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Abstract

A new semiparametric estimator for the censored regression panel data model with fixed effects is
introduced. It is based upon an estimator proposed by Honoré for the case of two time periods
combined with ideas of Newey to improve the efficiency. The estimator is more efficient than
Honoré’s and is generalized to the case of a balanced or unbalanced panel of more than two
waves. Estimation is performed in two steps. Using Honoré’s estimator in a first step, efficient
GMM using conditional moment restrictions is applied. The performance of this estimator is
compared to that of Honoré’s and other existing estimators in an empirical example concerning
labour income of married females, using panel data from the Dutch Socio-Economic Panel, 1984-
1988. Attention is paid to specification testing and the sensitivity of the results for the choice of
smoothness parameters.
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1. Introduction

For a censored regression model with individual fixed effects and two time periods, Honoré
(1992) derived two semiparametric estimators based on two conditional moment restrictions
(CMRs). From the CMRs, unconditional moment restrictions (UMRSs) are constructed such that the
estimators can be obtained from minimization of a strictly convex objective function. The UMRs
used by Honoré (1992) do not lead to a semiparametrically efficient estimator: as shown by
Honoré (1993), the estimator does not attain the semiparametric efficiency bound for the model at
hand. A more efficient estimator can be obtained by using an optimal set of UMRs based upon the
given CMR, along the lines of Newey (1993). This is a two step estimator, using Honoré'’s
estimator as the first step.

This type of improvement is analyzed in this paper. Starting point is the smooth CMR
underlying one of the Honoré (1992) estimators. First, we consider the efficient Generalized
Method of Moments (GMM) estimator based on this CMR for the case of two panel waves.
Second, we generalize this estimator to the case of more than two panel waves, allowing for
balanced as well as unbalanced panels. Applications of the Honoré (1992) estimator are still scarce.
Some examples are Udry (1995a,b) and Alderman et al. (1995). In an empirical example, we
compare the performance of our GMM estimator with that of Honoré’s estimator and with some
parametric estimators.

The paper is structured as follows. In section 2, we introduce the model and discuss the merits
and drawbacks of a number of existing parametric and semiparametric estimators. Section 3
explains in detail how the efficiency of the Honoré (1992) estimator can be improved upon, and
describes the limit distribution of the resulting two step GMM estimator for the case of two time
periods. In section 4, we compare the performance of Honoré’s estimator and our GMM estimator
in a small Monte Carlo experiment. Section 5 deals with the empirical application for two time
periods. We explain weekly earnings of Dutch married females, using data drawn from the Dutch
Socio-Economic Panel (SEP). Stoker (1992) uses earnings of married females as the prototype
example of a censored regression model in a cross-section framework. Since earnings partly reflect
female labour supply, it is natural in a life cycle context to add fixed effects (cf. Heckman and
MaCurdy, 1980). Parametric estimates are compared to the (semiparametric) estimates proposed by
Honoré (1992) and our (asymptotically) more efficient estimates. In section 6, the GMM-estimator
is extended to panel data with more than two waves. We propose estimators for both balanced and
unbalanced panel data. We analyze the performance of the estimator for the same empirical
example, using five waves of SEP data, from 1984 to 1988. In Section 7, we interpret the

economic results. In section 8, some conclusions are drawn.



2. Model and Existing Estimators

The censored regression model for panel data with individual effects is defined as follows.

* _ / . _ . _
Yii = & +Bx, +u, i=1,.N; t=1,..T )

yit = maX{OeYit*}

Here i denotes the individual and t denotes the time perigds yhe endogenous variable to be
explained, x is a vector of covariatesy; is the individual effect, yis an error term, y is an
underlying latent variable, anfl is the unknown parameter vector of interest. We only observe
(YirX)- We are interested in asymptotic results for fixed T, while N tends to infinity. In all cases
we assume independence across individuals, but not necessarily over time. We discuss a number of
models with varying sets of assumptions and corresponding estimators.

In models with random effectsy; is assumed to be independent qf(x;,’,...,%;)". Various
parametric models with random effects and corresponding estimatord f@ve been proposed.
a;,[LN(0,02) and y=(uy,...,4;)'IN(0,%), with =02l and | the T-dimensional identity matrix, yields
the specification of equi-correlation, see Heckman and Willis (1976). Here Maximum Likelihood
(ML) can be applied (a one dimensional integral has to be computed). If milder restrictiohs on
are imposed, estimators can be based on numerical integration over T-1 dimensions or on
simulation (e.g. simulated ML or simulated moments; see Gourieroux and Monfort, 1993).

If the underlying distributional assumptions are satisfied, these random effects approaches lead
to consistent asymptotically normal estimators fforDrawbacks, however, are the assumptions of
normality and independence betweeno and x. Due to the nonlinear nature of the models
(censoring), violation of either of these may lead to inconsistency of ML (see Arabmazar and
Schmidt, 1981, 1982).

Parametric models with fixed effects can be divided into two categories. In the first, no
restrictions on the distribution of;; conditional on x are imposed. Thex, are then usually
considered as nuisance parameters which can be estimated. In the second category, some
restrictions on the distribution af;, are imposed allowing for dependence betwegand x.2

In models of the first category, it is usually assumed thgtisl,..,N, t=1,..,T, are i.i.d. and
independent of x Since theq; are parameters to be estimated, models in this category suffer from
the incidental parameter problem, see Neyman and Scott (1948). In the censored regression model,

unlike the binary choice model, the incidental parameter problem cannot be solved by conditional

2 Some studies only refer to the first category as fixed effects models, and refer to the second category
as random effects models (see Manski, 1987, and Chamberlain, 1984).
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ML, since no sufficient statistic is known, irrespective of the distribution of u

An example of a model in the second category is given by Chamberlain (1984). He assumes that
a; depends in a linear way on:a=ax.+w:, with w.[N(0,02), u[N(0,Z) without restrictions orE,
and w, u and x independent. A two stage estimation procedure is used to estfndtest the
model is estimated for each t separately (ignoring cross-equation restrictions). The second step is a
minimum distance step, taking account of the cross-equation restrictions. This estimator allows for
a specific form of correlation between and x but still assumes normality of vand u. If a=0 this
model simplifies to the random effects model. Thus for the random effects model, Chamberlain’s
estimation procedure is an alternative to simulated ML.

To avoid the normality and independence assumptions, semiparametric estimation methods can
be used. For T=2, Honoré (1992) derives two CMRs under the following basic assumption (with i

subscript suppressed from now on):

Conditional symmetry assumption
The distribution of (y+a,u,+a), conditional on (xX,) is absolutely continuous and symmetric (i.e.,

has conditional density f, with fow,|X;,%,)=f(v,,v, |X;,%,) for all (v,,v,) and (x,x,)).*

This is the assumption used in Honoré (1993). It replaces the somewhat weaker identifying
assumption (E.3) in Honoré (1992). The conditional symmetry assumption allows for nonnormality
and dependence between errors and/or the fixed effect amad this sense it is more general than

the assumptions needed by Chamberlain (1984).

