an N-dimensional vector of ones. Partitioning

K-
fu2). H- Cb21 b2z) ~ and C -

f~zl ~22,.

we fnctorize as follows:

D(Ytlzt.b) - N(YtIY1zt~Y2zteNtY3eN. Q2IN.deNeN)

(5.12)

(5.13)

D(ztlc) - N(ztlu2eN. b22eNeNfc22IN). (5.14)

with

2
Y1 : é12 Y2 - N é12 ~~b22, Y3 - H1 -(YliY2)H2. 02 - cll - c12.

22 22 22 22

d-b11 -

2
2 c12Nb12 f 2b12c12 - b22 c22

c22 i ~22

and definíng the mean of zt over individuals at time t as
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i ,zt - N eNzt'

Let us now exemine the effect of various restrictions imposed on B.

Restriction 1.1: b12 - 0 and bll,b22 2 0, which implies independence of
the (possible) time effects in Yit ~d zit' and leads to the following
exact restriction

Nb22
~2 - -rl c22 ~ Nb22' (5.15)

linking the parameters in (5.13) and (5.14), thus preventing any cut (even
a classical one) and any of the three types of exogeneity.

Restriction 1.2: bll - b12 - 0 end b22 z 0, allowing only for a time ef-
fect on zit in the joint process. We now have two exact restrictions,
namely (5.15) and also

d - r2 b22c22
1 c22 ~ Nbz2'

so tl~at, again, a cut is impossible.

(5.16)

Restriction 1.3: b22 - b12 - 0 and bll 2 0, which means the time effect
can only Influence yit (it is now absent from the marginal process). This
gives us ~2 - 0, whereas we also lose the first part of the covariance
matrix in (5.14). These two restrictions on the original parameters trans-
late into two zero restrictions on the parameters in (5.13) and (5.14) and
leave the latter variation-free. If our prior distribution also induces
stochastic independence as in (3.6), then, in view of the independence
over time as in (3.4), we have all types of cuts end zt is predictively
exogenous over the entire future. Strong exogeneity will depend on the
parameters of interest; if we focus on e.g. the regression ccefficienC yl,
then zt is also strongly exogenous.
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Now compare these results with a very simple time-series model obtained by
either "collapsing" or "aggregating" the previous one, namely the bivari-
ate Normal model es in Example 3.1 of Ei1R:

lz . tJ M1 N l~z . tJ I 1~2, ~ f~21 ~22„ ~
(5.17)

where, in the case of "collapsing" (i.e. i- N- 1) we have implicitly
defined Y t- Ylt' z t- zlt' ~j - Hj (~ - 1.2). and 4-(uk~) - 8. C
(k,~i - 1,2), whereas in the cese of aggregating over individuals the in-
terpretation is Y.t - eNyt' z.t - eNzt' ~j - Nuj (~ - 1,2), and 4- N2B .
NC. As now both error components become indistinguishable, we have the
usual result of variation-free parameters in the y t~z t ond z t proces-
ses, as in F.f{{R, even under restrictions on B, such as Restrictions 1.1 and
1.2 that prevent both classical and Bayesian cuts in the error-components
model. This absence of exact links is, of course, not a sufficient, but
merely a necessary condition for a Bayesian cut.

This example illustrated some of the differences that may occur between
pure time-series models and error-components models, where links between
individuals may have an additional (and decisive) influence on the exis-
tence of a cut.

5.2.2. The Structural Form

Consider now the simple structural model that has the model in 5.2.1 as
its reduced form:

yit - ~zit { at ~ ulit

zit - nt } u2it

with at,~,t 1 uit if uit -(ulit u2it)~ ~d where

lntJ M fN l l~tJ I lOJ . lQ~ oR~U J

(5.18)

(5.19)

(5.20)
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urt ' fN(uitlC'f)

with E-(ak~) for k,.l - 1,2.

ln term, of' the reduced form, this implies

u-o

B- L' I aa`o` aa,f I L

Il ~~ nnJ
C - L'ïL

with the triangular matrix

Considering the factorization in (5.13) and (5.14) we now obtain

a - a12 a
a12 an a22 nn

Yl -Sia22. Y2-N a22.N6
n~

a2
Y3 -~. a2 -a11 -~12. d-a~-

22

a2
Naá~ , 26ana12 - a12 a22 nn

a . Na22 ,~n

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

for the parameters in the conditional model, whereas the marginal one will
have zero mean and covariance matrix (a~neNeN4a22IN). Remark that our
structural model has seven parameters, whereas six parameters suffice to
describe the reduced form (with zero mean), so we expect that at least
some restrictions can be accommodated without destroying the possibility
of having a cut. Let us examine various situations.

