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Abstract
In a mixed demand system one treats the príces of some goods as exogenous and
the corresponding quantities as endogenous, while for the other goods the
situation i s reversed. The coefficients of such a system are related to those
of a regular or of an inverse demand system. Estimating a regular demand
system, taking into account the endogenous nature of some of the prices yields
indirectly estimates of the mixed system, in a much more convenient way than
direct estimation would have done in view of the theoretical constraints on
the ccefficienta. The paper proposes a maximum likelihood estimation procedure
which it applies to the market of fresh and preserved vegetables in Belgium
1975 - 1984.
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1. Introduction

In applied demand analysis the quantities demanded are ususlly explained
as a function of prices and total expenditure. Complete systems of such demand
functions describe in this way all (groupa of) commodities in the budget of
the consumer. They reflect the basic assumptions about utility maximizing
behaviour of the consumer by the parametrization of the functions. The
Rotterdam demand system of Theil (1965) may serve as en example of such a
regular system.

Actually, the first law of demand as formulated by Davenant in 1699
explained the price of corn as a function of the available quentity of corn.
Such "inverse" demand functions underly the work of Antonelli (1886). For more
recent theoretical treatment see Katzner (19~0) or Anderson (1980). Theil
(19~6) estimated an inverse demand system under its mode as a regular system.
Salvas-Bronsard et aZ. ( 19~~) estimated such a system directly. A complete
system of inverse demand functions displa,ys properties analogous to those of a
regular demand system. These properties are of considerable use in estimation.
Inverse demand functions appear to be specifically suitable for the
explanation of the price formation of quickly perishable goods, like fiah -
see e.g. Barten and Bettendorf (1989).

Regular and inverse demand systems are both extreme cases with either all
quantities or all prices endogenous. One can think of a situation where of
some commodities the prices are endogenous and the corresponding quantities
exogenous while the reverae holds for the other commodities. Such a mixed
system has been put forward by Samuelson (1965). Bronsard and Salvas-Bronsard
(1980) and Chavas (1984) analyze it extensively from a theoretical point of
view. Bronsard and Salvas-Bronsard also provide estimates of a mixed system
for ~ Canadian consumer categories with Food and Clothing as the price
endogenous goods.

A natural way to estimate a mixed demand system it to first write it in
reduced form and then estimate the equations. This is usually done for regular
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regular and inverse demend systems. One starts from the first-order conditions
for a maximum of the utility function subject to the budget constraint and
solves these for the quantities in the regular case and for the prices in the
inverse case. In the mixed context one would solve for the endogenous prices
and the endogenous quantities. The disturbance terms of such "reduced forms"
can taken to be independent of the right-hand side variables. There is then no
problem of inconsistency of estimation due to "simulteneity".

In the case of the regular and inverse system it is fairly simple to
select s parametrization which reflects the constraints implied by the
structural formulation in a way which is easy to take into account when
estimating the system. This property dces not hold to the same extent for
mixed systems.

Another approach is possible: estimate either a regular or an inverse
demand system taking into account the endogenous nature of some of the
right-hand side variables. One can then fully benefit from the simple
parametrization properties of thoae systems without being inconsistent in
estimation. For estimation one can use an instrumental variables approach with
the exogenous quantities and prices as instruments. Theil (19~6) estimated an
inverse demand system for meat (U.S.A.) in ita mode as a regular system with
the quantities as instruments. Meyermans (s.a.) used such an approach for the
estimation of a mixed system for meat and vegetables (Belgium) with the
exogenous quantities and prices as the instruments. It is not so simple to
impose the negativity condition of demand in this way.

One can also apply a maximum likelihood estimation procedure with a
properly specified .7acobian transformation determinant. This 3s the approach
taken here. It builds upon the maximum likelihood approach to estimate demand
systems put forward in Barten (1969) and Barten and Geyskens (1975). The

parametrization used is one of a regular Rotterdam system.

The approach is applied to the demand for vegetables. Under the

assumption of weak separability of preferences the group of vegetables can be
isolated from the rest of the consumer choice problem. Total real expenditure
on vegetables is taken to be exogenously determined at a higher sllocation
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level. Our data is quarterly. For the type of vegetables considered, a quarter
is too short to let supply adjust. Price will adjust to let demand equel
supply. For canned or otherwise preserved vegetables the prices are taken to
be set by the producer end the quentity will adjust.

In the next section the theory of mixed demand systems is briefly
reviewed. The issue of the parametrization of such systems is taken up in
Section 3. It prepares the way for the formulation of the likelihood function.
The application to the market for vegetables in Belgium, first quarter 1975 -
last quarter i984, follows in section 5. The paper ends with some concluding
remarks.
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2. Some theory of mixed demand functions

Let q E R~ be the vector of quantities of n commodities. We assume that a
preference order is defined on all admissible q-vectors that can be
represented by a well-behaved real-valued utility function.

(2.1) u(q)

i.e. a strongly quasi-concave, monotone increasing function, at least twice
differentiable with the second-order derivatives being continuous functions of

9-

The n commodities have positive prices per unit: p. The product of prices
and quentities adds up to the given budget m:

(2.2) P'q - m

Defining ~-(l~m)p one can write (2.2) also as

(2.3) rt'9 - 1

with n being the positive vector of "normalized" prices.