The estimators developed by Honoré are obtained by constructing UMRs from CMRs, where the
UMRs are chosen in such a way that their empirical counterparts are the first-order conditions of a
strictly convex objective function. Each CMR yields its own estimator fpthe two CMRs are
not combined. One of the two objective functions is not differentiable in a finite number of points.
To obtain the asymptotic characteristics of the corresponding estimator requires then an approach

as proposed by Pakes and Pollard (1989).

% In principle, B could be estimated by transforming the endogenous variables into binary choice
dummies, and by applying conditional ML to the binary choice model with logistically distributed error
terms. However, in this way identification of the variance of the error term is sacrificed and the slope
parameters are only estimated up to scale.

* A primitive condition on the density of (w,,a) conditional on (xx,) that is sufficient for conditional
symmetry of (y+a,u,+0) is that f(u,u,, o | X;,X,)=f(U,,U;,a | X1,X,) for all (u;,u,,a) and (%,X,).

® On the other hand, contrary to Honoré (1992), Chamberlain (1984) does not impose that the conditional
variances of yand y are equal.
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Because the objective function for the estimator based upon the other CMR is twice
differentiable in all but a finite number of points, deriving the limit distribution of this estimator is
straightforward, as is estimation of its covariance matrix. The related CMR will be referred to as
the ‘smooth’ CMR. The two estimators share the property tBat &,) appears only ag'(x,—X,),
so identification hinges on variation inxx,. For example, coefficients related to time constant
regressors are not identified. Since the estimates can be obtained by minimizing a strictly convex
objective function, a local search algorithm can be used in locating the minimum.

The Honoré estimators are easy to obtain. But they lack (semiparametric) efficiency. In this
paper, we construct more efficient estimators. One way to do this might be to construct the
efficient scores, see Honoré (1993). However, estimation of the efficient scores appears to be hard
in general: Honoré (1993) needs a specific distributional assumption concernig,uga),
conditional on (xX,), to obtain a semiparametrically efficient estimator. This approach therefore
does not seem to be generally applicable.

Instead of using the efficient scores to obtain an estimator that asymptotically attains the
semiparametric efficiency bound, the approach suggested by Newey (1991) could be followed.
Similar to Chamberlain (1987), he starts with the notion that conditional symmetry leads to
infinitely many CMRs and also to infinitely many UMRs. The idea is to let the number of CMRs
used in estimation grow to infinity at an appropriate rate as N tends to infinity. Newey shows that
using this approach, the semiparametric efficiency bound can be attained asymptotically. However,
in finite samples this approach requires making many choices: which of the infinitely many CMRs
to use, and which functions of the conditioning variables to use to form UMRs.

An easier approach can be based on Newey (1993). This approach starts from a model identified
by a given finite set of CMRs. These are used to construct UMRs using optimal instruments. The
resulting UMRs can be used in a GMM estimation procedure. We will only use one CMR: the
smooth CMR of Honoré (1992). As a consequence, we might loose efficiency compared to the
semiparametric efficiency bound. Stated more precisely: our estimator attains the semiparametric
efficiency bound in a class of models leading to this single CMR; this class may be larger than the

one satisfying the conditional symmetry assumption.

3. Identification, consistency, efficiency and GMM estimation
Let T=2. Define Ax=x,-X,. In the remainder, we assume that Honoré's conditions (those
discussed previously and additional regularity conditions given in Honoré, 1992) are satisfied.

Under these assumptions, Honoré (1992) derives the following smooth CMR



E{p(yl,y2,[3/Ax)|xl,x2} =0 (2)

where

p(YpYz:ﬁ /AX) = 1((}’1’}’2) €A1)[Y1 Y, ﬁ/AX] - 1((}’1:}’2) €A2)[Y2 - maX(O: - ﬁ /AX)] (3)

+ 1((ypy,)€BDIy, -y, - B'AX] + 1((y,.y,)€B,)[y, ~max(0,p'Ax)]
with
A ={yuYo) | y.>max{0, B'Ax}, y, >y, - PAX;
A, ={(y.Y,) | 0<y, <BAX, Yy, >0 if B'Ax=0; y,=0, y, > -B'Ax if B'Ax<0 }
B, ={(yuY») | yi > max{0, B'Ax}, max{0, - PAX} <y, <y, - PAx};
B, ={(yn,Y,) | ¥, > BAX, y,=0if BAx=0;y, >0, 0< y, < -B'Ax if B'Ax<0 }.

Note thatp depends o3 only throughf'Ax. Therefore, a necessary condition for identification is
that E{AxAX'} has full rank. This excludes time constant regressors, whose effects will be picked
up by the fixed effects.

CMR (2) implies that, for any (measurable) function Akx),

E{AK;.x,)p(y.y,,B'Ax)} = 0 “)

For a given choice for A(xx,), UMR (4) can be used to apply GMM. A condition for consistency

of the GMM estimator is that (4) has a unique solution forThis is difficult to prove in general.
Honoré (1992) avoids this problem: he chooses X{=Ax, and constructs a strictly convex
objective function, whose first order derivative equals the sample analogue of the UMR. This
guarantees identification and consistency of the estimator obtained by minimizing the strictly
convex function. We denote the estimator fBrbased on A(xx,)=Ax by ﬁH. In general, an
estimator based on (4) for some arbitrary choice of &gX is denoted b)ﬁ.

The limit distribution off is given by

UN(B -B) -¢ NO,G 'VG "), (5)

where



0 ,V..B/Ax
G=E A(prz)M ,

op’ (6)

V= E{A(prz) P (y17y2a ﬁ ‘A X)p /(yleyT B ‘A X)A(lexz)/}

For an arbitrary choice of A@x,), including A(x,X,)=AX, ﬁ is generally not efficient. The
semiparametric efficiency bound using only the information provided by (2), can be attained by
using an optimal choice of instruments to turn (2) into unconditional moment restrictions, see
Newey (1993). He shows that the optimal choice of instruments is given byx6B(X;,X,), with
B(X1,X,)=D(X1,%,) Q(X,,%,) ", where

0 V., B/AX
D(x,.x,) = E %}3) X X,[ = -Ax’ E{l(—y2<ﬁ/AX<y1) \Xl,xz} (7)
Q(leXQ) = E{p(yl,y2,[3/Ax)p(yl,y2,[’>/Ax)/ ‘ Xl,X2} (8)

As shown by Chamberlain (1987), the efficient estimator based on efficient GMM is not only
efficient in the class of GMM estimators, but is also asymptotically efficient in the wider class of
all consistent and asymptotically normal (regular) estimators. Therefore, the components of
B(x,,X,)p(Y1,Y»B'AX) can be interpreted as the efficient scores.

