

Center for Economic Research

No. 9444

Accounting for Daily Bundesbank and Federal Reserve Intervention: A Friction Model with a GARCH Application

by Geert J. Almekinders and Sylvester C.W. Eijffinger RII

June 1994

ISSN 0924-7815

14

ACCOUNTING for DAILY BUNDESBANK and FEDERAL RESERVE INTERVENTION: A Friction model with a GARCH application.

by

Geert J. Almekinders and Sylvester C.W. Eijffinger"

Department of Economics and CentER Tilburg University P.O. Box 90153 NL-5000 LE Tilburg The Netherlands

This version: May 3, 1994

Abstract

This paper takes a novel approach to derive a central bank intervention reaction function. A GARCH model for exchange rates is amended to allow interventions to have an effect on both the mean and the variance of exchange rate returns. An intervention reaction function is obtained by combining the model with a loss function for the central bank. Estimation results for the implied friction model reproduce the familiar "leaning against the wind" policy by the Bundesbank and the Federal Reserve. Furthermore, the central banks appear to have reacted to increases in the conditional variance of daily DM/\$-returns.

Keywords: Foreign exchange intervention, exchange rates, GARCH models Jelcode: F31

We are grateful to the Deutsche Bundesbank, Hauptabteilung Ausland for kindly providing the daily data on the official interventions of the Bundesbank on a confidential base and to the Board of Governors of the Federal Reserve System, Division of International Finance for kindly providing the daily data on the official interventions of the Federal Reserve System. Bertrand Melenberg has been extremely helpful to us in obtaining the estimation results reported in the paper. Furthermore, the paper benefitted from comments made by Frank de Jong. Opinions and errors are our own responsibility. An earlier version of the paper was presented at the Royal Economic Society Conference, Exeter, United Kingdom, March 28-31, 1994.

Since the breakdown of the Bretton Woods fixed exchange rate system in the early 1970s, the exchange value of the major currencies in the industrialized world is in principle determined by market forces. However, in the present system of managed floating the exchange rate is not the outcome of supply and demand by private market participants only. The monetary authorities of many countries have frequently been trying to influence the relative value of their currency by means of exchange market interventions. To comply with Article IV of the Articles of Agreement of the International Monetary Fund (IMF) as amended in 1978 central banks are obliged to promote a stable exchange rate system and hence to "counter disorderly exchange market conditions".

This paper reports on the results of an empirical investigation into the objectives of foreign exchange market intervention by the Bundesbank and the Federal Reserve System in the Deutsche Mark-U.S. dollar market and the Japanese yen-U.S. dollar market. The sample period considered is the post-Louvre period February 23, 1987 to October 31, 1989. The paper takes a novel approach in the sense that the intervention reaction function is derived formally rather than stated *ad hoc*. Furthermore, daily intervention data are used. Inspection of the data reveals that the central banks abstain from intervention on the majority of trading days in the sample. To overcome this problem, a friction model is employed to estimate the intervention function consistently.

The majority of previous empirical investigations into the objectives of central bank intervention formulate the reaction function rather *ad hoc* (see, *e.g.* Almekinders and Eijffinger (1994). For a comprehensive survey see Almekinders and Eijffinger (1991) and Edison (1993)). This paper takes a novel approach. In section I of this study the intervention reaction function is derived formally. First, we amend the popular GARCH model for the exchange rate to allow interventions to have an effect on both the mean and the variance of exchange rate returns. Then, a policy loss function for the central bank is combined with this exchange rate model to derive the intervention reaction function. Official purchases (sales) of foreign currency by the domestic central bank appear to depend on two variables. The model implies that they are positively related to the expected fall (rise) of the exchange rate below (above) the target level pursued by central banks and on the volatility of the exchange rate conditional on no intervention.

Section II describes the daily data on exchange rates and intervention we use to investigate the objectives of Bundesbank and Federal Reserve intervention. Furthermore, it introduces the explanatory variables used in the empirical implementation of the model in section III.

In practice, central banks are rather reluctant to intervene in the foreign exchange market. By abstaining from intervention in the face of small changes in the exchange rate and normal levels of conditional volatility the central banks can be viewed as "investing" in the potential effectiveness of interventions to be undertaken at times the foreign exchange market experiences some serious turbulence. This feature of intervention behaviour makes the standard linear regression model an inappropriate tool for estimating the derived reaction function.

To capture adequately this aspect of central banks' behaviour, we employ a friction model

1

due to Rosett (1959) in which the dependent variable is zero as long as the independent variables remain "close" to their desired levels. The central banks' tolerance threshold for deviations of the explanatory variables from their desired levels is one of the parameters in the model.

The estimation results reproduce the familiar "leaning against the wind" policy by the Deutsche Bundesbank and the Federal Reserve. Furthermore, an increase in the conditional variance of daily DM/\$-returns is found to have led both central banks to increase the volume of intervention. Finally, the estimation results point to some interesting asymmetries in the intervention behaviour of the Bundesbank and the Federal Reserve.

I. The Model

Neumann (1984) implements a flow market model for the determination of the exchange rate. He derives an intervention reaction function according to which the central bank of the home country supplies amounts of home currency to the foreign exchange market when the exchange rate of the foreign currency in terms of the home currency is lower than the target rate $(S_t < S_t^T)^T$ and when an increase in the expected risk premium on assets denominated in the home currency raises speculative demand for that currency. It should be noticed that the serious measurement problems surrounding "risk premiums" are well established. More importantly, the flow market model and other structural models for exchange rate determination are rejected in empirical tests.² This has led many economists to adopt new research strategies in exploring the field of exchange rate economics.

By now, it is well established that a GARCH model offers a parsimonious description of the stochastic process of daily spot exchange rate returns (see, *e.g.* Baillie and Bollerslev (1989)).³ This paper focusses on the motives for central bank intervention. Accordingly, it is assumed that interventions can alter both the mean and the conditional variance of daily exchange

³GARCH stands for Generalized Autoregressive Conditionally Heteroscedastic. The purport of the meanwhile extensive GARCH literature, surveyed in Bollerslev *et al.* (1992), is that volatility in daily returns is predictable in most financial markets. In several applications it has been shown that there is a considerable persistence in the effects of shocks in period t onto the conditional variance of exchange rates in consecutive periods.

