
Estimation of a Censored Regression Panel Data Model

Using Conditional Moment Restrictions Efficiently

by

Erwin Charlier, Bertrand Melenberg and Arthur van Soest,1

Tilburg University
Department of Econometrics and CentER

P.O. Box 90153
5000 LE, Tilburg
The Netherlands

September 1995

Abstract

A new semiparametric estimator for the censored regression panel data model with fixed effects is
introduced. It is based upon an estimator proposed by Honoré for the case of two time periods
combined with ideas of Newey to improve the efficiency. The estimator is more efficient than
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waves. Estimation is performed in two steps. Using Honoré’s estimator in a first step, efficient
GMM using conditional moment restrictions is applied. The performance of this estimator is
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smoothness parameters.
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1. Introduction

For a censored regression model with individual fixed effects and two time periods, Honoré

(1992) derived two semiparametric estimators based on two conditional moment restrictions

(CMRs). From the CMRs, unconditional moment restrictions (UMRs) are constructed such that the

estimators can be obtained from minimization of a strictly convex objective function. The UMRs

used by Honoré (1992) do not lead to a semiparametrically efficient estimator: as shown by

Honoré (1993), the estimator does not attain the semiparametric efficiency bound for the model at

hand. A more efficient estimator can be obtained by using an optimal set of UMRs based upon the

given CMR, along the lines of Newey (1993). This is a two step estimator, using Honoré’s

estimator as the first step.

This type of improvement is analyzed in this paper. Starting point is the smooth CMR

underlying one of the Honoré (1992) estimators. First, we consider the efficient Generalized

Method of Moments (GMM) estimator based on this CMR for the case of two panel waves.

Second, we generalize this estimator to the case of more than two panel waves, allowing for

balanced as well as unbalanced panels. Applications of the Honoré (1992) estimator are still scarce.

Some examples are Udry (1995a,b) and Alderman et al. (1995). In an empirical example, we

compare the performance of our GMM estimator with that of Honoré’s estimator and with some

parametric estimators.

The paper is structured as follows. In section 2, we introduce the model and discuss the merits

and drawbacks of a number of existing parametric and semiparametric estimators. Section 3

explains in detail how the efficiency of the Honoré (1992) estimator can be improved upon, and

describes the limit distribution of the resulting two step GMM estimator for the case of two time

periods. In section 4, we compare the performance of Honoré’s estimator and our GMM estimator

in a small Monte Carlo experiment. Section 5 deals with the empirical application for two time

periods. We explain weekly earnings of Dutch married females, using data drawn from the Dutch

Socio-Economic Panel (SEP). Stoker (1992) uses earnings of married females as the prototype

example of a censored regression model in a cross-section framework. Since earnings partly reflect

female labour supply, it is natural in a life cycle context to add fixed effects (cf. Heckman and

MaCurdy, 1980). Parametric estimates are compared to the (semiparametric) estimates proposed by

Honoré (1992) and our (asymptotically) more efficient estimates. In section 6, the GMM-estimator

is extended to panel data with more than two waves. We propose estimators for both balanced and

unbalanced panel data. We analyze the performance of the estimator for the same empirical

example, using five waves of SEP data, from 1984 to 1988. In Section 7, we interpret the

economic results. In section 8, some conclusions are drawn.
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2. Model and Existing Estimators

The censored regression model for panel data with individual effects is defined as follows.

Here i denotes the individual and t denotes the time period. yit is the endogenous variable to be

(1)

explained, xit is a vector of covariates,αi is the individual effect, uit is an error term, y*i t is an

underlying latent variable, andβ is the unknown parameter vector of interest. We only observe

(yit,xit). We are interested in asymptotic results for fixed T, while N tends to infinity. In all cases

we assume independence across individuals, but not necessarily over time. We discuss a number of

models with varying sets of assumptions and corresponding estimators.

In models with random effects,αi is assumed to be independent of xi=(xi1′,...,xiT′)′. Various

parametric models with random effects and corresponding estimators forβ have been proposed.

αi∼N(0,σ2
α) and ui=(ui1,...,uiT)′∼N(0,Σ), with Σ=σ2

uIT and IT the T-dimensional identity matrix, yields

the specification of equi-correlation, see Heckman and Willis (1976). Here Maximum Likelihood

(ML) can be applied (a one dimensional integral has to be computed). If milder restrictions onΣ

are imposed, estimators can be based on numerical integration over T−1 dimensions or on

simulation (e.g. simulated ML or simulated moments; see Gourieroux and Monfort, 1993).

If the underlying distributional assumptions are satisfied, these random effects approaches lead

to consistent asymptotically normal estimators forβ. Drawbacks, however, are the assumptions of

normality and independence between (ui,αi) and xi. Due to the nonlinear nature of the models

(censoring), violation of either of these may lead to inconsistency of ML (see Arabmazar and

Schmidt, 1981, 1982).

Parametric models with fixed effects can be divided into two categories. In the first, no

restrictions on the distribution ofαi conditional on xi are imposed. Theαi are then usually

considered as nuisance parameters which can be estimated. In the second category, some

restrictions on the distribution ofαi are imposed allowing for dependence betweenαi and xi.
2

In models of the first category, it is usually assumed that uit, i=1,..,N, t=1,..,T, are i.i.d. and

independent of xi. Since theαi are parameters to be estimated, models in this category suffer from

the incidental parameter problem, see Neyman and Scott (1948). In the censored regression model,

unlike the binary choice model, the incidental parameter problem cannot be solved by conditional

2 Some studies only refer to the first category as fixed effects models, and refer to the second category
as random effects models (see Manski, 1987, and Chamberlain, 1984).
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ML, since no sufficient statistic is known, irrespective of the distribution of uit.
3

An example of a model in the second category is given by Chamberlain (1984). He assumes that

αi depends in a linear way on xi: αi=a′xi+wi, with wi∼N(0,σ2
w), ui∼N(0,Σ) without restrictions onΣ,

and wi, ui and xi independent. A two stage estimation procedure is used to estimateβ. First the

model is estimated for each t separately (ignoring cross-equation restrictions). The second step is a

minimum distance step, taking account of the cross-equation restrictions. This estimator allows for

a specific form of correlation betweenαi and xi but still assumes normality of wi and ui. If a=0 this

model simplifies to the random effects model. Thus for the random effects model, Chamberlain’s

estimation procedure is an alternative to simulated ML.

