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Abetract

A Stag Hunt Game is an n-person symmetric binary choice game. Each player

can play either a safe strategy that yielda a certain payoff irrespective of what the

opponents do, or a risky strategy that yields a payoff that increases monotonically

with the number of players that follow this strategy. There are two strict Nash

equilibria, viz. the two symmetric pure strategy profilea. For such a game, we

compute and compare the solutions according to the equilibrium selection theories

of Harsanyi and Selten (1988), Guth and Kalkofen (1989) and Guth (1990). A

further comparison is obtained by applying the global payoff uncertainty approach

of Carlsson and Van Damme (1990). If there are two players all solutions coincide,

but if the number of players exceeds two, then, in general, all solutions differ.

'The authors gratefully acknowledge Pieter Kop ]ansen for drawing their attention to Bernstein

polynomials.
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1 Introduction

A weakness of the Nash equilibrium concept for noncooperative games is that it fre-

quently dces not generate a unique outcome. In the literature, therefore, a great many

concepts have been introduced that refine the Nash concept by imposing additional ratio-

nality restrictions or by requiring additional robustness properties. However, frequently

even the strongest refinements that have been proposed - such as Kohlberg and Mertens'

(1986) stability concept - do not succeed in determining unique solutions. This is true,

in particular, for any game that has several strict Nash equilibria since all such equilibria

survive any of the established refinement tests.

Many economic situations give rise to games with multiple strict Nash equilibria. As

an example consider the game displayed in Figure 1. (Various economic scenarios that

can be associated with this game are described in Section 2.)
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Figure 1: Game g(x) (0 G x C I)

In the game g(x), each player has to choose among two strategies: a is a safe strategy

that yields x irrespective of what the opponent dces. The strategy ~ might yield the

higher payoff of 1- if the opponent chooses p as well - but it is risky since it yields

only 0 if the opponent chooses the safe strategy. It is easily seen that g(x) has two strict

Nash equilibria, viz. á(both players choose a) and Q(both choose Q). Hence, when

playing this game, players face a coordination problem. The dilemma is whether one

should go for the equilibrium Ji with the highest possible payoff or whether, in view of

the strategic uncertainty, one should rather play according to the safe equilibtium à.
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blany game theorists would argue that the Pareto-dominant equilibrium Q is the nat-

ural tocal point in the game g(x). In support of this view, they might invoke Schelling's

principle of tacit bargaining: Since the players know that they would talk each other

into (i if they could communicate, they will also be able to reach this conclusion without

actually communicating. From the viewpoint of a strict methodological individualism,

however, these arguments in favor of Q, which almost amount to simply postulating col-

lective rationality, are not wholly convincing. A satisfactory solution to the equilibrium

selection problem should have a better foundation in individual decision making.

One can also question whether Q is always the intuitively most appealing solution:

For instance, would you accept a bet where you win 510000 in case another person B,

with whom you cannot communicate, accepts a similar bet, but lose á90000 if B declines

the bet? We believe many people would hesitate to accept even ijprior communication

with the opponent was allowed. Finally, one can note that subjects participating in ex-

periments frequently do not succeed in coordinating on the Pareto-dominant equilibrium

(see Cooper et al. (1990) and Van Huyck et al. (1990)).

The above discussion indicates the hazards of taking short cuts in matters of equi-

librium selection and the need for a more fundamental approach where solutions to the

selection problem are derived from iadividualistic assumptions. In view of the importance

of games with multiple strict equilibria, there have been remarkably few contributions

to this approach. Recently, however, the theory of equilibrium selection has received a

strong impetus from Harsanyi and Selten's (1988) book. Apart from the Harsanyi~Selten

theory, we will here discuss modifications to that theory by Guth and his co-authors as

well as the rather different approach initiated in Carlsson and Van Damme (1990).

A common feature of these approaches is that the selection of a particular equilibrium

results from the individual playets' strategic uncertainty. There are, however, consider-

able differences: Theorists within the Harsanyi~Selten approach content themselves to

postulate a specific form of uncertainty, typically a uniform prior in some fixed scheme
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of expectations formation, but in Carlsson and Van Damme, the uncertainty is derived

from more fundamental assumptions about how the playera' information is generated.

Hence, while in the former approach the equilibrium selection rule has a somewhat ad

hoc character, we derive the selection rule within a strictly noncooperative framework by

perturbing the game to be solved and embedding it in a game of incomplete information.