¹Throughout the paper the exchange rate, S_t , is defined as the domestic currency price of one unit of foreign exchange. Subscript *t* denotes time and lower case letters refer to natural logarithms of variables. Greek letters denote positive constants.

²After surveying the empirical evidence on exchange rate models, MacDonald and Taylor (1992, p. 24) conclude that "...the asset approach models have performed well for some time periods, such as the interwar period, and, to some extent, for the first part of the recent floating experience (that is, 1973-1978); but they have provided largely inadequate explanations for the behavior of the major exchange rates during the latter part of the float".

rate returns. Furthermore, the postulated stochastic process for the exchange rate allows for a GARCH-in-Mean effect:

$$\Delta s_{i} = a_{0} + \delta_{i} INV_{i} - \gamma DUM_{i} h_{i} + \epsilon_{i}, \qquad \epsilon_{i} |\Omega_{i-1} \sim N(0, h_{i})$$
(1a)

$$h_{i} = \pi - \delta_{2} DUM_{i} INV_{i} + \alpha \epsilon_{i-1}^{2} + \beta h_{i-1}$$
(1b)

$$DUM_{t} = 1 (-1)$$
 if $\Delta s_{t} < 0 (\geq 0)$ (1c)

All GARCH models in this paper are expressed in closing exchange rates (S^{U}). It follows that the dependent variable in (1a) is the exchange rate return over the 24 hours period from the closing of the foreign exchange market on day t-1 until day t's closing. Equation (1a) characterizes the mean of the stochastic process which generates the exchange rate return series. a_0 denotes a constant rate of appreciation of foreign currency. INV, is the volume of intervention defined as purchases of foreign currency by the domestic central bank. Interventions are effective if $\delta_1 > 0$ implying that purchases (sales) of foreign currency by the domestic central bank lead to a higher (lower) exchange value of foreign currency in terms of domestic currency. ϵ_i is the residual of the mean equation. It is indicated to have a conditional normal distribution with mean zero and variance h_i . The symbol $\Omega_{t,t}$ denotes the information available to exchange market participants at the beginning of the relevant interval for which the exchange rate return is calculated: at the closing of the foreign exchange market on day t-1. When measured over a sufficiently long period, the constant rate of appreciation of domestic currency a_0 may be approximately zero. Then, large drops in the exchange rate correspond with large negative realizations of $\epsilon_{i,l}$, $\epsilon_{i,2}$, etc.. In case of bandwagon expectations among private exchange market participants, these may lead to a further decline of the exchange rate: the GARCH-in-Mean effect. When the exchange rate was falling (rising) in the previous period(s), a high conditional variance is likely to lead to a larger fall (rise) in the current period. Hence $DUM_t = 1$ ($DUM_t = -1$) in case of a falling (rising) exchange rate. Equation (1b) defines the variance equation (h_i) . Due to the inclusion of the volume of intervention premultiplied by a dummy variable, this equation can capture the effect of both official sales and purchases of foreign currency. At first glance, less exchange rate volatility and uncertainty seems to be preferable for society as a whole.⁴ Hence, interventions are effective if $\delta_2 > 0$. With the dummy variable defined as in equation (1c), this indicates that both purchases and sales of foreign

⁴Of course, one can easily think of situations in which central banks prefer a higher degree of uncertainty regarding the future course of currency movements. According to Blundell-Wignall and Masson (1985, p.156) "...it may be a deliberate part of an intervention strategy to change the degree of uncertainty concerning exchange rate fluctuations: either by limiting transitory fluctuations and hence providing a more stable planning environment, or by adding an erratic element to exchange rate movements, to discourage speculation".

currency lower the volatility of returns on the foreign exchange market. Presumably, the interventions work through the expectations channel. They may curb the bandwagon expectations and lead to a lowering of the conditional variance. In turn, the dampening effect of interventions on the conditional variance may lead to smaller daily returns on the foreign exchange market, if γ is significantly larger than zero.

Suppose the central bank wishes to limit deviations of the exchange rate from a target level (s_t^{T}) .⁵ Its expected policy loss increases more than proportionally with both positive and negative deviations from the target level:

$$E_{t,l} L_t^{CB} = E_{t,l} (s_t - s_t^T)^2$$
(2)

To capture intervention carried out on account of a "leaning against the wind" policy, the target level for the exchange rate can be thought of as representing past levels of the exchange rate. This follows immediately from the definition of smoothing exchange rate fluctuations: whether or not the exchange rate was considered to be at a desirable (or target) level in the previous period(s), deviations from this level will be countered.

Minimizing the loss function (2) by choosing INV_i , subject to the constraints implied by the stochastic process of the exchange rate described by (1a)-(1c) leads to the following intervention reaction function for the central bank:^{6,7}

$$INV_{t} = \frac{\delta_{2} \phi_{1}^{2}}{2} DUM_{t} - \phi_{1} (s_{t-1} + a_{0} - s_{t}^{T}) - \phi_{1} \gamma DUM_{t} (\pi + \alpha \varepsilon_{t-1}^{2} + \beta h_{t-1})$$
(3)

where

 $\phi_1 = 1 / (\delta_1 + \gamma \delta_2)$

and

$$DUM_{t} = 1 (-1)$$
 if $\Delta s_{t,t} < 0 (\ge 0)$

⁵Of course, the conduct of exchange rate policy is not the only issue of concern for a central bank. Neumann (1984) proposes a central bank policy loss function which accounts for a trade-off between controlling the monetary base on the one hand and the exchange rate on the other hand. However, in most large industrialized countries the monetary authorities give priority to domestic policy objectives and use instruments of monetary policy to attain these objectives. By definition, sterilized interventions lack a money market effect (cf. Pilbeam (1991, p. 106)). Therefore, it may be an appropriate simplification to focus on the motives for sterilized interventions in the spot market for foreign exchange.

