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The scope of exact analytical results in Bayesian econometrics is
known to be quite limited. It is, however, shown here to be broader
than the simple natural-conjugate framework. Restricting the coeffi-
cients of a SURE model in a recursive linear way can not be
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lytical domain in Bayesian analysis, and subsequent research
suggests this may reduce the numerical burden in the analysis of
more complicated models than the one under scrutiny here.
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1. Introduction

A major obstacle for the implementation of Bayesian methods in econome-
trics has undoubtedly been the very limited scope of available straight-
forward analytical solutions, as was recently stressed in Richard and
Steel (1988). For this reason, we have seen quite an upsurge of numerical

methods for conducting inference in a Bayesian framework.

On the one hand, Monte Carlo integration techniques were adopted following
Kloek and van Dijk (1978) and these methods proved quite successful in
numerous empirical applications [see, inter alia, van Dijk (1984), Bauwens
(1984), and Steel (1987)], although naturally prone to problems of speci-
ficity and imprecision as discussed in Hendry (1984). In particular, the
search for a useful importance function in the so-called importance samp-
ling technique [see Hammersley and Handscomb (1979)] can not yet be per-
formed in a fully automatic way and remains an important issue to be re-
solved. Geweke (1988), Richard and Steel (1988), and Zellner et al. (1988)
all address this problem in more detail.

On the other hand, many Bayesian analyses naturally give rise to the oc-
currence of poly-t densities as defined in Dréze (1977). Efficient methods
for their analysis were developed, e.g. in Richard and Tompa (1980), and
are now incorporated in a standard software package, called the Bayesian
regression program (BRP), as described in Bauwens et al. (1981). Unfortu-

nately, these procedures, that employ both analytical and numerical tech-
niques, can only cover a rather limited class of models if we are looking
for full information marginal results, as explained in Dréze and Richard
(1983) .

In spite of the considerable progress achieved in numerical methods and
the explosion in computational facilities, which has recently made these

methods more attractive for empirical work, exact analytical results are,

of course, more satisfactory from a theoretical point of view, and typi-
cally much cheaper in computing time.

Therefore, the present paper is an attempt to clearly define the bounda-
ries of the analytical domain in Bayesian analysis. As we already suspect



this to be quite limited, we focus upon a very simple type of model, name-
ly systems of seemingly unrelated regression equations under noninforma-
tive1 stochastic prior notions.

We do, however, introduce a rather general type of restrictions on the
coefficients and try to ascertain which class of restrictions can be ac-
commodated by fully analytical methods.

As we feel it clarifies the exposition and reduces the complexity of the
formulas, we use a recursive transformation of the model, which is intro-
duced in the next section. Section 3 briefly discusses the reason why
analytical methods do not work in general cases and describes some of the
standard ways of dealing with the problem numerically, as described e.g.
in Dréze and Richard (1983). Some analytical results and their limitations
are presented in Subsection 3.3, together with a few suggestions for the
analysis of those cases that are not covered by our analytical formulas.
The last section groups some conclusions and topics for further research,
whereas Appendices A, B, and C contain some technical details, and Appen-
dix D tabulates the various assumptions concerning rank properties that
are made in the course of this paper.

2. The SURE Model

2.1. Description

The main results of this paper will pertain to the standard system of
seemingly unrelated regression equations (SURE) as introduced in Zellner
(1962) .

We consider a sequential conditional model describing a vector of n endo-
genous variables y(t) at time t, given an available information set It
which contains weakly exogenous variables and lagged values of both endo-
genous and exogenous variables. Let us assume we can group all wvariables
in Ic that are relevant for the description of y(t) into a vector of fini-
te dimension x(c) € R™. We further assume normality with linear conditio-
nal expectations and a constant covariance matrix over time, leading to
the data density




nu“”%)=ﬁw“”mﬂn.w,u1+T, (2:1)

where we have adopted the notation for density functions found in Appendix
A of Dréze and Richard (1983). In line with most applications using SURE
systems, we let V be any unrestricted symmetric positive definite (PDS)
matrix, but put restrictions on the m * n matrix of coefficients .

In particular, we consider T as a matrix function of a vector of unre-
stricted parameters o € Rl. and will focus upon linear restrictions of the
type

m=vecll =S, (2.2)

where S is a mn x 4 matrix of known constants and of full column rank.
Extensive discussion of the general nature of (2.2), as well as its form
in several special cases can be found in Richard and Steel (1988) . Suffice
it to say here that it allows for restrictions across equations as well as
within equations and it is certainly more general than the very restric-

tive matrix form
T = BAC, (2.3)

where A is a pxq matrix of unrestricted coefficients and B and C are known
matrices of respectively full column and row rank. The matrix form (2.3)
is the only one which is compatible with a natural-conjugate prior struc-
ture, which is therefore of very limited use in SURE models. In fact, in a
natural-conjugate (NC) framework, the prior covariance matrix of M given V
is restricted to be of the Kronecker form V 8 HS. where the superscript
denotes the Moore-Penrose inverse and the relative precision matrix Mo can
be singular. For compatibility with (2.3) we require that the restrictions
expressed by C reflect a redundancy (e.g. through identities) in y(t). so
that instead C"y(t) has a nondegenerate distribution with PDS covariance
matrix L. We then have a proper NC prior structure on A, the unrestricted
coefficients of M, and L, given by

1

D(alr) = eh(alay. T @ NG) (2.4)
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= £3
D(L) = fI,(ElL. ¥g), (2.5)

from which we can deduce

D(T|V) = £ (T|BAC, V 8 BN, 'B') (2.6)

D(V) = £],(VIC'EC, ¥y - a + n), (2.7)

both singular distributions, where V = C'EC is no longer PDS, but positive
semidefinite symmetric (PSDS).