To avoid the normality and independence assumptions, semiparametric estimation methods can

be used. For T=2, Honoré (1992) derives two CMRs under the following basic assumption (with i

subscript suppressed from now on):

Conditional symmetry assumption

The distribution of (u1+α,u2+α), conditional on (x1,x2) is absolutely continuous and symmetric (i.e.,

has conditional density f, with f(v1,v2 x1,x2)=f(v2,v1 x1,x2) for all (v1,v2) and (x1,x2)).
4

This is the assumption used in Honoré (1993). It replaces the somewhat weaker identifying

assumption (E.3) in Honoré (1992). The conditional symmetry assumption allows for nonnormality

and dependence between errors and/or the fixed effect and xi. In this sense it is more general than

the assumptions needed by Chamberlain (1984).5

The estimators developed by Honoré are obtained by constructing UMRs from CMRs, where the

UMRs are chosen in such a way that their empirical counterparts are the first-order conditions of a

strictly convex objective function. Each CMR yields its own estimator forβ; the two CMRs are

not combined. One of the two objective functions is not differentiable in a finite number of points.

To obtain the asymptotic characteristics of the corresponding estimator requires then an approach

as proposed by Pakes and Pollard (1989).

3 In principle, β could be estimated by transforming the endogenous variables into binary choice
dummies, and by applying conditional ML to the binary choice model with logistically distributed error
terms. However, in this way identification of the variance of the error term is sacrificed and the slope
parameters are only estimated up to scale.

4 A primitive condition on the density of (u1,u2,α) conditional on (x1,x2) that is sufficient for conditional
symmetry of (u1+α,u2+α) is that f(u1,u2,α x1,x2)=f(u2,u1,α x1,x2) for all (u1,u2,α) and (x1,x2).

5 On the other hand, contrary to Honoré (1992), Chamberlain (1984) does not impose that the conditional
variances of u1 and u2 are equal.
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Because the objective function for the estimator based upon the other CMR is twice

differentiable in all but a finite number of points, deriving the limit distribution of this estimator is

straightforward, as is estimation of its covariance matrix. The related CMR will be referred to as

the ‘smooth’ CMR. The two estimators share the property that (β,x1,x2) appears only asβ′(x1−x2),

so identification hinges on variation in x1−x2. For example, coefficients related to time constant

regressors are not identified. Since the estimates can be obtained by minimizing a strictly convex

objective function, a local search algorithm can be used in locating the minimum.

The Honoré estimators are easy to obtain. But they lack (semiparametric) efficiency. In this

paper, we construct more efficient estimators. One way to do this might be to construct the

efficient scores, see Honoré (1993). However, estimation of the efficient scores appears to be hard

in general: Honoré (1993) needs a specific distributional assumption concerning (u1+α,u2+α),

conditional on (x1,x2), to obtain a semiparametrically efficient estimator. This approach therefore

does not seem to be generally applicable.

Instead of using the efficient scores to obtain an estimator that asymptotically attains the

semiparametric efficiency bound, the approach suggested by Newey (1991) could be followed.

Similar to Chamberlain (1987), he starts with the notion that conditional symmetry leads to

infinitely many CMRs and also to infinitely many UMRs. The idea is to let the number of CMRs

used in estimation grow to infinity at an appropriate rate as N tends to infinity. Newey shows that

using this approach, the semiparametric efficiency bound can be attained asymptotically. However,

in finite samples this approach requires making many choices: which of the infinitely many CMRs

to use, and which functions of the conditioning variables to use to form UMRs.

An easier approach can be based on Newey (1993). This approach starts from a model identified

by a given finite set of CMRs. These are used to construct UMRs using optimal instruments. The

resulting UMRs can be used in a GMM estimation procedure. We will only use one CMR: the

smooth CMR of Honoré (1992). As a consequence, we might loose efficiency compared to the

semiparametric efficiency bound. Stated more precisely: our estimator attains the semiparametric

efficiency bound in a class of models leading to this single CMR; this class may be larger than the

one satisfying the conditional symmetry assumption.

3. Identification, consistency, efficiency and GMM estimation

Let T=2. Define ∆x=x1−x2. In the remainder, we assume that Honoré’s conditions (those

discussed previously and additional regularity conditions given in Honoré, 1992) are satisfied.

Under these assumptions, Honoré (1992) derives the following smooth CMR
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where

(2)

with

(3)

A1 = {(y 1,y2) y1 > max{0, β′∆x}, y 2 > y1 − β′∆x};

A2 = {(y 1,y2) 0 ≤ y1 ≤ β′∆x, y2 > 0 if β′∆x≥0; y1=0, y2 > −β′∆x if β′∆x<0 }

B1 = {(y 1,y2) y1 > max{0, β′∆x}, max{0, − β′∆x} < y 2 < y1 − β′∆x};

B2 = {(y 1,y2) y1 > β′∆x, y2 = 0 if β′∆x≥0; y1 > 0, 0 ≤ y2 ≤ −β′∆x if β′∆x<0 }.

Note thatρ depends onβ only throughβ′∆x. Therefore, a necessary condition for identification is

that E{∆x∆x′} has full rank. This excludes time constant regressors, whose effects will be picked

up by the fixed effects.

CMR (2) implies that, for any (measurable) function A(x1,x2),

For a given choice for A(x1,x2), UMR (4) can be used to apply GMM. A condition for consistency

(4)

of the GMM estimator is that (4) has a unique solution forβ. This is difficult to prove in general.

Honoré (1992) avoids this problem: he chooses A(x1,x2)=∆x, and constructs a strictly convex

objective function, whose first order derivative equals the sample analogue of the UMR. This

guarantees identification and consistency of the estimator obtained by minimizing the strictly

convex function. We denote the estimator forβ based on A(x1,x2)=∆x by β̂H. In general, an

estimator based on (4) for some arbitrary choice of A(x1,x2) is denoted bŷβ.

The limit distribution ofβ̂ is given by

where

(5)
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For an arbitrary choice of A(x1,x2), including A(x1,x2)=∆x, β̂ is generally not efficient. The

(6)

semiparametric efficiency bound using only the information provided by (2), can be attained by

using an optimal choice of instruments to turn (2) into unconditional moment restrictions, see

Newey (1993). He shows that the optimal choice of instruments is given by A(x1,x2)=B(x1,x2), with

B(x1,x2)≡D(x1,x2)′Ω(x1,x2)
−1, where

As shown by Chamberlain (1987), the efficient estimator based on efficient GMM is not only

(7)

(8)

efficient in the class of GMM estimators, but is also asymptotically efficient in the wider class of

all consistent and asymptotically normal (regular) estimators. Therefore, the components of

B(x1,x2)ρ(y1,y2,β′∆x) can be interpreted as the efficient scores.