A drawback of our earlier paper is that it only covera 2 x 2 games and hence, dces

not describe a general equilibrium selection theory. Here, however, we demonstrate that

some properties we derived in the earlier paper can be generalized to a certain class of

n-person symmetric binary choice problems. In particular, we show that introducing

slight payoff uncertainty allows the equilibrium selection problem to be resolved by a

process of iterative elimination of strictly dominated strategies ( Proposition 4.1). In our

1990 paper we showed that for 2-player 2 x 2 games equilibrium selection on the basis

of Harsanyi and Selten's risk dominance criterionl can be justified by considerations of

slight payoff uncertainty. Our aim in this paper is to show that these approacbes do no

longer yield the same solutions if the number of players exceeds two. Along the way we

also show that the modifications of the Harsanyi~Selten theory that have been proposed

by Guth yield still different outcomes.

The remainder of the paper is organized as follows. Section 2 describes the class of

n-person binary choice games that we will study and mentions some contexts in which

these games arise. The approaches to equilibrium selection that have been proposed in

Harsanyi and Selten (1988), Guth and Kalkofen (1989) and Guth (1990) are outlined in

Section 3, while Section 4 is devoted to extending the approach to equilibrium selection

that has been put forward in Carlsson and Van Damme (1990). This section contains

the paper's main result (Proposition 4.1). Section 5 concludes the paper with a general

discussion on equilibrium selection and an illustration of the fact that different forms of

llt is important to note that the theory of Aarsanyi and Selten dces not rely on rislc dominance alone

but also invo{ces the principle of payoff dominance. Although the authore ate aware of its questionable

justifitation, they decide to rank payoRdominance above risk dominance; see Hareanyi and Selten (1988,

Sects. 10.11 and 10.12).
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payoff uncertainty may give rise to very different results.

2 Stag Hunt Games

We consider games where a number, n, of identical players, are to choose simultaneously

between two actions, a and Q. The players' identical preferences are determined by a

parameter x (0 G x c 1) and a nondecreasing function p:[0,1] ~(0, 1] with p(0) - 0

and p(1) - 1. If a playet chooses action a his payoff is x no matter what his opponents'

choices are. If he chooses Q then his payoff is p(k~n) where k is the number of players that

choose Q. The normal form game described by the above data is denoted by g(n, x, p)

and will be called a Stag Hunt Game. In the remainder of the paper we will restrict

ourselves to the case where

x~ p(k~n) for all k E{0, 1, ..., n} (2.1)

in order to avoid uninteresting case distinctions. In this case we have

Proposition 2.1 . The stag hunt game g(n, x, p) has two Nash equilibria in pure strate-

gies, viz. á and p. Both equilibria are strict.

Proof. Let s be a pure strategy combination in g(n,x,p) and let k be the number of

players choosing (3. If x 1 p(k~n), then a player choosing Q(if there is any) has an

incentive to switch to a. If x C p(k~n), then a player choosing a(if there is any) can

gain by unilaterally deviating to (i. Hence, a necessary condition for a pure equilibrium

is `k - 0 or k- n'. Straightforward verification shows that both possibilities do indeed

yield strict equilibria. ~

The name Stag Hunt is motivated by the fact that the game g(n, x, p) can be viewed

as a formalization of a dilemma described in Rousseau's Discours sur I'origine et les



5

fondemens de 1'inégalité parmi !es hommes (see Rousseau (1971), also see Lewis (1969),

Aumann (1990) or Crawford (1991)). Suppose each member of a group of hunters has

to decide independently whether to cooperate with the others in hunting a stag (action

Q) or instead, to go off on his own and hunt hares (action a). While the latter does

not require cooperation of the othera, the probability that the stag hunt is success[ul

depends, on the number of hunters that does not chase hares and is increasing ín this

number.