⁶Given that the variance of a random variable X can be expressed as $Var(X) = E(X^2) - (EX)^2$, from (2), $E_{t,t}(s_t - s_t^T)^2$ can be rewritten as follows

$$E_{t-1}[(s_t - s_t^{T})^2] = \left[E_{t-1}(s_t - s_t^{T})\right]^2 + Var_{t-1}(s_t - s_t^{T}) = \left[s_{t-1} - s_t^{T} + a_0 + \delta_1 INV_t - \gamma DUM_t h_t\right]^2 + h_0^2$$

⁷The second-order conditions for a minimum are met. Given the quadratic form of the loss function, the minimum is global.

According to equation (3) the volume of intervention depends on a constant term which is positive (negative) when the exchange rate was falling (rising) in the previous period. Furthermore, official purchases (sales) of foreign currency by the domestic central bank depend positively on the fall (rise) of the exchange rate below (above) the target level, which is expected to occur during period t conditional on no intervention. Finally, an increase in the conditional variance of the exchange rate (again, conditional on no intervention) leads the domestic central bank *ceteris paribus* either to buy or sell more foreign currency depending on whether the course of the level of the exchange rate calls for purchases or sales of foreign currency.

II. The Data

In this section we turn to an empirical study of the reaction function for daily interventions by the Deutsche Bundesbank in the spot Deutsche Mark-U.S. dollar exchange market and by the Federal Reserve System in the spot Deutsche Mark-U.S. dollar exchange market and the spot Japanese yen-U.S. dollar exchange market.⁸ For that we must take account of the development of the respective exchange rates between successive days (interday), as well as in the course of these days (intraday).⁹ In this study, when we look at the objectives of Bundesbank interventions the intraday development in the DM/\$-market is approximated by three observations per day in the Frankfurt market:

- 1. the opening rate (primo) at 8.30 hours (Frankfurt time), $SFR_{l}^{8.30}$;
- 2. the fixing rate (official middle rate) at 13.00 hours (Frankfurt time) SFR_i^{13} ;
- 3. the closing rate (ultimo) at 16.30 hours (Frankfurt time), SFR,^{16.30}.

Furthermore, the study makes use of daily observations for interventions by the Deutsche Bundesbank expressed in millions of U.S. dollars.¹⁰ When we investigate the objectives of Federal Reserve intervention the intraday development in the DM/\$-market and the yen/\$-market are approximated by four observations per day in the New York market:

1. the opening rate at 9.00 hours (New York time), SNY,⁹;

⁸Unfortunately, we were not able to investigate empirically the reaction function for daily interventions by the Bank of Japan in the spot U.S. dollar-Japanese yen exchange market. The Japanese monetary authorities stick to a policy of strict confidentiality regarding intervention data.

⁹Goodhart and Hesse (1993) assess central bank foreign exchange market intervention virtually in continuous time. However, their investigations are based on *reported* intervention observations which appeared on Reuters screen information. This gives a far from exact representation of actual intervention operations (Klein (1992), Osterberg and Wetmore Humes (1993). Moreover, reported intervention observations do not contain information on the actual amount of intervention.

¹⁰Originally, the Bundesbank intervention data are expressed in millions of Deutsche Marks. We computed their dollar value by dividing the DM value of day t's intervention by the opening rate of the U.S. dollar in Frankfurt on day t.

2. the first middle rate at 12.00 hours (New York time), SNY,12;

- 3. the second middle rate at 14.00 hours (New York time), SNY¹⁴;
- 4. the closing rate at 16.00 hours (New York time), SNY,16.

Furthermore, the study makes use of daily observations for Federal Reserve interventions in the DM/\$- and yen/\$-exchange market expressed in millions of U.S. dollars.

In the model presented above a time subscript was attached to the symbol denoting the target exchange rate. This indicates that it is allowed to vary over time. Obviously, when the domestic central bank continues to direct intervention at a fixed target level for the exchange rate while the actual exchange rate is being driven up (*i.e.*, the value of the domestic currency is being driven down) by a strong underlying market sentiment this intervention will in the end lead to a run on the (remaining) foreign exchange reserves of the domestic central bank. At the other extreme, when the central bank stubbornly tries to resist a persistent appreciation of the domestic currency (persistent decline of the exchange rate), it will encounter problems with sterilizing the money market effect of its increased foreign exchange reserves. Eventually, the central bank will have to tolerate an inflationary effect of the interventions. Thus, while it is assumed that the central bank wishes to limit deviations from a target level, a flexible formulation of the target level (S_t^T) is chosen which seems to be in accordance with the limited manageability of exchange rates in practice:

for Bundesbank interventions $SFR_{i}^{M} = \frac{1}{21} \sum_{n=1}^{7} (SFR^{*} + SFR^{13} + SFR^{16^{*}})_{i=n}^{IMMS}$

for Federal Reserve Interventions $SNY_{i}^{MA} = \frac{1}{28} \sum_{n=1}^{7} (SNY^{9} + SNY^{12} + SNY^{14} + SNY^{16})_{i-n}^{IMMS, yen/S}$

The target level for the exchange rate is thought of as representing past levels of the exchange rate. This is not to say that the exchange rate was considered to be at a desirable level in previous days. It merely allows to test whether the central banks systematically "leaned against the wind" and tried to smooth (further) deviations from the seven-days moving average of the exchange rate.

The reaction function in equation (3) proposes a second variable to explain the volume of intervention: the conditional variance of the respective exchange rate returns conditional on no intervention. Time series for the conditional variance of daily DM/\$-returns (in the Frankfurt and New York market) and Yen/\$-returns (in New York) are generated using the estimated parameter values of a standard GARCH model depicted in Table 1. For the time series $h_t^{FR, DM/3}$, $h_t^{NY, DM/3}$ and $h_t^{NY, YEN/3}$, the unconditional or average variance of the return series for the sample considered in Table 1, σ^2 , is used as a starting value. It is calculated as follows $\sigma^2 = \pi/(1-\alpha-B)$.