The optimal instruments are generally unobserved. Newey shows that, when applying GMM or

some asymptotically equivalent method, the optimal instruments B(x1,x2) may be replaced by a

consistent (nonparametric) estimatesB̂(x1,x2), without affecting the asymptotic characteristics of the

resulting estimator. The resulting GMM estimator is:

Its limit distribution is given by

(9)

Alternatively, one Newton-Raphson step can be performed usingβ̂H as the starting solution. This

(10)

yields an estimator that is asymptotically equivalent to efficient GMM. Denote this estimator byβ̃.

It is given by:
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Particularly the latter approach is computationally convenient:β̂H is easy to obtain due to strict

(11)

convexity of the objective function it minimizes, and no numerical optimization is required in the

second step. Therefore, this is the estimator we will focus on.

To apply (11), we needB̂(x1,x2). Newey proposes to use nearest neighbour or series

approximation. In the nearest neighbour case, Newey proposes to estimate B(x1,x2) by estimating

Ω(x1,x2) and D(x1,x2) separately. LetΩ̂(x1,x2) be the nearest neighbour regression estimate based

upon (8), usinĝβH instead ofβ ((4.2) in Newey, 1993). Newey proposes to splitD̂(x1,x2) in a part

depending on a finite dimensional nuisance parameterη and an additive remaining part ((4.4) of

Newey, 1993). But (7) yields no natural way to parameterize some part of D(x1,x2). Therefore,

estimating D(x1,x2) boils down to estimating E{1(−y2<β′∆x<y1 x1,x2} nonparametrically (after

replacingβ by β̂H). B(x1,x2) is then estimated bŷD(x1,x2)′Ω̂(x1,x2)
−1.

In the series approximation case, Newey proposes to estimate B(x1,x2) as a whole, again using a

part possibly depending on a finite dimensional parameterη and using a series approximation to

approximate the multiplicative remaining term, see (5.1) of Newey (1993). In our case we can

write B(x1,x2) = −∆xF(x1,x2), and

The real valued function F(x1,x2) will be approximated by a series along the lines of Newey (1993)

(12)

(after replacingβ by β̂H). Thus, in neither of the two cases, we see a natural way to parameterize

some part of D(x1,x2) or B(x1,x2). We therefore do not make use of the nuisance parameterη.

The following two theorems now follow from Newey (1993).

Theorem 1 (nearest neighbours):

If the conditions stated in assumptions 4.1, 4.3, 4.4 and theorem 1 of Newey (1993) are satisfied,

then

A consistent estimator forΛ is given by

(13)
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The assumptions required for theorem 1 can be divided into assumptions that can easily be

(14)

checked for the specific model of interest, and regularity conditions that are hard to check in

practice. Those that can be checked are special cases of Newey’s assumptions for the general case.

We discuss them in the appendix.

Theorem 2 (series approximation):

Assume that the conditions stated in assumptions 4.1, 4.3, 5.1, theorem 2 and either assumptions

5.2 and 5.4 or 5.3 and 5.5 of Newey (1993) are satisfied. Then

A consistent estimator forΛ is given by

(15)

(16)

The assumptions, drawn from Newey (1993), are discussed in the appendix.

The main problem that occurs in practice is how to construct the estimatorsB̂(x1,x2) of the

optimal instruments B(x1,x2). Newey (1993) sketches a general procedure for nearest neighbours as

well as series approximations. Among other things, this involves the choice of smoothness

parameters. Newey (1993) provides some criteria to select the number of neighbours or the number

of terms in the series approximation to use in estimation.

The nearest neighbours procedure is intuitively easier to understand than the series

approximations, since it relies on two nonparametric regressions. We shall focus on nearest

neighbours. In the empirical application, however, we also apply the series approximation

procedure. Computational details of the latter can be found in the appendix.

4. The Nearest Neighbours GMM estimator and some Monte Carlo Results

The GMM estimator in Theorem 1 uses nearest neighbours to construct estimates for D(x1,x2)

and Ω(x1,x2). This requires the choice of the numbers of nearest neighbours. Newey (1993)

proposes to choose the same number in D(x1,x2) and Ω(x1,x2), using some type of cross-validation,
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with a criterion based on the linearized difference between "true" and estimated scores.6

Apart from the number of nearest neighbours, the norm (determining the distance function) and

the weights have to be chosen. We used two norms: x1 = (x′S−
x
1
xx)½ (norm 1), where Sxx is the

sample covariance matrix of x=(x1,x2). This norm is invariant to (nonsingular) linear

transformations of x. And x2 = (x′∆−1x)½ (norm 2), where∆ is a diagonal matrix with the sample

variances of the components of x on the diagonal. This norm (proposed by Newey) is only

invariant to the scale of x. We used the three choices for the weights given in Robinson (1987)

(uniform, triangular and quartic).7

For both norms and all three weights, Newey’s suggestion for determining the optimal number

of nearest neighbours failed to work in the empirical application (see below). The value of the

cross-validation objective function was decreasing in the number of nearest neighbours. Using 900

nearest neighbours in a sample of size 938, led to parameter estimates that are very different from

the Honoré estimates and to huge standard errors. When we applied Newey’s criterion using

different numbers of nearest neighbours for D andΩ, the same problem occurred. An alternative

selection method for the number of nearest neighbours is to perform cross-validation for D andΩ

separately. This is what we use in the remainder.

To indicate how well this estimation procedure can perform in practice, a small Monte Carlo

experiment is conducted. We use two time periods and a combination of specifications 3 and 5 of

the Monte Carlo sudy performed by Honoré (1992). Because the dimension of the nonparametric

regression is twice the number of explanatory variables, only two explanatory variables are

included. Assuming that the explanatory variables are independently normally distributed might

result in too optimistic Monte Carlo results (Chesher, 1995). Instead, we assume them to be

independently chi-square distributed (specification 3 of Honoré, 1992). We allow for correlation

between error term and fixed effect as in specification 5 of Honoré (1992). To be precise, write

xt=(x1t,x2t), t=1,2, then x1t=α+ηt and the random variablesα,η1,η2,x21 and x22 are independent and

all distributedχ2
3, standardized to have mean zero and variance 1. Conditional onα, u1 and u2 are

distributed N(0,½+½α2).

The results with 1000 replications and different sample sizes are presented in table 1. The table

reports the true parameter values, the estimated bias and root mean squared error (RMSE), and the

root mean squared error implied by the asymptotic theory (ARMSE). The quartiles and the median

6 the expression presented in Newey (1993) contains a small error on the top of page 433: ...+B(x)[...]..
should read ...−B(x)[...]..