The Stag Hunt Game g(n, x, p) can be viewed as a stylized model of many other

interesting economic and political situations. For example, a may be interpreted as con-

suming own production and ~3 may be interpreted as going to a market place to trade own

production for more desired products. The attractiveness of the latter strategy depends

on the chance of finding a trading partner, i.e. on how many people adhere to the same

strategy. Alternatively, a may be interpreted as shirking while Q stands for spending

effort in a situation of team production: one's own effort is wasted unless a sufficient

number of other people spend effort as well. The game g(n, x, p) also arises in models

of public goods. Assume that people have to decide whether to contribute to a public

good (action (3) or not (action a). If non-contributors can be excluded from consuming

the public good, if contributions are not refunded and if the public good is provided

only if enough people contribute, then, for interesting parameter values, the situation is

represented by a game that is strategically equivalent to a Stag Hunt Game (see Harrison

and Hirschleifer (1989)). Finally, games with the Stag Hunt structure have been used as

models to explain the occurrence of Keynesian coordination failures (Cooper and John

(1988), Van Huyck et al. (1990)), while in the international relations literature a model

of this type is known as the Security Dilemma (Jervis (1987)).

Proposition 2.1 shows that in g(n, x, p), Pareto efficiency is compatible with equilib-

rium play. (Note that, since x C 1, the unique Pareto efficient outcome is Q.) Hence,

it is not necessary to make binding agreements in order to reach an efficient outcome.

However, it is not clear whether players will be able to reach this outcome in a nonco-



6

operative context where no direct communication is possible. Choosing the cooperative

action Q is risky in the sense that it only pays if there are enough people who follow

this action. If you expect only few other people to choose ~, you are better off choosing

a even though such expectations - if they are generally held - will lead the players

to coordinate on the Pareto-inferior equilibrium á. Intuitively, one would think that

the larger the value of x, the greater the chance that players will indeed end up in this

(inefficient) equilibrium. The experimental results reported in Van Huyck et al. (1990)

concerning similar games indeed point in this direction, but formal game theory provides

no support: Both i7 and Q are strict equilibria - i.e. each player is strictly worse off

is she deviates unilaterally - so each of these equilibria survives the most stringent re-

finements that have been proposed to date. To resolve the player's dilemma in g(n, x, p)

we, therefore, turn to theories of equiliórium selection in the following sections.

3 Equilibrium Selection

In this section we discuss some principlea of equilibrium selection that are based on

comparisons of riskiness of equilibria. All are variations of Harsanyi and Selten's (1988)

concept of risk dominance and all yield the same result if the number of players is equal

to two? Specifically, if n- 2, then the game g(n, x, p) is given in Fígure 1, and the risk-

dominant equilibrium is the one with the largest Nash product, i.e. the one for which

the product of the deviation losses is largest. Hence, if n- 2, then á risk-dominates p

if x~ ~(I - x)~, i.e. if x ~ l~z, while Q risk-dominates á if the reverse (strict) inequality

is satisfied. However, as we will see, the various equilibrium selection theories generate

different outcomes as soon as the number of players exceeds two. The discussion that

follows may also give some insight in the relative merits and drawbacks of the various

concepts.

We first discuss the idea of equilibrium selection on the basis of maximal unilateral

zFor the special tlass of 2 x 2 gamea, the ris~ dominance relation is charatterized by a convincing

set o( axioma (Harsanyi and Selten (1988, Sect. 3.9)).
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deviation stability that óas been put forward in Guth (1990). Suppose that each player

i believes that he is the only player who does not know what the unique solution of

g(n, x, p) is. All players, however, know that the solution is unique and that it is either

á or p. Two players i and j may then represent their decision problem by means of a

reduced game in which each player i believes that each player k~{i, j} will take the

same choice as player j. Since g(n, x, p) is symmetric, the derived game dces not depend

on which players i and j are selected from the original player set and is represented by

the bimatrix from Figure 1. Assuming that the players i and j consider their decision

problem in g(n, x, p) to be equivalent to that in the game of Figure 1 and that the players

use risk dominance as the selection criterion in 2 x 2 games, the players will choose á

whenever x~'~~. Guth (1990) argues that á is more stable against unilateral deviations

than Q if x 1 l~z. Hence, Guth advocates ~ as the solution of g(n, x, p) if z~ r~~ and

he advocates Q as the solution if x G l~s. Clearly, the selection rule proposed by Guth

corresponds to choosing that equilibrium with the largest Nash product. This implies,

in particular, the somewhat counterintuitive property that the equilibrium selected does

not depend on the number of players in the game. Guth himself remarks that selection

on the basis of Nash products may not reflect all strategic aspects of the situation and

that this might be viewed as a major deficiency ofsuch a selection rule. Nevertheless, the

rule may still serve as a benchmark against which other selection rules may be compared.