The establishment of the February 22, 1987 Louvre Accord marks the beginning of a new exchange rate policy regime. Estimation results in Almekinders (1992) point to a marked change in the stochastic process generating the daily DM/\$-return series as of that date. Furthermore, it appeared that the process remained relatively stable through to October 1989. Therefore, as

	100 (log $S_{t}^{U} - \log S_{t-1}^{U}$) = $a_{0} + \varepsilon_{t}$ $h_{t} = \pi + \alpha \varepsilon_{t-1}^{2} + \beta h_{t-1}$				$\varepsilon_i \mid \Omega_{i-1} \sim N(0, h_i)$					
	a _o	π	α	ß	logL	Q(12)	Q ² (12)	m ₃	m ₄	LR(2)
-rate in furt	0.015 (0.65)	0.021 (2.77)	0.073 (4.47)	0.874 (31.51)	-649.34	10.29	20.63	0.04	4.29	35.68
-rate in fork	0.013 (0.54)	0.020 (2.83)	0.064 (4.13)	0.890 (34.83)	-684.79	7.47	6.88	09	4.65	25.94
-rate in York	006 (23)	0.043 (3.12)	0.083 (4.21)	0.834 (20.23)	-730.32	5.72	8.07	13	5.21	42.41

Table 1	Maximum	Likelihood	Estimates	for th	e parameters	of	he standard	GARCH	model
---------	---------	------------	-----------	--------	--------------	----	-------------	-------	-------

Notes: t-statistics in parentheses.

m₃ and m₄ give the sample skewness and kurtosis for the residuals, respectively.

Q(12) and $Q^2(12)$ refer to the Ljung-Box portmanteau test for up to 12'th order serial correlation in the levels and the squares of the residuals respectively. The critical value for a 5%-level test is 21.0.

LR(2) gives the value of the test statistic for the likelihood ratio test under the nullhypothesis that the variance is conditional homoskedastic H₀: α =0, β =0. As the alternative hypothesis is H₁: α ≥0, β ≥0, the LR-statistic does not have a χ^2 -distribution with two degrees of freedom. The tabulated critical value for a 5%-level test is 5.135 (Kodde and Palm 1986).

sample is chosen the period from February 23, 1987 through to October 31, 1989 totalling 677 observations for the Frankfurt market and 680 observations for the New York market. The estimated coefficients for the GARCH models shown in Table 1 are highly significant with the exception of the coefficient in the mean equation (a_0) . The DM/\$-rate and the yen/\$-rate did not rise or decline uniformly across the sample. The value of the likelihood ratio (LR) test statistic in the last column of Table 1 indicates that the null hypothesis H_0 : $\alpha = \beta = 0$ can be soundly rejected. This indicates that the random walk model with a GARCH error term fits the data better than the Gaussian random walk.

The variance of a variable is positive by definition. Yet, we would expect central banks to react differently to rises in the conditional variance of exchange rate returns depending on the level of the exchange rate, *i.e.* when the exchange rate is 'too high' (too 'low') central banks are likely to respond to a rise in the conditional variance by selling (buying) foreign exchange. In order to facilitate a straightforward interpretation of the estimated coefficient for the conditional variance in the intervention reaction function we premultiplied the conditional variance h_t with a dummy variable which takes on a value 1 (-1) if the exchange rate is above (below) the Louvre-equilibrium level (1 = DM 1.8255, 1 = 133.4).

III. Estimation and results

The intervention reaction functions for the Bundesbank (DBB) and the Federal Reserve System (FED) implied by the model in section I and the description of the data in section II look as follows:

$$INV_{i}^{DBB} = b_{a} DUM_{i} + b_{i} (SFR_{i}^{N^{m}} - SFR_{i}^{M}) + b_{2} DL_{i} h_{i}^{FR} + \mu_{i}$$

$$\tag{4}$$

$$INV_{i}^{FED} = c_{0} DUM_{i} + c_{1} (SNY_{i}^{9} - SNY_{i}^{MA}) + c_{2} DL_{i} h_{i}^{NY} + \mu_{i}$$
(5)

where μ_i is a random disturbance term, $DUM_i = 1$ (-1) if $\Delta s_{i,j} < 0$ (≥ 0) and

$$DL_{t} = 1 \quad \text{if } S_{t}^{DM/3} \ge S_{LOUVRE}^{DM/3} \text{ or } S_{t}^{Yen/3} \ge S_{LOUVRE}^{Yen/3}$$
$$= -1 \quad \text{if } S_{t}^{DM/3} < S_{LOUVRE}^{DM/3} \text{ or } S_{t}^{Yen/3} < S_{LOUVRE}^{Yen/3}$$

In practice, central banks are rather reluctant to intervene in the foreign exchange market. This may stem from the fact that typical intervention efforts, which are of the order of \$100 or \$200 million, are very tiny when compared to the average daily turnover on foreign exchange markets.¹¹ As a consequence of the relative negligeability of interventions, their impact on the course of exchange rate movements depends crucially on the strength of their announcement effect on the expectations of private exchange market participants. Hence, it seems reasonable to assume that the more frequent a central bank intervenes, the less attention will be paid to the message contained in the official foreign currency operations. It follows that the central bank is faced with a trade off. It can chose to intervene more frequently in the present with a (small) chance of driving the current spot rate closer to the target rate and/or limiting the volatility of the spot exchange rate. This will go at the cost of lowering the "news"-content and thus the potential effectiveness of future interventions. Thus, by abstaining from intervention in the face of small changes in the exchange rate and normal levels of conditional volatility the central banks can be viewed as "investing" in the potential effectiveness of interventions to be undertaken at times the foreign exchange market experiences some serious turbulence.