The consumer's optimum is the vector q~ that maximizes u(q) among all q
satisfying (2.2) and (2.3). Under the assumptions made the q~ will satisfy
(2.3) and the Second Law of Gossen:

(2.4) ~u(9M) - ~rtc~9

On the left-hand side one has the vector of first-order derivatives of (2.1) -
the marginal utilities - evaluated for q- q~. The scalar ~ is the Lagrange
multiplier associated with constraint (2.3).

Solution of (2.3) and (2.4) with respect to qM and ~ for given rt yields
the Marshallian demand functions
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(2.5) q' - f(n)

Such a system of regular demand functions indicates the quantities consumed
for given prices n. It satisfies (2.3). Hence rt'f(n) - 1 and the Cournot
aggregation condition

(2.6) rt~ ~R ' -f(n)'

Inserting f(rt) for q in (2.1) yields the indirect utility function

(2.7) ~(rt) - u(fírt)) - mQ (u(q)~n'9~1)

This is a monotone decreasing function in n. One can maximize v(R) with
respect to n subject to n'9 - 1. Here q is taken to be fixed. One has

(2.8) ~~(rt") - u9~n

as first-order conditions from which the inverse demand functions

(2.9) n' - g(q)

can be obtained. These express the (normalized) prices one is willing to pay
for a given bundle q.

To show that inverse system (2.9) is indeed the inverse of (2.5) one can
proceed as follows. One has from (2.7), (2.4) and (2.6)

(2.10) ~v - ~ur ~f~ - an'~ - -af(rt)'~rr' ~q ~rt ~n

holding for any rt, so also for R- rt~. In that case also (2.8) applies.
Because of (2.3)

~ - rta~w(rt~) - -a
~rt
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and therefore f(Rw) - q, which is the inverse of (2.9). Otherwise said, Rw are
the prices which induce a consumer to purchase the vector q out of free
choice.

In view of this relationship between the regular and inverse demand
systems they both can be derived from the solution of (2.3) and (2.4), in the
regular case with respect to the quantities given prices and in the inverse
case with respect to the prices given quantities.

While it may be true that for some commodities the quantities adjust to
the prices, it is very much possible that for other commodities the prices
adjust to the supplied quantities. Think of quickly perishable goods like
fresh fiah or freah vegetables. By definition these cannot be stored without
losing some of their quality. Partition the set of commodities into two
subsets such that

9 - (9i.42)' R - (Ri.R2)~

with ql being endogenous and q2 exogenous while rt2 is endogenous and rtl
exogenous. (The exogenous variables are barred.) The counterpart of (2.3) is
now

(2.11) rtl'ql . RZq2 - 1

To derive a mixed demand system explaining the endogenous prices and
quantities in terms of the exogenous quantities and prices Samuelson (1965)
formulates the utility potential

(2.12) z(91.q2.rtl.rt2) - u(91.92) - v(nl.rt2)

with u(.) being the direct utility function and v(.) the indirect one.
Clearly, z is a monotone increasing function of its arguments. For prices and
quentities satisfying (2.11) its maximum is clearly zero. At this maximum

(2.13)
~z(qi.92.rt1.n2) ~u(9i,q2) -

`~ql `~ql
vnl
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(2.14)
~Z(9i.92.n1,n2) - - ~~(rt1.rt2)

- v9~rt2 ~rt2 2

These conditions can be solved for qi and rtZ yielding the system of mixed
demand equations

(2.15) 4i - hl(rt1.92)

(2.16) rt2 - h2(rt1.92)

Obviously, the case of all prices exogenous is a special case of (2.12)
with (2.5) as the result, while the case of all quantities exogenous is the
opposite extreme with inverse system (2.9) as the outcome. However, the
relation between a mixed demand system and the regular and inverse system gces
deeper.

Let f1(.) and f2(.) be the obvious partitions of f(.) and let g1(.) and
g2(.) be the corresponding subvectors of g(.). Then one can state

(2.17) 9i - hl(n1.92) - fl(rt1.rtz)

(2.18) q2 - f2(n1.rt2)

(2.19) nl - gl(91.92)

(2.20) rt2 - h2(n1.92) - B2(9i.92)

To see this one may start from

~~(n1,rt2) ~u(9i.92) ~flírtl.rt2) ~u(9i.92) ~f2írtl.rt2)
.

TR
r- - j~i~ ~T ~92 ~rt2

. ~f1 ~u ~f2
- vrt1'

2 } ~q2 2
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~u ~f2- ~qT - vR2~ rt - vf2 - -vq2
2 2

where use is made of (2.13), ( 2.6) and ( 2.14). Otherwise said

r~u(qi.92)
Ill~q~-

~f
-vnZ' ~R? - v(f2(nl.rt2) - 92)

2

Here ~f2~~R2 is a square and generally speaking nonsingular matrix. Thus
(2.18) holds if and only if

~u(q' 9 )1~ 2 Mf
~q2 - vn2

Combining this condition with (2.13) one has the Second Law of Gossen.
Together with (2.15) and (2.16) this implies (2.1~) through (2.20).