7 Let m be the number of nearest neighbours. Uniform weights give all neighbours equal weight 1/m,
triangular weights give weight (m−j+1)/[½m(m+1)] to the jth nearest neighbour, j=1,..,m, and quartic weights
give weight [m2−(j−1)2]/[m(m2−(m−1)(2m−1)/6)] to the jth nearest neighbour, j=1,..,m.
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absolute error of the estimator (MAE), and the median absolute error predicted by the asymptotic

distribution (AMAE) are also reported. In the nonparametric estimation of D(x1,x2) andΩ(x1,x2) we

used nearest neighbours with uniform weights and norm 1 (invariant to linear transformations of

x).

We find that for a small sample (N=200) ARMSE is smaller for the efficient GMM estimator,

but because RMSE is much larger than ARMSE, the asymptotic approximation is not accurate. For

N=500 this improves: RMSE decreases substantially for the efficient GMM estimator, although the

asymptotic distribution still does not appear to be an accurate approximation. The bias of the

efficient GMM estimator is smaller in absolute value than the bias of the Honoré estimator. For

N=5000, the asymptotic approximation to the root mean square error is quite accurate for both

estimators. The GMM estimator now clearly outperforms its inefficient counterpart. The bias is

much lower for the efficient GMM estimates.

In terms of mean absolute error (MAE) instead of mean square error, GMM already performs

better for sample size 500. For N=200, it already performs as good as the Honoré estimator. The

reason for the difference is that, for the smaller sample sizes, GMM in some replications leads to

estimates which are far from the true parameter values. These get a larger weight in the RMSE

criterion than in the MAE criterion.

Comparing the quartiles (LQ and UQ) we conclude that the distribution of the Honoré estimator

is skewed to the right in small samples, which also occurred in the Monte Carlo study in Honoré

(1992). The efficient GMM estimator is skewed to the left. The bias in the Honoré estimates is

positive whereas it is negative for the efficient GMM estimates.

In spite of the limitations of the Monte Carlo set up, we are tempted to conclude that the

estimator based on efficient GMM performs quite well provided that the sample size is large

relative to the number of parameters. The latter condition is due to the nonparametric estimation of

the optimal instruments.

5. Empirical Application

We want to explain earnings of married Dutch females in age between 18 and 65. Earnings are

positive if the female works and zero if she does not, so the dependent variable is censored at zero.

A static microeconomic model leading to a linear latent variable model for earnings is presented in

Stoker (1992) for the cross-section case. His explanatory variables include family and individual

characteristics affecting preferences and human capital variables correlated with the (potential)

wage. An intertemporal choice model leading to (1) (including the individual effects) can easily be

obtained as in MaCurdy (1981). In the remainder we will use the natural logarithm of after tax
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earnings+1 as the dependent variable. The log transformation is used to capture the usual

lognormal model as a special case, and to prevent a large impact of outliers. The +1 is added to

account for the zeros.8

As explanatory variables we include the logarithm of weekly other family income (including the

husband’s earnings; again, +1 is added to account for zeros), the number of hours per week that

the male is working, and a dummy indicating whether the male is working. These variables

characterize the effect of the husband’s behaviour on the wife’s labour supply. A dummy

indicating whether the family contains children younger than six captures the effect of household

composition.9 Also included are calender time, age, and the female’s education level. Data on

experience are not available. Note that in the fixed effects model, the human capital variables

related to the (potential) wage cannot be included due to lack of time variation.

We use data of the Dutch Socio-Economic Panel (SEP) of the years 1984 to 1988. Table 2

contains the definitions of all variables considered and sample statistics for the whole five year

period.10 In this section, we only use the data of the 1987 and 1988 waves. Our results are based

upon 2278 individuals who are in both waves.

We started with the Chamberlain (1984) model, with the modification that only part of x could

be used in explaining the ‘fixed effect’α: α=a′z+w, where a=(a1′,a2′)′, z=(z1′,z2′)′, zt is a subvector

of xt (the same for all i=1,..,N, t=1,2), and w is a random error term. Variables that are time-

invariant or change linearly over time cannot be included in zt. However, this is not essential as

long as we are not interested in theβ parameters for these variables (as they are not identified). A

constant term and the variables TIME, LOI, HM, DCH6, IEM, AGE, and EDF are included in xt,

whereas only the variables LOI, HM, DCH6, and IEM are included in zt.

In the first stage of the estimation procedure all cross-equation restrictions are ignored and the

model y*i t=β′xit+a′zi+wi+uit, yit=max{0,y*
i t}, with w i and uit independently normally distributed, is

estimated separately for each t. In the second stage, the cross-equation restrictions are taken into

8 For the chosen scaling of earnings (Dfl per week), the +1 has a negligible effect on the positive
earnings values.

9 Preliminary results indicated that other variables related to children had no significant effect.

10 Over time and on average, the variables log other family income (LOI), hours worked by the male
(HM) and employment of the husband (IEM) hardly change. The dummy for children under six years
(DCH6) tends to decrease, education level of the female (EDF) and her age (AGE) tend to increase. In each
year approximately 35% of the married females has a job. The following numbers give some insight in
participation mobility. Comparing consecutive years, we find that approximately 62.5% does not work in
both years, 31% works in both years, 3% switches from not working to working and 3.5% switches the other
way around. Comparing waves which are two years apart, these percentages are 60%, 28%, 6%, and 6%,
respectively. If the time difference is three years, the percentages become 59%, 25.5%, 7.5%, and 8%. For a
time difference of four years, they are 56%, 25%, 9%, and 10%.
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account and a minimum distance step is performed. The estimation results with a=0 imposed

(random effects) are presented in the second column of table 3. The estimates for the full model

are presented in the third column. Hereµ̂2
t is an estimate for Var{wi+uit}, t=1,2. Because some of

the coefficients in the fixed effect are significant, the random effects specification (col. 2) is

rejected against the fixed effect specification (col. 3). Comparing the results suggests that the

random effects specification leads to an overestimation of the effect of children (DCH6) and

employment of the husband (IEM). Other variables such as the education level of the female

(EDF), for example, are not included in zit, and thus their impact may also be interpreted as a fixed

effect.

The assumptions of normality and homoskedasticity were tested after the first round, using the

tests of Chesher and Irish (1987). The form of heteroskedasticity that was tested for was

Var{wi+uit}=exp(λ′xit). Both assumptions were strongly rejected (both with a=0 and a≠0). This

implies that the estimates ofβ may be inconsistent, which justifies the use of estimators based on

weaker assumptions. Moreover, a test on overidentifying restrictions can be performed in the

second step, by comparing the objective function value with the critical value of aχ2
7 distribution.