Next, we discuss selection on the basis of Harsanyi and Selten's (1988) risk-dominance

concept. The definition of risk dominance is based on a hypothetical process of expec-

tation formation starting from the initial situation where it is common knowledge that

either á or ~i will be the solution but where players do not yet know this solution.

Harsanyi and Selten postulate a process in which players first, on the basis of a prelimi-

nary theory, form priors on the strategies played by their opponents. Thereafter, players

gradually adapt their prior expectations to final equilibrium expectations by means of

the tracing procedure (see Harsanyi and Selten (1988, pp. 207-209)).

According to Harsanyi and Selten, the players' prior beliefs q; about player i's strategy
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should coincide with the prediction of an outside observer who reasons in the following

way about the game:

(i) Player i believes that his opponents will either all choose a or that they all choose

Q; he assigns a subjective probability z; to the first event and 1- z; to the second.

(ii) Whatever the value of z;, player i will choose a best response to his beliefs.

(iii) The beliefs (i.e. the z;) of different playere are independent and they are all uni-

formly distributed on (0, 1~.

From (i) and (ii), the outside observer concludes that player i chooses a; if z; ~ 1- x,

and that he chooses f~; if z; G 1 - x. Hence, using (iii), the outside observer forecasts

player i's strategy as

q; - xa f (1 - x)Q, (3.1)

with different q; being independent. Harsanyi and Selten assume that the mixed strategy

vector q-(ql, ..., q„) describes the players' prior expectations in the game g(n, x, p).

Since q is not a Nash equilibrium, this expectation is not self-fulfilling, and, thus, has to

be adapted. Adaptation is achieved by using the tracing procedure, i.e. by following a

distinguished path in the graph of the correspondence

~ ~ E((1 - ~)9(q) t a9(n,x,P)) (~ E ~~,1~) (3.2)

írom the unique equilibrium of the game g(q) associated with a- 0 to an equilibrium

of the game g(n, x, p) that corresponds to ~- 1. (In (3.2), E denotes the set of Nash

equilibria and g(q) is the game where each player j computes his payoffs from the matrix

g(n,x,p) by assuming that his opponents are committed to use q as in (3.1). Hence,

in g(q) a player's optimal strategy dces not depend on the strategies of his opponents.)

In the special case at hand, tracing is easy: The process comes to an end at the first
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iteration, except in degenerate cases. The reason ia aimply that, since the situation is

symmetric, either all players will have a as the unique best response against q in which

case à is the distinguished equilibrium in (3.2), or they will all have ~ as the unique

best response against q and in this case the result of the tracing procedure is Q. (See

Harsanyi and Selten (1988, Lemma 4.17.7).)

Write B~(t) for player i's expected payoff associated with Q in g(n, x, p) when each of

the opponents chooses ~f with probability t, i.e.

Bn(t) -~ ~ k - 1 Itk-'(1 - t)"-kP(k~n) (3.3)
k-1 ` J

If the playera' prior q is as in (3.1), then the expected payoff associated with Q is B~(1-x)

and each player's best response against q is ct if x~ B~(1 - x), while the best response

is fi if x G Bn(1 - x). Hence, if x~ Bn(1 - x) ( resp. x C B~(1 - x)) then the outcome

of the tracing procedure is à(resp. Q) and in this case Harsanyi and Selten say that à

risk dominates p ( resp. that À risk dominates à). To derive a more convenient charac-

terization of risk dominance we state the following lemma.

Lemma 3.1 .(iJ Bn(t) is nondecreasing in t for any n; ~ii) Ij p is continuous, then

Bn(t) -~ p(t) as n--~ oo jor any t.

Proof. (i) Direct computation shows that á~Bn(t) ~ 0 since p is non-decreasing.

(ii) By a simple manipulation it is seen that

tB~(t) - ~
k-0

( n Itk(1 - t)"-kp(k~n)k~n
`kJ

Now for a function j, the polynomial

Bn(ji t) -~ ( 4~ tk(1- t)"-kÏ(kIn)
k-0 `
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is known as the Bernstein polynomial of order n of f. Hence, (3.4) can be rewritten as

tBn(t) - B„(f, t) where f(x) - xp(x) for x E [0,1]. By Bernstein's theorem (Klam-

bauer (1975, p. 332)) B„(f,-) --~ f uniformly on [0,1] as n-. oo if f is continuous. It

follows that t8~(t) -~ tp(t) uniformly as n~ oo, so that B~(t) ~ p(t) for all t E [0,1]. O