The conclusion of these various equivalences is that the Second Law of
Gossen can serve as an unifying starting point for the derivation of regular,
inverse and mixed demand systems. One simply solves this condition (and n'q -
1) for the relevant endogenous variables (end a) in terms of the exogenous
variables. Depending on the particular choice of what is endogenous and what
exogenous one obtains the desired system. Because of this common basis one can
easily switch from one system to the other by simply relabeling an exogenous
price as endogenous and the corresponding endogenous quantity as exogenous or
vice versa. This switching property is employed in the next section.
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3. Functional Specification

The previous section applies to eny type of parametrization. Here we will
use one in particular: the Rotterdam specification first proposed by Theil
(1965) and used in many applications. A regular demand equation of the
Rotterdam variety for time series is written here as

(3.1) witelnqit - bi~kwktelnqkt ' ~~si~elnp~t 4 uit

where e is the operator of taking first backward differences

qit is the quantity of good i
p~t is the price of good j
uit is a disturbance term

wit - (wit ~ wi,t-1)~2 with

wit - pitqit,mt, the budget share of good i

mt - ~kpktqkt' total expenditure
bi, si~ are constants
i, j, k- 1, .. , n
t is time subscript

We will not go into the details of this apecification here but simply
note that for the marginal propensities to consume b end the Slutsky
substitution coefficients si~ the following properties hold:

(3.z) ~ibi - 1. ~isi~ - o (adding-uP)

(3-3) ~~si~ ' 0 (homogeneity)

(3.4) si~ - s~i (symmetry)

(3.5) FiFfxisi~x~ ~ o (negativity)

if at least one xi is different from the other x's.

To simplify notation we will use
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(3.6) elnyit - witnlnqit

We will define

(3.7) elnQt - ~kwktelnqkt - ~kelnykt

which may be seen as the relative change in real total expenditure, or in the
average quantity or in the quantity index. In what follows e1nQt is taken to
be exogenously determined. In view oF homogeneity condition (3.3) one may

replace the p~t in (3.1) bY nft - pjt,mt'

With all these notational conventions we rewrite (3.1) as

(3.8) elnyt - bielnQt . F~si~eln„~t ` "it

In obvious matrix notation we write the full syatem as

(3.9) elnyt - belnQt ~ SelnRt } ut

with the following properties following from (3.2) -(3.5):

(3.10) i'b - 1 i'S - 0' ( adding-up)

(3.11) Si - 0 (homogeneity)

(3.12) S - S' (sYmmetrY)

(3.13) x'Sx ~ 0, yx ~ ou, a real scalar (negativity)

Here i is a vector all elements equal to one. One may add to these properties

the one that the rank of the n x n matrix S is n-1 in a way that all principal

minors of (n-1) by (n-1) are nonzero.

It follows from ( 3.10) and from (3.~) that

(3.14) i'ut - 0
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The covariance matrix Q - E(utut) is then a singular matrix satisfying

(3.15) ~'Q - o,

The Rotterdam specification i s attractive because it allows one to
express the constraints on the system in terms of the estimated parameters.

As explained in the preceding section a mixed demand system can be

obtained from a regular demand system by treating some of the prices as
endogenous and the corresponding quantities as exogneous. Let this be the case

for the first nl ( n commodities. For the n-nl remaining goods the quantities
are endogenous and the prices exogenous. (This order is the reverse of that in

the preceding section in the interest of convenient exposition). Dropping the
time subscript and using the subscript 1 or 2 to indicate the category (3.9)
is rewritten as

(3.16) le1ny2J - Ib2 J A1nQ '
IS21 S22J [a1nrt2J

} Lu2J

Here Glnnl and ~lny2 are endogenous, ~lnn2, plnyl and elnQ are exogenous.

Since S11 i s nonsingular one has

(3.17) plnrtl --S11b1elnQ t Slielnyl - S11S12~1nn2 - Sllul

This result can be used to eliminate ~ln~l on the right-hand side of the
relation for plny2 in (3.16):

(3.18) Glny2 - (b2 - S21Sllb1)n1nQ 4 S21S1101ny1
-1 -1

` (S22 - S21S11S12)A1nR2 t u2 -S21Sllu1

Subsystems (3.17) and (3.18) together form the mixed demand system. It can be
written as
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(3.19)

-1 -1
Sil -S11S12 G1nY1

-1 -1
S21S11 S22-S21S11S12 elnrt2

where the random components are defined by

(3.zo)

elnrtl -Sllbl- -1 elnQ
elny2 - b2-S21Sllb1

-1vl -511 0 ul
-1

~2 - -S21S11 1 u2

An alternative version is

(3.21) Le1ny2 J - Ic2 J e1nQ t
[R21 R22J [e1nrt2 J

with the following properties on the parameters

(3.22) i'c2 - 1.

(3.23 R12~ - ~.

(3.24) R11 - Ril,

x'Rilx ( 0
(3.25)

x'R22x ~ 0

i'R22 - 0' (adding-up)

(homogeneity)

R12 - -R21 (symmetrY)

(negativity)

- see also Hronsard and Salvas-Bronsard (1980). Clearly, the constraints are
less easy to impose on the direct estimation of mixed demand system (3.21)
than on that of regular demand system (3.9).
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Before turning to the issue of estimation first some attention should be
paid to the random components. As is readily verified from (3.20), the
counterpart (3.14) for the mixed demand system is

(3.26) i'v2 - 0 or j'v - 0

with j' -(0', i'). The adding-up condition applies only to the second, the
quantity endogenous part of the mixed system. Let F be E(vtvt'). Then (3.26)
means

(3.27) ~'L - o~

implying singularity of F.