The optimal instruments are generally unobserved. Newey shows that, when applying GMM or
some asymptotically equivalent method, the optimal instruments, B \xmay be replaced by a
consistent (nonparametric) estimafé(xl,xz), without affecting the asymptotic characteristics of the

resulting estimator. The resulting GMM estimator is:

b =argmin {3 p(r,y2B A0Bx,x) |3 Bl xp)Bx,x) |1 Y Bx x)p(yypB'A0)}  (9)
cB
Its limit distribution is given by

3 -B) -4 A h
/N(B - B)-SN@.A) . where (10)

A=(B{D(x,,x,) Q(x,.x,) 'D(x,.x,)}) '
Alternatively, one Newton-Raphson step can be performed L(Asi,ngs the starting solution. This

yields an estimator that is asymptotically equivalent to efficient GMM. Denote this estimatér by

It is given by:
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a b & B A » B
p(}ll}gﬁﬁHX) Z B(prz)p(}'pyPﬁI/{AX) )

b= By LB ()

Particularly the latter approach is computationally conveniéntis easy to obtain due to strict
convexity of the objective function it minimizes, and no numerical optimization is required in the
second step. Therefore, this is the estimator we will focus on.

To apply (11), we needl%(xl,xz). Newey proposes to use nearest neighbour or series
approximation. In the nearest neighbour case, Newey proposes to estimate)Bix estimating
Q(x,,%,) and D(x,x,) separately. Lef)(xl,xz) be the nearest neighbour regression estimate based
upon (8), usincj:BH instead off ((4.2) in Newey, 1993). Newey proposes to S}tﬁ(lxl,xz) in a part
depending on a finite dimensional nuisance paramegtand an additive remaining part ((4.4) of
Newey, 1993). But (7) yields no natural way to parameterize some part ofxp)(xTherefore,
estimating D(x,X,) boils down to estimating E{1(=¢BAx<y,|X;,X,} nonparametrically (after
replacingf3 by fBH). B(x,,x,) is then estimated bl]A)(xl,xz)'fl(xl,xz)‘l.

In the series approximation case, Newey proposes to estimatiexB@s a whole, again using a
part possibly depending on a finite dimensional paramgtend using a series approximation to
approximate the multiplicative remaining term, see (5.1) of Newey (1993). In our case we can

write B(X;,X,) = —AXF(X,,%,), and

F(x;.%;) = B{1(y,<B/Ax<y) [x,%,}[B{lp (.38 BT [x,%,} | ! (12)

The real valued function F(x,) will be approximated by a series along the lines of Newey (1993)
(after replacingP3 by ﬁH). Thus, in neither of the two cases, we see a natural way to parameterize
some part of D(xx,) or B(x;,x,). We therefore do not make use of the nuisance parameter

The following two theorems now follow from Newey (1993).

Theorem 1 (nearest neighbours):

If the conditions stated in assumptions 4.1, 4.3, 4.4 and theorem 1 of Newey (1993) are satisfied,

then

VNP -B) ~? N©O,A), where A = (E{D(xl,x2)/£2(x1,x2)"D(xl,xz)})fl (13)

A consistent estimator fok is given by
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A = ¥ D) Qex,5) D) -

The assumptions required for theorem 1 can be divided into assumptions that can easily be
checked for the specific model of interest, and regularity conditions that are hard to check in
practice. Those that can be checked are special cases of Newey’s assumptions for the general case.

We discuss them in the appendix.

Theorem 2 (series approximation):

Assume that the conditions stated in assumptions 4.1, 4.3, 5.1, theorem 2 and either assumptions
5.2 and 5.4 or 5.3 and 5.5 of Newey (1993) are satisfied. Then

VNP -B) ~? N©O,A), where A = (E{D(xl,x2)/£2(x1,x2)"D(xl,xz)})fl (15)
A consistent estimator fok is given by

1

A - %E Bx,x)p (0,3, B AX)p (3,3, B'AXY Blx, )| (16)

The assumptions, drawn from Newey (1993), are discussed in the appendix.

The main problem that occurs in practice is how to construct the estimét(oxq%) of the
optimal instruments B(xx,). Newey (1993) sketches a general procedure for nearest neighbours as
well as series approximations. Among other things, this involves the choice of smoothness
parameters. Newey (1993) provides some criteria to select the number of neighbours or the number
of terms in the series approximation to use in estimation.

The nearest neighbours procedure is intuitively easier to understand than the series
approximations, since it relies on two nonparametric regressions. We shall focus on nearest
neighbours. In the empirical application, however, we also apply the series approximation

procedure. Computational details of the latter can be found in the appendix.

4. The Nearest Neighbours GMM estimator and some Monte Carlo Results
The GMM estimator in Theorem 1 uses nearest neighbours to construct estimates far) D(x
and Q(x,,X,). This requires the choice of the numbers of nearest neighbours. Newey (1993)

proposes to choose the same number in R{xand Q(x,,X,), using some type of cross-validation,
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with a criterion based on the linearized difference between "true" and estimated %cores.

Apart from the number of nearest neighbours, the norm (determining the distance function) and
the weights have to be chosen. We used two norims:; = (X'S;:x)* (norm 1), where § is the
sample covariance matrix of x5(x,). This norm is invariant to (nonsingular) linear
transformations of x. And X, = (XA™x)"” (norm 2), where) is a diagonal matrix with the sample
variances of the components of x on the diagonal. This norm (proposed by Newey) is only
invariant to the scale of x. We used the three choices for the weights given in Robinson (1987)
(uniform, triangular and quartic).

For both norms and all three weights, Newey’s suggestion for determining the optimal number
of nearest neighbours failed to work in the empirical application (see below). The value of the
cross-validation objective function was decreasing in the number of nearest neighbours. Using 900
nearest neighbours in a sample of size 938, led to parameter estimates that are very different from
the Honoré estimates and to huge standard errors. When we applied Newey’s criterion using
different numbers of nearest neighbours for D d&dthe same problem occurred. An alternative
selection method for the number of nearest neighbours is to perform cross-validation for ® and
separately. This is what we use in the remainder.