The lemma allows us to conclude that there exists a unique x' - x'(n, p) for which

x' - Bn(1 - x'). Thus à risk dominates Q if x 1 x' and Q is risk-dominant if the reverse

strict inequality is satisfied. The lemma also implies that, as n-~ oo, x'(n, p) -~ x'(p)

where x'(p) is the unique solution of the equation x- p(1 - x). Hence, we get the

intuitive comparative statics result that x'(p) G x'(p') if p c p'. Furthermore, direct

computation shows that, if p(x) - 0 for x C 1 and p(1) - 1, then x'(n, p) ~ 0 as

n~ oo. All in all it seems that the risk dominance notion is more in agreement with

the intuition than Guth's selection on the basis of Nash products is.

To conclude this section, we discuss selection on the basis of resistance avoidance as

proposed in Guth and Kalkofen (1989). Player i's resistance against p at á is defined

as the maximum probability that each opponent may assign to p such that, if players

randomize independently, player i still prefers a to ~3. Formally,

r;(á,Q) - max{z E[0,1]; x 1 Bn(z)}

Similarly, player i's resistance against à at Q is defined as

r;(Q, n) - max{z E[0,1] : B~(1 - z) 1 x} (3.6)

Note that, since the game is symmetric, these resistance values are independent of the

player under consideration, so that we may speak of r(á, Q) - r;(á,Q) as the resis-

tance of à against Q. Guth and Kalkofen (1989) say that á is resistant-dominant if
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r(à, Q) ~ r(p, à) and that Q is resistant-dominant if the reverse inequality is satisfied.

Now Lemma 3.1 implies that r(p, à) - 1- r(à, ~), hence, à is reaistant-dominant if and

only if r(à, Q) G~~s, or equivalently if z 1 B~('~z). Hence, Guth and Kalkofen pick à as

the solution of g(n, x, p) whenever each player prefers to play a if he expects all others

to randomize equally over both actions, while they choose Q as the solution if a player

prefers to play Q in this case. Writing x" - x"(n, p) - B~('~z) and using Lemma 3.1

we see that x" y p(t~z) as n~ oo and that x" G z' if and only if x' G'~~. Hence,

also resistance dominance seems to capture the intuition about the effect of strategic

uncertainty in g(n, x, p), but in general the concept may lead to a recommended action

that differs from the recommendation obtained from risk dominance considerations. In

particular, depending on the shape of the function p, the area where a is resistance-

dominant may be either larger of smaller than the area where a is risk-dominant.

The followíng Proposition summarizes the discussion from this Section.

Proposition 3.1 .!n the game g(n, x, p):

(i) à is most stnble against unilateml deviations (Cuth (1990)) if and only if x 1 t~z,

(ii) à is risk-dominant (Harsanyi and Selten (1988)J if and only if x 1 x' where x' is

the solution to x' - Bn(1 - x'), and

(iii~ à is resistant-dominant (Cuth and Ka(kofen (1989~~ if and only if x~ Bn(~~Z).

4 Global Payoíf Uncertainty

In this section we will show that the equilibrium selection problem in a Stag Hunt Game

can be solved using the approach in Carlsson and Van Damme (1990) which is based on

the idea that the payoff parameters of a game can only be observed with some noise. To

be specific, assume that all data of the Stag Hunt Game g(n, x, p) are common knowl-

edge, except for the payoff x associated with the safe action a. Each player i will receive

a signal x; that provides an unbiased estimate of x, but the signals are noisy so the



12

true value of x will not be common knowledge. It should be noted that in Carlsson

and Van Damme (1990) attention is restricted to 2 x 2 games and players are allowed

to be imperfectly informed about more than one (possibly even all) parameters. In our

earlier paper we derive a justification of the risk dominance selection criterion for 2 x 2

games, by showing that, under some rather weak conditions, considerations of iterated

dominance will fotce the players to play the riak-dominant equilibrium for every possible

observation as the noise vanishes. It is quite remarkable that in the 2 x 2 games this

result is to a large extent independent of the players' prior beliefs and of the distribu-

tions of the observation errors. We will not seek the same degree of generality here, but

confine ourselves to analyzing the special case where the prior on x is uniform and the

players' observation errors are identically and independently distributed. As we will see,

the results obtained differ from any of those discussed in the previous section.