The relation between v and u is given by (3.20). Let

-1
(3.28) c - -sii

-1
-S21S11

0
I

Note j'C - i'. The reverse of (3.20) is

(3.29) u - C-1~

with

(3.30) c-1 -
-s21 1

Clearly,

(3.31) E- ~ Q c'. Q- 0-1 ~ ~'-1

express the relations between the two covariance matrices F and Q.
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Mixed demand systems (3.19) or (3.21) give the basic decision rules with
the exogenous variables on the right-hand aide. The disturbance vl and v2 are
then distributed independently of p1nQ, ~lnyl and elnR2, the exogenous
variables in question. It is clear that both ul and u2 involve vl, the random
component of elnnl. This set of variables appeara on the right-hand side of
(3.16). Estimating that mode of the aystem without taking into account the
endogenous nature of plnnl reaults in inconsistencies. Still (3.16) is more
attractive to estimate than (3.21) because of the simple nature of the
constraints. One can estimate (3.16) using all relevant constraints by some
instrumental variables method as was done by Meyermans (s.a.). An alternative
is to use a Maximum Likelihood procedure to estimate (3.16) with properly
accounting for the endogenous nature of elnR2. That is the topic of the next
section.
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4. Maximizing the Likelihood

Mixed demand system (3.21) is the natural starting point for the
formulation of the likelihood function. It is assumed that the vector of
disturbance terms, vt, is normally distributed with the zero vector as mean
and E as covariance matrix. We also assume that E(vsvt) - 0 for s~e t and
that, in keeping with the exogenous nature of pln Qt, plnylt and plnn2t, the
vt are distributed independently of the explanatory variables in (3.21).

Because of (3.27) the covarience matrix F is singular and the joint
density of vt is not defined. Delete one of the equations for endogenous
quantities, i. e. an equation of the second part of the system. The reduced
disturbance vector ~7t will now have a covariance matrix E of full rank n-1.
Let the deleted equation be the last. The joint density for a sample of T
independent realization of the endogenous variables can then be written as

(4.1) 1nLn - - LT(n-1)ln2rt . TlnlEl4~t"vtE-1~tJ ~2
which is likelihood function when ~ït ís expressed in observations and unknown
parameters. Following Barten (1969), mutatis mutandis, one can express (4.1)
also as

(4.2) -LT(n-1)ln2n - Tln n2 r Tlnlï } n jj1~ }~t~t(ï r n jj~,-l~t]2 2

which is the guasi-likelihood function. It is independent of the identity of
the deleted equation, a.s long as this is one of the second subset. Maximizing
(4.1) with respect to the coefficients of the first n-1 equations results in
the same value as maximizing (4.2) with respect to the coefficients of the
full system. This means that the identity of the deleted equation does not
matter for mixed demand systems in the same sense as it does not matter in the
case of regular (or inverse) systems - see Barten (1969). Adding-up conditions
(3.22). (3.26) and (3.2~) will enable one to reconstruct the required
information for the deleted equation.
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Because no lack of information is involved we will work with (4.1). As
said earlier we will not estimate the coefficients of the mixed demand system
directly, but rather those of the regular system. Likelihood function (4.1)
has then to be expressed in terms of Q and nt, where Q is 4 with the last row
and column deleted and nt is the ut vector without the last element. It
follows from (3.20) that

(4.3) 3t ~ C.nt

C„ is the matrix C, defined by (3.28), with the last row and column deleted.
Consequently,

1.7~~-lOt - n~C;CM-1Q 1c;lcMnt
- nt4 lnt

and

(4.6) 1nIEl - lnl4~ ~ 21nIC~l

We can then rewrite (4.1) as

(4.7) 1nLn -- LT(n-1)1n2R t T1n~Ql t 2T1nIC~~ 4~tnL4 lfftJ ~2
which differs from the likelihood function of a system with all prices
exogenous by the presence of T1nIC„I.

It is useful to look somewhat closer into IC~I. The matrix C„ is a lower
block-triangular matrix. Its determinant i s then given by ~-Sli~. Since S11 is
a negative definite matrix -Sli is a positive definite matrix. One clearly has
1n~C„~ --ln~-S11~. Let S„ be the matrix S of (3.9) with last row and column
deleted. Barten end Geyskens (1975) use the Cholesky decomposition



( 4 . 8 ) s~, - -BHB'

where B i s a lower triangular matrix with ones on the diagonal and H is a(n-
1) x(n-1) diagonal matrix with the Choleaky values hl, .. , hn-1 as diagonal
elements. From (4.8) it follows that

(4.9) sll ' -B1H1Bi

where B1 is the nl x nl leading block of B and H1 is the nl x nl diagonal
matrix of the first nl Cholesky values. It follows from the nature of B1 that
IBlI - 1. Consequently

(4.10) lnl-Slll - 21nIBll t 1nIH1~ - ~illlnhi

We now rewrite (4.7) as

(4.8) 1nLn -- LT(n-1)ln2n { Tlnl4~ - ZT'~illlnhi t~ttlt4 lat1 ~2
One can next follow the same path as outlined in Barten and Geyskens except
that the first- and second-order derivatives of 1nLn with respect to the hi
have to be adjusted. It turns out that these adjustments involve only a minor
change in the computer program package DFafMOD which was originally designed
for regular demend systems.