Restriction 2.1: a - 0.arf
This somewhat changes the expressions for y2 and d, without, however,
inducing any exact links between the parameterizations of both models.
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Provided we have prior independence between (~rl,y2,o2,d) and (6q~,a22), we
ot,Lnin nny E3ayesian cuL in view of Lhe static chornctPr oC the model ,is in
(3-4), and we have predictive exogeneity of zt for all sample and future
periods. If our interest focuses on p, however, we have no strong (nor
weak) exogeneity, as g cannot be recovered from (yl,y2,d,o2).

Restriction 2.2: 012 - 0.
This restriction affects all paremeters in the conditional model, again
without introducing any exact links. Under prior independence as in (3.6)
we obtain predictive exogeneity, and, as now yl - p, we even have strong
exogeneity for s and all pairs (T,s).
Remark that this is the situation referred to in Mundlak (1978), who
argues that under correlation between oct and zit one should include a term
in zt in the structural equation for yt [obtained from (5.18)] before
estimation [see also Hsiao (1986)]. Indeed, we are then, implicitly, using
our conditional model in (5.13), from which we can safely infer on S, as
we have shown in our framework.

Kestriction 2.3: a12 - a~~ - 0.

The combination of both restrictions gives us the situation where y2 - 0,
without destroying "variation-freeness", whereas also yl - p. Under prior
independence we now have strong exogeneity for p and the conditional model
we should use here simplifies exactly to the structural equation for yt.

In this example we can, of course, find the same conclusions as in the
reduced form model since both are statistically equivalent. The, somewhat
ertificial, restriction g- -a~~~onn will, for example, prevent a cut as
it is equivalent to Restriction 1.1. It is, however, important to realize
that restrictions naturally imposed on the structural form can have rather
different consequences than those restrictions one might consider in the
reduced form. The restriction b12 - 0 in the reduced form serves to pre-
vent a cut (unless e.g. b22 - 0 as well), whereas imposing 612 - 0 in thr~
structural model has the, rather opposite, effect of making weak and
strong exogeneity possible for the structural coefficient p.
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5.3. A-Spatial-Autoregressive Structure

Here we start from the simple dynamic model for time-series data used in
Example 3.2 of EHR:

yt - ~zt } Elt

zt - bizt-1 4 b2yt-1 ` E2t

(5-26)

(5.27)

where (elt e2t)' is i.i.d. Normally distributed with mean zero and cova-
rinnce matrix E - (aij) (i,j - 1,2).

Let us now generalize the scalara yt,zt,eit and E2t to N-dimensional vec-
tors, where each element refers to a spatial (i.e. geographical) location,
e.g. N regions within a country, at time t. The parameters p, bi and b2
remain scalars and are constant over time and space. Now we assume that
disturbances remain independent over time, but not over locations, as we
might feel that some external factors (e.g. weather or soil conditions in
an agricultural context or, more generally, things like railway connec-
tiorrs or road accessibility) could induce a connection between disturban-
ces in adjoining regions.
Let us, therefore, suppose the following autoregressive spatiel process
for Et - (Elt E2t)'

Et - wEtR ~ Vt.

where

Vt ~ MN2(VtIO, 4 A IN)

and we partition

Q - ~~11 W221
W21 ~22J

(5.28)

(5.29)

conformably with L.
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Here R is a(2x2) matrix generalizing the ususl scalar autoregression
parameter,8) and W is a weighting matrix of dimension NxN with elements
wi~ (i,j - 1,...,N) representing the "connectedness" of the spatiel loca-
tions with wii - 0 and wi~ for i W j indicating the degree of dependence
among locations. The elements of the matrix R-(ri~) (i,j - 1,2) allow us
to interconnect these dependences across equations (if r12 or r21 ~ 0).
Under the assumption that ~I2N-(R'OW)~ ~.0, we can deduce from (5.28) and
(5.29) that

Et ~ ~F~,2(EtI~.E.). (5.30)

with

E. - L12N-(R'6W)]-1(4HIN)C12N-(RQW')~-1.

partitioned into NxN blocks as

E E11 E12
r -

E21 E22

(5.31)

Things simplify if we take R and 4 to be diagonal, which means that E~
will have a block-diagonal structure with E12 ~ E21 - 0, and for i a 1,2

Eii - ~ii~(1N riiW)'(IN-ri1W)~-1.