The hypothesis that the overidentifying restrictions are valid, is rejected at the 5 percent level.

However, it should be realized that this test is only valid when the first round estimators are

consistent, which may not be the case here as indicated by the tests after the first round.

The estimates proposed by Honoré (1992), based on (4) with A(x1,x2)=x1−x2, are presented in

the fourth column of table 3. Becauseβ affects ρ only throughβ′∆x, the coefficients related to

TIME and AGE are not simultaneously identified. Hence only TIME will be included in the

estimation. For the same reason, the effect of education level cannot be estimated, since EDF

hardly changes over time. The remaining parameters are related to preferences and not to

(potential) wages, and we are basically estimating labour supply responses.11

Only two effects are significant: the presence of a young child and the husband’s hours of work

have similar impact as in the fixed effects Chamberlain (1984) model. As before, the effect of

family income is negative, but its significance level has dropped. The time trend can be compared

to the sum of the time trend and the age effect in the Chamberlain model. It appears to have a

large standard error, much larger than AGE and TIME in the Chamberlain model. The low

significance levels might be caused by the fact that the estimator is not efficient. Toshow

11 This raises the question why we do not estimate a model for hours worked instead of earnings. In
some waves of SEP, for those who do not change jobs, hours worked are not measured in each wave but
taken from the previous wave. This makes hours worked infeasible for a panel data analysis. Earnings are
measured independently in each wave for all respondents. Moreover, hours worked are measured per week
and show large spikes at 20 and 40 hours (see Van Soest, 1995, for example). A censored regression model
is not appropriate to deal with this.
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that it is important to take the censoring into account we also present the OLS estimates on the

first differences in the fifth column of table 3. It is clear that the estimates differ substantially; the

OLS estimate of the parameter related to DCH6 is significantly positive!

Before turning to efficient GMM, note that the observations for which yi1=yi2=0 contribute zero

to ρ(y1,y2,β′∆x), whatever the value ofβ. These observations are discarded in the nearest

neighbours estimation, which reduces computer time substantially. Discarding these observations

reduces the dataset to 938 observations. AGE and EDF could in principle be included in xt, t=1,2,

although the related coefficients inβ are not identified. Including them may affect the weights in

nearest neighbour estimation. It would also increase the dimension of the nonparametric

regressions, however. In the remainder we therefore do not include them.

GMM with Nearest Neighbours

For both norms 1 and 2 and all three weights and for D as well asΩ (see Section 4), our cross-

validation criterion function appeared to be U-shaped. The optimal numbers of neighbours varied

from 5 to 7 for D, and from 46 to 68 forΩ (see table 4). Using these numbers of neighbours and

performing one Newton-Raphson step starting fromβ̂H, led to the results reported in table 4.

Reported standard errors are based on (14). For norm 1, the parameters related to DCH6 and HM

are significant at the 5% level. For norm 2, only the parameter related to DCH6 is significant. The

choice of weights does not affect the sign of the parameters and has a modest effect on the

significance levels. For norm 1, the estimates and their standard errors are very similar for different

choices of the weights. For norm 2, there is some variation with the weights, in particular for the

estimates related to T and IEM. The significantly negative estimates for DCH6 and HM are quite

robust. The estimates related to T, HM and IEM are rather different for the two norms, but the

differences are not significant.

We investigated the sensitivity of the results w.r.t. the number of nearest neighbours used in

estimation. Because the results with norm 1 seem to lead to rather low standard errors and the

choice of weights does not matter very much, we only look at the model with norm 1 and uniform

weights (to be referred to as the benchmark model). The sensitivity of the results w.r.t. the

smoothness parameters is presented in table 5. Keeping the number of nearest neighbours optimal

for Ω and varying this number for D, results in most cases in estimates and standard errors that are

similar to the results with the optimal choice. An exception is the coefficient of IEM. Changing the

number of neighbours forΩ influences the parameter estimates related to T and AGE2, whereas

standard errors are hardly affected. The parameters related to LOI, HM and DCH6 remain

significant and negative in all cases but one. Decreasing the number of neighbours in estimating D
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leads to an increase of the significance level of the parameter related to LOI. We conclude that the

results are not very sensitive to the numbers of nearest neighbours.

Comparing the benchmark results in table 4 to the Honoré estimates in table 3, we find that all

standard errors have decreased. All t-ratios have increased, and with uniform weights and norm 1

the estimate related to LOI is now significant. To test for model misspecification, a Hausman-type

specification test is performed.12 Comparing the Honoré estimates in table 3 with the results in

table 4, the null hypothesis of correct specification of the model could not be rejected at the 5%

level. This result was obtained for all six specifications in table 4. Except for the parameter related

to TIME, the parameter estimates have not changed much. For all parameters, the 95% confidence

intervals based on the estimates in tables 3 and 4 overlap.

GMM with Series Approximation .

The alternative approach to estimate B(x1,x2) is to use series approximations. Newey (1993)

shows how to approximate B(x1,x2) directly instead of estimating D(x1,x2) and Ω(x1,x2) separately.

We apply his procedure. See the appendix for details on the computation and the choice of

‘smoothness parameters’, i.e. the choice which polynomials to include in the series, the so-called

polynomial base.

Results are presented in table 6. Columns 3 to 6 contain the results for different choices of the

polynomial base. Standard errors are based on (16). The results with a constant, IEM87, IEM88

and IEM87*IEM88 in the base, led to the over-all lowest value for Newey’s cross-validation type

of criterion function. These results will be considered as ‘best’ in the remainder. The estimates

related to TIME, LOI, DCH6 and IEM are sensitive to the choice of base, although the t-ratios

hardly change. Significant estimates of about −0.029 for HM and of about −1.9 for DCH6 are

robust across base choice.

Comparing the results of series approximation with the results of nearest neighbours, we find

that the same parameters are significant except for LOI. Estimated standard errors are lower for

some parameters, but larger for others. Comparing the standard errors to the Honoré estimates in

table 3, we again see that they slightly fall. In terms of t-ratios, we ‘gained’ a little bit more when

using nearest neighbours than when using series approximation.

We performed a Hausman-type specification test based on the series approximation estimates in

table 6. As in the nearest neighbours case, the null hypothesis of correct specification of the model

12 The Hausman test requires a positive definite estimate for the covariance matrix ofβ̃−β̂. We follow
the standard approach to use (11) which implies that√N(β̃−β̂)=ĈvN, with Ĉ→pC, vN→dN(0,Σ) as N→∞.
Obtaining a positive definite estimator̂Σ for Σ is straightforward. It follows that̂CΣ̂Ĉ’ is a positive (semi-)
definite estimator for the covariance matrix of√N(β̃−β̂).
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could not be rejected at the 5% level.