In most of the earlier experiments the Cholesky values hi were less than
one in absolute value. Their logarithm is then negative. For fixed hi the
likelihood of a mixed demand system will be less than that of a regular demand
system.

One can expect that for the mixed demand system the estimates of the hi,

i- 1, .. , n, will be somewhat higher, i.e. closer to one, than for the

regular system in order to reduce the maximum in the least way. This means

that also the estimates of Slutsky matrix S will tend to be higher for the
mixed case than for the regular case.
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5. The Vegetable Market

Vegetables come to the market fresh or preserved. Storage costs for fresh

vegetables are rather high while it takes some time to grow additional

supplies. One can expect that the price is set to absorb the given supply of

fresh vegetables. The possibility of destroying part of the supply to maintain

a minimum price exists but is rarely used. Imports of fresh vegetables are

relatively unimportant. Canned or otherwise preserved vegetables are easy to

store without losing their quality. The difference between demand end supply

can be bridged by changes in inventories rather than by price adjustments. Of

course, canned and fresh vegetables are mutuel substitutes. The price

formation of fresh vegetables tekes into account the prices set for cenned

ones. The seasonal variations in the supply of fresh vegetablea will be partly

compensated by opposite variations in the demand for canned vegetables. The

market for vegetables appears to be well suited for description by a mixed

demend system.

The models of the preceding sections express individual consumer
rationality. We will assume that they also valid in the aggregate, for the
whole market.

These models slso apply to the full consumer allocation problem. To what
extent can they be used for vegetables only7 Under weak separability of the
preferences in vegetables and various other commodity groups (meat, clothing,
etcetera) the demand for the group of vegetables as a whole cen be described
as a functíon of total available means and the price indexes of the groups.
The demand for vegetables as a group or rather its log-change elnQt acts as
the explanatory variable of the subsystem for a particular market. For this
market only relative prices matter, not the general price index of the group.
If all prices go up by the same factor also m, total expenditure for the group
gces up by that factor and the ni - pi~m remain unchanged. The endogeneity of
some of the relative prices in the subsyatem is not in contradiction with the
exogenous nature of p1nQt. The models presented earlier can be meaningfully
applied to the market for vegetables.
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The data to which the mixed demand system is applied are quarterly data
collected by the Agricultural Economic Institute of the Belgian Ministry of
Agriculture. This Institute observes the purchasing behaviour for foodstuffs

of a shifting penel of about 300 families and publishes quarterly average
prices and quantities. Our data stand for the first quarter of 19~5 and ends

for the last quarter of 1984. The time series cannot be easily extended after
this last observation because the format of the published data changed.

From the available data some 12 types of vegetables were selected:

cauliflower, lettuce, spinach, tomatoes, carrots, Belgian endives, Brussels
sprouts, beans, frozen spinach, canned tomatces, canned peas and carrots and
frozen beans. The first 8 form the category of fresh vegetables, the last 4

are of the preserved kind.

There is in principle no major difficulty in handling a system of 12

types of vegetables. For the purpose of a numerical illustration, however, a

system of lower dimension suffices. The 12 kinda of vegetables have therefore

been aggregated to a set of 8 composed as follows:

1. CFSS (.12):

2. LTSP (.14):

3 . cz~Bx ( .13 ) :

4. ToMA (.z6):

5. BExn (.26):

6. PcBC (.04):

7. SPIF (.02):

8. TOMC (.03):

cauliflower, Brussels sprouts

lettuce, spinach

carrots, beans

tomatoes

Belgian endives

canned peas and carrota, frozen beans

frozen spinach

canned tomatces
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The numbers in between brackets are the shares of expenditure on the type of
vegetables in the total budget for vegetables averaged over the sample period.
Obviously the fresh vegetables dominate the preserved ones.

The data for the fresh vegetables display considerable seasonal
variability. Tomatces e.g. are low in quantity in the first quarter and high
in the third one. Their prices show an opposite pattern. The compensating
price variation is not enough to eliminate seasonal effects from the
expenditure shares, which range from 7 percent of the first quarter of 19~6 to
50 percent in the third quarter of 1980. To allow for the possibility that the
seasonal variability in supply of fresh vegetables is not completely abaorbed
by price changes seasonal dummies have been added to the equations of the
system. As the system is in first differences of the variables also first
differences of the seasonal dummies have been taken. This means that, for
example, the dummy for the first quarter has a one in quarter one and minus
one in quarter two and zero in quarter three end four. Four of such quarter
dummies are fully collinear. The one for the second quarter has therefore been
deleted. The coefficients of the remaining season dummies measure the
difference with respect to the second quarter.

The data cover 40 quarters. Taking first differences leaves one with 39
usable observations. These have been employed to estimate the ccefficients of
a regular demand system with endogenous prices for the fresh vegetables. The
results for the bi and the si~ are given in Table 1.