The reduced form of the model then factorizes as

D(ytlzt'Xt-l.b) - N(YtlPzt.Ell)

(5.32)

(5.33)

D(Zt~Xt-l~c) - N(Zt~slZt-1'b2yt-1.E22), (5.3~)

which, superficially, looks like just e multivariate version of Exemple
3.2 in EHR under a12 - 0, where a sequential (classical) cut is operated
and zt is found to be weakly exogenous for g. There is, however, e differ-
ence emanating from the structure of E1i (i z 1,2) in (5.32) involvins W,
which is sometimes assumed known, but often depends on some additional
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parameter ;, for example wij - exp(-;dij) where dij denotes geographical
distance (for i~ j), as e.g. discussed in Anselin (1980).
Consider both of these situations.

Case 1: W is known; now, provided b - Í9.~11'rll) ~d c-(bl,bZ,u22,rz2)
are prior independent, we have a sequential Bayesian cut and zt is weakly
exogenous for p over all sample periods T snd predictively exogenous for
T.1 only. If, additionally, bZ - 0(noncausality given c), then we have
predictive ( and strong) exogeneity for all future periods.

Case 2: W- f(;), which implies that now both b and c contain the same
parameter ;. This prevents any type of cut (unless one of the rii is zero,
which would imply that either yt or zt in the structural model has no
spatial links) even though the error terms Elt and e2t are uncorrelated.
zt is still a valid instrument, but it is not weakly exogenous (nor pre-
dictively exogenous) since the information on ; does not separate over the
marginal and conditional processes.

Both cases formally reduce to the EHR example in the pure time-series
framework (i.e. i- N- 1) where E~ - E- 4, and after aggregation over
regions whenever the columns of W sum to one, which leads to

E - N(IZ-R~)-1Q(I2-R)-1.

In such a"collapsed" or aggregated version, we know from EHR that the
condition o12 - 0 is sufficient for (classical) weak exogeneity of zt for
s. Adding prior independence of (p,oll) end (S1,b2,a22) in our framework,
we have a sequential cut and the same exogeneity conclusions as in Case 1
above.

This example highlights the fact that pure time-series and "time-series of
cross-sectiona" models can require rather different conditions to operate
e cut, as in the latter type of models a cut over time must simultaneously
be a cut over (poasibly connected) sample units. In other words, not only
the time dimension can prevent a cut, but also the features of the model
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in the other observational dimension ( e.g. space), where the marginal
process may contain some information regarding the conditional one.

5.4. An ExamQle-of-Individual Effects from the Literature------- ------------------------------

This subsection is devoted to an error-components model with individual
effects as introduced in Chemberlain and Griliches (1975) who use a pure
cross-section ( sibling) data set in which, however, they distinguish two
observational dimensions: families, denoted by i, and brothers within each
family, denoted by t. The model can be described in the following triangu-
lar form, using the notation found in Hsiao (1986)

ylit - ~lxit 4 dlhit ~ ulit'

y2it -~2lylit 4~2Xit 4 d2hit i u2it'

(5.35)

(5.36)

y31t - ~3lylit ' ~3xit 4 d3hit ` "3it. (5.37)

where y~it denote, respectively; observations on grade of schooling (j-1),
occupational standing (j-2), and income (j-3). Apart from the observed
variables in xit it is believed that the unobserved "ability" hit influen-
ces all three y variables in the model. Its structure incorporates an
effect proper to the family (i ), and is given as

hit - ai ~ ~it'

with both components of zero
buted (i.i.d.) across i with
of hit is indeterminate,
variance aW. Also, we assume
In addition, we simplify

E(ufit) ~ o~ (~.k - 1.2.3).
f

(5.38)

mean and ai independently identically distri-
normalized to unity since the scale

~it is i.i.d. over both i and t with
variance
whereas

that E(ai~it) - 0, vi,t.
matters by taking E(ujitulcit) - G' ~~ k, and

Assuming, finally, an i.d.d. Normal structure, we obtain the following
factorization of the reduced form:

D(Y11IXi.c) ` fN(ylilXi~l' 611IT}o11eTeT) (5.39)
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D Y2i
Y3i

2T rY2iXi.Yli.b - fN lY3i (I2~i)b ' (I2HT-T-i)3 ` (I2aYli)n

; ( I2aTe,ryli ) ~' ~22e1T}~22aeTeT, '

where we have defined

Xi - (Xi1...xiT).