Usually, we shall assume that the model is defined in terms of a nondege-
nerate distribution on y(t) as in (2.1) with V a PDS matrix, possibly
after redefining y(t) so as to take redundancies into account from the
start. This would imply C = In in (2.3) and would clearly put the main
problem of the NC approach into focus, namely the fact that the coeffi-
cients of each equation are restricted in exactly the same way by BNBIB'
in (2.6). This implies that e.g. we can't exclude a variable in one equa-
tion without doing the same for every other equation, clearly a very unde-
sirable feature in practice, except for reduced form time series modelling
as e.g. in the unrestricted vector autoregressions approach of Sims
(1980). Therefore, we shall focus upon the representation of the restric-

tions in (2.2), using a vector of free parameters, instead of a matrix.

If we wish to impose the more general linear restrictions in (2.2), we
need to use e.g. extended natural-conjugate [see Dréze and Richard (1983)]
or recursive extended natural-conjugate prior structures [see Richard and
Steel (1988)] if we possess additional stochastic prior information. If
the latter is not the case, we can naturally use the simple prior struc-

ture

-ivo
D(a,V) « |V| " (2.8)

in combination with (2.2). In this paper we shall analyse the posterior

structure of o and V under a noninformative prior of the type in (2.8).



In order to write the likelihood function of the model as it was defined

here, let us introduce the obvious matrix notation for all T observations:

Con 3
(1)
Y = (y1 cer Yy oees yn) = [Y{v) (2.9)
V(7))
[t
1)
X = (x1 & e xj o x.) = ¥(t) R (2.10)
t"('r).
assumed to be of full column rank, and let us partition IT as
m= (n1 cee ML "n)' (2:11)

and, finally, define y = vec Y. Then we can write the relevant information
contained in the data as

Txn
Lo, Vi ¥,X) « F " (Y|XT, V8 L) (2.12)
with m = Sa, or, alternatively, as
L(a,V; Y.X) « f:n(yl(ln 8 X)Sa, V 8 L), (2.13)

where we remark that (2.12) and (2.13) are only partial likelihoods under
the hypothesis of weak exogeneity of x(t) [for definitions of the exoge-
neity concepts used here we refer to Engle et al. (1983)]. This means they

contain all the information relevant to the parameters of our model in

(2.1) and (2.2), and are thus sufficient for our analysis. The entire
joint data density can in fact only be written as the expressions in
(2.12) and (2.13) under the more demanding hypothesis of strong exogene-
ity, where feedback effects are excluded.

2.2. A Recursive Transformation

From classical econometrics we know that a fully recursive system simpli-

fies estimation considerably. More in particular, in such a triangular



structure with independent error terms full maximum likelihood procedures
boil down to applying OLS equation by equation.

In order to investigate whether such simplifications can be used to our
advantage in a Bayesian framework, let us define the following transforma-
tion of our SURE model in (2.1) and (2.2) into a recursive system.

We introduce the n x n lower triangular matrix A defined as the matrix

that diagonalizes V, a PDS matrix, and partitioned as

1 0 ssewsee O
gy 2 :
A= -X31 -X32 1 2E (2.14)
' 0
-an -Anz ..... 1
leading to
AV A = Du' (2.15)

a diagonal matrix with ui > 0 (i: 1 2 n) on the main diagonal, reflecting
the independent disturbances of the recursive form equations. As |A| = 1,
we can rewrite the partial likelihood function in (2.12) in terms of the

recursive form as
25 . Txn 3 \
Lo, Ay, 0T} Yo X) &« Figo (YA |xp, D, 8 1), (2.16)

where Xi = (*11 s ki 1_1)'. and P = TA' is now a matrix function of «
and {ki}, given through

vec P=p= (A8 I-)Sa. (2:17)

Let us now denote by an index i in parentheses those quantities that refer

to the first i equations, and introduce a recursion2 as follows

L o
= (i-1) (i-1)
iy “ [n. ] ®(4) = [u. ]' (2.18)

1 a



and Sy, ® [S“'l’ e ] (2.19)
() Si0i-1) Sis

as S can always be reduced to a lower block-triangular matrix of full
column rank [see Richard and Steel (1988)], where each block Sii is of
full column rank li. This ‘i gives the number of additional elements in «
due to equation i, here defined as the dimension of oy Finally, introduce
the notation

Y= (Y, y) (2.20)

to recursively split up the data matrix Y into a part referring to the
(i-1) previous equations (Yi-l) and a part referring to the present equa-
tion i [as in (2.9)].

Rewriting (2.16) equation by equation, it is then easily seen to factorize
into

2. el 2
Lo, (A, 07 YV, X) « 1':1 fa 1Y 2 ¢ Xopy, o Ip) (2.21)

where P = (p1 ois 5 pn). and where imposing the restrictions in (2.17) im-
plies that

«=s"wter)e (2.22)

under the condition that SS’n = m, i.e. that a solution for « exists from
(2.2). Using our recursion formulas, we can deduce from (2.22) a solution
for ai, the unrestricted coefficients of equation i, as follows:

+ 1]
o, = Sii(pi + [()\i 8 In)S

. (i-1) ~ Sigi-n¥%i-1)) (2.23)

which implies that, given Ai and p; at each i, we can recursively solve
for the vector «. Of course, P; is still implicitly restricted, which has
to be incorporated in the analysis. One way of expliciting these restric-

tions would be to focus upon an unrestricted li dimensional vector, say



pi, which would, given the unrestricted X and a(i -1)° exactly determine
o or to find a pi such that

o + 5
d.i = Pi + Sii[()i 8 I-)S(i_l) - Si(i’l)]a(i-l)' (2_21‘)

and, at the same time, assuring that this pi enters our analysis in a very
natural way, e.g. by equating Xpi in our likelihood (2.21) to Xipi, where
X; is defined as XS ,, which we assume to be of full column rank 4,.
then need that both

S{iPy = P} (2.25)
and

o
Xp; = XS,;,P;

(2.26)
hold simultaneously. This obviously holds if sii is square and non-singu-
lar, which corresponds to the unrestricted SURE case, and also if S11 =
CiiB with B of full column rank by rewriting XP as (XB)(ACA') correspon-
ding to the matrix form of restrictions in (2.3) .