Let X be a random variable that is uniformly distributed on an interval that strictly

contains [0,1~ and let (E;); ~ be an n-tuple of mutually independent, identically dis-

tributed random variables, each having zero mean. The E; are assumed to be inde-

pendent of X, to allow a density and to have support within [-1,1~. For E 1 0, write

X; - X;-}EE;. As our model for the situation where each player i observes the true value

of x in g(n, x, p) only with some slight noise, we will consider the incomplete information

game g`(n,p) described by the following rules:

1. A realization ( x, x1i ..., x„) of (X, Xi ,..., Xn) is drawn,

2. player i is informed about x; and chooses between a and Q,

3. each player i receives payoffs as determíned by g(n, x, p) and the choices in 2.

~~~e now address the question of which choice of player i is rational in g`(n, p) at the

observation x;. Note that player i will certainly choose a if x; ~ 1: Since the expected

value from choosing a at x; is E(X ~X; - x;) - x;, player i knows that a is strictly

domínant at each such observation. For the same reason (3 will be chosen when x; C

0. The following proposition shows that considerations of iterated dominance allow
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player i to solve his decision problem for all observations but one. Let p' denote the

expected value from choosing Q when the number of opponents choosing Q is uniform on

{0,...,n - 1}:

r
P :- ~ p(kIn)~n.

k-1

Then we have

Proposition 4.1 .!n any strategy that survives iterative elimination oJ strictly domi-

nated strategies in g`(n, p), player i chooses a iJ he observes x; ~ p' and Q ij he observes

x; C p'.

Proof. Assume that ~ has already been shown to be iteratively dominant for each

player j at each observation x~ ~ i. (By the above such an i exists in (O,1J.) Now let us

assume player i observes x; - i and let us derive an upper bound for his expected payoff

from playing Q provided that no opponent uses an iteratively dominated strategy. Thus

any opponent j can choose Q only if x~ G i. Let s be the strategy vector in which each

player chooses Q if x~ C i and a if x~ ~ i. Since the function p is non-decreasing player

i's expected payoff from ,0 cannot exceed the payoff that Q yields against s as long as

the opponents do not play dominated strategies. To compute the expected payoff of Q

against s we have to know, for each k E{0,1, ... , n- 1}, the probability that exactly k

opponents make observations that do not exceed i, i.e. we have to know

P(X~ C i for exactly k opponents j ~X,` - i) (4.1)

The fact that the prior distribution of X is uniform allows us to conclude that the

probability in (4.1) is independent ofi, at least as long as i is at least e inside the support

oE X. (The formal proof is by direct computation, also see Carlsson and Van Damme
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(1990). The intuition, however, is obvious: If the prior is uniform, such observations do

not give new information.) The fact that the probability in (4.1) is independent of i

allows us to conclude that this probability must be equal to the a priori probability that

E; is the (k t 1)th smallest among the errors. Hence, the probability in (4.1) is equal to

P(E~ G E; for exactly k opponents j) (4.2)

Obviously, this probability is the same for any player. On the other hand, ties between

different E~ are zero probability events so we know that exactly one player's error will

be the (k ~ 1)th smallest. There[ote the probability in (4.2) must equal i~n. As a

consequence, as long as the opponents do not play (iteratively) dominated strategies,

the expected payoff of Q at i cannot exceed p'. Since the expected payoff of cr at i

is E(X ~X; - i) - i, it follows that the range where ~ is strictly (iterative) dominant

for each player i may be extended below i if i~ p'. This shows the first part of the

proposition. The proof of the second part is completely analogous. ~

It is remarkable that the result described in Proposition 4.1 dces not depend on the

scale parameter e of the observation errors. In particular, the result remains valid for

observation errors that are infinitesimally small. However, as e tends to zero, the players'

observations become períectly correlated and in the limit they coincide with the value

of x that actually prevails in the game. Hence, if one accepts the game g`(n,p) with

infinitesimal E as an accurate model of the situation in which g(n, x, p) has to be played

but x can only be observed with a small amount of noise, then one will also have to

accept that the game should be played as described in Proposition 4.1. Consequently,

adding some noise allows us to solve the equilibrium selection problem. Comparing the

s~~~itching point i- i(n, p) in Proposition 4.1 with the cut-off levels x' and x" obtained

in the previous section we see that they generally will diffet. Hence, although all the

approaches that have been discussed yield the switching point x-'~~ if n- 2, they

typically lead to different answers if n~ 2.