To indicate how well this estimation procedure can perform in practice, a small Monte Carlo
experiment is conducted. We use two time periods and a combination of specifications 3 and 5 of
the Monte Carlo sudy performed by Honoré (1992). Because the dimension of the nonparametric
regression is twice the number of explanatory variables, only two explanatory variables are
included. Assuming that the explanatory variables are independently normally distributed might
result in too optimistic Monte Carlo results (Chesher, 1995). Instead, we assume them to be
independently chi-square distributed (specification 3 of Honoré, 1992). We allow for correlation
between error term and fixed effect as in specification 5 of Honoré (1992). To be precise, write
X=X X)), 1=1,2, then x=a+n, and the random variables,n,,n,,x,; and %, are independent and
all distributedy3, standardized to have mean zero and variance 1. Conditional enand y are
distributed N(0,%2+44?).

The results with 1000 replications and different sample sizes are presented in table 1. The table
reports the true parameter values, the estimated bias and root mean squared error (RMSE), and the

root mean squared error implied by the asymptotic theory (ARMSE). The quartiles and the median

® the expression presented in Newey (1993) contains a small error on the top of page 433: ...+B(X)[...]..
should read ...-B(X)[...]..

" Let m be the number of nearest neighbours. Uniform weights give all neighbours equal weight 1/m,
triangular weights give weight (m—j+1)/[¥am(m+1)] to the fjearest neighbour, j=1,..,m, and quartic weights
give weight [nf—(j—1)7/[m(m?>-(m-1)(2m-1)/6)] to the"] nearest neighbour, j=1,..,m.
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absolute error of the estimator (MAE), and the median absolute error predicted by the asymptotic
distribution (AMAE) are also reported. In the nonparametric estimation of,Bfxand Q(x,,x,) we
used nearest neighbours with uniform weights and norm 1 (invariant to linear transformations of
X).

We find that for a small sample (N=200) ARMSE is smaller for the efficient GMM estimator,
but because RMSE is much larger than ARMSE, the asymptotic approximation is not accurate. For
N=500 this improves: RMSE decreases substantially for the efficient GMM estimator, although the
asymptotic distribution still does not appear to be an accurate approximation. The bias of the
efficient GMM estimator is smaller in absolute value than the bias of the Honoré estimator. For
N=5000, the asymptotic approximation to the root mean square error is quite accurate for both
estimators. The GMM estimator now clearly outperforms its inefficient counterpart. The bias is
much lower for the efficient GMM estimates.

In terms of mean absolute error (MAE) instead of mean square error, GMM already performs
better for sample size 500. For N=200, it already performs as good as the Honoré estimator. The
reason for the difference is that, for the smaller sample sizes, GMM in some replications leads to
estimates which are far from the true parameter values. These get a larger weight in the RMSE
criterion than in the MAE criterion.

Comparing the quartiles (LQ and UQ) we conclude that the distribution of the Honoré estimator
is skewed to the right in small samples, which also occurred in the Monte Carlo study in Honoré
(1992). The efficient GMM estimator is skewed to the left. The bias in the Honoré estimates is
positive whereas it is negative for the efficient GMM estimates.

In spite of the limitations of the Monte Carlo set up, we are tempted to conclude that the
estimator based on efficient GMM performs quite well provided that the sample size is large
relative to the number of parameters. The latter condition is due to the nonparametric estimation of

the optimal instruments.

5. Empirical Application

We want to explain earnings of married Dutch females in age between 18 and 65. Earnings are
positive if the female works and zero if she does not, so the dependent variable is censored at zero.
A static microeconomic model leading to a linear latent variable model for earnings is presented in
Stoker (1992) for the cross-section case. His explanatory variables include family and individual
characteristics affecting preferences and human capital variables correlated with the (potential)
wage. An intertemporal choice model leading to (1) (including the individual effects) can easily be

obtained as in MaCurdy (1981). In the remainder we will use the natural logarithm of after tax
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earnings+1 as the dependent variable. The log transformation is used to capture the usual
lognormal model as a special case, and to prevent a large impact of outliers. The +1 is added to
account for the zerds.

As explanatory variables we include the logarithm of weekly other family income (including the
husband’s earnings; again, +1 is added to account for zeros), the number of hours per week that
the male is working, and a dummy indicating whether the male is working. These variables
characterize the effect of the husband's behaviour on the wife’s labour supply. A dummy
indicating whether the family contains children younger than six captures the effect of household
compositior’. Also included are calender time, age, and the female’s education level. Data on
experience are not available. Note that in the fixed effects model, the human capital variables
related to the (potential) wage cannot be included due to lack of time variation.

We use data of the Dutch Socio-Economic Panel (SEP) of the years 1984 to 1988. Table 2
contains the definitions of all variables considered and sample statistics for the whole five year
period® In this section, we only use the data of the 1987 and 1988 waves. Our results are based
upon 2278 individuals who are in both waves.

We started with the Chamberlain (1984) model, with the modification that only part of x could
be used in explaining the ‘fixed effecti: a=dz+w, where a=(3,a,")", z=(z',z,)', z is a subvector
of x, (the same for all i=1,..,,N, t=1,2), and w is a random error term. Variables that are time-
invariant or change linearly over time cannot be included ,ifHowever, this is not essential as
long as we are not interested in tBeparameters for these variables (as they are not identified). A
constant term and the variables TIME, LOI, HM, DCH6, IEM, AGE, and EDF are included, in x
whereas only the variables LOI, HM, DCH6, and IEM are included,in z

In the first stage of the estimation procedure all cross-equation restrictions are ignored and the
model y=B'x,+dz+w+u,, y,=max{0,y,}, with w, and y independently normally distributed, is

estimated separately for each t. In the second stage, the cross-equation restrictions are taken into

8 For the chosen scaling of earnings (Dfl per week), the +1 has a negligible effect on the positive
earnings values.

® Preliminary results indicated that other variables related to children had no significant effect.

10 Over time and on average, the variables log other family income (LOI), hours worked by the male
(HM) and employment of the husband (IEM) hardly change. The dummy for children under six years
(DCHS®6) tends to decrease, education level of the female (EDF) and her age (AGE) tend to increase. In each
year approximately 35% of the married females has a job. The following numbers give some insight in
participation mobility. Comparing consecutive years, we find that approximately 62.5% does not work in
both years, 31% works in both years, 3% switches from not working to working and 3.5% switches the other
way around. Comparing waves which are two years apart, these percentages are 60%, 28%, 6%, and 6%,
respectively. If the time difference is three years, the percentages become 59%, 25.5%, 7.5%, and 8%. For a
time difference of four years, they are 56%, 25%, 9%, and 10%.
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account and a minimum distance step is performed. The estimation results with a=0 imposed
(random effects) are presented in the second column of table 3. The estimates for the full model
are presented in the third column. Hgigis an estimate for Var{wu,}, t=1,2. Because some of

the coefficients in the fixed effect are significant, the random effects specification (col. 2) is
rejected against the fixed effect specification (col. 3). Comparing the results suggests that the
random effects specification leads to an overestimation of the effect of children (DCH6) and
employment of the husband (IEM). Other variables such as the education level of the female
(EDF), for example, are not included i, and thus their impact may also be interpreted as a fixed
effect.