A more interesting case where (2.25) and (2.26) hold simultaneously makes
full use of the recursive features introduced here. If we denote all X
variables used in the first i equations by X(i). defined in such a way as
to have full column rank, then a sufficient condition for (2.25) and
(2.26) to hold is

3 49 = Xii)e (2.27)

-1,,

x + ,
where P, = X Xi = xi(xixi) i

i i

A proof is given in Appendix A.

This is satisfied if all variables in the previous (i-1) equations also
appear (with unrestricted coefficients) in the i-th equation, as in the
limited information (LI) case of Lubrano and Richard (1981), where it

leads to substantial simplifications in a two-equation instrumental varia-



bles analysis. Let us, by analogy, call this the "recursive limited infor-

mation" (RLI) case, which certainly seems more important, at this stage,

for expository and reference purposes than for serious applications.

In the three cases described above we have from (2.24) a unique solution

for o given a(i-l)' once we know the (1101-1) dimensional vector (p:

Ai)'. which we redefine as

By = L | (2.28)

and reasoning in terms of pi automatically imposes the restrictions in
their general vector form (2.2).

In addition, from (2.26) we notice that we can easily rewrite the partial
likelihood function (2.21) as

n
2 T 2
Lo, (A, i} ¥, X) « 121 O LN SO (2.29)
where we have implicitly defined

W, = (X, ¥, ). (2.30)

3. Posterior Analysis under a Noninformative Prior Structure

3.1. The Problem Stated

The mere fact that the restrictions as expressed in (2.2) are generally
not compatible with a NC analysis already indicates that the posterior
densities will not belong to those families that we can easily examine
analytically. No matter how simple the structure of the stochastic prior
information is, the exact prior restrictions will complicate matters con-
siderably.

Let us explain this more in detail by referring to the family of diffuse
prior densities described in (2.8)



10

-3y
D(a,V) « V| O,

where the choice of ”0 is open to some difference of opinion. Dréze (1976)
suggests that if our prior information is noninformative, it seems reason-
able to impose invariance with respect to transformations between the
reduced and structural forms of the model, and therefore suggests ”O =
m+n+1. Although we only treat the SURE model here, we feel that this argu-
ment might be of general wvalidity. In contrast, Zellner (1971) uses
Jeffreys' invariance principles to motivate choosing ”0 = n+l1, Stewart
(1987) derives ”0 = 2 from a data-relocated likelihood function, conform
to Jeffreys' rule under a certain prior independence assumption, and
Malinvaud (1981) advocates the use of Vg = 2n in order to retain the same
marginal results per equation as in the single equation case. Bauwens
(1984) remarks that the choice of vy will affect the existence of poste-
rior moments for o. A formal theory for obtaining a diffuse "reference
prior" based on expected information is provided in Bernardo (1979). The
resulting reference distributions are invariant both under one-to-one
transformations of the parameter space and under reductions to sufficient
statistics, but, unfortunately, involve integration over the sample space
and thus violate the likelihood principle, as explained in the discussion
following Bernardo (1979). Here we shall limit ourselves to the simple
prior structure in (2.8), which seems somewhat 1less controversial and
certainly easier to use in practice, although it has less convincing in-
variance properties.

Only under asymptotic normality of the posterior distribution, which will
not generally hold in view of (2.2), and provided there are no nuisance
parameters, does Bernando's approach lead to the type of improper prior
densities used here.

Dréze and Richard (1983) and Van Dijk (1985) address the latter issue in
more detail. A sufficient condition for the existence of posterior moments
of order r is now given as

v, >2n+ yu+ 0 -T (3.1)

with u = sup(li; i: 1 2 n}, based on Lemma 6.6 of Dréze and Richard (1983)
applied to diffuse priors as in (2.8) on SURE models. Provided u = m, i.e.
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at least one equation is exactly identified, we get the same degrees of
freedom condition as given in Van Dijk (1985) except for the last term T,
which represents the advantage of SURE over simultaneous equation models

(SEM) in terms of existence of moments.

The main problem we face in the analysis of the posterior structure, how-
ever, can be seen to depend mainly on the presence of general 1linear re-
strictions in vec form as in (2.2). Combining the (partial) likelihood
function in (2.12) with the simple diffuse prior (2.8), we obtain for the
posterior density on V given o a well-known form

D(V|x, Y, X) = r’I‘H(vlv.. ve-n-1) (3.2)
with

Ve (Y - XT)'(Y-XT)
Vy = ”0 = .T;

where we have implicitly assumed that V, is PDS and g > 2n -T, and we get

a posterior structure for «

-3 (vy-n-1)
D(«|Y, X) o |(Y-XM)" (Y-XT)]| : (3.3)

which looks like a matrix-t kernel, but has to be treated conditionally on
the restrictions on M. Now, again, it becomes obvious that under the ma-
trix form (2.3) the properties of « are known analytically and we are
still in a NC framework. Then, indeed, we have a matrix-t kernel in A,
expressing the restrictions on Y by Y = YC, and reasoning in terms of ¥
and XB.