An Alternative Specification Test

An alternative specification test for the fixed effects model (1) with the conditional symmetry

assumption, is based upon combining two smooth CMRs of Honoré (1992). The first is the CMR

for the censored regression model, equations (2) and (3), the basis for the Honoré estimator. The

second is a similar smooth CMR for the case that only information on observations with y1>0 and

y2>0 is used (the smooth CMR for the truncated model, equation (2.3) in Honoré (1992)). These

two CMRs can be used to construct the following UMRs:

E{ρ(y1,y2,β′∆x)}=0

and

E{1((y1,y2)∈A1)[y1−y2−β′∆x]+E{1((y1,y2)∈B1)[y1−y2−β′∆x]}=0.

The sample equivalents of these moments are evaluated at the Honoré (1992) estimator forβ.

Following Newey (1985), it is straightforward to derive a test statistic based upon the

overidentifying restrictions, which, under the null of no misspecification, is chi squared distributed.

The null was rejected at the 5% level, contrary to the result on the basis of the Hausman tests. An

interpretation of this result is that the data support CMR (2)-(3), but do not support the more

specific model assumptions (1) and conditional symmetry. Because of this, we only consider

estimators based upon (2) and (3), and do not try to improve efficiency by using more CMRs.

6. Extension to a panel with more than two waves

6.1 Balanced panel

In this section we extend our analysis to more than two waves. We first look at the balanced panel.

We assume that it is random (no attrition on the basis of the endogenous variable). The basic idea

is to combine the conditional moment restrictions in (2) for each pair of panel waves. A sufficient

assumption for this, together with regularity conditions similar to those for the two waves case, is

the following generalization of Honoré’s symmetry condition:

For all s,t ∈ {1,...,T}, s≠t, the distribution of (vs,vt) = (us+α,ut+α), conditional on x=(x1′,...,xT′)′,
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is absolutely continuous and symmetric.13

This assumption is rather general and allows for all kinds of correlation structures between the

random errors ut. For example, it is less restrictive than the assumption of complete

interchangeability, that, conditional on x, v=(v1,..,vT) has the same distribution as (vπ(1),..,vπ(T)) for

any permutationπ. The latter allows for equicorrelated errors, but, for example, not for errors with

first order autocorrelation.

Let ∆xst=xs−xt and

whereρ is defined in (3). Then, for all 1≤s<t≤T,

(17)

These CMRs can be stacked into one vector defining

(18)

Then, for any A(x), we have the UMR

(19)

The optimal choice for A(x) is B(x)≡D(x)′Ω(x)−1, where

(20)

Estimation of the optimal instruments requires a preliminary estimator forβ. Honoré (1992)

(21)

suggests to construct such an estimator on the basis of

Combining (20) and (22) more moments than parameters are used in estimation, so, for example,

(22)

13 For some of our estimators, it is sufficient to impose the slightly weaker condition of symmetry
conditional upon xs and xt instead of upon x1,...,xT.
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GMM with the optimal weighting matrix can be used. This requires estimating the optimal

weighting matrix. For this, a consistent preliminary estimator forβ can be constructed giving equal

weights to the moments∆xstρst. This latter choice is convenient because the estimator can be

obtained by minimizing a strictly convex objective function. Given this preliminary estimator, we

can estimate the optimal weighting matrix and perform one Newton-Raphson step towards the

solution of the optimal GMM estimator based on (20) and (22). We refer to this estimator, which

is asymptotically equivalent to the GMM estimator with the optimal weighting matrix, as the

Honoré estimator. The many moments used in estimation can be used to test for overidentifying

restrictions.

The Honoré estimator forβ can then be used to perform efficient GMM with the optimal choice

for A(x), i.e. B(x). Of course, our estimator consists of calculating one Newton-Raphson step

towards the solution of the efficient GMM estimator. We refer to this final estimator as efficient

GMM. Its drawback is the large dimension of the nonparametric estimation of B(x) if the

dimension of xt or the number of time periods is large, as in our case.

Alternatively, we can use that E{ρst(β) xs,xt}=0 for each 1≤s<t≤T and apply the estimation

procedure for time periods for each combination (s,t), 1≤s<t≤T separately. To reduce the

computational burden we determine the smoothness parameters for one particular pair (s,t) and use

the outcome for all pairs. The final step in estimation is then Asymptotic Least Squares (ALS), to

restrict the estimates forβ to be the same for each combination (s,t). This strategy, referred to as

the ALS estimator, might asymptotically be less efficient than efficient GMM, but is easier from a

practical point of view. Moreover, it can also be applied to unbalanced panels.

To compare the estimation procedures, we applied them to the balanced subpanel for the years

1986-1988 (T=3). The dataset (with at least one non-zero observation on the dependent variable)

consists of 823 observations. We use norm 1 and nearest neighbours with uniform weights. Cross-

validation was used to determine the optimal numbers of nearest neighbours for D andΩ (see table

7, row 8; for ALS these numbers are based on 1987 and 1988 only).

The Honoré estimate for panel data is presented in the second column of table 7. Only the

parameter related to the dummy for the presence of young children (DCH6) is significant, with

value −2.357. The results for the other two estimation procedures using all elements but time (T)

in calculating distances are presented in columns 3 and 4 of table 7. Efficient GMM leads to

significant parameter estimates except for employment of the husband (IEM). ALS leads to

significance of the presence of young children (DCH6) only, with estimate −2.297. Compared to

the results based on 1987 and 1988 only, the impact of the husband’s hours worked (HM)

disappears. Compared to efficient GMM, we see large differences in standard errors. The parameter
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estimates also differ but they are all insignificant.

We have only 823 observations, but the efficient GMM estimates in column 2 use a

nonparametric estimator for a conditional mean, conditional on a twelve dimensional vector. To

avoid this problem of dimensionality, we present results based on conditioning on all periods’

values for HM and DCH6 only (cols. 5 and 6 of table 7). In section 5, these two appeared to be

the main explanatory variables. This reduces the dimension of the nonparametric regression from

12 to 6. Excluding LOI and IEM from the set of conditioning variables in efficient GMM

estimation, leads to significant changes in estimates for TIME, HM and IEM. For two-stage ALS

the parameter estimates change substantially but not significantly for most parameters. The

significant negative impact of young children is still robust, although its magnitude has changed.

The ALS results show no significant changes compared to the Honoré estimates.

