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The scope of exact analytical results in Bayesian econometrics is
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1. Introduction

A major obstacle for the implementation of Bayesian methods in econome-

trics hes undoubtedly been the very limited acope of available straight-

forward analytical solutiona, as was recently atressed in Richard and
Steel (1988). For this reason, we have seen quite an upeurge of numerical
methods for conducting ínferenca in a Ba,yesian fremework.

On the one hand, Monte Carlo integration techniques were adopted following

Klcek and van Dijk (1978) and theae methoda proved quite successful in

numerous empirical applicationa [see, inter alía, ven Dijk (1984), Bauwens

(1984), and Steel (198~)], al~hough naturally prone to problems of speci-
ficity and imprecision as diacuased in Hendry (1984). In particular, the

search for a useful importance function ín the so-called importance samp-
ling technique [see Hammersley and Handscomb (19~9)] cen not yet be per-

formed in a fully automatic way and resains an important issue to be re-
solved. Geweke (1988), Richard and Steel (1988), end Zellner et al. (1988)

all address this problem in more detail.

On the other hand, many Bayesian analyses naturally give rise to the oc-
currence of poly-t densities as defined in Drèze (197~). Efficient methods

for their enalysis were developed, e.g. in Richard and Tompa (1980), and
are now incorporated in a standard software package, called the Bayesian

regression progrem ( BRP), as described in Bauwens et al. (1981). Unfortu-
nately, these procedures, that employ both analytical and numerical tech-
niques, cen only cover a rather limited class of models if we are looking

for full information marginal results, as explained in Drèze end Richard

(1983).

In spite of the considerable progresa achieved in numerical methods and

the explosion in computational facilities, which has recently made these

methods more attractive for empirical work, exact analytical results ere,

of course, more satisfactory from a theoretical point of view, and typi-

cally much cheaper i~i computing time.
Therefore, the prese~it paper is an attempt to clearly define the bounda-

ríes of the analytical domain in Beyesien analysis. As we already suspect



z

this to be quite limited, we focus upon a very simple type of model, nane-

ly systems of seemingly unrelated regression equations under noninforma-

tivel stochastic prior notions.

We do, however, introduce a rather general type of restrictions on the

ccefficients and try to ascertain which clesa of restrictions can be ac-

cooodated by fully analytical methods.
As we feel it clarifies the expoaítion and reduces the complexity of the

formulas, we use e recursive trensformation of the model, which is intro-

duced in the next section. Section 3 briefly discusses the reason why

analytical methods do not work in general cases and describes some of the

standard ways of dealing with the problem numerically, as described e.g.

in Drèze and Richard (1983). Some enalytical results and their limitations

are presented in Subsection 3.3. together with a few suggestions for the

analysis of those cases that are not covered by our analytical Focmulas.

The last section groups some conclusions end Lopics for further research,

whereas Appendices A, 8, and C contain some technical details, end Appen-

dix D tabulates the various assumptions concerning rank properties that

are made in the course of this paper.

2. The SURE Model

2.1. Descrietion

The main resulta of this paper will pertain to the standard system of

seemingly unrelated regression equations (SURE) as introduced in Zellner

(1962).

We consider s sequential condítional model describing a vector of n endo-

genoua variables y(t) at time t, given an available information set It

which contains weakly exogenous varíables and legged values of both endo-

genous end exogenoua variables. Let us assuse we can group all variables

in It that are relevent
te dimension x(t) E Rm.
nal expectations and
the data density

for the description of y(t) into e vector of fini-
We further assume normality with linear conditio-
a constant covariance matrix over time, leading to
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D(Y(t)~It) - fN(y(t)IR x(t)~ V). t: 1~ T. (2.1)

where we have adopted the notation for density functions found in Appendix

A of Drèze and Richard (1983). In line with most applications using SURE

systems, we let V be eny unreatricted symetric positive definite (PDS)

matrix, but put restrictions on the m x n matrix of ccefficients R.

In particular, we consider R as a matrix function of a vector of unre-

stricted parameters a E R~, and will focua upon linear restrictions of the

type

rt - vec R - Sa, (2.2)

where S is a mn x~ matrix of known constants and of full column rank.

Extensive discussion of the general nature of (2.2), as well as its form

in several special cases can be found in Richard and Steel (1988). Suffice

it to say here that it allowa for restrictions across equations as well as

within equations and it ís certainly more general than the very restric-

tive matrix form

if - BAC, (2-3)

where A is a pxq matrix of unrestricted ccefficients end B and C are known

matrices of respectively full column and row rank. The matrix form (2.3)

is the only one which is compatible with a natural-conjugate prior struc-

ture, which is therefore of very limited use in SURE models. In fact, in a

natural-conjugate (NC) framework, the prior covariance matrix of R given V
4

is restricted to be of the Kronecker form V 9 M~, where the superscript

denotes the Moore-Penrose inverse and the relative precision matrix M~ can

be singular. For compatibility with (2.3) we require that the restrictions

expressed by C reflect a redundancy (e.g. through identities) in y(t), so

that instead C~'y(t) has a nondegenerate distribution with PDS covariance

matrix L. We then have a proper NC prior structure on A, the unrestricted

coefficients of (T, and E, given by

p(A~L) - f~q(A~Ap. E 9 ND1) (2.4)
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D(I) - fIW(EIEO. v01.

from which we cen deduce

(2.5)

D(R~V) - f'm~n(R~BApC, V 9 BNQ1B') (2.6)

D(V) - fÍW(V~C'E~C, v~ - 9' n). (2.7)

both singular distributions, where V~ C'LC is no longer PDS, but positive

semidefinite symmetric (PSDS).
Usually, we shall assume that the model is defined in terms of a nondege-

nerate distribution on y(L) as in (2.1) with V a PDS matrix, possibly

after redefining y(t) so as to take redundancies into account from the

start. This would imply C- In in (2.3) and would clearly put the main

problem of the NC approach into focus, nemely the fact that the cceffi-

cients of each equation are restricted in exactly the same way by BN~1B'

in (2.6). This implies Lhat e.g. we cen't exclude a variable in one equa-

tion without doing the saeoe for every other equation, clearly a very unde-

sirable feature in practice, except for reduced form time series modelling

as e.g. in the unrestricted vector autoregressions approach of Sims

(1980). Therefore, we shall focus upon the representation of the restric-
tions in (2.2), using a vector of free parameters, instead of a matrix.