1f, however, we wish to restrict T, in a more useful way by imposing
(2.2), we lose the nice analytical properties of a matrix-t kernel and the
problem then seems to require numerical procedures. In view of the poten-
tially large dimension of «, one could suggest the use of Monte Carlo
procedures, as described in Kloek and Van Dijk (1978) and Hendry (1984).
More in particular, the method of Importance Sampling [see e.g. Hammersley
and Handscomb (1979)] seems appropriate as it has previously led to satis-
factory results in similar models. In this context, we can refer to
Bauwens (1984) and Richard and Steel (1988).
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If we wish to remain in the parameterisation (a,L) of the untransformed
SURE model, we can attempt to isolate the posterior density of the coeffi-
cients of one equation o, given all other l-li elements of o, along the
lines of Dréze and Richard (1983) and Bauwens (1984) .

We start out from the restricted matrix-t form for the posterior density
of « in (3.3), and explicit the restrictions by using (2.18) and (2.19) to

replace "i by an expression in ui. given a(i-l) of the previous equations:

1 = 511% * S11-1)*(-1) (3.0
As V, is a PDS matrix composed of the elements (yi-Xni)'(yJ-an), we can
easily split up the determinant into a part that depends on o given
“(1-1) and a marginal part that depends only on a(i-l)' letting i run from
n to 2 in a recursive way. We now partition ni = ("i-l "1) as in (2.20),
and start at i = n, while we first rewrite V, as a quadratic from in T and

base our factorisation upon the matrix
In-l 0
- ' . *
(ynann-l) (Yn-luxYn-l) 2
which implies the reverse factorisation of the one used in Lemma B.1" of

Dréze and Richard (1983).
Using the PSDS nature of Y HxY. where we have defined

-1,
"x = IT - X(X'X) X',

and having assumed X'X to be nonsingular in (2.10), we can write
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| (y-xm)* (Y-xm) |

[y'my (m-fy x'x (m-fl) |

= lYA-l"xYn-l T ("n-l-ﬁn-l)'xlx ("n-l.ﬁn-l)I
[q; + (nn-n;)' HR (ﬂn'";)]. (3.5)
with
' -11 - ~
f=x)"xy=(F _ 7).

partitioned conformably with [T, and

LA - YA = ' g "y
B = KR ~R'R ("n-l ﬁn-l) [Yn-luxyn-l ' ("n-l ﬁn-l) X5
- =1 = Tyt
("n-l ﬁn-l)] ("n-l ﬁn-l) L
* - ! - 7Y 1 * oy
9 yn"xyn yn"xYn-l (Yn-luxyn-l) Yn-lnx n'

'=A = ' * '
" M * ("n-l ﬁn-l) (Yn-lann-l) Yn-l"xyn'

Next, we substitute (3.4) to examine the posterior density for o« given
corresponding to the last factor in (3.5), and we obtain the ker-

o .
(n-1)
nel of a Student t density

D (anla(n_l).Y.X)

«-1

b (S, HRS ) v.-n-ln-l). (3.6)

n »
«f (unlun ,S

with
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[Tt = - ® _
n (SnanSnn) Snn Hn ("n Sn(n-l)a(n-l))'

-1
- _ ' i * ' * ' *
n q; e ("n Sn(n-l)“(n-l)) [Hn Hn snn (Snansnn) Snan]

("; - Sn(n-l)u(n-l))'

provided |S' H*S | and s® are both nonzero and ¥, > n ¢ L
nn n nn n 0 n
This gives us a very simple form for the conditional posterior density of
an, but the crucial point is that the reciprocal of the integrating con-
-3 (ve -n-4_-1) -3

- - ' » -
stant of (3.6), which is given by (sn) n |Snn Hnsnn‘ , de
pends on “(n-l) as is obvious from the expressions above. However, in the
RLI case the last equation incorporate- all X variables, and Snn is there-
fore square and, as it is, by assumption, of full column rank, it is also
invertible.

» - -

This implies sn ap. which does not depend on a(n-i)' and
|SénH;Snn| o« |H;|. which is shown in Appendix B to be proportional to the
inverse of the first factor in (3.5), a quantity that has to be nonzero
since V, was assumed a PDS matrix. This means that we are left with a
nondegenerate posterior density

D (o, qyl¥.X)

-3 (»,-n-2)
= IYn-l"xYn-l‘("n-l-ﬁn—l) Lt (l.rn—l_ﬁn-l)I -

At this stage, we can reduce the X space to only those variables used. in
the first (n-1) equations, denoted by x(n-l)’ by first partitioning

X = (x(n-l) in). and correspondingly

and
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possibly after rearranging the remaining equations. We then use the matrix

I 0
ln-l

b : =i

XX n-1)X(n-1) *(n-1)] Ia-1

as in Dréze and Richard (1983, p. 593) in order to rewrite the posterior

in terms of I

(n-l‘:
D (a,1)l¥.%)
* - oy - “Hloga-Z)
Q) M1y Mn1))" Xin-1)%(n-1) T(n-1) T(n-1)’| .
(3.7
with
- — oy X

QUn-1) = Ya-1"(n-1)%n-1°

and

' =1 '
Ma-1) = Xln-1)%n-1))  *{n-1)¥n-1°

where we have defined

X N =1 v
K1) * B = Bipety Bln-1¥a1)? -1y

In the RLI framework, equation (n-1) will, in its turn, contain all varia-
bles in x(n-l)' which means we can deduce a Student kernel from (3.7) for
o1 without contaminating the functional form of the posterior for the
remaining (n-2) equations by the integrating constanc. Moving through the
system in this recursive fashion we can, thus, factorize the conditional

matrix-t kernel in (3.3) into a product of conditional t densities for LA
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given a(i-l)' i=1,...n, provided the model has an RLI structure. Unfortu-

nately, in the general case the presence of the integrating constants
prevents such a convenient analytical solution. Only in the special case
of a two-equation SURE system, we retain an analytical expression for the
marginal posterior density of e.g. o, which can under certain conditions
be written as a 2-1 poly-t density [see Dréze and Morales (1976)].