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5 Discussion

5.1 Equilibrium Selection

The foundations oí equilibrium selection theory were laid in the seminal papers of Nash

on bargaining ( Nash (1950, 1953)). Nash initiated what is nowadays called the Nash

program, noting that cooperative games may be reformulated as noncooperative ones,

by modelling explicitly the bargaining process through which agreements may be reached.

Nash proposed that every bargaining game be solved by selecting one of the equilibria of

its noncooperative representation as the solution and, he suggested unanimity games as

noncooperative models of bargaining situations. In such games, players simultaneously

propose an outcome and an outcome is implemented if and only if it has been proposed by

all players; all other cases result in the status quo. Such a game indeed has many ( strict)

equilibria and, thus, Nash was forced to address the equilibrium selection problem. He

proposed to select as the solution that equilibrium for which the product of the deviation

losses is largest and he offered an axiomatic as well as a noncooperative justification for

this selection rule. The latter is based on a perturbation argument: The unanimity game

is `smoothed' by introducing some uncertainty ( about the size of the pie that is to be

divided) and it is shown that only one equilibrium of the original game is a necessary

limit of equilibria of the smoothed games as the amount of smoothing approaches zero.

Hence, Nash writes

"Thus the equilibrium points do not lead immediately to a solution of the

game. But if we discriminate between them by studying their relative sta-

bilities we can escape from this troublesome nonuniqueness" (Nash (1953, p.

132)

The approaches to equilibrium selection that were discussed in the previous sections

were all inspired by Nash's ideas and they can be viewed as attempts to extend the

solution obtained by Nash beyond the class of unanimity games. 3 For example, Harsanyi

and Selten write

3Nash also considered only 2-person games.
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~Our attempts to define risk dominance in a satisfactory way have been

guided by the idea that it is desirable to reproduce the result of Nash's

cooperative bargaining theory witó fixed threats. The Nash property is not

an unintended by-product of our theory." (Harsanyi and Selten (1988, p.

215))

Although all the solutions considered in this paper indeed reproduce the outcome pro-

posed by Nash for the special class of unanimity games, the example of the Stag Hunt

shows that they no longer coincide outside this restricted class. The discussion in the

previous sections has made clear that different outcomes result because the approaches

differ in their assumptions on what players believe about the amount of correlation in

the beliefs and~or strategies of their opponents. The main difference between the equi-

librium selection approaches discussed in Section 3 and the payoff uncertainty approach

in Section 4 is that the former rely on more or less ad hoc thought processes to model the

players' reasoning about the game, while the latter - in the spirit of the Nash program

- is based on a fully specified noncooperative game.

In connection with the payoff uncertainty approach, several important questions re-

main to be answered. In particular, one would like to know how robust the result is with

respect to the distributional assumptions and to the parametrization of the underlying

class of games. Naturally, one would also like to know whether the approach can be

extended to other classes of games. At present we are not able to answer these questions

in a satisfactory way. As far as robustness is concerned we can point to Carlsson and Van

Damme (1990), in which we show that, for the special class of 2 x 2 games, the results

obtained are independent both of distributional assumptions and of which parameters

are allowed to vary, at least as long as the ex ante uncertainty is suf6ciently large so

that players consider the various types of dominance solvable games to be possible. Of

course, it is still an open question whether this independence result generalizes to other

classes of games.
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5.2 The Stag Hunt

It should be clear that the result of Proposition 4.1 is driven by the fact that the areas

where x 1 1(resp. x G 0) exert a remote inífuence on any x that is inside the interval

(0,1). In the context considered by Rousseau, x might be viewed as a measure of the

number of hares in the forest. The model described in Section 4 then assumes that each

hunter, by looking around, can make an unbiased estimate x; of x, and the intuitive

argument underlying the proof of Proposition 4.1 is as follows. (For simplicity, assume

p(x) - 0 if x G 1 and p(1) - 1, so that the stag hunt is successful only if all hunters

cooperate.) If x; ~ 1, then hunter i thinks that there are so many hares around that

it is simply not worthwhile to continue the stag hunt. If x; G 1, but x; : 1 player i