The assumptions of normality and homoskedasticity were tested after the first round, using the
tests of Chesher and lIrish (1987). The form of heteroskedasticity that was tested for was
Var{w;+u,}=exp(A'x;). Both assumptions were strongly rejected (both with a=0 a#@).aThis
implies that the estimates @ may be inconsistent, which justifies the use of estimators based on
weaker assumptions. Moreover, a test on overidentifying restrictions can be performed in the
second step, by comparing the objective function value with the critical valuexdfdéstribution.

The hypothesis that the overidentifying restrictions are valid, is rejected at the 5 percent level.
However, it should be realized that this test is only valid when the first round estimators are
consistent, which may not be the case here as indicated by the tests after the first round.

The estimates proposed by Honoré (1992), based on (4) withx&xx,—X,, are presented in
the fourth column of table 3. Becaugeaffects p only throughf'Ax, the coefficients related to
TIME and AGE are not simultaneously identified. Hence only TIME will be included in the
estimation. For the same reason, the effect of education level cannot be estimated, since EDF
hardly changes over time. The remaining parameters are related to preferences and not to
(potential) wages, and we are basically estimating labour supply responses.

Only two effects are significant: the presence of a young child and the husband’s hours of work
have similar impact as in the fixed effects Chamberlain (1984) model. As before, the effect of
family income is negative, but its significance level has dropped. The time trend can be compared
to the sum of the time trend and the age effect in the Chamberlain model. It appears to have a
large standard error, much larger than AGE and TIME in the Chamberlain model. The low

significance levels might be caused by the fact that the estimator is not efficient. Show

' This raises the question why we do not estimate a model for hours worked instead of earnings. In

some waves of SEP, for those who do not change jobs, hours worked are not measured in each wave but
taken from the previous wave. This makes hours worked infeasible for a panel data analysis. Earnings are

measured independently in each wave for all respondents. Moreover, hours worked are measured per week
and show large spikes at 20 and 40 hours (see Van Soest, 1995, for example). A censored regression model
is not appropriate to deal with this.
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that it is important to take the censoring into account we also present the OLS estimates on the
first differences in the fifth column of table 3. It is clear that the estimates differ substantially; the
OLS estimate of the parameter related to DCH6 is significantly positive!

Before turning to efficient GMM, note that the observations for whigky,=0 contribute zero
to p(y,Y.,B'Ax), whatever the value of. These observations are discarded in the nearest
neighbours estimation, which reduces computer time substantially. Discarding these observations
reduces the dataset to 938 observations. AGE and EDF could in principle be included=ih, %,
although the related coefficients [ are not identified. Including them may affect the weights in
nearest neighbour estimation. It would also increase the dimension of the nonparametric

regressions, however. In the remainder we therefore do not include them.

GMM with Nearest Neighbours

For both norms 1 and 2 and all three weights and for D as weld dsee Section 4), our cross-
validation criterion function appeared to be U-shaped. The optimal numbers of neighbours varied
from 5 to 7 for D, and from 46 to 68 fof2 (see table 4). Using these numbers of neighbours and
performing one Newton-Raphson step starting frﬁm led to the results reported in table 4.
Reported standard errors are based on (14). For norm 1, the parameters related to DCH6 and HM
are significant at the 5% level. For norm 2, only the parameter related to DCH6 is significant. The
choice of weights does not affect the sign of the parameters and has a modest effect on the
significance levels. For norm 1, the estimates and their standard errors are very similar for different
choices of the weights. For norm 2, there is some variation with the weights, in particular for the
estimates related to T and IEM. The significantly negative estimates for DCH6 and HM are quite
robust. The estimates related to T, HM and IEM are rather different for the two norms, but the
differences are not significant.

We investigated the sensitivity of the results w.r.t. the number of nearest neighbours used in
estimation. Because the results with norm 1 seem to lead to rather low standard errors and the
choice of weights does not matter very much, we only look at the model with norm 1 and uniform
weights (to be referred to as the benchmark model). The sensitivity of the results w.r.t. the
smoothness parameters is presented in table 5. Keeping the number of nearest neighbours optimal
for Q and varying this number for D, results in most cases in estimates and standard errors that are
similar to the results with the optimal choice. An exception is the coefficient of IEM. Changing the
number of neighbours fo€ influences the parameter estimates related to T and AGE2, whereas
standard errors are hardly affected. The parameters related to LOI, HM and DCH6 remain

significant and negative in all cases but one. Decreasing the number of neighbours in estimating D



-14 -
leads to an increase of the significance level of the parameter related to LOI. We conclude that the
results are not very sensitive to the numbers of nearest neighbours.

Comparing the benchmark results in table 4 to the Honoré estimates in table 3, we find that all
standard errors have decreased. All t-ratios have increased, and with uniform weights and norm 1
the estimate related to LOI is now significant. To test for model misspecification, a Hausman-type
specification test is performéd.Comparing the Honoré estimates in table 3 with the results in
table 4, the null hypothesis of correct specification of the model could not be rejected at the 5%
level. This result was obtained for all six specifications in table 4. Except for the parameter related
to TIME, the parameter estimates have not changed much. For all parameters, the 95% confidence

intervals based on the estimates in tables 3 and 4 overlap.

GMM with Series Approximation .

The alternative approach to estimate BXY is to use series approximations. Newey (1993)
shows how to approximate B(x,) directly instead of estimating D(x,) and Q(x,,x,) separately.

We apply his procedure. See the appendix for details on the computation and the choice of
‘smoothness parameters’, i.e. the choice which polynomials to include in the series, the so-called
polynomial base.

Results are presented in table 6. Columns 3 to 6 contain the results for different choices of the
polynomial base. Standard errors are based on (16). The results with a constant, IEM87, IEM88
and IEM87*IEM88 in the base, led to the over-all lowest value for Newey’s cross-validation type
of criterion function. These results will be considered as ‘best’ in the remainder. The estimates
related to TIME, LOI, DCH6 and IEM are sensitive to the choice of base, although the t-ratios
hardly change. Significant estimates of about —0.029 for HM and of about -1.9 for DCH6 are
robust across base choice.

Comparing the results of series approximation with the results of nearest neighbours, we find
that the same parameters are significant except for LOI. Estimated standard errors are lower for
some parameters, but larger for others. Comparing the standard errors to the Honoré estimates in
table 3, we again see that they slightly fall. In terms of t-ratios, we ‘gained’ a little bit more when
using nearest neighbours than when using series approximation.