If we wish to impose the more general linear restrictions in (2.2), we
need to use e.g. extended natural-conjugate [see Drèze and Richard (1983)]
or recursive extended natural-conjugate prior structures [aee Richard and
Steel ( 1988)] i f we possess additional stochastic prior information. If
the latter is not the Cese, we can naturally use the simple prior struc-
ture

-}y0
D(~.v) ~ I~I . (2.8)

in combination with (2.2). In this paper we shall analyse the posterior

structure of a and V under a noninformative prior of the type in (2.8).
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In order to write the likelihood function of the model as it was defined
here, let us introduce the obvious matrix notation for all T observations:

y(1)
Y - (Y1 ... Yi ... yn) - Y~t)

Y(T)

x(1)
x - (xl ... xj ... xm) - X~t) .

z~T)

assumed to be of full column rank, and let us partition R as

R - (nl ... rti ... rtn).

(2.9)

(2.10)

(2.11)

and, finelly, define y- vec Y. Then we can write the relevant information

contained in the dats as

iloc.V; Y,X) a f~n(Y~XR, V 9 IT) (2.12)

with rt - Sac, or, alternatively, as

i(a,V; Y.X) a fN(Y~(In 9 X)Sac. V 9 IT). (2.13)

where we remark that (2.12) and (2.13) are only partiel likelihoods under

the hypothesis of weak exogeneity of x(t) [for definitions of the exoge-

neity concepts used here we refer to Engle et sl. (1983)]. This means they

contain all the information relevant to the parameters of our model in

(2.1) and (2.2), and are thus sufficient for our enalysis. The entire

joinc data density can in fact only be written as the expressions in

(2.12) and (2.13) under the more demanding hypothesis of strong exogene-

ity, where feedback effects are excluded.

2.2. A Recursive Transformation--------------------------

From classical econometrics we know that a fully recursive system simpli-

fies estimetion considerably. More in particular, in such a triangular
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structure with independent error terms full maximum likelihood procedures

boil down to applying OLS equation by equation.

In order to i~vestigate whether such simplifications can be used to our

advantege in a Bayesian Framework, let us define the following trensforma-

tion of our SURE model in (2.1) and (2.2) into a recursive system.

We introduce the n x n lower triangular matrix n defined as the matrix

that diagonalizes V, a PDS matrix, and partitioned as

1 0 ....... 0
-~21 1

n - -a31 -~3~ 1
; 0

-Jlnl -~~ ..... 1

leading to

n V n' - DW,

(2.14)

(2.15)

a diagonal matrix with ui ~ 0(i: 1 -~ n) on the main diagonal, reflecting

the independent disturbences of the recursive form equations. As ~n~ - 1.

we can rewrite the partial likelihood function in (2.12) in terms of the

recursive form as

.i(oc,{~., cr2}; Y, X) fT~n(Yn'~XP, D 9 I), (2.16)
i i ~` !4J u T

where ai -(~il "'~i,i-1)~' ~d P- Rn' is now a metrix function of a

and {~i}, given through

vec P- P- (n 9 Im)So~. (~.17)

Let us now denote by an index i in parentheses thoae 9uantities that refer

to the first i equations, and introduce a recuraion2 as follows

R - fa(i-1)1 ~ : f~(i-1)I
(1) I`~i J (i) Ilai J

(2.18)



- ~S(i-1) 0 J .and S(i)
Si(i-1) Sii

(2.19)

as S can always be reduced to a lower block-triangular matrix of full
column rank [see Richard end Steel (1988)], where each block Sii is of

full column rank ~i. This ~i gives the number of additional elements in a
due to equation i, here defined as the dimension of ai. Finally, introduce
the notation

Yi - (Yi-1 yi)
(2.20)

to recursively split. up the data matrix Y into a part referring to the
(i-1) previous equations ( Yi-1) and a part referring to the present equa-
tion i [as in (2.9)].

Rewriting (2.16) equation by equation, it ia then easily seen to factorize

into

:i(a. {Xi. ui}~ Y. X) ~ 1R1 fN(yilYi-lai ` X Pi. ui I1.) (2.21)

where P - (pl ... pn), and where imposing the restrictions in (2.1~) im-

plies that

a- S`(n 1 9 Im)p (2.22)

under the condition that SS`rt - rt, i.e. that a solution for a exists from
(2.2). Using our recursion formulas, we can deduce from (2.22) a solution
for ai, the unrestricted ccefficients of equation i, as follows:

ai - Sii(pi `[(Xi e Im)S(i-1) - Si(i-1)]a(i-1))' (2.z3)

which implies that, given ai and pi at each i, we can recursively solve

for the vector a. Of course, pi is still implicitly restricted, which has

to be incorporated in the anelysis. One way of expliciting these restric-

tions would be to focus upon en unrestricted .L1 dimensional vector, say
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pm, which would, given the unreatricted ai and a(i-1)'i
oci, or to find a pi such that

ai - Pi ~ Sii~(Xi e lm)S(i-1) - Si(i-1)~a(i-1)'

exactly determine

(2.24)

and, at the sese time, assuring that this pi enters our analysis in a very

natural way, e.g. by equating Xp1 ín our likelihood (2.21) to Xipi, where

Xi is defined as XSii, which we assuse to be of full column rank ~ii. We

then need that both

Siipi - pi
and

(2.25)

Xpi - ~iip~ (2.26)

hold simulteneously. This obviously holds if Sii is square and non-singu-
lar, which corresponds to the unrestricted SURE case, and also if Sii -
ciiB with B of full column renk by rewriting XP as (XB)(ACn') correspon-
ding to the matrix form of restrictions in (2.3).