Dréze and Richard (1983) propose to use a Normal approximation to the
posterior density for « in (3.3) along the lines of Morales (1971) and
then draw values for o« conditional on the values obtained from the Normal
approximation for the rest of «, using Student t densities as in (3.6).
This way of conducting the Monte Carlo drawings is labeled the "poly-t
drawn conditions" (PTDC) approach in Bauwens (1984), who proposes several
alternative importance functions as well. It remains, however, unclear
which importance function should be chosen in any particular application
and how closely the one opted for will approximate the actual posterior
structure, whereas we know that if the far tails of the posterior density
are not dominated by the importance function our results can be very de-
ceptive. Including stochastic prior information as well, Richard and Steel
(1988) find that the posterior density is hard to capture by such condi-
tional Student t or poly-t importance functions if we reason in terms of
«. Therefore, the next subsection will focus on the possibility of obtain-
ing analytical results using the recursive reparameterisation introduced
in subsection 2.2, as this seems to allow for a slightly less cumbersome
presentation than the one given in the present subsection and is more in

line with the recursive treatment of the model.

In this subsection we shall limit ourselves to the three particular cases
(unrestricted, matrix restricted, and RLI models) discussed in subsection
2.2 under which the partial likelihood function takes the very simple form
(2.29), in an effort to explore the boundaries of the analytical domain
when treating SURE models under noninformative stochastic prior informa-
tion. This very simple case will then hopefully provide us with some sug-

gestions for the analysis of more complicated models, which will be the
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object of future research. The use of the recursive parameterisation is
not entirely crucial, but we feel it enhances clarity of the exposition
and it somewhat facilitates the analysis of exogeneity along the lines of
Engle et al. (1983).

In all three particular cases examined here, the condition P: X(i) = X(i)
holds and the partial likelihood function takes the simple form (2.29) in
terms of unrestricted parameter vectors Bi. Therefore, we shall perform
the posterior analysis in terms of this recursive parameterisation, and
later use (2.24) in order to examine the properties of a. As we do not
wish to express informative prior notions about « in the context of the
present paper, we are not required to transform informative prior densi-
ties on « into their counterparts for {pi}, which greatly simplifies the
procedure.

Let us first rewrite the diffuse prior (2.8) in terms of the parameters of
the recursive model. From (2.14) and (2.15) we easily obtain

-1, -1 . -
vl = [a" D a7 = Ip | = ). (3.8)

so that the relevant prior density becomes

n -1y
D((B,.63}) « irrl(uf) 93, (3.9)

where J is the Jacobian of the parameter transformation from («,V) to

({8,051 or (B}, X

scribed in (2.24), this Jacobian will amount to

> ui}). As a result of the recursive structure de-

n-1
JE i
i=1

u2)n-i

i (3.10)

(for a proof, see Appendix C), so that (3.9) can be written as

n -3 (v,-2(n-1))
DB o2D) « T (65) (3.11)
i=1
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Combining this with the likelihood function (2.29) gives for each equation
i the following simple posterior structure

2 20 2

D(wilB;. Y. X) = fi,(uilui.. vy - 2(n-i+1)) (3.12)
with

W=y, - WB) (v, - WRY). (3.13)
and

A+i- 2 W o.-1

D(B, |Y. X) = £, (B; 1By, (yiMiyy) "WiW,. ve-i -2n+i-1)  (3.14)
with

3 - ' -1 0

By = (WijW,) "Wy, (3.15)

W ' =1 '

"1 =1 - Hi(Hiwi) Hi. (3.16)

where Hi is assumed to have full column rank (i.e. we add the assumption
that Y, _, is of full column rank and has no columns that are linear combi-
nations of those of xi). Further, we assume that there exists no linear
dependence between vy and the columns in Hi. or that (xi Yi) has full
column rank, which implies yiH:yi > 0, and we require v, >2n + pn = T.
Remark that now, due to the fact that we can reason in terms of ﬁi. given
our specific condition (2.27), the integrating constants from (3.14) do
not involve any parameters. The joint posterior density for all vectors ﬂi
(i: 1 » n) will thus just be given by the product of Student t densities
as in
pm
(3.14). Furthermore, the Jacobian of the transformation from ﬂi = xi " to

o
[xi] is unity in view of (2.2l). The density (3.14) can therefore simply
i

be interpreted as the posterior density of (ai, Xi) given a(i-l)' provided
the necessary transformations in (2.24) are carried out. Remark that we
can always sequentially partition the entire posterior density for a and A
into

X),

n
Dla, AlY, X) = W Dlay, Aoy Yo
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as can be seen directly by considering the posterior structure in (3.2)
and (3.3) and by virtue of the recursive decomposition properties of In-
verted-Wishart densities, as documented e.g. in Dréze and Richard (1983).