The large proportion of zero observations for the dependent variable in the intervention reaction functions despite nonzero values of the explanatory variables is inconsistent with the

¹¹In April 1992 the daily average of global spot market turnover net of double-counting arising from both local and cross-border interbank operations was estimated to be \$ 400 billion. This implies a 15 percent rise from the corresponding estimate of \$350 billion for April 1989 (Bank for International Settlements, 1993).

continuous density specification of (4) and (5). Therefore, the use of ordinary least squares as an estimation technique yields biased and inconsistent estimates. Rosett (1959) developed a friction model to suitably account for relationships in which the dependent variable is insensitive to small realizations of the explanatory variables.¹² In matrix notation:

 $INV = (\mathbf{X}\Omega + \mu) - \Theta^{+} \qquad \text{if } (\mathbf{X}\Omega + \mu) > \Theta^{+}$ $INV = 0 \qquad \qquad \text{if } \Theta^{-} \le (\mathbf{X}\Omega + \mu) \le \Theta^{+}$ $INV = (\mathbf{X}\Omega + \mu) - \Theta^{-} \qquad \qquad \text{if } (\mathbf{X}\Omega + \mu) < \Theta^{-}$

where *INV* is the dependent variable, **X** is the matrix of explanatory variables, Ω is a vector of coefficients, μ is a vector of normal, i.i.d. errors and $\Theta^+(>0)$ and $\Theta^-(<0)$ are the thresholds which must be exceeded before the central bank acts to buy or sell foreign currency, respectively. In the actual estimation of the friction model the thresholds replace the positive and negative constant terms in equations (4) and (5).

Maximizing the likelihood function of the friction model provides estimates of the tolerance thresholds, the standard deviation of the disturbance term, σ , and the coefficient vector on the explanatory variables, $\mathbf{\Omega}$.¹³

The maximum likelihood estimates for the parameters of the friction model for central bank intervention are reported in Table 2. The Bundesbank and the Federal Reserve are clearly

¹³The likelihood function of the friction model consists of three components. For the observations for which *INV* is positive (first component) and the observations for which *INV* is negative (third component) an ordinary probability density function applies. For the observations with *INV* = 0 we know that $\Theta \leq (\mathbf{X}\Omega + \mu) \leq \Theta^+$. Consequently,

$$Pr [INV_{i} = 0] = Pr [\theta^{-} \le X\Omega + \mu \le \theta^{-}] = \Phi \left(\frac{\theta^{+} - X\Omega}{\sigma}\right) - \Phi \left(\frac{\theta^{-} - X\Omega}{\sigma}\right)$$

where Pr denotes the expected probability and Φ is the standard normal cumulative density function. The likelihood function can be written as follows:

$$L = \prod_{INV \to 0} \frac{1}{\sigma\sqrt{(2\pi)}} e^{\frac{-(INV + \theta^- x\Omega)^2}{2\sigma^2}} * \prod_{INV \to 0} \left\{ \Phi\left(\frac{\theta^+ - X\Omega}{\sigma}\right) - \Phi\left(\frac{\theta^- - X\Omega}{\sigma}\right) \right\} * \prod_{INV \to 0} \frac{1}{\sigma\sqrt{(2\pi)}} e^{\frac{-(INV + \theta^- x\Omega)^2}{2\sigma^2}}$$

¹²Rosett (1959, p. 263) mentions the example of small changes in yield not leading to changes in the holdings of a particular asset by a certain class of investors because of transaction costs. Forbes and Mayne (1989) estimate a friction model of the prime rate. The interest rates on bank loans under \$ 1,000,000 to businesses are mostly tied to the prime rate which has a tendency to remain unchanged despite movements in for instance the secondary market rate on large, negotiable certificates of deposit. Feinman (1993) estimates a friction model for the volume of daily open market operations conducted by the Federal Reserve Open Market Desk. The Desk refrains from engaging in any transaction on roughly one day in four.

found to have conducted a "leaning against the wind" policy during the post-Louvre sample period from February 23, 1987 to October 31, 1989. The coefficients for the explanatory variable which captures deviations of day t's opening exchange rate from the seven-days moving average have the expected negative sign both for Bundesbank intervention in the DM/\$-market and for Federal Reserve intervention in the DM/\$- and yen/\$-market and are statistically significant in all cases. A one percentage point appreciation (depreciation) of the U.S. dollar vis-à-vis the Deutsche Mark above (below) its moving average on average led the Bundesbank to sell (buy) \$ 79.77 million in the DM/\$-market and the Federal Reserve to sell (buy) \$ 106.91 million. The equivalent figure for Federal Reserve intervention in response to changes in the yen/\$-rate is \$ 99.25 million.

The estimation results indicate that both central bank actively responded to increases in the anticipated volatility of the exchange market. In effect, the Federal Reserve's reaction to exchange rate uncertainty was considerably stronger than that of the Bundesbank. For example, given that the DM/\$-rate was above the longer term target rate implied by the Louvre Agreement, an increase in the conditional variance of one point, say from 0.40 to 0.41, caused by a larger than average percentage change in the DM/\$-rate during the previous days on average induced the Bundesbank to sell \$ 2.21 million, while it led the Federal Reserve to sell \$ 3.84 million in the DM/\$-market, ceteris paribus.

The estimation results confirm the seeming reluctance of central banks to intervene despite deviations of current exchange rates from their moving average and changes in the conditional variance of exchange rate returns. The tolerance thresholds for intervention (Θ^+ and Θ^- , for purchases and sales of U.S. dollars, respectively) of the Bundesbank and the Federal Reserve reported in Table 2 are all statistically significant. The thresholds for Bundesbank intervention are smaller than those for interventions by the Federal Reserve. This is due to the fact that on some trading days in the sample the German central bank intervened at the fixing of the Frankfurt market for foreign exchange in small amounts (of the order of DM 5 to 10 million). These interventions have a technical character and are not always policy motivated. They do however artificially lower the thresholds for Bundesbank intervention. The Fed's higher threshold, in absolute value, for purchases of U.S. dollars could be interpreted as evidence for its concern with the competitiveness of U.S. exporting firms. In addition, given the already high U.S. trade deficit, the Federal Reserve may have been relatively more opposed to an appreciation of the U.S. dollar vis-d-vis both the Deutsche Mark and the Japanese Yen.