A more interesting case where (2.25) and (2.26) hold simultaneously mekes
full use
variables
to have
(2.26) to

of the recursive features introduced here. If we denote all X

used in the first i equations by X(i), defined in such a way as

full column rank, then
hold is

Pi X(i) - X(i).

where Pi : XiXi - 7{i(XiXi)-1Xi.

A proof is given in Appendix A.

(2.27)

This is satiafied íf ell vnrinbles in the previous ( i-1) equations also
appear (with unrestricted ccefficients) in the i-th equation, as in the
limited information ( LI) case of Lubrano and Richsrd (1981), where it
leads to substantial simplifications in a two-equation instrumental varia-

a sufficient condition for (2.25) and
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bles analysis. Let us, by analogy, call this the "recursive limited infor-
mation" (RLI) case, which certainly seems more important, at this stage,
for expository and reference purposes than for serious applications.

In the three casea described above ve have from (2.24) a unique solution
a'

for aci, given a(1-1), once we know the (~i~i-1) dimensional vector (pi
ai)', which we redefine as

fpi
S1 ' I~1 , (2.28)

end reasoning in terms of ~i automatically imposea the restrictions in
their general vector form (2.2).
In addition, from (2.26) we notice that we can easily rewrite the partial
likelihood function (2.21) es

i(a, {ai, ui}; Y, X) R R fN(Y1lwi~i, Wil.l,), (2.29)
1-1

where we have implicitly defined

Wi - (Xi Yi-1)'

3. Posterior Malysis under a Noninformative Prior Structure

3.1. The Problem Stated------------------

(2.30)

The mere fect that the restrictions as expressed in (2.2) are generally
not compatible with a NC analysis already indicates that the posterior
densities will not belong to those families that we can easily exemine
analytically. No matter how simple the structure of the stochastic prior
information is, the exact prior restrictions will complicate matters con-
siderably.

Let us explain this more in detail by refercing to the family of diffuse
prior densities described in (2.8)



lo

-~v~
D(~.v) R ~v~ .

where the choice of v0 is open to some difference of opinion. Drèze (1976)

suggests that if our prior information ís noninformative, i t seems reason-

sble to impose invariance with respect to Crensformations between the

reduced and structural forms of the model, end therefore s~iggests v~ -

m.n.l. Although we only treat the SURE model here, we feel that this argu-

ment might be of general validity. In contrast, Zellner ( 1971) uses

Jeffreys' invariance principles to motivate choosing v~ - n~l, Stewart

(1987) derivea v~ L 2 from e data-relocated likelihood function, conform

to Jeffreys' rule under a certain prior independence assumption, and

Malinvaud ( 1981) advocates the use of v~ - 2n in order to retain the same

marginal results per equation as in the single equation case. Bauwens

(1984) remarks that the choice of v~ will affect the existence of poste-

rior moments for oc. A formal theory for obtaining a diffuse "reference

prior" based on expected information is provided in Bernardo (1979). The

resulting reference distributions are invariant both under one-to-one

transformations of the parameter space and under reductions to sufficient

statistics, but, unfortunately, involve integration over the sample space

and thus violate the likelihood principle, as explained in the discussion

following Bernardo ( 1979). Here we shall limit ourselves to the simple

prior structure in (2.8), which seems somewhat less controversial and

certainly easier to use in practice, although i t has less convincing in-

varience properties.
Only under asymptotic normality of the posterior distribution, which will

not generally hold in view of (2.2j, and provided there are no nuisance
paremeters, dces Bernando's approach lead to the type of improper prior
densities used here.
Drèze and Aichard (1983) and Van Dijk (1985) address the latter issue in
more detail. A aufficient condition for the existence of posterior moments
of order r is now given as

v~ ~ 2n a y, , c- T (3-1)

with u a sup{~i; i: 1-~ n}, based on Lemma 6.6 of Drèze and Richard (1983)
applied to diffuse priors as in (2.8) on SURE models. Provided u- m. i.e.
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at least one equation is exactly identified, we get the same degrees of
freedom condition as given in Van Dijk (1985) except for the last term T,
which represents the advantage of SURE over simultaneous equetion models
(SEM) in terms of existence of moments.

The main problem we face in the analysis of the posterior structure, how-

ever, can be seen to depend mainly on the presence of general linear re-

strictions in vec form as in (2.2). Combiníng the (partisl) likelíhood

functíon in (2.12) with the simple diffuse prior (2.8), we obtain for the

posterior denaity on V given a a well-known fon

D(V~a, Y, X) - fIw(V~V~, v~-n-1)
with

V~ - (Y - XR)'(Y-XR)
v~-v~~T,

13.2)

where we have implicitly assumed that V~ is PDS end v~ ) 2n -T, and we get

a posterior structure for a

-}(v~-n-1)
D(a~Y, X) a ~(Y-XR)'(Y-XR)~ , (3.3)

which looks like a matrix-t kernel, but has to be treated conditionally on

the restrictions on R. Now, again, it becomes obvious thet under the ma-

crix form (2.3) the properties of a are known analytically and we are

still in a NC framework. Then, indeed, we have a matrix-t kernel in A,

expressíng the restrictions on Y by Y-'YC, and reasoning in terms of Y

and XB.
If, however, we wish to restrict R, in a more useful way by imposing

(2.2), we lose the nice analytical properties of a matrix-t kernel and the

problem chen seems to require numerical procedures. In view of the poten-

tially large dimension of a, one could suggest the use of Monte Carlo

procedures, as described in Klcek and Van Dijk (19~8) and Nendry (1984).