What is particular about the special cases treated here, however, is that
the actual form of D(ai, xila(i_l). Y, X) is known analytically to be

Student t for each equation i. This is certainly not the case if we reason
in terms of (pi. Xi) since Py is implicitly restricted, leading to a con-
ditional Student t which has no known analytical properties. This 1is ex-
actly the same problem as described in the previous subsection, only now

expressed in terms of the recursive parameterisation.

If we are prepared to conduct a Monte Carlo analysis, we could ignore the
problems that occur in the general case in order to construct an impor-
tance function as was examined in Richard and Steel (1988) in the context
of informative stochastic prior notions. One possibility would be to draw
;ipi' Ai) from simple Student t densities like (3.14) and use
(2.23) to construct drawings for (ui. Xi) keeping a(i-l) fixed at the

values for (S

value obtained by drawing from the coefficients for previous equations.
This entails that we require n drawings from Student t densities in a
recursive ordering so as to obtain one full drawing for « and A. Using
this recursive Monte Carlo procedure we can evaluate any function of
(x, A) that is of interest to us, e.g. moments of o or A, but also more
complicated functions like moments of certain elements in A_l for exami-
ning weak exogeneity in conditional SURE models as in Steel (1987), or
moments of other nonlinear transformations, fractiles etc.

Of course, the outcome of such a Monte Carlo procedure would generally, at
least to some extent, depend upon the ordering of the equations that we
happen to choose, and its merits in various applications can only be as-
certained in an empirical way.

Let us, therefore, concentrate here on the possibility of obtaining analy-
tical results as these are, by their very nature, much more interesting
theoretically anéd do not suffer from problems of specificity and lack of
numerical accuracy [see Hendry (1984)] that can, in some cases, produce

very misleading inferences. We thus limit ourselves to our three special
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cases and remark that from (3.14) the posterior moments of Bi exist up to

order r for all equations if

”0 > 2n & @ =Ty
which is exactly the same as the sufficient condition (3.1) for the exis-
tence of posterior moments of «. As the dependence on previous equations
comes in solely through p:. the posterior density for Xi is independent of
a(i-l)' since

o
D(B; |¥.X) = DO |Y.X).D(p; 2. Y.X) = DA Y. X) Doy [Xgha s gy YoX),
where the marginal posterior density of Xi is simply of the Student form:

i-1 < -0 ol o r
DO IY.X) = £ O 1A (viMiy,) Y] MY ovesdy-2neicl), (3.17)

o
- P
and we define ﬁi = -1 , while M: is defined analogously to H: in (3.16)
xi

X x
and is thus given by “1 = F = Pi'
Using this independence property, we can evaluate the posterior mean of «
in a recursive way, following (2.24),

E(e |¥.X) = B} + S;,00\ 8 1)S(; 4,
- 31(1-1)15(“(1-1)“"”' viz 1.9 n. (3.18)

Remark that it is easily verified from (3.6) that the analysis in terms
of the original parameterisation produces exactly the same results, pro-
vided, of course, the RLI structure is imposed there as well. Appendix B
provides some further details. At the cost of somewhat more cumbersome
calculations, we can deduce the following recursive analytical expression

for the posterior variance of ai(i: 1-n)
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1 I
var (e |[Y.X) = vk, -2n+i-3 yMgy (XX = e

i=1
x;[k : 1(Y;_1n’;¥1,1)“‘(yky1 - XE(m [Y.X)y} - v, E(mp|Y. X)X

& XE("k"UY'X)X')]x;'} = s11(51(1-1) - (;‘i o Il)s(i—l))
Var(a(i_1)|Y,X)(Si(i_1) - (A 8IS, 4))'S;;, (3.19)
where, with Sk = (Sk(k-l): Skk)' we can use

E(nle,X) = ska(a(k)|y.x)

and

E(nkni|Y.X) = skz(a(k)ail)lv,x)si,

and where superscript kL refers to the corresponding element of the in-
verse. A considerably simpler formula can be found for the covariance

between ui and uj, i > j, namely

' — * ‘t ) '
Cov(ai.ajlY.X) = sii[(x1 8 I)S(;.4) 51(1-1)] Covia; 4y ajlv,x).

(3.20)

With the help of (3.19) and (3.20) we can construct the posterior covar-

iance structure of « in a fully analytical way.

If our interest centres upon ki or certain transformations of A, we can
use the posterior in (3.17). A particularly important quantity for evalua-
ting weak exogeneity, for example, is the matrix A-l. Denoting its ele-
ments by Xij and realizing that /\-1 will also be of lower triangular form
with unitary elements on the diagonal we can easily calculate the (i,j)th
element of AA-l for i > j, which, of course, has to be equal to zero. This

leads to the following recursive expression for Aij 1> 3)E

i-1

> & mj
N 51 Ximk ' (3.21)
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which only involves products of elements belonging to different equations,

and those are independent from (3.14). In particular, we obtain

: i-1 . :
My, = £ A EQ™M|v.X), (3.22)
m=1

which can be evaluated recursively, bearing in mind that xjj = 1 and X-j =
0 wm < j , and where ii- is the m-th element of ii' The same goes for the
variance of Xij; in particular, if we denote by (3-1 xi the vector Xi
without its first (j-1) elements (i > j), and by xin-i*l) the free ele-
ments on the j-th column of A-l without the last (n-i+l) elements, or,

equivalently, obtained by just taking the (i-j-1) first elements of

NN

33 ) (3.23)

and
then we can rewrite (3.21) as

ij _ s+ I
LI TR [x.j ] (3.24)