1
Xi - T QTxi'

and

1
yli - T eTYli'

(5.40)

Some calculations show that the parameters in b and c are related to the
ones in the structural form in the following way:

b- 1~3J - 62d16~d262 L~d3J e~1Jul 1 u

2
-dlcu d

~ - (c~ idióW)(eul,di(6W.T)) ld3J ~
P1.

1 1

r l 2 r l
T! - Ir3~ J t óudlcWd1Q~ Id3l,l 1 lJ

1 d
a -

(v2 .d?a~)(6~ td?(e~~TI) d3 .
1

26u
0

d a2
ul 2

1
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4
Ê - aul d2 d2d322 (au tdla~)(au4di(aWiT))

d3d2 d31 1

for b, and

2 2 2all - aul t dla~.

2611 - dl

(5.46)

(5.47)

(5.48)

for the parameters in c.
Since the reduced form can be fully described by (3ka9) parameters, and
(5.39) and (5.40) count (5k.12) different parameters, some restrictions
must be implicitly present. In particular, we find

and

(5.49)

all g22 - 6u ~(d2 d3)' (5.50)1

which prevents any type of cut as parameters in b and c are not variation-
free.
Let us now consider the effect of various restrictions on the exogeneity
status of yli in (5.40).

Restriction . 1: a~ - 0, which means that both brothers of the same family
have exactly the same ability, or hit - ai. The expressions in (5.41)-
(5.48) will simplify; in particular, we now obtain that b -( J32 ~83)' tind
T! -(áZl à~31)', but the restrictions in (5.49) and (5.50) remain, so that
a cut is impossible.

Restriction .2: T- 1, in which case the model "collapses" to only the
family dimension. The result of this restriction is that (5.39) and (5.40)
now become much simpler:
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D

~(yli~Xi'c') - fN(yli~Xi~l'oll) (5.51)

(y2i

Ily3i

Y
Xi.Yli.b. ' fN 2i

Y3i
(I2 e Xi)b.tYlin.. Ez2,. (5.52)

with oil - áll . áll, b. ' b ' 3. ~.,, - ~, ~ ~, end Lz2 - ~22 . ~22-7'he parameter set (b~,c~) has the same number of free parameters as the
corresponding reduced form (namely 3k.6) and there are no exact restric-
tions linking bw and c~. Given the independence across femilies i, and if
b„ and c~ are prior independent, we conclude that yli is predictively
exogenous for any family i outside the sample based on any set of observa-
tions. If, however, our parameters of interest are in the set (Y21,r31,S2,S3) we do not have weak or atrong exogeneity, as these structural para-
meters cannot be retrieved from b~ only.

Restriction 3.3: dl - 0, or no effect of ability on schooling in (5-35).9)
leading to both ~ and ~ being zero, whereas b z (p2 S3)' snd ~-
(Y21 Xj1)'. The parameters are now variation-free, and under prior in-
dependence we have predictive exogeneity as well as both weak and strong
exogeneity for (721.y31,~2,~3) for any sample end any out-of-sample pre-
dictions of individuals ( families).

Restriction 3.4: (d2 d3) - 0, implying that ability dces not affect the
structural equations for occupation and income. Now both error components
are only present in the marginal model, as opposed to the previous case,
but the exogeneity conclusions are the same as in the version with dl - 0.

Note that this model differs in two important respects from the time
effects model presented in Subsection 5.2. Firstly, the presence of expla-
natory variables xit in all three equations (5.35)-(5.37) leads to re-
strictions of the form (5.49), and, secondly, we use the seme unobserved
variable hit in sll three equations. The latter fact imposes a speciel
structure on the error components; in particular, the mntrix corresponding
to the individual effects becomes singular (of the form kk', where k is a
vector). This results in links as in (5.50) and contrasts with the general
covariance matrix B in (5.11).
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Indeed, if we impose B to be of a similar structure (i.e. b12 - bl~)
in Subsection 5.2, we implicitly introduce the restriction

2 b22
Y2 - ~ c22(c22}~22) d.