More in particuler, the method of Importance Sampling [see e.g. Hammersley

and Rendscomb (19~9j] seems appropriate as ít has proviously led to satis-

factory results in sieilar models. In this context, we can refer to

Bauwens (1984) and Richard and Steel (1988).
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3.2. Malysis-in Tec~s of the Original-Parameterisation

If we wísh to remain in the parameterisation (a,L) of the untransformed

SURE model, we cen attempt to isolate the posterior density of the cceffi-

cienta of one equation ai, given all other ~-.Li elements of ac, along the

lines of Drèze and Richard (1083) and Bauwens 11984).

We start out from the restricted matrix-t form for the posterior density

of ac in (3.3). and explicit the restrictions by using (2.18) and (2.19) to

replace ni by an expression in ai, given ac(i-1) of the previous equations:

(3.4)rti - Sii~`i ~ Si(i-1)a(i-1)'

As V~ is a PDS matrix composed of the elements (yi-Xrti)'(y~-Xn~), we can

easily split up the determínant into a part that depends on aci given

a(i-1) ~d a marginal part that depends only on oc(i-1), letting i run from

n to 2 in a recursive way. We nov partition Ri -(R1-1 rti) ~ in (2.20),

and start at i- n, while re first rewrite V~ as a quadratic from in R and

base our factorisation upon the matrix

which implies the reverse factorisation of the one used in Lemma B.1 of
Drèze and Richard (1983)-
Using the PSDS nature of Y'MxY, where we have defined

Mx - IT - X(X,X)-1X,

~
-(ynMxYn-1) ( Yn-1MxYn-1)

and having essumed X'X to be nonsingular in (2.10), we can write
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I(Y-XR)'lY-XR)I

- IY~MxY , (R-I~)'X'X (R-R)I

- IYn-1MxYn-1 ' (Rn-1-Rn-1)~X'X

lqn ~ (rtn-n~)' H~ (RR Rn)~ .

with

i - (X'X)-1X'Y - (Rn-1"n).

partitioned conformably with R, and

(Rn-1-Rn-1)I

(3.5)

H~ - X'X - X'X (Rn-1-~n-1) ~Yn-1MxYn-1 ' (Rn-1-Rn-1)~X'X

(Rn-1-~n-1)~-1 (Rn-1-Rn-1)~X~X'

9n - ynMxyn - ynMxYn-1 ( Yn-1MxYn-1)~ Yn-1Mxyn'

rtx - n . (R -f~ )(Y' M Y )~ Y' M Y -n n n-1 n-1 n-1 x n-1 n-1 x n

Next, we substitute (3.4) to examine the posterior density for an given

oc corresponding to the last factor in (3.5), and we obtain the ker-
(n-1)'

nel of a Student t density

D (~nl~`(n-1).Y.X)

: ftn (nnla~ ,s~-1 (S~HnSnn). vx-n-~n-1). (3.6)

with
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~n - (SnnHnSnn)-1S~ H~ (rt~ -Sn(n-1)~(n-1))'

s~ - 9~ ' (rt~ -S a ) ' [H~ - H~ S (S' H~S )-1S' H~]
n n n n(n-1) (n-1) n n nn nn n nn nn n

(rtn - Sn(n-1)a(n-1))'

provided ~S~ H~S~~ end s'n are both nonzero and v0 ) n~~n - T~ 1.

This gíves us a very simple form for the conditional posterior densíty of

an, but the cruciel point is that the reciprocal of the integrating con-
} de-stant of (3.6), which is given by (s~)-} (y~ -n-~n-1) ~Snn H~SMI- '

pends on ac(n-1) as is obvious from the expressions above. However, in the

RLI case the last equation íncorporate~ all X variebles, and Snn is there-

fore square end, as it is, by assumption, of full column rank, it is also

invertible.
This implies s~ - q~, which dces not depend on a(n-1), and

~SMH~SM ~~ ~H~~, which is shown in Appendix B to be proportional to the

inverse of the firat factor in (3.5). a quantity that has to be nonzero

since V~ was assumed e PDS matrix. This means that we are left with a

nondegenerate posterior density

D (~(n-1)~Y.X)

-}(L~-n-2)
~ lYn-1MxYn-1~(Rn-1-~n-1)~X.X (Rn-1-Rn-1)~

At this stage, we can reduce the X space to only those variables used in

the first (n-1) equations, denoted by X(n-I), by first partitioning

X - (X(n-1) ~n)' ~d correspondingly

- (rt(n I)1
Rn-1 Il o J

ana
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rt - R(n-1)
n-1 ~ '

~n-1

possibly after rearranging the remaíning equations. We then use the matrix

I
~n-1

1
-'XnX(n-1)~X(n-1)~X(n-1)~-

as in Drèze and Richard (1983. P. 593) in order to rewrite the posterior
in terms of R(n-1`'

D (a(n-1)lY'X)

-}(v~-n-2)
~IQ(n-1)'(R(n-1)-R~n-1))~ X(n-1)X(n-1)(R(n-1)-R(n-1))I .

13.7)

with

~ x
Q(n-1) - Yn-1M(n-1)Yn-1'

and

~ 1
R(n-1) 3 (X(n-1)X(n-1))- X(n-1)Yn-1'

where we have defined

"(n-1) - IT - Xln-1) (Xln-1)X(n-1))-1 X(n-1)'

In the RLI framework, equation (n-1) will, in its turn, contain all varia-

bles in X , which means we cen deduce a Student kernel from (3.7) for
(n-1)

an-1 without contaminating the functional form of the posterior for the

remaining (n-2) equations by the integrating constan:. Moving through the

system in this recursive fashion we can, thus, factorize the conditional

matrix-t kernel in (3.3) ínto a product of conditíonal t deneities for ai
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given ac(1-1), 1-1,...n, provided the model has an RLI structure. Unfortu-
nately, in the general case the presence of the integrating constants
prevents such a convenient analytical solution. Only in the special case
of e two-equation SURE system, we retaín en analytical expression for the
marginal posterior density of e.g. al, whích cen under certain conditions
be written as a 2-1 poly-t density [see Drèze and Morales (1976)].