We performed a Hausman-type specification test based on the series approximation estimates in

table 6. As in the nearest neighbours case, the null hypothesis of correct specification of the model

2 The Hausman test requires a positive definite estimate_for the covariance mag#BofVe follow
the standard approach to use (11) which implies tW&{3-B)=Cv,, with C-"C, vy —°N(0,Z) as N- .
Obtaining a positive definite estimat@r for ~ is straightforward. It follows thaCZC’ is a positive (semi-)
definite estimator for the covariance matrix éfl(B—p).
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could not be rejected at the 5% level.

An Alternative Specification Test

An alternative specification test for the fixed effects model (1) with the conditional symmetry
assumption, is based upon combining two smooth CMRs of Honoré (1992). The first is the CMR
for the censored regression model, equations (2) and (3), the basis for the Honoré estimator. The
second is a similar smooth CMR for the case that only information on observations wihapd
y,>0 is used (the smooth CMR for the truncated model, equation (2.3) in Honoré (1992)). These

two CMRs can be used to construct the following UMRSs:

E{p(Y1,Y>B'AX)}=0
and

E{1((Y1,Y2) UADLY 1=Y,=B' AX+E{1((Y 1,Y-) UB )y, —Y,—B'AX]}=0.

The sample equivalents of these moments are evaluated at the Honoré (1992) estim@tor for
Following Newey (1985), it is straightforward to derive a test statistic based upon the
overidentifying restrictions, which, under the null of no misspecification, is chi squared distributed.
The null was rejected at the 5% level, contrary to the result on the basis of the Hausman tests. An
interpretation of this result is that the data support CMR (2)-(3), but do not support the more
specific model assumptions (1) and conditional symmetry. Because of this, we only consider

estimators based upon (2) and (3), and do not try to improve efficiency by using more CMRs.

6. Extension to a panel with more than two waves

6.1 Balanced panel

In this section we extend our analysis to more than two waves. We first look at the balanced panel.
We assume that it is random (no attrition on the basis of the endogenous variable). The basic idea
is to combine the conditional moment restrictions in (2) for each pair of panel waves. A sufficient
assumption for this, together with regularity conditions similar to those for the two waves case, is

the following generalization of Honoré’s symmetry condition:

For all s,t0 {1,..., T}, s#t, the distribution of (yv,) = (usta,u+a), conditional on x=(X,...,%")’,
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is absolutely continuous and symmetfic.

This assumption is rather general and allows for all kinds of correlation structures between the
random errors u For example, it is less restrictive than the assumption of complete
interchangeability, that, conditional on x, v{v,v;) has the same distribution asy..,vi) for

any permutationt. The latter allows for equicorrelated errors, but, for example, not for errors with
first order autocorrelation.

Let Ax,=x—X, and

Pu(B) = P(Y.Y.B'AXY) (17)
wherep is defined in (3). Then, for all 4s<&T,

E{py(B)|x;sXg} = 0. (18)
These CMRs can be stacked into one vector defining

PB) = [PB) P13(B) - - py(B) py(B) - - Py (B (19)
Then, for any A(x), we have the UMR

E{AX)p(B)} = 0 (20)

The optimal choice for A(x) is B(aD(x)'Q(x)™", where

D(x) —E{ag—:ﬁ) x} . Q) =E{pp/x} D)

Estimation of the optimal instruments requires a preliminary estimatorpfoHonoré (1992)

suggests to construct such an estimator on the basis of

Ax, 0 0.. O
0 Ax,; 0 .. 0
AR)= . (22)
0 . ... AfoLT’

Combining (20) and (22) more moments than parameters are used in estimation, so, for example,

13 For some of our estimators, it is sufficient to impose the slightly weaker condition of symmetry
conditional upon xand x instead of upon x...,%.
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GMM with the optimal weighting matrix can be used. This requires estimating the optimal
weighting matrix. For this, a consistent preliminary estimatorffaran be constructed giving equal
weights to the momenta&x,p,. This latter choice is convenient because the estimator can be
obtained by minimizing a strictly convex objective function. Given this preliminary estimator, we
can estimate the optimal weighting matrix and perform one Newton-Raphson step towards the
solution of the optimal GMM estimator based on (20) and (22). We refer to this estimator, which
is asymptotically equivalent to the GMM estimator with the optimal weighting matrix, as the
Honoré estimator. The many moments used in estimation can be used to test for overidentifying
restrictions.

The Honoré estimator fop can then be used to perform efficient GMM with the optimal choice
for A(x), i.e. B(x). Of course, our estimator consists of calculating one Newton-Raphson step
towards the solution of the efficient GMM estimator. We refer to this final estimator as efficient
GMM. Its drawback is the large dimension of the nonparametric estimation of B(x) if the
dimension of xor the number of time periods is large, as in our case.

Alternatively, we can use that B{(B) | x,x}=0 for each ks<«T and apply the estimation
procedure for time periods for each combination (s,txs<iT separately. To reduce the
computational burden we determine the smoothness parameters for one particular pair (s,t) and use
the outcome for all pairs. The final step in estimation is then Asymptotic Least Squares (ALS), to
restrict the estimates fdd to be the same for each combination (s,t). This strategy, referred to as
the ALS estimator, might asymptotically be less efficient than efficient GMM, but is easier from a
practical point of view. Moreover, it can also be applied to unbalanced panels.

To compare the estimation procedures, we applied them to the balanced subpanel for the years
1986-1988 (T=3). The dataset (with at least one non-zero observation on the dependent variable)
consists of 823 observations. We use norm 1 and nearest neighbours with uniform weights. Cross-
validation was used to determine the optimal numbers of nearest neighbours for ® (@eé table
7, row 8; for ALS these numbers are based on 1987 and 1988 only).

The Honoré estimate for panel data is presented in the second column of table 7. Only the
parameter related to the dummy for the presence of young children (DCH®6) is significant, with
value —2.357. The results for the other two estimation procedures using all elements but time (T)
in calculating distances are presented in columns 3 and 4 of table 7. Efficient GMM leads to
significant parameter estimates except for employment of the husband (IEM). ALS leads to
significance of the presence of young children (DCH6) only, with estimate —2.297. Compared to
the results based on 1987 and 1988 only, the impact of the husband’'s hours worked (HM)

disappears. Compared to efficient GMM, we see large differences in standard errors. The parameter
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estimates also differ but they are all insignificant.