The objective function value (bottom row of table 7) can be used to perform a test on

overidentifying restrictions in the Honoré estimates and the two-stage ALS estimator. In both

cases, the hypothesis of no misspecification is rejected at the 5 percent level, but not at the 1

percent level. Comparing the efficient GMM estimates with the consistent Honoré estimates, a

Hausman test can be performed. For both efficient GMM estimates, the null hypothesis of correct

specification was rejected.

We also considered the balanced panel for the years 1984-1988 (T=5). Selecting the

observations for which all information for all 5 waves was available and that had at least one

nonzero observation on yt, left us with a sample of only 243 observations. We found this too small

for a sensible analysis involving higher dimensional nonparametrics.

Unbalanced panel

Let cst=1 if (ys,yt,xs,xt) is fully observed and zero otherwise. We assume that the distributions of cst

and ys,yt are conditionally independent for given x=(x1′,..,xT′)′ (no selection or attrition bias). We

then have

Because we do not observe x1,..,xT for all individuals, we use the weaker CMR

(23)

We apply the two waves estimation procedure for each (s,t) separately and use ALS to estimateβ.

(24)

To reduce the computational burden we determine the smoothness parameters for one particular

pair (s,t) and use the outcome for all pairs of waves.
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The unbalanced panel (for 1984-1988) consists of those individuals who are observed in at least

two waves, with positive earnings at least once. This leads to a sample of 1351 individuals. We

use uniform weights and norm 1 and all elements in (xs,xt) but TIME are included in calculating

distances. The optimal numbers of nearest neighbours used in estimation are the same as in section

5, i.e. 5 for D(xs,xt) and 50 forΩ(xs,xt), 1≤s<t≤T.

Estimation results for the Honoré estimator for panel data are presented in the seventh column of

table 7. Again, DCH6 is significant only at the 5% level with a parameter estimate of −2.68. The

same holds for the two-stage ALS estimates. Compared to the balanced sub-panel 1986-1988 we

see that the standard errors have decreased and that no significant differences in parameter

estimates can be found. Again, the similarity between the Honoré estimate and the two stage ALS

estimate is striking. Even more striking is that standard errors have increased while we are trying

to improve efficiency. Although we did not perform a Monte Carlo study for the two-stage ALS

this might be caused by the relatively small amount of data per combination of years (on average

about 900 individuals per combination of years with positive earnings in at least one of the two

years). At the 5% level, the test on overidentifying restrictions results in rejecting the hypothesis of

a correct specification for the Honoré estimate (69.11>χ2
45;0.05=60.61) whereas it is not rejected with

two stage ALS (58.67<χ2
45;0.05=60.61).

7. Economic Interpretation

Our model explains earnings of married females, which are determined by hours worked and

hourly wages. The Chamberlain (1984) estimates in table 3 already suggest that fixed effects are

substantial, the random effects model being clearly rejected against the fixed effects alternative.

Fixed effects in the labour supply decision have a clear interpretation in a life cycle context. The

hourly wage is mainly determined by human capital variables that hardly vary independently over

time, so that fixed effects and human capital effects on hourly wages cannot be distinguished.

In the fixed effect models, only the variables of the time varying regressors can be identified.

These mainly refer to the labour supply decision. From the results we conclude that,ceteris

paribus, the presence of a child less than 6 years old has a strong negative effect on the female’s

labour supply. The magnitude of the effect, though, is much smaller than in the random effects

model. This is the most robust finding in the paper. It confirms with the common finding in the

female labour supply literature. Obviously, the assumption of exogeneity could be criticized here

(see Mroz, 1987). Our data and the semiparametric nature of our models do not allow to test this.

According to most of the estimates, other family income (mainly husband’s earnings) has a

negative effect, which is often significant. According to the results in table 7 column 8, the
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elasticity (for observations with positive earnings and other income) would be about −0.15. Note

that in a standard life cycle model without uncertainty, the elasticity should be zero, because

family consumption can be smoothed for changes in family income. Our results suggest that

changes in other family income could at least partly be unanticipated, and lead to adjustments of

permanent income.

We find some evidence suggesting that,ceteris paribus, the number of hours the male is

working has a negative effect on the wife’s labour supply. The average elasticity would be about

−0.4, but the estimate is never very accurate. This result suggests that male and female leisure are

substitutes. To disentangle the impact of the husband’s hours worked and the husband’s

participation, we also included a dummy for the husband’s employment. Its impact never appeared

to be significant.

We find that the joint impact of time and age is insignificant. Our fixed effects model does not

allow to distinguish between the (probably positive) time trend and the (probably negative) age

effect. We also estimated the model with additional explanatory variables, such as the number of

children in the family younger than 18, and age squared. In none of the estimation results these

variables were significant. Including them had little effect on the other estimates.

Finally, it should be noted that for T=2 most specification tests led to the conclusion that the

censored regression fixed effects model cannot be rejected. This is somewhat surprising, since in

cross-section settings, the censored regression model is often found to be inferior to a less

restrictive sample selection model (see, for example, Melenberg and Van Soest, 1995). Apparently,

fixed effects may make a large difference here. On the other hand, tests including more time

periods observations often led to rejection of the censored regression fixed effects model.

8. Conclusions

We have considered various estimators for the censored regression model, and applied them to

panel data on earnings of married females. In the case of two panel waves, we have focused on the

semiparametric estimator for models with fixed effects designed by Honoré (1992), and efficient

GMM estimators based upon Newey (1993). Monte Carlo results suggest that these techniques

work quite well in practice, although many observations are needed before we can gain some

efficiency compared to the Honoré estimator. For the case of more than two time periods, we have

considered an estimator proposed by Honoré (1992), an efficient GMM estimator for a balanced

panel, and have looked at Asymptotic Least Squares estimators for both the balanced and the

unbalanced case.

Our empirical results show that taking account of fixed effects substantially changes the
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conclusions on the sensitivity of female labour supply for the presence of children, other family

income, the husband’s hours of work, etc.

Contrary to the Honoré (1992) estimator, the efficient GMM estimator requires nonparametric

estimation, involving the choice of smoothness parameters. Our sensitivity analysis for a panel with

two waves shows that the results are not very sensitive to the choice of these parameters. Our

results are somewhat mixed. Where the efficient GMM estimators should, at least asymptotically,

be more efficient than Honoré’s estimator, it does not lead to unambiguously smaller (estimates of)

standard errors, although t-values do tend to increase.