Drèze and Richard (i983) propose to use a Normal approximation to the

posterior density for a in (3.3) along the lines of Morales (1971) and

then draw values for ai conditional on the values obtained from the Normal

approximation for the rest of a, using Student t densities as in (3.6).

This way of conducting the Monte Carlo drawings is labeled the "poly-t

drawn conditions" (PTDC) approach in Bauwens (1984), who proposes several

alternative importance functions as well. It remains, however, unclear

which importance function should be chosen in any particular application

and hov closely the one opted for will approximate the actual posterior

structure, whereas we know that if the far tails of the posterior density

are not dominated by the importence function our results can be very de-
ceptive. Including stochastic prior information as well, Richard and Steel

(1988) find that the posterior density is hard to capture by such condi-
tional Student t or poly-t importance functions if we reason in terms of
a. Therefore, the next subaection will focus on the possibility of obtain-
ing analytical results using the recursive reparameterisation introduced

ín subsection 2.2, as this seems to allov for a slíghtly less cumbersome
presentation than the one given in the present subsection and is more in

line with the recursive treatment of the model.

3-3. ~alytical-Results-Usin~-the Recursive-Model

In this subsection we shall limit ourselves to the three particular cases

(unrestricted, matrix restricted, and RLI models) discussed in subsection
2.2 under which the partial likelihood function takes the very simple form
(2.29), in an effort to explore the boundaries of the analytical domain

when treating SURE models under noninformative sto~hastic prior lnforma-
tion. This very simple case will then hopefully provide us with some sug-

gestions for the analysis of more complicated models, which will be the



object of future research. The use of the recursive parameterisation is
not entirely crucial, but we feel it enhances clarity of the exposition

and it somewhat facilitates the analysia of exogeneity along the lines of

Engle et al. (1983).

In all three particular cases exemined here, the condition Pi X(1) - X(i)

holds and the partial likelihood function tekes the aimple form (2.29) in

terms of unrestricted parameter vectors ~i. Therefore, we shall perform

the posterior analysis in terms of this recursive parameterisation, end

later use (2.24) in order to examine the propertiea of oc. As we do not

wish to express informative prior notions about a in the context of the

present paper, we are not required to transform informative prior densi-

tiea on ac into their counterparta for {~i}, which greatly simplifies the

procedure.

Let us first rewrite the diffuse prior (2.8) in terms of the paremeters of
the recuraive model. From (2.14) and (2.15) we easil:~ obtain

~v~ - ~n-1D~n,-ll - ID~) ' R (Wi).
izl

so that the relevant prior density becomea

n -}y
D({pi,ui}) a R (ui) ~.J,

1-1

(3.8)

(3.9)

where J is the Jacobian of the parameter transformation from (oc,V) to

({gi,ui}) or ((pi, ai, Wi}). As a result of the recursive structure de-

scribed in (2.24), this Jacobian will amount to

n-1 2 n-1J - R (Wi)i-1

(for a proof, see Appendix C), so that (3.9) c~ be written as

n -ilv -2(n-i))
D({~i,41i}) a Í~ (~Ji) O

1-1

(3.10)

(3.11)
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Combining this with the likelihood function (2.29) gives for each equation

i the following simple posterior structure

D(WiIBi. Y. x) ' fir(uilui.. v. - 2(n-i.l))

with
Wi. ' (yi - Wi~i)'(Yi - wisi).

ana

with

~C .i-1
D(PiIY. X) - fti (~i~di.

~i - (WiWi)-1Wiyi

Mi ~ I - Wi(WiWi)-1Wi~

(3.15)

(3.16)

where Wi is assumed to have full column rank (i.e. we add the assumption

that Yi-1 is of full column rank and hes no columns that are linear combi-

nations of those of Xi). Further, we assume that there exists no linear

dependence between yi and the colwns in Wi, or that (Xi Yi) has full

column rank, which implies yiMiyi ) 0, and ve require v~ ) 2n ~ k- 7'.
Remark that now, due to the fact that we cen reason in terms of pi, given

our specific condition (2.2'j), the integrating constants from (3.14) do

not involve any paremeters. The joint posterior density for all vectors ~i

(i: 1-~ n) will thus just be given by the product of Student t densities

as

(3.14). F~rthermore, the Jacobian of

(X i,

in

(3.12)

(3.13)

(yiMwyi)-1WiWi. v~-~i-2n.i-1) (3.14)

~
P

the tranaformation from pi - Xi to
i

is unity in view of (2.24). The denaity (3.14) cen therefore símply

be interpreted as the posterior density of (aci, Xi) given oc(i-1), provided
the necessary tranoformations in (2.24) are carried out. Remark that we
can always sequentially partition the entire poaterior density for a and n
into

n
D(~`. nIY. X) - R D(ai' Xila(1-1). Y. X).

i-1
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as can be seen directly by considering the posterior structure in (3.2)

end (3.3) and by virtue of the recursive decomposition properties of In-
verted-Wishart densities, as documented e.g. in Drèze and Richard (1983).

What is particular about the speciel cases treated here, however, ia that

the actual form of D(oci, ~ilm(i-1)' Y ~ X) is known analytically to be

Student t for each equation i. This is certaínly not the case if we reason

in terms of ( pi, a1) since pi is implicitly restricted, leading to a con-

ditional Student t which has no known analytical properties. This is ex-

actly the same problem as described in the previous subsection, only now

expressed in terms of the recursive paremeterisation.