We have only 823 observations, but the efficient GMM estimates in column 2 use a
nonparametric estimator for a conditional mean, conditional on a twelve dimensional vector. To
avoid this problem of dimensionality, we present results based on conditioning on all periods’
values for HM and DCH®6 only (cols. 5 and 6 of table 7). In section 5, these two appeared to be
the main explanatory variables. This reduces the dimension of the nonparametric regression from
12 to 6. Excluding LOI and IEM from the set of conditioning variables in efficient GMM
estimation, leads to significant changes in estimates for TIME, HM and IEM. For two-stage ALS
the parameter estimates change substantially but not significantly for most parameters. The
significant negative impact of young children is still robust, although its magnitude has changed.
The ALS results show no significant changes compared to the Honoré estimates.

The objective function value (bottom row of table 7) can be used to perform a test on
overidentifying restrictions in the Honoré estimates and the two-stage ALS estimator. In both
cases, the hypothesis of no misspecification is rejected at the 5 percent level, but not at the 1
percent level. Comparing the efficient GMM estimates with the consistent Honoré estimates, a
Hausman test can be performed. For both efficient GMM estimates, the null hypothesis of correct
specification was rejected.

We also considered the balanced panel for the years 1984-1988 (T=5). Selecting the
observations for which all information for all 5 waves was available and that had at least one
nonzero observation on,\teft us with a sample of only 243 observations. We found this too small

for a sensible analysis involving higher dimensional nonparametrics.

Unbalanced panel
Let ¢=1 if (Y4 YuXsX) IS fully observed and zero otherwise. We assume that the distributiong of ¢
and y,y, are conditionally independent for given x7(X,%')" (no selection or attrition bias). We

then have
E{cstpst([})|xl,..,XT} = (Q, for all s, t, with 1<s<t<T (23)
Because we do not observeg.xx; for all individuals, we use the weaker CMR
E{cstpst([})|xs,xt} = Q, for all s, t, with 1<s<t<T (24)

We apply the two waves estimation procedure for each (s,t) separately and use ALS to ddtimate
To reduce the computational burden we determine the smoothness parameters for one particular

pair (s,t) and use the outcome for all pairs of waves.
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The unbalanced panel (for 1984-1988) consists of those individuals who are observed in at least
two waves, with positive earnings at least once. This leads to a sample of 1351 individuals. We
use uniform weights and norm 1 and all elements igx{xbut TIME are included in calculating
distances. The optimal numbers of nearest neighbours used in estimation are the same as in section
5, i.e. 5 for D(x,x) and 50 forQ(x,Xx,), 1<s<«&T.

Estimation results for the Honoré estimator for panel data are presented in the seventh column of
table 7. Again, DCH6 is significant only at the 5% level with a parameter estimate of —2.68. The
same holds for the two-stage ALS estimates. Compared to the balanced sub-panel 1986-1988 we
see that the standard errors have decreased and that no significant differences in parameter
estimates can be found. Again, the similarity between the Honoré estimate and the two stage ALS
estimate is striking. Even more striking is that standard errors have increased while we are trying
to improve efficiency. Although we did not perform a Monte Carlo study for the two-stage ALS
this might be caused by the relatively small amount of data per combination of years (on average
about 900 individuals per combination of years with positive earnings in at least one of the two
years). At the 5% level, the test on overidentifying restrictions results in rejecting the hypothesis of
a correct specification for the Honoré estimate (69)13,:60.61) whereas it is not rejected with
two stage ALS (58.67Gs.,0=60.61).

7. Economic Interpretation

Our model explains earnings of married females, which are determined by hours worked and
hourly wages. The Chamberlain (1984) estimates in table 3 already suggest that fixed effects are
substantial, the random effects model being clearly rejected against the fixed effects alternative.
Fixed effects in the labour supply decision have a clear interpretation in a life cycle context. The
hourly wage is mainly determined by human capital variables that hardly vary independently over
time, so that fixed effects and human capital effects on hourly wages cannot be distinguished.

In the fixed effect models, only the variables of the time varying regressors can be identified.
These mainly refer to the labour supply decision. From the results we concludec#tatis
paribus the presence of a child less than 6 years old has a strong negative effect on the female’s
labour supply. The magnitude of the effect, though, is much smaller than in the random effects
model. This is the most robust finding in the paper. It confirms with the common finding in the
female labour supply literature. Obviously, the assumption of exogeneity could be criticized here
(see Mroz, 1987). Our data and the semiparametric nature of our models do not allow to test this.

According to most of the estimates, other family income (mainly husband’s earnings) has a

negative effect, which is often significant. According to the results in table 7 column 8, the
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elasticity (for observations with positive earnings and other income) would be about —-0.15. Note
that in a standard life cycle model without uncertainty, the elasticity should be zero, because
family consumption can be smoothed for changes in family income. Our results suggest that
changes in other family income could at least partly be unanticipated, and lead to adjustments of
permanent income.

We find some evidence suggesting thagteris paribus the number of hours the male is
working has a negative effect on the wife’s labour supply. The average elasticity would be about
—-0.4, but the estimate is never very accurate. This result suggests that male and female leisure are
substitutes. To disentangle the impact of the husband’'s hours worked and the husband’s
participation, we also included a dummy for the husband’s employment. Its impact never appeared
to be significant.

We find that the joint impact of time and age is insignificant. Our fixed effects model does not
allow to distinguish between the (probably positive) time trend and the (probably negative) age
effect. We also estimated the model with additional explanatory variables, such as the number of
children in the family younger than 18, and age squared. In none of the estimation results these
variables were significant. Including them had little effect on the other estimates.

Finally, it should be noted that for T=2 most specification tests led to the conclusion that the
censored regression fixed effects model cannot be rejected. This is somewhat surprising, since in
cross-section settings, the censored regression model is often found to be inferior to a less
restrictive sample selection model (see, for example, Melenberg and Van Soest, 1995). Apparently,
fixed effects may make a large difference here. On the other hand, tests including more time

periods observations often led to rejection of the censored regression fixed effects model.

8. Conclusions

We have considered various estimators for the censored regression model, and applied them to
panel data on earnings of married females. In the case of two panel waves, we have focused on the
semiparametric estimator for models with fixed effects designed by Honoré (1992), and efficient
GMM estimators based upon Newey (1993). Monte Carlo results suggest that these techniques
work quite well in practice, although many observations are needed before we can gain some
efficiency compared to the Honoré estimator. For the case of more than two time periods, we have
considered an estimator proposed by Honoré (1992), an efficient GMM estimator for a balanced
panel, and have looked at Asymptotic Least Squares estimators for both the balanced and the
unbalanced case.

Our empirical results show that taking account of fixed effects substantially changes the
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conclusions on the sensitivity of female labour supply for the presence of children, other family
income, the husband’s hours of work, etc.

Contrary to the Honoré (1992) estimator, the efficient GMM estimator requires nonparametric
estimation, involving the choice of smoothness parameters. Our sensitivity analysis for a panel with
two waves shows that the results are not very sensitive to the choice of these parameters. Our
results are somewhat mixed. Where the efficient GMM estimators should, at least asymptotically,
be more efficient than Honoré’s estimator, it does not lead to unambiguously smaller (estimates of)
standard errors, although t-values do tend to increase.