An asymmetry in both Bundesbank and Federal reserve intervention policy becomes apparent when a distinction is made between positive and negative deviations from the seven-days moving average. From Table 2 it is obvious that both central banks tried to counteract appreciations of their own currency more strongly than depreciations. Given that our focus is on a post-Louvre episode it is useful to keep in mind that the Louvre Agreement embodied a commitment to stabilize the value of the dollar at its then prevailing level and contain the steep decline induced by the Plaza Agreement of September 22, 1985. The Federal Reserve did indeed counteract depreciations of the U.S. dollar vis-à-vis the German Mark and the Japanese Yen ("negative deviations from moving average"). However, the estimation results indicate that its intervention efforts in response to appreciations of the U.S. dollar in the DM/\$- and ¥/\$-market exceeded those in response to depreciations by 30 and 50 percent, respectively. It should be noted that in the case of Federal Reserve intervention in the DM/\$-market the intervention efforts are not significantly different at usual levels of significance. For the Bundesbank it was relatively easy to hang on to its Louvre commitment. By supporting the value of the dollar it simultaneously prevented the international competitiveness of German industries from deteriorating.

IV. Conclusions

We derived a central bank intervention reaction function by combining an amended GARCH model for the exchange rate with a loss function for the central bank. Consistent estimation results were obtained by implementing a friction model. Thus, we could cope with the fact that the Bundesbank and the Federal Reserve refrain from engaging in any transaction in the foreign exchange market on the majority of the trading days in the post-Louvre sample conside-red. Using daily exchange rate and intervention data we found that the German and U.S. central bank "leaned against the wind" in the DM/\$-market and the DM/\$- and Yen/\$-market respective-ly. We investigated whether the central banks take into account the well established empirical finding that exchange rate volatility is predictable to some extent. Both the Bundesbank and the Federal Reserve are found to have taken action to lower exchange market uncertainty.

References

- Almekinders, G.J., "Exchange Rate Policy and the (Un)conditional Variance in the DM/\$-Rate", Working paper, Tilburg University, October 1992.
- Almekinders, G.J., and S.C.W. Eijffinger, "Empirical Evidence on Foreign Exchange Market Intervention: Where Do We Stand?", Weltwirtschaftliches Archiv, 1991, 127: 645-677.
- Almekinders, G.J., and S.C.W. Eijffinger, "Daily Bundesbank and Federal Reserve Interventions are they a reaction to Changes in the Level and Volatility of the DM/\$-rate?", *Empirical Economics*, 1994, 19: 111-130.
- Bank for International Settlements, Central Bank Survey of Foreign Exchange Market Activity in April 1992, Monetary and Economic Department, Basle, March 1993.
- Baillie, R.T., and T. Bollerslev, "The Message in Daily Exchange Rates: A Conditional Variance Tale", Journal of Business & Economic Statistics, 1989, 31: 297-305.
- Blundell-Wignall, A. and P.R. Masson: "Exchange Rate Dynamics and Intervention Rules", Staff Papers, International Monetary Fund, 1985, 32: 132-159.

- Bollerslev, T., R.Y. Chou and K.F. Kroner, "ARCH Modeling in Finance: a Review of the Theory and Empirical Evidence", Journal of Econometrics, 1992, 52: 5-59.
- Edison, H., "The Effectiveness of Central Bank Intervention: A Survey of the Literature after 1982", Special Papers in International Economics, Princeton University, Princeton NJ, No. 18, July 1993.
- Feinman, J.A., "Estimating the Open Market Desk's Daily Reaction Function", Journal of Money Credit and Banking, May 1993, 25:231-247.
- Forbes, S.M. and L.S. Mayne, "A Friction Model of the Prime", Journal of Banking and Finance, June 1989, 13:127-135
- Goodhart, C., and T. Hesse, "Central Bank Forex Intervention Assessed in Continuous Time", Journal of International Money and Finance, 1993, 12: 368-389.
- Klein, M. W., The Accuracy of Reports of Foreign Exchange Intervention, NBER Working Paper Series, nr. 4165, 1992. (Forthcoming in Journal of International Money and Finance).
- MacDonald, R. and M.P. Taylor, "Exchange Rate Economics: A Survey", Staff Papers, International Monetary Fund, March 1992, 39: 1-57.
- Neumann, M.J.M.: "Intervention in the Mark/Dollar Market: the Authorities' Reaction Function", Journal of International Money and Finance, 1984, 3: 223-239.
- Osterberg, W.P. and R. Wetmore Humes, "The Inaccuracy of Newspaper Reports of U.S. Foreign Exchange Intervention", *Economic Review*, Federal Reserve Bank of Cleveland, 1993, vol. 29, no. 4, pp. 25-33.
- Pilbeam, K.: Exchange Rate Management: Theory and Evidence, Basingstoke, MacMillan, 1991.
- Rosett, R.N., "A Statistical Model of Friction in Economics", Econometrica, 1959, 26: 263-267.

	Bundesbank	intervention		Federal Res	erve Interventi	on
explanatory variables	in DM/\$-	market	in D	M/\$-market	in Yen/\$-r	market
deviations from moving average	-79.77 (-9.27)		-106.91 (-8.76)		-99.25 (-9.15)	
-positive deviations		-55.07 (-3.44)		-121.55 (-6.07)		-138.80 (-5.09)
-negative deviations		-103.65 (-6.56)		-92.75 (-4.74)		-69.87 (-4.80)
conditional variance	-221.07 (-8.30)	-224.96 (-8.27)	-383.92 (-8.46)	-381.99 (-8.37)	-393.00 (-8.00)	-383.17 (-8.16)
positive threshold (Θ^+)	381.79 (12.13)	406.91 (10.94)	509.97 (10.61)	493.70 (9.56)	516.02 (10.82)	472.51 (10.09)
negative threshold (Θ)	-226.79 (-11.65)	-205.32 (-8.99)	-315.47 (-9.58)	-327.10 (-9.00)	-361.80 (-8.66)	-394.28 (-8.47)
σ	196.32 (18.65)	195.69 (18.72)	218.51 (14.51)	217.77 (14.39)	220.53 (17.64)	216.21 (18.25)
logL	-1300.18	-1298.70	-1168.40	-1168.03	-1037.70	1034.89
LR(1) for equality		2.96		0.74		5.62

 Table 2
 Maximum likelihood estimates for the parameters of the Friction Model for central bank intervention

Notes: t-statistics in parentheses.