(5.53)

which links the parameters in both processes, and is an exact counterpart
of (5.50).
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G. Gincludin~Remarks

In tlie present paper, the concept of exogeneity so frequently used by ap-
plied econometricians, either consciously or not, is examined within a
I3ayesian framework and for models with two observational dimensions.
1'he latter implies that the existing predominant emphasis on macroeconomic
modc1s10) in this type of literature [see e.g. Koopmans (1950), Marschak
(1953), Sims (1972) and EHR] is here broadened somewhat towards including
the nnalysis of models emanating from the microeconomic tradition, such as
error-components or spatial models. With the steadily growing availability
of e.g. panel data sets, such models seem to gain rapidly in popularity
within the economics profession.
An additional reason for considering exogeneity issues in micromodels is
that the latter are often relatively close to the theory, as they usually
don't suffer from aggregation or feedback issues that might blur the the-
ory iinplications at the macro level. This means that exogeneity conditions
may liave a very direct theoretical interpretation, as e.g, in the ZKD
pr~oduction function described in Subsection 5.1, where theoretical grounds
exist for imposing zero covariances that imply exogeneity.
Another example is the use oF the life-cycle theory in intertemporal la-
bour supply and consumption models in MaCurdy (1983). The outcomes of
exogeneity tests may then prove to be more informative about certain the-
ory assumptions than in many macro models.
The whole issue of testing for exogeneity was not taken up in this paper,
but classical analyses can be found e.g. in Wu (1973. 1983). Holly (1985)
and Smith (1988).

With this somewhat extended class of models in mind, we feel it is natural
to dis;tinguish between four different types of cuts, introduced in Subsec-
tion 2.2 and borrowed from the more statistical literature in FM (1980a,
1985). Having these different definitions of cut directly allows for more
gencral models than just time-series models and also leads to somewhat
weaker defiuitions than found in EHR, conveying the same intuitive ideas.
A cut is certainly not necessary for "not losing any relevant informa-
tion", but it proves a very useful concept, as it is rather robust with
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respect to the prior distribution [compare the remarks concerning mutual
exogeneity in F1N (1985) end our Subsection 3.2], from which it only re-
quires independence, and it clearly shows under which prior assumptions we
can concentrate on the conditional model only (compare the ZKD example in
Subsection 5.1), although we hàve to be careful when using improper prior
measures (as explained in footnote 6).

An essentially Bayesian approach is adopted in this paper as it seems
natural to formally treat sll information in a symmetric way and thus
require a full separation of both prior and sample information over mar-
ginal and conditional processes. It also becomes very straightforward to
deal with nuisance parameters, as discussed ín Basu (19~7), which means we
can define concepts like noncausality given a subset of all paremeters,
and we can also consider e.g. predictive densities.
The latter leads to a definition of predictive exogeneity, which seems
natural in a Bayesian context and is often the only possible type of exo-
geneity if we start from structural models (see Subsections 5.2.2 and
5.4). The entire issue of parameters of interest is simply irrelevant f'or
purely predictive purposes.

The three concepts of exogeneity used here are nested in the sense that
strong exogeneity is just the union of both predictive and weak exogeneity
on the same parameterizations.
The latter requirement was added for the sake of presentation, but is by
no means a necessity. Zt may very well occur that we have a specific in-
terest in some (atructural) paremeterization a for inference purposes, but
that a different parameterization a,,, e.g. of a reduced form or just in
terms of regression coefficients, could prove most useful for prediction.
A generalization of Definition 3 in this sense is, of course, straightfor-
ward if we wish to cover such cases.
We noted that prediction issues in a sequentiel context crucislly change
if we go from one-period ahead forecasting to predictions further in the
future, and we also examined some consequences of treating static rather
than dynamic models, since models with independence (over time or over
individuals) seem to appear rather frequently in the literature (compere
also Subsections 5.1, 5.2 and 5.4).
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Remark that exogeneity concepts as defined here (or, for that matter, in
EHR) validate the use of the conditional model, either for inference,
prediction, or both, but not the use of the structural model, nor of some
particular estimation technique [see e.g. EHR and Steel (1987)J. Only if
the stochastics of z are either absent or completely separated from those
governing the process of the variables we wish to explain (e.B. a01 -
002 - 0 in Subsection 5.1, Restriction 2.3 in Subsection 5.2.2, or Res-
tríction 3.3 in Subsection 5.4) will the conditional model and the rele-
vant equation(s) of the structural model coincide, but even then a cut may
be prevented (see e.g. Case 2 in Subsection 5.3). One should, therefore,
bear in mind that e.g. weak exogeneity and the valid use of OLS in the
strucW ral equation are concepts of a very different nature.