The efficiency gains are obtained by an optimal construction of unconditional moment
restrictions, given the choice of a conditional moment restriction. An alternative would be to
consider more conditional moment restrictions. Honoré (1992) notes that there is an infinite
number of conditional moments one could consider. However, from the Hausman specification test
it follows that the conditional moment restriction used by Honoré is valid but that the assumption
of conditional symmetry might not hold. Therefore we do not include more conditional moment
restrictions based on this assumption in estimation. Another direction of future work would be to
relax the model assumptions and consider selection models. Kyriazidou (1994) introduces a
consistent estimator allowing for a general structure of fixed effects. More efficient estimators
using this estimator as a starting point, could be obtained along the same lines as described in this

paper.
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Table 3: Estimation Results Chamberlain Model and Honoré estimates (T=2)

(standard errors in parentheses)

PARAMETER Random effects| Fixed effects | Honoré Linear model
estimates estimate¥ estimates
TIME 0.060 0.059 -0.052 -0.676
(0.011) (0.012) (0.078) (0.013)
LOI -0.228 -0.338 -0.212 -0.699
(0.130) (0.160) (0.149) (0.013)
HM -0.052" -0.030 -0.031 -0.005
(0.014) (0.013) (0.014) (0.002)
DCH®6 -4.864 -1.970° -1.813 0.153
(0.284) (0.466) (0.356) (0.038)
IEM 3.500° 0.452 0.526 0.429
(0.721) (0.659) (0.728) (0.076)
AGE -0.205 -0.206
(0.012) (0.013)
EDF 1.336° 1.343
(0.130) (0.130)
[ 4.976 4918
(1.014) (1.014)
13 5.102 4.893
(0.997) (1.003)
Ohbj. function 9.08 10.53

" significant at the 5% level
” significant at the 1% level

@ no test on significance carried out

% For the fixed effect, the coefficient in, aelated to DCH6 and in,arelated DCH6 were significantly
negative at the 1% level and the coefficient inralated to IEM was significantly positive at the 5% level,
indicating that it is important to allow for correlation between the individual effect and the regressors.
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Appendix

We briefly discuss the assumptions needed for Theorem 1 and 2, drawn from Newey (1993).

Finally, some additional computational details of applying Theorem 2 are discussed.

Assumptions for Theorem 1

The main part of assumption 4.1 is the regularity condition that E{B)Q(X;,X,)B(X;,X,)'} is
nonsingular. Assumption 4.2 of Newey (1993) is not required because we do not apply GMM, but
the two step procedure (11). Assumption 4.3 deals with properties of the first round estiﬁp@tor,

in our case, which can be checked partly. The crucial identification part of this assumption is that
E{Axp(y,,Y,,B'AX)}=0 is uniquely satisfied at the true value Bf This is proven in Honoré (1992).

The condition that the first stage estimator should be based on a GMM type of objective function
is not satisfied here, but lemma A.1 of Newey (1993) can be easily adapted such that theorem 1
still goes through for the first stage estimator used here. Assumption 4.4 contains moment and
smoothness conditions related t@| 4, || 0p/oB | * and |8°p/0BAR'|. The conditions in terms of the
second order derivatives @f are satisfied here becaud&/oBop'=0, see (3). Assumption 4.5 of
Newey (1993) is not needed because D is estimated nonparametrically. The only additional
assumption in theorem 1 of Newey (1993) concerns the rate at which the number of nearest

neighbours used in estimation tends to infinity as N tends to infinity.

Additional assumptions for Theorem 2

Apart from some regularity conditions, assumption 5.1 contains an assumption on the existence of
E{|ID(x,n) || ?¥@2%= E{ || Ax|| 2@2% for some a>2,5>0, and an assumption on-,). The latter
is not needed here since we do not userhe condition on Q an&) in assumption 5.1, is satisfied
because we choose Q:I.

Assumptions 5.3 and 5.5 are verified for our specific application. We aim at approximating
B(x.,x;) = —AxF(x,,X,), with the real valued function F(x,) given by (12). The function Fgx,)
is approximated using a polynomial base in elements ofard x%. More formally, let
a (X, X0)=[ag (X1, %), -8k (X1,X)]"  represent the elements of the polynomial base. We then
approximate F(¥x,) by Ya.(x,,X,), wherey still has to be determined (see below). Checking that
Newey’s assumptions 5.3 and 5.5 (that imply assumptions 5.2 and 5.4) are satisfied is easy here:
Choose a(X;,X)=pc(X1,%,) [with T;(x)=X]. (X;,X;) contains at least one continuously distributed
component (LOI in our empirical example) with density assumed to be bounded away from zero

on (Ow). The elements iM\x are not linearly dependent, implying that the smallest eigenvalue of



-31 -
{AXAX'}Q(X4,X,) is bounded away from zero. By choosing the degree of the approximating
polynomial increasing in K, J(K)=K and [fl, assumption 5.3 is satisfied except for the
boundedness of thg. The latter is not a problem because boundedness can be relaxed without
affecting the results (Newey, 1993, p. 440). Assumption 5.5 is also easy to check, since R is only
one dimensional here. With,&x;,X,)=p(X;,X;) and J=K, we can choosg=y,;, j=1,..,K, so that

assumption 5.5 is satisfied.

Computation of series approximations

Two problems remain after having chosen which elements jix Jxform the polynomial base:
how to estimatey and how to determine K, the number of terms in the series approximation. Both
are addressed by Newey (1993). Estimatiory ¢for given K) is based on the same intuition as in
nearest neighbours: approximate the efficient scores as good as possible using a minimum mean-
square error criterion. This leads to an explicit expressionyfdteplacing expectations by sample
averages then yieldg

To obtain K, a cross-validation criterion is used in which thie calculated N times, leaving out
the i-th observation (i=1,..,N). This is repeated for several values of K. The optimal K minimizes
the difference between the estimated and the true scores. Because the true scores consist of
conditional expectations that are not observed, these are replaced by their nonparametric estimates,
and the estimated scores are replaced by the dependent variables (as in cross-validationy. Given
and K, estimating the asymptotic covariance matrix of the estimator is straightforward.

Note that (12) implies F(x,)=0. For the approximation to F, this is indeed the case for the first
model in table 6. The other two models in table 6 led to negative estimates faxF)(xor 56 and
70 observations, respectively. This is an additional reason why the first model is referred to as the
‘best’ series approximation model. Avoiding this problem is also a reason to focus on the nearest

neighbour estimation when we consider more than two waves.