LR(1) gives the value of the test statistic for the likelihood ratio test under the nullhypothesis that the coefficients for positive and negative deviations from the moving average are equal. The LR-statistic has a χ^2 -distribution with one degree of freedom. The tabulated critical value for a 5% (10%)-level test is 3.84 (2.71).

Discussion Paper Series, CentER, Tilburg University, The Netherlands:

(For previous papers please consult previous discussion papers.)

No.	Author(s)	Title
9340	Т.С. То	Export Subsidies and Oligopoly with Switching Costs
9341	A. Demirgüç-Kunt andH. Huizinga	Barriers to Portfolio Investments in Emerging Stock Markets
9342	G.J. Almekinders	Theories on the Scope for Foreign Exchange Market Intervention
9343	E.R. van Dam and W.H. Haemers	Eigenvalues and the Diameter of Graphs
9344	H. Carlsson and S. Dasgupta	Noise-Proof Equilibria in Signaling Games
9345	F. van der Ploeg and A.L. Bovenberg	Environmental Policy, Public Goods and the Marginal Cost of Public Funds
9346	J.P.C. Blanc and R.D. van der Mei	The Power-series Algorithm Applied to Polling Systems with a Dormant Server
9347	J.P.C. Blanc	Performance Analysis and Optimization with the Powerseries Algorithm
9348	R.M.W.J. Beetsma and F. van der Ploeg	Intramarginal Interventions, Bands and the Pattern of EMS Exchange Rate Distributions
9349	A. Simonovits	Intercohort Heterogeneity and Optimal Social Insurance Systems
9350	R.C. Douven and J.C. Engwerda	Is There Room for Convergence in the E.C.?
9351	F. Vella and M. Verbeek	Estimating and Interpreting Models with Endogenous Treatment Effects: The Relationship Between Competing Estimators of the Union Impact on Wages
9352	C. Meghir and G. Weber	Intertemporal Non-separability or Borrowing Restrictions? A Disaggregate Analysis Using the US CEX Panel
9353	V. Feltkamp	Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values
9354	R.J. de Groof and M.A. van Tuijl	Aspects of Goods Market Integration. A Two-Country-Two -Sector Analysis
9355	Z. Yang	A Simplicial Algorithm for Computing Robust Stationary Points of a Continuous Function on the Unit Simplex

No.	Author(s)	Title
9356	E. van Damme and S. Hurkens	Commitment Robust Equilibria and Endogenous Timing
9357	W. Güth and B. Peleg	On Ring Formation In Auctions
9358	V. Bhaskar	Neutral Stability In Asymmetric Evolutionary Games
9359	F. Vella and M. Verbeek	Estimating and Testing Simultaneous Equation Panel Data Models with Censored Endogenous Variables
9360	W.B. van den Hout and J.P.C. Blanc	The Power-Series Algorithm Extended to the BMAP/PH/1 Queue
9361	R. Heuts and J. de Klein	An (s,q) Inventory Model with Stochastic and Interrelated Lead Times
9362	KE. Wärneryd	A Closer Look at Economic Psychology
9363	P.JJ. Herings	On the Connectedness of the Set of Constrained Equilibria
9364	P.JJ. Herings	A Note on "Macroeconomic Policy in a Two-Party System as a Repeated Game"
9365	F. van der Ploeg and A. L. Bovenberg	Direct Crowding Out, Optimal Taxation and Pollution Abatement
9366	M. Pradhan	Sector Participation in Labour Supply Models: Preferences or Rationing?
9367	H.G. Bloemen and A. Kapteyn	The Estimation of Utility Consistent Labor Supply Models by Means of Simulated Scores
9368	M.R. Baye, D. Kovenock and C.G. de Vries	The Solution to the Tullock Rent-Seeking Game When $R > 2$: Mixed-Strategy Equilibria and Mean Dissipation Rates
9369	T. van de Klundert and S. Smulders	The Welfare Consequences of Different Regimes of Oligopolistic Competition in a Growing Economy with Firm- Specific Knowledge
9370	G. van der Laan and D. Talman	Intersection Theorems on the Simplotope
9371	S. Muto	Alternating-Move Preplays and $vN - M$ Stable Sets in Two Person Strategic Form Games
9372	S. Muto	Voters' Power in Indirect Voting Systems with Political Parties: the Square Root Effect
9373	S. Smulders and R. Gradus	Pollution Abatement and Long-term Growth
9374	C. Fernandez, J. Osiewalski and M.F.J. Steel	Marginal Equivalence in v-Spherical Models