Adding-up conditions (3.2) are met automatically. The homogeneity and
symmetry conditions are imposed. Negativity condition (3.5) is satisfied

freely. The estimated coefficients characterize equílibrium relationships

between prices and quantities. They do not represent a pure impulse-response
effect. One may observe that TOMA and BF:MD have bi values larger than their

average expenditure shares. Specifically endivea have a strong b value. This

vegetable is commonly considered a luxury. The other (than TOMA and BEND)

vegetables, fresh or not, have all rather low marginal propensities to

consumers. That for SPIF, frozen spinach, is even negative, but not

significantly so.



Table 1. Estimates of b and S with endogenous prices for fresh vegetables, Belgium 1975 - 1984 a

s.i
i. type bi

CFSS LTSP CTBN TOMA BIND PCBC SPIF TOMC

1. CFSS .016 -.412 .216 -.053 .030 .177 .037 -.009 .oi4
.056 .039 .034 . 019 .042 .044 . 011 .006 .007

2. LTSP .060 .216 -.275 .063 .054 -.063 -.006 .018 -.007
.059 .034 .037 .017 .040 .043 .008 .005 .005

3. cTaN .oi3 -.053 .063 -.167 .028 .izi .006 -.006 .009
.029 .019 .017 .013 .023 .025 . 005 .005 .003

4. ToMA .298 .030 .054 .028 -.511 .321 .029 .029 .019
.073 .043 .040 .023 .058 .055 . 011 .006 .007

5. asND .587 .177 -.063 .izi .321 -.591 .036 .002 -.003
.090 .044 .043 .025 .055 .077 .011 .005 .006

6. Pcec .oi7 .037 -.006 .006 .029 .036 -.073 -.023 --~7
.011 .021 . 008 .005 .011 .021 .011 .006 .007

7. sPIF -.001 -.009 .018 -.006 .029 .002 -.023 -.026 .014
.005 .006 . 005 .003 . 006 .005 .006 .007 .005

8. ToMC .009 .014 -.007 .009 .019 -.003 -.007 .oi4 -.040
.009 .007 .DOS .003 .007 .006 .007 .005 .007

a Asymptotic standard errors are given in italics
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The Slutsky coefficients si~ are in absolute value somewhat larger than
one usually finds in a system of this size. Of the 28 independently estimated
ones 19 are twice their asymptotic standard errors, in absolute value, which
is also better than usual given that there are 39 observations. Of the 21
pairs of different goods 7 si~ have the negative sign of Hicksian complemen-
tarity. Of these 2 are significantly negative, namely that for CTBN (carrots
and beans) and CFSS (cauliflower end Brussels sprouts) and for SPIF (frozen
spinach) and PCBC (peas, carrots and beans, preserved). Domination of substi-
tution is plausible, not only because of the mathematical properties of the
matrix S, but also because of the nutritional properties of theae vegetables.

Given the point estimates of Table 1 one can calculate the coefficients
of (3.19) or ( 3.21), the mixed demand system. The results are given in Table
2. Under the assumptions made these ccefficients correspond with impulse-
response effects. They are "reduced form" ccefficients. No asymptotic standard
errors have been calculated. The results satisfy properties (3.22) through
(3.25).

Note that in Table 2 the first five equations have the log-change in
(normalized) prices as dependent variables, while the last three the log-
change in quantities (multiplied by the wi). After elnQ, the first five
exogenous variables are the log-change in quantities (multiplied by the wi)
and the last three the log-change in prices. Qnly the coefficients of cl and
R12 are elasticities. All the others would have to be divided and~or
multiplied by the relevant expenditure shares to turn them into elasticities.

One may note that the effect of the exogenous quantities as represented
by R11 and R21 is uniformly negative while that of elnQt is positive, even
strongly positive for the five price formation equations. Part of p1nQ is due
to elnyl - see (3.7). One can separate that part out from n1nQ and attribute
it to ~lnyl. Let

n1nQt - W1tplnQlt ~ W2telnQ2t

with



Table 2. Estimates of c and R with endogenous prices for fresh vegetables, Belgium i975 - i984

r..ii. type ci
CFSS LTSP CTBN TOMA BEND PCBC SPIF TOMC

i. cFSS 5.2i4 -8.297 -7.335 -4.759 -4.870 -5-3i8 ~ .6z7 .i85 .i87

2. LTSP 5-35i -7-335 -i0.63 -6.i7o -5.ioo -5-o9z ~ -579 -z5i -169

3. cTBN 5.964 -4.759 -6.i7o -i2.z5 -5-568 -6.z98 ~ .602 .177 .22i

4. ToMp 5.769 -4.870 -5-i~ -5-568 -6.654 -5.667 ~ -583 .22i .i96

5. BEND 6.338 -5.3i8 -5.o9z -6.z98 -5.667 -7.109 ~ .6z7 .i88 .i85

---6-
-PCac---

----612---- ---.627-------579--
-----602-- -----583-- -----6?7-- ~---.olo-- ----.003-- -----ói3--