If we ere prepared to conduct a Monte Carlo analysis, we could ignore the

problems that occur in the general case in order to construct an impor-

tance function as was examined in Richard and Steel (1988) in the context

of informative stochastic prior notions. One poasibility would be to draw

values for (Siipi' ~i) from simple Student t densitiea like (3.14) and use

(2.23) to construct drawinga for (oci, ai) keeping a(i-1) fixed at the

value obtained by drawing from the ccefficienta for previous equations.

This entails that we require n drawings from Student t densities in a

recursive ordering so as to obtain one full drawing for a and n. Using

this cecursive Monte Carlo procedure we can evaluate any function of

(c, n) that is of interest to us, e.g. momenta of a or n, but also more

compllcated functions líke moments of cectain elements in n-1 for exami-

ning weak exogeneity in conditional SURE models as in Steel (1987), or

moments of other nonlinear transformations, fractilea etc.
OF course, the outcome of such a Monte Carlo procedure would generelly, at

least to some extent, depend upon the ordering of the equations that we

happen to choose, and its merits in various applications can only be as-

certained in en empirical way.

Let us, therefore, concentrate here on the possibility of obtaining anal -

tical results as these are, by their very nature, much more intereating

theoretically and do not suffer from problems of specificity and lack of

numerical accuracy ~see Rendry (1984)] that can, in some cases, produce

very misleading inferences. We thus limit ourselves to our three specíal



20

cases and remark that from (3.14) the posterior moments of pi exist up to

order r for all equations if

vQ ) 2n ~ K ~ r- T,

which is exactly the same as the sufficient condition (3.1) for the exis-

tence of posterior moments of a. As the dependence on previous equations

comes in solely through pi, the posterior density for ai is independent of

a(1-1)' since

D(SiIY.X) - D(ai~Y.X).D(pi~ai.Y,X) - D(ai~Y.X).D(ai~ai'a(i-1),Y.X).

where the marginal posterior density of Xi is simply of the Student form:

D(a1IY.x) - f~-1(XiIX;.(yiMiyi)-lYi-lMii-1'v~-.Li-2n.i-1). (3.17)

-a
and we define pi z Pi , while Mi is defined analogously to Mi in (3.16)

a.i
and is thus given by Mi - I- Pi.

Using this independence property, we can evaluate the posterior mean of a

in a recursive way, following (2.24),

g(a1IY.X) ' Pi . Sii~(ai e Im)S(i-1)

- Si(i-1)~E(a(i-1)~Y.X). vi: 1 -i n. (3.18)

Remark that it is easily verified from (3.6) that the analysis in terms

of the original parameterisation produces exactly the same results, pro-

vided, of course, the RLI structure is imposed there as well. Appendix B

provides some further details. At the cost of somewhat more cumbersome

calculations, we can deduce the following recursive enalytical expression

for the posterior variance of ai(i: 1~ n)
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Var(ac ~Y,X) - 1 Y~MWY {ÍX~X )-1 'i v~-~ i i i i i

i i-1 x k,l
Xi( 1 (Yi-1MiYi-1) (YkY~ - XE(rtk~Y.X)Y~ - YkE(n~~Y.X)X,

k,.~-1

. XE(rtkn~~Y,X)X')]Xi~} ' Sii(Si(i-1) - (~i e Im)S(i-1))

Var(~(i-1)~Y.X)(Si(i-1) - (ai e Im)S(i-1)) sii. (3.19)

where, with Sk s(Sk(k-1)' Skk)' we can use

E(rtkIY.X) - SkE(a(k)~Y.X)
and

E(rtkrt,~IY.X) - SkE(~(k)o~~~) IY.X)S,~.

end where superscript k.~ refers to the corresponding element of the in-

verse. A considerably simpler formule can be found for the covariance

between ai and ocj, i) j, nemely

Cov(ai.a~~Y.X) - Sii[(Xi e Im)S(i-1)-Si(i-1)] Cov(a(i-1)' Oe~IY.X).
(3-20)

With the help of (3.19) and (3.20) we can construct the posterior covar-
ience structure of a in a fully analytical way.

If our interest centres upon Xi or certain trensformations of n, we cen

use the posterior in (3.1~). A particularly importent quantity for evalua-

ting weak exogeneity, for example, is the matrix n-1. Denoting its ele-

ments by ~ij end realizing that n-1 will also be of lower triengular form

with unitary elements on the diagonal we can easily calculate the (i,j)th

element of nn 1 for i) j, which, of course, has to be equel to zero. This
i

leads to the following recursive expression for A (i ) j):

i-1
ail - L aimmj, (3.21)

m-1
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which only involves products of elements belonging to different equations,

and those are independent from (3.14). In particular, we obtain

i-1 .E(Xijly.X) - E Xi E(~mJIY.X). (3.22)
m-1

which can be evaluated recursively, bearing in mind that ajj - 1 end amj -

0 vm ( j. and where aim is the m-th element of Xi. The same gces for the

variance of aij; in particular, if we denote by (j 1 ai the vector ~i

without its first (j-1) elements (i ) j), end by a~~-i~l) the free ele-

ments on the j-th column of n 1 without the last (n-i.l) elements, or,
equivalently, obtained by just taking the (i-j-1) first elements of

aJ'l.j
a-~ - . (3.23)

then we can rewrite (3.21) as

1- (j-1)ai (~.jl (n-i.l)
(3.24)

for i) j. If we now realize that a~n-i.l) only refers to the equations

previous to equation i, we can use the independence of ai with respect to

these previous equations in deriving the follaring recursive relationship

for the covarience between J~'i end ai~ (i ) j, i)~C)

Cov(aij, al~~Y,X) .

tr Cov((j)ai,(~)ai~Y,X)Cov(a~~-i.l)'X(n'i.l)~Y'X)

. [1: E(~~n~irl)~Y.X))CovlÍj-1)Xi' (~E-ll~ilY'X)I~(X.~C
(Y.X)Jl (n-i.l)

~ (j)~i Cov(X~n-i.l)' X(n,i,l)~Y'X)(.i)Xi. (3.25)

~nj
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which can be evaluated by use of (3.22) and (3.23), and from which we find

the variance of al~ by taking j-.C. The covariance of two elements from
different rows of n-1 simplifies somewhat to

Cov(al~. X~~Y.X) ` (~)aiCovlX~n-i.l)' a~~Y,X) (3.26)

for i) k, which ellows a recursive solution knowing (3.25).