(n-i+1)

for i > j. If we now realize that xii-i*l) only refers to the equations
previous to equation i, we can use the independence of Ai with respect to
these previous equations in deriving the following recursive relationship
for the covariance between 2 and kit (1> 3, i>4)

covrH, A |y.x) -
. ! i
tr °°V‘(j)*1'(1)*1|Y-x)°°v(*(n-1.1)-*(n-io1)‘y-x’

" . -J‘ v 1
[1: EQ g aq) 92010V 5 1 A, (l_l)xilv.x)[g(x,, Iy x)]
(n-i+1)"'""

o A -
+ A} Cov(x x(n_i’l)lv.X)(t)xi. (3.25)

-J
(3)°i (n-i+1)"’
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which can be evaluated by use of (3.22) and (3.23), and from which we find
the variance of Alj by taking j = 4. The covariance of two elements from

different rows of /\-l simplifies somewhat to

covni, Ay x) - (j)iiuv(xi'{_h“. Aty x) (3.26)

for i > k, which allows a recursive solution knowing (3.25).

In addition, we should be able to derive analytical expressions for higher
order moments of « or A, although we have not yet done so at the present
stage. From (3.14) we know that such moments exist at least up to the
order v, - 2n - M.

It should again be stressed that all analytical results here formally only
apply to the very restrictive cases treated here, i.e. unrestricted, ma-
trix restricted or RLI models, within the domain of SURE models under
diffuse stochastic prior information. They could very well provide useful
first approximations in more general SURE models, that can be obtained at
a very low computational cost3. but such matters remain to be investigated
in an empirical fashion. Of course, the analysis also suggests a rather
natural way of performing the conditional Monte Carlo drawings, using the
recursive transformation of the model.

Finally, we could remark that a possible case of some practical meaning
covered by our analytical analysis here is the two-equation LI model found
in Lubrano and Richard (1981), which can be of some use in an instrumental
variables analysis of weak exogeneity, conditionally upon the coefficient
of the variable tested for exogeneity in the structural equation [see also
Steel (1987)]. In addition, this case can not be treated by the software
available in the Bayesian regression program (BRP) as described in Bauwens
et al. (1981), since this package relies on the 2-1 poly-t form mentioned
in the previous subsection. Whenever both equations have regressors in
common and we have diffuse prior stochastic information, one of the condi-
tions given in Dréze and Morales (1976) for obtaining a 2-1 poly-t density
is violated, and BRP cannot give us marginal posterior results. Using the
methods described here, however, these results are easily obtained.
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4. Concluding Remarks

We feel the present analysis may contribute to a somewhat better under-
standing of the scope of analytical Bayesian results. To the author, at
least, the fact that in SURE models of the RLI form analytical inference
is possible was not at all obvious from the start, the other two (NC)
special cases being, of course, well known. Although the impact of the
present results may be more at a theoretical level than at an empirical
one, we feel that it might increase our grasp on more complicated models,
where our simple analytical analysis formally does not apply.

In particular, we think of help in the choice of importance functions for
Monte Carlo integration, but also of simple first approximations, possibly
made less crude by iterating on the order of the equations, as we know
that the actual results should be invariant to changing the order of the
equations. Such methods could be considered for the analysis of general
SURE models under diffuse prior densities as examined here, but we could
also think of extensions to SURE models under stochastic prior information
on @ or V, or to simultaneous equation models (SEM), as used in Dréze and
Richard (1983). As the cases that allow a formal analytical treatment do
not seem to cover many models used in empirical work, such extensions seem

an important topic for future research.
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Appendix A: Proof of sufficiency of (2.27) for (2.25) and (2.26).

If we want a solution of (2.26) in terms of pz to exist, a necessary and

sufficient condition is that
P* x p, =Xp (A.1)
i i i

whereas we know from the recursive structure in (2.17)-(2.19) that Py will

only depend on a(i). from which we can rewrite
Xp; = X(i) P (A.2)

implicitly defining 61 as the vector of nonzero elements in pi. correspon-
ding to the explanatory variables used in the first 1 equations. Obvious-
ly, a sufficientu condition for (A.1) to hold is then

x

P, X = X . 2.2

1 %) = ¥ L
Under (2.27) the existence of a solution to (2.26) is thus established,
while we know it will be unique due to the full column rank of X1 and

given by

pi = X X(i) pi (A.3)
From the definitions of Xi and X(i) we obtain

X X S =X §

1 11 = X(1) (5.8

ii’
where §ii groups the nonzero rows of Sii It is well known [see e.g.
Magnus and Neudecker (1988) p. 33] that X and P have the same rank l
and, under (2.27), we obtain

(X)) = r(p: X(i)) < r(P:) =1,

whereas, from (A.4),



26

r(x,) = li < r(x(i)).
so that

e(X,.,) = r(xi) = ‘i' (A.5)

(1)

As both Xi and X(i) were assumed to be of full column rank, the latter
implies that §11 is square and nonsingular and we get from (A.3) and (A.4)

o -1 ~
Py * 5 Py (A.6)

leading directly to the expression in (2.25), which completes the proof.

Appendix B: Some technicalities of the original parameterisation.

A first result that will be shown here is the proportionality of |H;|,
defined in the main text following (3.5), to the inverse of the first
factor in (3.5), corresponding to the posterior density for a(n-l)' the
unrestricted coefficients in the first (n-1) equations.