The examples in Section 5 also serve to illustrate several other issues.
In particular, imposing restrictions on the reduced form can have rather
different exogeneity consequences than restricting structural parameters,
as was seen in Subsections 5.2.1 versus 5.2.2.
Also, the presence of two observational dimensions can often prevent a
cut, which does exist if we collapse or aggregate to just one of the di-
mensions. This occurred in Subsections 5.2.1, 5.3 and 5.4. In error-compo-
nents models the inclusion of additional regressors into the system as in
Subsection 5.4 compared to 5.2 can destroy exogeneity properties, whereas
a similar effect can be brought on by using the same unobserved variable
throughout the system. An example of the latter issue can also be found by
comparing Subsections 5.2 and 5.4.

Needless to say, numerous extensions of the basic framework of this paper
could be considered. Let us just name a few, without claiming to be ex-
haustive in any way.
(i) The treatment of initiel conditions (XO) could be formalized, follo-

wing the suggestions in Richard (1979) and Engle et sl. (1980).
(ii) The problems (hinted at in footnote 6) with verifying the abaence of

prior links under improper prior measures should most certainly
receive due attention. The use of group analysis, as in Dawid et al.
(1973), may be instrumental here. - -
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(iii) Par.~meter constency under changes in the distribution of the condi-
tioning variables z is crucisl for policy simulations and leads to a
definition oF "super exogeneíty" in H:FiR. An explicit discussion ol'
such a concept in our framework seems both feasible and of some
interest.

(iv) Extending the framework in Subsection 2.1 to include also models
where the number of individuals N changes over t might be useful, as
it would allow us to treat e.g. the "unbalanced" version of the
model in Subsection 5.4, i.e. where a subset of the families obser-
ved have more than two brothers (e.g. t- 3,4 and 5).

Nevertheless, it is felt that the present analysis, however incomplete,
already gives some useful ideas about the specific exogeneity issues ari-
sing in models that do not fit the pure time-series framework.
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Footnutcs

1) This is illustrated by some of the examples in the sequel; for the
model in Subsection 5.3 i denotes geographical location, and the one
in Subsection 5.4 attributes to index t the role of indicating the tth

member of some family i, as here one could possibly consider the
birth-order of inembers as inducing a natural ordering.

2) S~~e also the discussion in Basu (1977) who uses the term "variation
independent" instead of "variation free".

3) The term "noncausality" was finally adopted by FM (1985), as it seems
ubiquitous in the econometrics literature [see e.g. Zellner (1979).
Granger (1980), and Geweke (1984)]. Previously, other terms were used,
such as "transitivity" in FM (1980a), which is more general and closer
to the statistics tradition, and "self-predictivity" in FM (1980b,
Section 4). The latter denominations have the advantage of stressing
the difference with the notion of causality in philosophy.

4) Under independence as in (3.4), the initial conditions do not affect
the sampling process but can only contribute to our prior information.

5) Note that the definitions of kl and k2 have an extra term oe0 in ZKD.
This seems, however, a misprint (as then kl - ki and k2 - k2 in their
notation), as well as their use of R1 in the equation for k2.

6) Since 81 and 82 have some parameters in common on which the prior
measure in (5.9) is not uniform, it is rather easy to see that (5.9)
prevents a Bayesian cut in 8. llowever, under improper prior densities
oF the type used in (5.9) or (5.10), often expressing "diffuse" prior
ideas, the factorization into marginal end conditional priors is not
well-defined, and the whole issue of prior independence as in (3.6)
becomes very tricky since the conditioning event is often not 6-finite
(i.e. has infinite probability mass). The use of improper prior dis-
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tributions has been shown in Stone and Dawid (1972) to lead to so-
called "marginalization paradoxes", analyzed by group theory in Dawid
et al. (1973).

7) This is, of course, not invariance of the prior density itself, but
rather of the rule used to construct the prior distribution. For an
extensive discussion of invariance concepts see Hartigan (1964), who
calls this particular property "4-labelling invariance".

8) The formulation in (5.28) is a generalization of the single-equation
process

Elt - pWElt 4 vlt

with p scalar, as usually adopted in spatial econometrics in uni-
variate cases. Some references in this field are Cliff and Ord (1973).
Ord (1975), Hordijk (1979) and Mselin (1980).

9) Incidentally, this restriction seems to be corroborated by a classical
analysis of the Gorseline (1932) data in Chamberlain and Griliches
(1975). Remark that they only treat the "balanced" case in which each
family ( i) has the same number of brothers (T-2), which is also the
case that fits directly into our framework, as outlined in Subsection
2.1.

10) Wíth a few notable exceptions, e.g. Smith and Blundell (1986).
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