In addition, we should be able to derive analytical expressions for higher
order moments of ae or n, although we heve not yet done so at the preaent
stage. From (3.14) we know that such momente exist at least up to the
order v~ - 2n - H.

It should again be stressed that all analytical cesults here formally only

apply to the very restrictive cases treated here, i.e. unrestricted, ma-

trix restricted or RLI models, within the domain of SURE models under

diffuse stochastic prior information. They could very well provide useful

first approximetions in more general SURE models, that can be obtained at

a very low computational cost3, but such mattera remain to be investigated

in an empirical feshion. Of courae, the analysis also suggesta a rather

natural way of performing the conditional Monte Carlo drawings, using the

recursive treneformation of the model.
Finally, we could remark that a possible case of some practical meaning

covered by our analytical analysis here is the two-equetion LI model found

in Lubrano and Richard (1981), which can be of some use in en instrumental

variables analysis of weak exogeneity, conditionally upon the ccefficient

of the veriable tested for exogeneity in the structural equation [see also

Steel (1987)]. In addition, this case cen not be treated by the software

available in the Bayesian regression progrem (BRP) as described in Bauwens

et sl. (1981), since this package relies on the 2-1 poly-t form mentioned

in the previoua eubsection. {ihenever both equations have regressors in

common and we have diffuse prior stochastic information, one of the condi-

tions given in Drèze end Morales (1976) for obtaining a 2-1 poly-t density

is violeted, and BRP cannot give us marginal posterior results. Using the

methods described here, however, these results are easily obtained.
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4. Concluding Remarks

We feel the present analysis may contribute to a somewhat better under-

standing of the scope of enalytical Bayesian results. To the author, at

least, the fact that in SURE models of the RLI for~ analytical inference
is possible wes not at all obvíous from the start, the other two (NC)

special cases being, of course, well known. Although the ímpact of the
present results may be more at a theoretical level than at an empirical

one, we feel that it might increase our grasp on more complicated models,
where our simple analytical analysis formally dces not apply.

In particular, we think of help in the choice of importance functions for

Monte Carlo integration, but also of simple first approximations, possibly

made less crude by iterating on the order of the equations, as we know

that the actual results should be invariant to changing the order of the

equations. Such methods could be considered for the analysis of general

SURE models under diffuse prior densities as examined here, but we could

also think of extenaions to SURE modela under stochastic prior information

on ac or V, or to simultaneous equation models (SEM), as used in Drèze and

Richard (1983). As the cases that allow a formal analytical treatment do

not seem to cover many models used in empirical work, such extensions seem

an important topic for future research.
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Appendix A: Proof of sufficiency of (2.27) for (2.25) and (2.2ó).

If we went a solution of (2.26) in terms of pa to exist, a necessary and
sufficient condition is that

PiXpi -Xpi, (A.1)

whereas we know from the recursive structure in (2.17)-(2.19) that pi will

only depend on a(i), from which we cen rewrite

X pi - X(i) Pi. (A.2)

implicitly defining pi es the vector of nonzero elements in pi, correspon-

ding to the explanatory variables used in the first i equations. Obvious-

ly, a sufficient4 condition for (A.1) to hold is then

Pi X(i) - X(i). (2.27)

Under (2.27) the existence of a solution to (2.26) is thus establiahed,

while we know it will be unique due to the full column rank of X1 and

given by

Pi - X1 X(i) Pi.

From the definitions of Xi and X(i) we obtain

Xi - X Sii - X(í) ~ii'

(A.3)

(A.4)

where Sii groups the nonzero rows of Sii. It is well known [see e.g.
Magnus end Neudecker (1988) p. 33] that Xi and Pi have the same rank .~i,
and, under (2.27), we obtain

r(X(i)) - r(Pi X(i)) s rÍPi) ',Li.

whereas, from (A.4),
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so that
r(Xi) - ~i 5 r(x(i)).

r(x(i)) - r(Xi) - ~i- (A.5)

As both Xi and X(i) were assumed to be of full column rank, the latter

implies that ~Sii ia square end nonsingular and we get from (A.3) and (A.4)

"a ~-1'p .pi ii i
(A.6)

leading directly to the expression in (2.25), which completes the proof.

Appendix B: Some technicalities of the original parameterisation.

A first result that will be shown here is the proportionality of ~H~~.

defined in the main text following (3.5). to the inverse of the first

factor in (3.5), corresponding to the posterior density for a(n-1), the

unrestricted ccefficients in the first (n-1) equations.

Using the definition of H~, we see clearly that

IH~~ - ~X~xlllm - ( Rn-1-Rn-1) ~Yn-1MxYn-1 '

(Rn-1-Rn-1)~X~x ( Rn-1-Rn-1)~-1 (Rn-1-Rn-1)~x1x~~ (B.1)

which implies that, given the data, ~H~~ is proportional to the second
determinant in (B.1), which cen be rewritten via a theorem in Zellner
(1971. p.231) as

I 'I I1 - (rr -R )~x.x (R -R )
Hn ~ n-1 n-1 n-1 n-1 n-1

~Yn-1MxYn-1~ (Rn-1-Rn-1)~x~x (Bn-1-Rn-1)~-1~'
(B.2)

where the expression in square brackets, say E, is, of course, nonsingular

as V~ in (3.2) is PDS, which is required for a proper posterior density

on ac.