Using the definition of H;, we see clearly that

|u2| = x| 1, - (m .} LY, MY

n-1"'n-1 x'n-1 "

(m_,-f ) xex (m

=1
f 1)] (“’n-l.ﬁ

n-1"'n- 1)'x'x|, (?-1)

n-
which implies that, given the data, |H;| is proportional to the second
determinant in (B.1), which can be rewritten via a theorem in Zellner
(1971, p.231) as

i)

L4 - - 'y -
IHnI = IIn-l (nn-l ﬁn-l) L ("n-l n-1

=1
. o110, (B.2)

[Yn-lM x - n-1"'n-

x'n-1 Rog) X% (W

n-1
where the expression in square brackets, say E, is, of course, nonsingular
as V, in (3.2) is PDS, which is required for a proper posterior density

on «.
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1

Replacing In_1 by EE = in (B.2), it is then easily seen that

-1 -1
» Ll
el w lyy_ My HET] « [T, (B.3)
which is the result we set out to prove.
Remark that (B.3) only holds if Y;\.llen_1 is taken to be nonsingular as
well, a restriction that is implicitly imposed in view of the full column
rank of Wn [see the discussion following (3.16)] and the RLI assumption,
the latter of which implies that Snn is invertible and thus that
M =1-XS_(S' X'XS_)"ls' x' =M. (B.4)
n nn'“nn nn nn x
A second result is aimed at a quick verification of the equivalence of the
analysis in terms of the original and the recursive parameterisations. We
shall limit ourselves to comparing the posterior mean for o« as implied by
(3.6) adding an RLI assumption, and as stated in (3.18), where the same
assumption was already made.

From (3.6) we obtain under an RLI structure:

E(anla(n_l),Y,x)

-1
* S (M - Sn-1)%(n-1)] (8.5)
with
m o= n e R ) (v MY )y M (B.6)
n n n-1 'n-1 n-1 x n-1 n-1 x'n'

which can be rewritten as

need RS M8

n n-1"n n-1"n

in view of (3.15) and (B.4). Using the fact that, from (3.15),
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x'x )"t xy [-x“]
n n) n 1

iy
=S f [ 1n]'

we see clearly that (B.5) becomes

58

E (anla(n_l).Y.X)

~at -1 \
= By * Sop [0 S0 ) Spno1)] #(n) &7

from which (3.18) follows by taking expectations with respect to a(n-l)’
Similarly, more complicated expressions, like (3.19), can be checked,
using the theory of partitioned matrices and the binomial inverse theorem
of Woodbury as documented e.g. in Press (1972, p. 23).

Appendix C: Derivation of the Jacobian in (3, 50) »

Taking into account the symmetry of V, we wish to consider the parameter

o 2 i
transformation of ((ai. vij}) to ({pi, )i. ui}) for i > j, say. If we

split this up into two steps, namely
({oe - Vs 3Y (e, Xis u?})
¥ S5 i s S |
with Jacobian Jl' and
(g Ape 0500 > (0%, ApL o3D)
with Jacobian JZ' it is clear that we wish to find J = JI'JZ'

The matrix of partial derivations corresponding to the second part of the

transformation will take the simple form:
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(C.1)

31 n(n+1)

L

from (2.24), where the shaded areas contain nonzero elements that do not
influence J2' which is seen to be equal to one:

I, = Jic.1)] = 1. (c.2)

In order to obtain Jl' we consider the corresponding matrix of partial

derivatives

vy . (c.3)
21
22
31
32

nn |
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where D can be obtained by exploring the relationship given in (2.1%),

from which we derive

2 ' =

vig =Y * 22 vy T M Ve, a-nh (o5
and

vig = Mo, Yaen, a0t Ve G §6.2)
if we partition the upper left i x j block of V as

Y-, G- YE-).g

i (C.6)
"Ly 11 Vij

From (C.4) and (C.5) the partial derivatives are found to be

' T & vy
=1; > =0 vk>i
E) o] 9 uk
dv
———%1 =0 WwWk2i1>]
) uk
B Vi (st 2%
R (i-1), (i-1)
v ..
s oo wkdd
Kk

=0 wvk>i.
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This implies that D becomes

2 2 2 2

= 1 21 2 B

v11 1 1
V3.
v22 1
v3(2) V2).(2) 1 ' (.7

v

"33

. | g
nn

a block-lower triangular matrix with nonzero elements in the shaded area,
the determinant of which leads to

n-1
= M (u
i-1

n-1

2. n-1i
m|v il
=i | (1Da(1)

3 - i,

1 (c.8)

using (3.8), and J = J, thus becomes equal to the expression in (3.10).

1
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Appendix D: Rank assumptions made throughout the paper.

object assumption discussed in
(i:19 n) (implication)
S full column rank 2.1
3 Sii (full column rank) 2.1
full column rank 2.1% 3.2
> X(i) (full column rank) 2.2; App. A
v PDS 251
Vi PDS 3.1; 3.2; App. B
(X1 Yi) full column rank 3.3
W, (full column rank) 3.3; App. B
i Xi (full column rank) 2.2; App. A
L 2 (full column rank) 3.3
ialW
yiMy; (> 0) 3.3
Footnotes
1) The term "noninformative" might be considered abuse of language in view
of the numerous problems associated with expressing prior ignorance
[see e.g. Zellner (1971) and Bernardo (1979)]. We could, of course,
replace it by "diffuse" or "vague", or we might choose to use the deno-
mination "reference prior". Subsection 3.1 briefly comments on these
issues.
2) It proves notationally convenient to use these recursions for i: 1 @ n

and define "(0)‘ u(o). S(O)' Sl(O) and YO to be of zero dimension,
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3) It is certainly much easier to compute than the FIML solution, used as
a starting point for a numerical analysis in e.g. Morales (1971) and
Bauwens (1984).

4) This condition is not necessary unless Ei is a scalar different from

zero.
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