7. SPIF .i96 -.i85 -.25i -.i77 -.22i -.i88 I -.003
~

-.oi7 .020

8. ToMC .i92 -.187 -.i69 -.2zi -.i96 -.185 .oi3 .020 -.033
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elnQlt - ïi-1(wit,Wlt)elnqit - (1~Wlt)Ei-lelnyit

elnQ2t - f8-6(wit,W2t)einqit - (1,W2t)Fa-6elnyit

5 - 8
Wlt - E1-1wit' W2t - Ei-ówit

Here, elnQlt is the average log-chenge for the goods of the quantity exogenous
groups. A similar definition holds for elnQ2t. The elnQlt part of elnQt is
already exogenous in its own right, because the relevant elnyit are exogenous.
The exogenous nature of elnQt implies then
elnQ2t. One can therefore replace celnQt by

c W2telnQ2t t c ï5-lelnyit

the additional exogeneity of

For our ssmple W2t is in the mean .09, which acales down the c vector
considerably. The ri~ with j- 1, .. , 5 have to be increased by ci, which
reduces their absolute value also substantially. Note that the diagonal
elements of R11 . cli' still remain negative. An increase of the supply of a
good will depress its price but it might increase the price or quantity of
another good. This becomes clear from Table 3 which states the total effects
of exogenous quantity changes.

It is tempting to associate positive signs with complementarity and
negative ones with substitution. Conventionally, measures of such interactions

refer to situations where utility is kept constant. The entries of Table 4 do
not correspond with constant utility. The Allais characterization of
substitution and interaction could be fruitfully used here - see Barten

(1989). We will not go further in this issue in the present paper.

A few words about the seasonal dummies. The point estimates of their
coefficients together with their asymptotic standard errors are given in the
part of Table 4 headed by "Regular". All entries have been multiplied by 100
for easier presentation. As already explained the coefficients refer to
differences with respect to the second quarter. Note that the three columns
add up to zero. The seasonal effects appear to be very strong for Belgien
endives for which supply goes up in the fourth quarter to reach a peak in the
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Table 3. Total effects of exogenous quantities

ri , . ci
i. type

CFSS LTSP CTBN TOMA BEND

i. oFSS -3-083 -2.i21 .455 .344 -.104
2. LTSP -1.984 -5.279 -.819 .251 .259
3. cTBN 1.205 -.206 -6.286 .396 -.334
4. ToMA .899 .669 .20i -.885 .102
5. BEND 1.020 1.246 .040 .671 -.771

6. PCBC -.015 .033 .oio .029 -.015
7. SPIF .oii -.055 .oi9 -.025 .008

8. ToMC .005 .oz3 -.029 -.004 .007

Table 4. Seasonal effects for the Vegetables Market Belgium 1975 - 1984

Regular Mixed
type

Qi Q3 Q4 Qi Q Q4
i. CFSS -5.37 -9.20 -9.76 -18.2 -38-3 -33.3

1.71 5.42 2.75

2. LTSP -8.07 -1.65 -4.75 -56.7 -44.i -66.6
1. 78 5. 38 2. 81

3. C1BN -4.41 .211 -5.90 -.136 10.2 -10.8
.920 2.94 1.45

4. ToMn -15.1 -17-i -32.0 -.359 -24.7 -33-6
2.15 7.06 3.61

5- BEND 33.8 24.9 50.0 57.7 z4.i 61.5
2.68 8.65 4.33

6. PCBC -.362 .105 .968 1.37 -.851 1.29
.420 1.33 .678

7. SPIF -.478 1.72 .717 -i.26 .539 --994
.211 .687 .350

8. TOMC -.068 i.01 .626 -.112 .312 -.297
.232 .757 .388
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first quarter. The second quarter sees a decline and the bottom is reached in
the third quarter. The prices move inversely. Apparently in the fourth and
first quarter the price decrease is not enough and in the third quarter the
price increase is too strong as follows from the positive ccefficients of the
quarter dummies. Non-price factors appear to pick up the extra supply.

This interpretation is confirmed by the transformation of the dummy

ccefficients by matrix C, defined by (3.28). This transformation gives the

values for the dummy coefficients in the mixed mode of the system. They are
given in the last three columns of Table 4. The first five rows show the
seasonal effects on the price formation. Positive signs mean that the prices
are not low enough in comparison to the situation of the second quarter.

Negative signs indicate the opposite.

The seasonal effects are quite important in terms of explanatory power of
the model. Still they are somewhat puzzling. Their attribution to shifts in
preferences is disputable. The data refer to household demand and are net of
the effects of market interventions or import~export fluctuations. The
seasonal effects reflect an undeniable seasonal pattern in the part of
consumer behaviour not explained by exogenous quantity and price changes.

It is of some interest to compare the results given in Table 1 with those
obtained under the assumption that all quantities are endogenous and all
prices (and elnQ) are exogenous. Table 5 presents the point estimates. The bi
display roughly the same pattern as in Table 1. The si~ are in absolute value
usually smaller. This corresponds with the higher Cholesky values obtained for
the mixed case as was to be expected. Table 6 gives the two sets of Cholesky
values together with their standard errors, calculated as if the model in
question were the correct one. The first five Cholesky values correspond with
the S11-part of matrix S. They are all substantially higher in the price
endogenous case then for the price exogenous situation.