No.	Author(s)	Title
9375	E. van Damme	Evolutionary Game Theory
9376	P.M. Kort	Pollution Control and the Dynamics of the Firm: the Effects of Market Based Instruments on Optimal Firm Investments
9377	A. L. Bovenberg and F. van der Ploeg	Optimal Taxation, Public Goods and Environmental Policy with Involuntary Unemployment
9378	F. Thuijsman, B. Peleg, M. Amitai & A. Shmida	Automata, Matching and Foraging Behavior of Bees
9379	A. Lejour and H. Verbon	Capital Mobility and Social Insurance in an Integrated Market
9380	C. Fernandez, J. Osiewalski and M. Steel	The Continuous Multivariate Location-Scale Model Revisited: A Tale of Robustness
9381	F. de Jong	Specification, Solution and Estimation of a Discrete Time Target Zone Model of EMS Exchange Rates
9401	J.P.C. Kleijnen and R.Y. Rubinstein	Monte Carlo Sampling and Variance Reduction Techniques
9402	F.C. Drost and B.J.M. Werker	Closing the Garch Gap: Continuous Time Garch Modeling
9403	A. Kapteyn	The Measurement of Household Cost Functions: Revealed Preference Versus Subjective Measures
9404	H.G. Bloemen	Job Search, Search Intensity and Labour Market Transitions:
		An Empirical Exercise
9405	P.W.J. De Bijl	Moral Hazard and Noisy Information Disclosure
9405 9406	P.W.J. De Bijl A. De Waegenaere	An Empirical Exercise Moral Hazard and Noisy Information Disclosure Redistribution of Risk Through Incomplete Markets with Trading Constraints
9405 9406 9407	 P.W.J. De Bijl A. De Waegenaere A. van den Nouweland, P. Borm, W. van Golstein Brouwers, R. Groot Bruinderink, and S. Tijs 	An Empirical Exercise Moral Hazard and Noisy Information Disclosure Redistribution of Risk Through Incomplete Markets with Trading Constraints A Game Theoretic Approach to Problems in Telecommunication
9405 9406 9407 9408	 P.W.J. De Bijl A. De Waegenaere A. van den Nouweland, P. Borm, W. van Golstein Brouwers, R. Groot Bruinderink, and S. Tijs A.L. Bovenberg and F. van der Ploeg 	An Empirical Exercise Moral Hazard and Noisy Information Disclosure Redistribution of Risk Through Incomplete Markets with Trading Constraints A Game Theoretic Approach to Problems in Telecommunication Consequences of Environmental Tax Reform for Involuntary Unemployment and Welfare
9405 9406 9407 9408 9409	 P.W.J. De Bijl A. De Waegenaere A. van den Nouweland, P. Borm, W. van Golstein Brouwers, R. Groot Bruinderink, and S. Tijs A.L. Bovenberg and F. van der Ploeg P. Smit 	An Empirical Exercise Moral Hazard and Noisy Information Disclosure Redistribution of Risk Through Incomplete Markets with Trading Constraints A Game Theoretic Approach to Problems in Telecommunication Consequences of Environmental Tax Reform for Involuntary Unemployment and Welfare Arnoldi Type Methods for Eigenvalue Calculation: Theory and Experiments
9405 9406 9407 9408 9409 9410	 P.W.J. De Bijl A. De Waegenaere A. van den Nouweland, P. Borm, W. van Golstein Brouwers, R. Groot Bruinderink, and S. Tijs A.L. Bovenberg and F. van der Ploeg P. Smit J. Eichberger and D. Kelsey 	An Empirical Exercise Moral Hazard and Noisy Information Disclosure Redistribution of Risk Through Incomplete Markets with Trading Constraints A Game Theoretic Approach to Problems in Telecommunication Consequences of Environmental Tax Reform for Involuntary Unemployment and Welfare Arnoldi Type Methods for Eigenvalue Calculation: Theory and Experiments Non-additive Beliefs and Game Theory

No.	Author(s)	Title
9412	H. Bester and E. Petrakis	Coupons and Oligopolistic Price Discrimination
9413	G. Koop, J. Osiewalski and M.F.J. Steel	Bayesian Efficiency Analysis with a Flexible Form: The AIM Cost Function
9414	C. Kilby	World Bank-Borrower Relations and Project Supervision
9415	H. Bester	A Bargaining Model of Financial Intermediation
9416	J.J.G. Lemmen and S.C.W. Eijffinger	The Price Approach to Financial Integration: Decomposing European Money Market Interest Rate Differentials
9417	J. de la Horra and C. Fernandez	Sensitivity to Prior Independence via Farlie-Gumbel -Morgenstern Model
9418	D. Talman and Z. Yang	A Simplicial Algorithm for Computing Proper Nash Equilibria of Finite Games
9419	H.J. Bierens	Nonparametric Cointegration Tests
9420	G. van der Laan, D. Talman and Z. Yang	Intersection Theorems on Polytopes
9421	R. van den Brink and R.P. Gilles	Ranking the Nodes in Directed and Weighted Directed Graphs
9422	A. van Soest	Youth Minimum Wage Rates: The Dutch Experience
9423	N. Dagan and O. Volij	Bilateral Comparisons and Consistent Fair Division Rules in the Context of Bankruptcy Problems
9424	R. van den Brink and P. Borm	Digraph Competitions and Cooperative Games
9425	P.H.M. Ruys and R.P. Gilles	The Interdependence between Production and Allocation
9426	T. Callan and A. van Soest	Family Labour Supply and Taxes in Ireland
9427	R.M.W.J. Beetsma and F. van der Ploeg	Macroeconomic Stabilisation and Intervention Policy under an Exchange Rate Band
9428	J.P.C. Kleijnen and W. van Groenendaal	Two-stage versus Sequential Sample-size Determination in Regression Analysis of Simulation Experiments
9429	M. Pradhan and A. van Soest	Household Labour Supply in Urban Areas of a Developing Country
9430	P.J.J. Herings	Endogenously Determined Price Rigidities
9431	H.A. Keuzenkamp and J.R. Magnus	On Tests and Significance in Econometrics

No.	Author(s)	Title				
9432	C. Dang, D. Talman and Z. Wang	A Homotopy Approach to the Computation of Economic Equilibria on the Unit Simplex				
9433	R. van den Brink	An Axiomatization of the Disjunctive Permission Value for Games with a Permission Structure				
9434	C. Veld	Warrant Pricing: A Review of Empirical Research				
9435	V. Feltkamp, S. Tijs and S. Muto	Bird's Tree Allocations Revisited				
9436	GJ. Otten, P. Borm, B. Peleg and S. Tijs	The MC-value for Monotonic NTU-Games				
9437	S. Hurkens	Learning by Forgetful Players: From Primitive Formations to Persistent Retracts				
9438	JJ. Herings, D. Talman, and Z. Yang	The Computation of a Continuum of Constrained Equilibria				
9439	E. Schaling and D. Smyth	The Effects of Inflation on Growth and Fluctuations in Dynamic Macroeconomic Models				
9440	J. Arin and V. Feltkamp	The Nucleolus and Kernel of Veto-rich Transferable Utility Games				
9441	PJ. Jost	On the Role of Commitment in a Class of Signalling Problems				
9442	J. Bendor, D. Mookherjee, and D. Ray	Aspirations, Adaptive Learning and Cooperation in Repeated Games				
9443	G. van der Laan, D. Talman and Zaifu Yang	Modelling Cooperative Games in Permutational Structure				
9444	G.J. Almekinders and S.C.W. Eijffinger	Accounting for Daily Bundesbank and Federal Reserve Intervention: A Friction Model with a GARCH Application				