believes that it is very likely that some other hunter j thinks that hunting the stag is

not worthwhile and, hence, decidea not to cooperate, so that player i concludes that

staghunting is not worthwhile for himself either. This reasoning process may continue

to very low values of x;: As long as player i thinks that some player j may think that

some player k may think that ..... some player ! dces not cooperate in the stag hunt,

player i will not cooperate himself. Presenting the argument in this way makes clear

that what is driving the result is the lack of common knowledge (Aumann (1976)) in

the perturbed game. Although in the game g~(n,p) player i has very precise knowledge

about X if he observes x; (i.e. he knows that X E(x; - e, x; f e]) there is no common

knowledge about X among the players, except for the prior distribution of this random

variable. This lack of common knowledge forces the players to take a global perspective

in solving the perturbed game: in order to know what to do at the observation x; one

should also know what to do at observations that are far away from x;. This is why the

regions x; ~ 1 and x; G 0 exert a remote influence. '

In all honesty we are compelled to say that R.ousseau attributes much less rationality

to the players than we do in the proof of Proposition 4.1. He writes

"Voilà comment les hommes purent insensiblement acquérir quelque idée

~A similar action from a distance occurs in Rubinetein's (1989) electronic mail game.



18

grossière des engagements mutuels, et de I'avantage de les remplir, mais

seulement autant que pouvait 1'exiger 1'intérèt présent et sensible; car la

prévoyance n'était rien pour eux; et, loin de s'occuper d'un avenir éloigné,

ils ne songeaient pas méme au lendemain. S'agissait-il de prendre un cerf,

chacun sentait bien qu'il devait pour cela garder fidèlement son poste; mais si

un lièvre venait à passer à la portée de 1'un d'eux, il ae faut pas douter qu'il

ne le poursuivit sans scrupule, et qu'ayant atteint sa proie il ne se souciàt

fort peu de faire manquer la leur à ses compagnons.r (Rousseau (1971, p.

229)).

The above quotation also suggests a quite different perturbation of the game g(n, x, p),

viz. the probability of being confronted with a hare may be independent across hunters.

For the sake of simplicity assume that the atag hunt is successful only if all players

cooperate (p(x) - 0 if x G 1, p(1) - 1), let the hunter's utility of consuming his part

of the stag be normalized to 1, interpret ~ E(0,1) as the disutility of the effort spent

in hunting and let i-~ (with i~ 1) be the utility of consuming a hare. Then, if

each hunter encounters a hare with probability E, and if the probabilities associated with

different players are independent, the situation may be represented by the following game

9`(n,~,i).

1. For each i, a realization x; of X; is drawn, where X; takes the value ~ with prob-

ability 1- e and the value i with probability e and where (X;)" ~ are mutually

independent;

2. player i learns x; and chooses between a and Q,

3. if player i chooses a his payoff is x;; if 6e chooses Q his payoff is 1 if all opponents

also choose Q, otherwise it is 0.

The analysis of this game yields a result that is completely different from that of the

game g`(n,p) discussed in the previous section for, in g`(n,~,i) cooperation may be

feasible even for high values of ~. Specifically, as long as
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(1- E)~-' ? ~

the game g`(n,~,i) has an equilibrium where each player i chooses Q if x; -~. (Note

that this game also has an equilibrium where each player i always, i.e. for each realization

of X;, chooses p.) Whether or not condition (5.1) can be satisfied depends on whether

or not e is small in relation to n, so it matters in which order limits are taken. For fixed

s, condition ( 5.1) will not be satisfied for n sufficiently large, but if E is infinitesimally

small, then ( 5.1) is satisfied for all n.

The game g`(n, ~, i) is a specia] case of a game with independent randomly disturbed

payoffs as considered originally in Harsanyi (1973). Harsanyi's main result is that each

equilibrium (be it pure or mixed) of a 4generic" unperturbed game can be approximated

by pure equilibria of games in which there is slight payoff randomness. Hence, Harsanyi's

approach offers a justification for the set of all equilibria, and does not enable us to select

particular equilibria. The aim of this paper has been to show that selection becomes

possible if players' payoffs (or at least players' obsetvations, see Carlsson and Van Damme

(1990) are correlated. An obvious question, therefore, is which approximation method

(correlated or independent) is most appropriate. In our view this question cannot be

answered in the abstract, but must be related to specific contexts. We believe that both

the independent and the correlated case yield valuable insights concerning the stability

and the selection of equilibria.
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