Table 5. Estimates of b and S with endogenous prices for fresh vegetables, Belgium i975 - i984 a

si
i. type bi

CFSS LTSP CTBN TOMA BEND PCBC SPIF TOMC

i. cFSS .039 -.i3o .005 -.029 .040 .oi7 .024 -.ooo .oi5
.019 .024 . 013 .010 . 020 .019 . 009 .005 .006

z. LTSP .030 .005 -.034 -.ooz -.020 .026 .oi4 .007 .003
.025 .013 .011 . 007 .014 . 014 .006 .003 .003

3. cTBN .02~ -.029 -.ooz -.ii5 .oi9 .061 .002 -.ooi .006
.018 .010 .007 . 009 .014 . 015 .004 .002 .003

4. TOMa .282 .040 -.ozo .oi9 -.i36 .0~2 .oi7 .009 -.ool
.035 .020 .014 . 014 .038 .033 . 009 .005 .005

5. BErro .613 .oi7 .026 .o6i .0~2 -.i8i .008 .007 -.008
.046 .019 . OI4 .015 .033 . 044 .008 . 004 .005

6. Pcac .006 .024 .oi4 .002 .oi7 .008 -.051 -.oi6 .ooz
.008 .009 .006 .004 . 009 .008 .012 .007 .007

7. SPIF -.000 -.000 .007 -.001 .009 .007 -.016 -.024 .017
.004 .005 .003 . 002 .005 .004 . 007 .007 .005

8. ToMC .004 .oi5 .003 .006 -.ool -.008 .002 .oi7 -.035
.005 .006 . 003 .003 .005 .005 .007 .005 .007

a Asymptotic standard errors are given in italics
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Table 6. Cholesky values of S with and without endogenous prices a

h.i
1 2 3 4 5 6 7

with five .412 .162 .153 . 468 .141 .010 .016
endogenous . 039 .018 . 010 .049 . 012 .008 .009
prices

with all .130 .033 .108 .107 .062 .010 .018
prices . 024 .011 .012 . 044 .012 . 010 .009
exogenous

a Asymptotic standard errors are given in italics

The asymptotic standard errors are usually smaller in the exogenous case.
Because of the lower absolute values of the si~ also here 19 of the 28
independent coefficients are in absolute value more than twice their standard
error.

One can consider ln~4l as a measure of the generalized varience of the

regular demand system and 1nIEl as its counterpart for the mixed demand

system. The former is minimized when all prices are exogenous and obtains the

value of -65.670. Its value, given the b and S of Table 1 and, of course, the

dummy coefficients, is -60.215, which is larger, as is to be expected. The

conversion of 1n~Q~ to lnlF~ can be achieved by subtracting 2 Filnhi. For the

price endogenous case one obtains for ln~F~ the value of -28.067, while the

price exogenous variant yields a value of -22.999. clearly larger. As a very

rough goodness of fit test this comparison fails to reject. Each variant

produces the least variance for the case for which it is appropriate. It is

beyond the scope of the present paper to develop a more refined test procedure

which could sort out For which goods the prices are exogenous and for which

the quantities are given.
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6. Concluding remarks

Mixed demand systems are in between the polar cases of regular demand
systems with all prices exogenous end inverse demand systems with all
quantities exogenous. They are realistic when for some commodities the
inventory costs are substantial and prices adjuat to available supply while
for other goods one can let the quantities demanded edjust to the prices end
absorb eventual differences between demand end supply by rather cheap
inventory changes.

All these modes of demand systems reflect the basic consumer equilibrium
consisting of the budget identity and the Second Law of Gossen. This means
that one can start from any mode and solve it for the appropriate set of
endogenous variables.

In this paper the regular demand system with the Rotterdam parametri-
zation has served as a starting point for the formulation of a mixed demend
system. One of the attractions of the Rotterdem specification is the ease by
which one can take ínto account theoretical constraints on the coefficients.
This property is to a certain extent lost in the transition to a mixed demand
system.

One way to have your ceke and eat it is to estimate the system in its
regular mode while teking into account the endogenous nature of some of the
prices. One can easily incorporate the various constraints while avoiding
inconsistencies of estimation. Following a maximum likelihood approach this
turns out to require only a minor adjustment of the estimation procedure for a
regular system with all prices exogenous.

The market for vegetables in Belgium provided quarterly data for the
period 19~5 - 1984. Eight (groups of) vegetables were selected, five of them
fresh, the remaining three frozen, canned or otherwise preserved. The prices
of the fresh vegetables were taken to be endogenous, those of the others as
exogenous.
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Seasonal dummies were added to absorb the obvious seasonal pattern in the
residuals. Given the fact that the seasonal variation in the supply of fresh
vegetables should have fully been reflected in their prices the presence of an
unexplained season is puzzling.

The resulta show that taking into account the endogenous nature of some
of the prices tends to increase the absolute value of the price effects in the
equilibrium relations. The results are as a whole reasonable but intuition is
lacking to serve as the touchstone of plausibility.

One further step could be the use of Allais ccefficients to obtain an
idea of the pattern of complementarity and substitution implied by the
estimates.

One would also like to obtain standard errors of some nature for the
various derived ccefficients. A Monte Carlo procedure could be a possibility.

Another line of further research is the setting-up of tests for the
selection of the commoditíes for whích prices are endogenous and quantities
exogenous and for which the reverse holds.

What is perhaps needed is a model which endogenizes this choice on the
basis of inventory and~or adjustment costs. A further extenaion is to model
the planting decisions in response to the relative prices obtained in the
recent past. Such a dynamic general equilibrium model then explains both
prices and quantities in their development over time.

Empirical work usually answers some questions but raises at the same time
a host of other ones left unanswered. The present paper is no exception.
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