The efficiency gains are obtained by an optimal construction of unconditional moment

restrictions, given the choice of a conditional moment restriction. An alternative would be to

consider more conditional moment restrictions. Honoré (1992) notes that there is an infinite

number of conditional moments one could consider. However, from the Hausman specification test

it follows that the conditional moment restriction used by Honoré is valid but that the assumption

of conditional symmetry might not hold. Therefore we do not include more conditional moment

restrictions based on this assumption in estimation. Another direction of future work would be to

relax the model assumptions and consider selection models. Kyriazidou (1994) introduces a

consistent estimator allowing for a general structure of fixed effects. More efficient estimators

using this estimator as a starting point, could be obtained along the same lines as described in this

paper.
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Table 3: Estimation Results Chamberlain Model and Honoré estimates (T=2)

(standard errors in parentheses)

PARAMETER Random effects
estimates

Fixed effects
estimates14

Honoré
estimates

Linear model

TIME 0.060**

(0.011)
0.059**

(0.012)
−0.052
(0.078)

−0.676**

(0.013)

LOI −0.228
(0.130)

−0.338*

(0.160)
−0.212
(0.149)

−0.699**

(0.013)

HM −0.052**

(0.014)
−0.030*

(0.013)
−0.031*

(0.014)
−0.005*

(0.002)

DCH6 −4.864**

(0.284)
−1.970**

(0.466)
−1.813**

(0.356)
0.153**

(0.038)

IEM 3.500**

(0.721)
0.452

(0.659)
0.526

(0.728)
0.429

(0.076)

AGE −0.205**

(0.012)
−0.206**

(0.013)

EDF 1.336**

(0.130)
1.343**

(0.130)

µ̂2
1 4.976a

(1.014)
4.918a

(1.014)

µ2
2 5.102a

(0.997)
4.893a

(1.003)

Obj. function 9.08 10.53

* significant at the 5% level
** significant at the 1% level
a no test on significance carried out

14 For the fixed effect, the coefficient in a1 related to DCH6 and in a2 related DCH6 were significantly
negative at the 1% level and the coefficient in a2 related to IEM was significantly positive at the 5% level,
indicating that it is important to allow for correlation between the individual effect and the regressors.
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Appendix

We briefly discuss the assumptions needed for Theorem 1 and 2, drawn from Newey (1993).

Finally, some additional computational details of applying Theorem 2 are discussed.

Assumptions for Theorem 1

The main part of assumption 4.1 is the regularity condition that E{B(x1,x2)Ω(x1,x2)B(x1,x2)′} is

nonsingular. Assumption 4.2 of Newey (1993) is not required because we do not apply GMM, but

the two step procedure (11). Assumption 4.3 deals with properties of the first round estimator,β̂H

in our case, which can be checked partly. The crucial identification part of this assumption is that

E{∆xρ(y1,y2,β′∆x)}=0 is uniquely satisfied at the true value ofβ. This is proven in Honoré (1992).

The condition that the first stage estimator should be based on a GMM type of objective function

is not satisfied here, but lemma A.1 of Newey (1993) can be easily adapted such that theorem 1

still goes through for the first stage estimator used here. Assumption 4.4 contains moment and

smoothness conditions related toρ 4, ∂ρ/∂β 4 and ∂2ρ/∂β∂β′ . The conditions in terms of the

second order derivatives ofρ are satisfied here because∂2ρ/∂β∂β′=0, see (3). Assumption 4.5 of

Newey (1993) is not needed because D is estimated nonparametrically. The only additional

assumption in theorem 1 of Newey (1993) concerns the rate at which the number of nearest

neighbours used in estimation tends to infinity as N tends to infinity.

Additional assumptions for Theorem 2

Apart from some regularity conditions, assumption 5.1 contains an assumption on the existence of

E{ D(x,η) 2a/(a−2)+δ}= E{ ∆x 2a/(a−2)+δ} for some a>2,δ>0, and an assumption on (η-η0). The latter

is not needed here since we do not useη. The condition on Q and̂Q in assumption 5.1, is satisfied

because we choose Q=Q̂=I.

Assumptions 5.3 and 5.5 are verified for our specific application. We aim at approximating

B(x1,x2) = −∆xF(x1,x2), with the real valued function F(x1,x2) given by (12). The function F(x1,x2)

is approximated using a polynomial base in elements of x1 and x2. More formally, let

aK(x1,x2)=[a1K(x1,x2),..,aKK(x1,x2)]′ represent the elements of the polynomial base. We then

approximate F(x1,x2) by γ̂′aK(x1,x2), where γ̂ still has to be determined (see below). Checking that

Newey’s assumptions 5.3 and 5.5 (that imply assumptions 5.2 and 5.4) are satisfied is easy here:

Choose akK(x1,x2)=pk(x1,x2) [with τj(xj)=xj]. (x1,x2) contains at least one continuously distributed

component (LOI in our empirical example) with density assumed to be bounded away from zero

on (0,∞). The elements in∆x are not linearly dependent, implying that the smallest eigenvalue of
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{ ∆x∆x′} Ω(x1,x2) is bounded away from zero. By choosing the degree of the approximating

polynomial increasing in K, J(K)=K and LK=I, assumption 5.3 is satisfied except for the

boundedness of theτj. The latter is not a problem because boundedness can be relaxed without

affecting the results (Newey, 1993, p. 440). Assumption 5.5 is also easy to check, since R is only

one dimensional here. With akK(x1,x2)=pk(x1,x2) and J=K, we can chooseγj=γ1j, j=1,..,K, so that

assumption 5.5 is satisfied.

Computation of series approximations

Two problems remain after having chosen which elements in (x1,x2) form the polynomial base:

how to estimateγ and how to determine K, the number of terms in the series approximation. Both

are addressed by Newey (1993). Estimation ofγ (for given K) is based on the same intuition as in

nearest neighbours: approximate the efficient scores as good as possible using a minimum mean-

square error criterion. This leads to an explicit expression forγ. Replacing expectations by sample

averages then yieldŝγ.

To obtain K, a cross-validation criterion is used in which theγ̂ is calculated N times, leaving out

the i-th observation (i=1,..,N). This is repeated for several values of K. The optimal K minimizes

the difference between the estimated and the true scores. Because the true scores consist of

conditional expectations that are not observed, these are replaced by their nonparametric estimates,

and the estimated scores are replaced by the dependent variables (as in cross-validation). Givenγ

and K, estimating the asymptotic covariance matrix of the estimator is straightforward.

Note that (12) implies F(x1,x2)≥0. For the approximation to F, this is indeed the case for the first

model in table 6. The other two models in table 6 led to negative estimates for F(xi1,xi2) for 56 and

70 observations, respectively. This is an additional reason why the first model is referred to as the

’best’ series approximation model. Avoiding this problem is also a reason to focus on the nearest

neighbour estimation when we consider more than two waves.