Replacing In-1 by EE 1 in (B.2), it ia then eesily seen that

IRnI ~` lYn-1MxYn-1I~E
ll ~ IEI-1 (B-3)

which is the result ve set out to prove.

Remark that (B.3) only holds if Yn-1MxYn-1 ia taken to be noneingular ea
well, e restriction that is implicitly impoaed in view of the full column

renk of Wn [see the discussion following (3.16)] and the RLI esaumption,

the latter of which implies that SM is invertible end thus thet

M~ - I - XSM(SMX'XSM)-1S~X' - Mx. (6.4)

A second result is simed at a quick verification of the equivalence of the

analysis in terms of the original end the recursive paremeterisations. We
shall limit ourselves to comparing the posterior mean for acn as implied by

(3.6) adding an RLI assumption, end as stated in (3.18), where the same

assumption was already made.

From (3.6) we obtain under an RLI structure:

E(an~~(n-1).Y.X)

-1 ~z SM (rtn - Sn(n-1)a(n-1))

with

nn - nn ' (Rn-1-Rn-1) (Yn-1MxYn-1)-lYn-lMxyn'

which cen be rewritten as

rtn - rtn - ~n-l~n 4 Rn-l~n

in view of (3.15) and (6.4). Using the fact that, from (3.15),

(a.5)

(6.6)
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n - (XnXn)-1 XnY
l-~nJ

: S~ R I-lnJ ,

we see clearly that (B.5) becwes

E (an~a(n-1).Y.X)

a- P~ ~ SM {(~n~I) Sln-1)-Sn(n-1)~ (n-1). (B.7)

from which (3.18) follows by teking expectations with respect to a(n-1)'
Símilarly, more complicated expressions, like (3.19), can be checked,
using the theory of partitioned matrices and the binomial inverse theorem
of Woodbury ea documented e.g. in Press (197z. P. z3).

Appendix C: Derivation of the Jacobien in (3.10).

Taking into account the symmetry of V, we wish to consider the parameter

transformation of ({ai, vi~}) to ({p~, ai, ui}) for i) j, say. If we

split this up into two steps, namely

({ai, vi~}) ~ ({ai, ai, ui})

with Jacobien J1, and

({ai, ai. Wi}) ~ ({Pa. ai. Wi})

with Jacobian J2, it is clear that we wish to find J- J1.J2.

The matrix of partial derivetions corresponding to the second part of the
transforma[ion will take the simple form:
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al

an
2W1

~21
2W2

~31

.2un

a a
pl "' pn

1 0

0

1

2 2 2
~1 ~21 W2 ~31 ~32 ... un

0 0 0

(C.1)

from (2.24), where the shaded areas contain nonzem elements that do not

influence J2, which is seen to be equal to one:

J2 - ~(C.1)~ - 1. (C.2)

In order to obtain J1, we consider the corresponding matrix of partial

derivetives

al

an

~11
~21
v22
"31
"32

0

2 2 2W1 ~21 ~r2 a31 a32 ... Wn.

0

D

, (c.3)

vnn
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where D can be obtained by exploring the relationship given in (2.15),

froo which we derive

and
~ii a ui ~ 2 ai v(i-1).i -~i V(i-1).li-1)~i

(C.4)

"ij s ~i(~(i-1).j - V(i-1).(j-1)~j) ' ~i.(j-1)aj (C.5)

if we partition the upper left i~ j block of V as

V(i-1).Íj-1)

From (C.4) and (C.5) the partial derivatives are found to be

~ v. cl v.ii - 1, ii - 0 V k) i
~ ui d uk

~i.lj-1)

~ v
v k z i) j

`~ ~i,(i-1)
cl ai - V(i-1),(i-1)

`~ ~i,(i-1) s 0 v k) i
`~ ~k

and, finally,

~vii
-0

~ ~k
v k ) i.

(C.6)
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This implies that D becomes

ui a21 uz a3 u3 ... un

~11 1
~21 ~11 0
v22 1
"3(2) ~l2),(2) ~ 1C.7)
~33 1

v 1M

a block-lower triangular matrix with nonzero elements in the ahaded area,
the determinant of which leads to

n-1 n-1 2 n-i
J1 - IiRl I~(1).(i)) - iRl(~i) . (C.8)

using ( 3.8), and J z J1 thus becoees equal to the expressíon in (3.10).
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Appendix D: Rank assumptions made throughout the paper.

object
(i:l~ n)

assumption
(implication)

discussed in

S full column renk 2.1
~ S ( full column rank) 2.1ii
--------- -------------------------------- -------------------

X full column rank 2.1~ 3.z
~ X (full column rank) 2.Z : APP. A(i)

--------- -------------------------------- -------------------
V PDS

-------------
2.1

----------------------------
V~

---

-------------------
PDS

--------------------------------
3-1: 3-2~ App. B
-------------------------

(Xi Yi) full column rank 3-3
Wi (full column rank) 3-3: App. H
X (full column rank) 2.2 : APP- A~ i
Y lfull column rank) 3-3i-1

yiMWyi (~ o) 3.3

Footnotes

1) The term "noninformative" might be considered abuse of language in view
of the numerous problems associated wi[h expressing prior ignorance
[see e.g. Zellner (1971) and Bernardo (1979)]- We could, of course,
replace it by "diffuse" or "vague", or we might choose to use the deno-
mination "reference prior". Subsection 3.1 briefly comments on these
issues.

2) It proves notationally convenient to use these recursions for i: 1~ n

and define n(o)' ~(o)' S(o)' S1(o) ~d Yp to be of zero dimension.



33

3) It is certainly much easier to compute than the FIML solution, used as
a starting point for a numerical analysis in e.g. Morales (1971) and
eauwens (1984).

4) This condition is not necessary unless pi is a scalar different from
zero.
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