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Abstract:

The construction of input-output coefficients on the basis of flow data is
complicated by the presence of secondary outputs. Seven methods to deal with
this problem coexist. For example, the U.S. input-output requirements tables
are based on the so called industry technology model, Japan adopts the so
called Stone method, while the tables of the Federal Republic of Germany are
based on the so called commodity technology model. This paper settles the
choice of model on the ground of theory. It postulates invariance and balance
axioms and proceeds to characterize one of the methods to construct input-
output coefficients. The commodity technology model is singled out.
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1. Introduction

Many applied economic models are built around a so called input-output
matrix, A = (‘ij)i.,j T of technical coefficients, a“. representing
the direct requirements of commodity i needed for the production of one physi-
cal unit of commodity j. Here n is the total number of commodities. Now, if
sectors consume arbitrary many inputs but produce only a single output, then
the construction of their technical coefficients is textbook like. One simply
takes input i of sector j and divides by output of sector j to obtain the unit

requirement, . In practice, however, the situation is more complicated.

a
Sectors do notjonly consume many inputs, but also produce a multitude of out-
puts. Although output flow tables reported by statistical offices are heavily
diagonal, meaning that sectors' own or primary output is dominant, there are
also some other or secondary outputs on the off-diagonal parts of the tables.
ij)i.J T of commodities i
consumed by industries j and also an output or "make" table V =

(vij)i.j s il of industries i producing commodities j (U.N., 1967 or ten
Raa, Chakraborty and Small, 1984). Note that, for simplicity, we assume the
same number of industries as of commodities. The problem, then, is to derive
an input-output coefficients or "requirements" table A = (aij)i.j L gl of
commodities 1 needed for commodities j. (Industry tables and mixed tables are
not considered.) Since values of input-output coefficients clearly depend on
the data, we write A(U,V).

In the just mentioned textbook case, V is diagonal and one simply puts
aiJ(U,V) = uij/v“. i,j =1,...,n. Otherwise we must somehow deal with the
off-diagonal entries of V. There are many established methods which will be
reviewed in the next section. Each method is known to have advantages and
disadvantages. The choice of construct seems a matter of judgment or taste.
Different statistical offices employ different methods. As far as we know, a
systematic theoretical investigation of the alternatives has not been carried
out in the literature. Although ten Raa, Chakraborty and Small (1984) criti-
zise some methods on theoretical grounds and present and implement an alterna-
tive, it is not clear if their construct is, in some sense, the best solution
to the problem. Fukui and Seneta (1985) approach alternative treatments of
joint products theoretically, but only to the extent of a quantitative compa-
rison. More precisely, they demonstrate that total output requirement vectors
based on alternative input-output coefficients matrices can be ordered, if a
certain condition holds. This paper undertakes a qualitative comparison of

Thus, we have an input or "use" table U = (u



input-output coefficients constructs. Models will be sorted out axiomatically.
The purpose is to single out one method through characterization.

2. The Established Constructs

There are many methods to construct an input-output coefficients ma-
trix, A(U,V), from input and output data, U and V, respectively. We will index
A by method. For example, AL is the construction of a requirements table based
on the lump-sum method (L), to be defined below.

In what follows, e denotes the column vector with all entries equal to

one. ' denotes transposition and =3 inversion. Since the latter two operations

commute, their composition may be denoted ' without confusion. ~ denotes
diagonalization either by suppression of the off-diagonal entries of a square
matrix or by placement of the entries of a vector. ¥ denotes of f-diagonaliza-
tion by suppression of the diagonal elements of a square matrix. (For example,
v="0+%V)

It is standard to derive input-output constructs from alternative
assumptions. However, since we will subject them to an axiomatic analysis
anyway, we present the formulas directly, referring the reader to sources for
motivation and derivations. A good general overview is obtained by consulting
ten Raa, Chakraborty and Small (1984) and Viet (1986). Altogether there are
seven methods.

Three methods are basically statistical tricks designed to remove
secondary products from the make table. Thus, the problem of constructing
input-output coefficients is reduced to the standard case mentioned in the
introduction.

Model (L). The lump-sum method (Office of Statistical Standards, 1974,
p. 116 or Fukui and Seneta, 1985, p. 177) specifies

-1
AL(U.V) =UVe .

Model (E). The European System of Integrated Economic Accounts (EURO-
STAT, 1979 or Viet, 1986, pp. 18-19) recommends

-1
Ag(UV) = U Ve .

Model (T). The transfer method (Stone, 1961, pp. 39-41, Fukui and
Seneta, 1985, p. 178 or Viet, 1986, pp. 16-18) specifies



AL(UY) = (U + NOREAANIY

The four remaining methods for the construction of input-output coefficients
are based on economic assumptions given in the references. Since we will sub-
Ject the constructs to an axiomatic analysis anyway, we are not interested in
the plausibility or even the specification of the assumptions.

Model (C). The commodity technology model (U.N., 1967, van Rijckeghem,
1967, ten Raa, Chakraborty and Small, 1984, p. 88 or Viet, 1986, p. 20)
yields

As(U,V) = U VT,
Model (B). The Stone method or by-product technology model (Stone,

1961, pp. 39-41, ten Raa, Chakraborty and Small, 1984, p. 88, Fukui and Sene-
ta, 1985, p. 178 or Viet, 1986, pp. 15-16) yields

Ay(U,V) = (U - ¥T) 0!

Model (I). The industry technology model (U.N., 1967, or ten Raa,
Chakraborty and Small, 1984, pp. 88-89) yields

= -1
A(UV) =UVe V Ve .

Fukui and Seneta's (1985, p. 178) reference to AI by "redefinition" method is
confusing since the common denotation of that term is broader and, in particu-
lar, meant to cover empirical methods for the removal of secondary outputs and
the associated inputs (Viet, 1986, pp. 19-20).

Model (CB). The mixed technology model was originally presented impli-
citly by Gigantes (1970) as a mixure of the industry technology and commodity
technology models. ten Raa, Chakraborty and Small (1984, Sections III and IV)
replaced the industry technology component by the by-product technology model
and derived a closed form expression:

Acg(U,V) = (U - v;) v;*

where "make table V is split into a table V1 of primary products and ordinary

secondary products and a table V2 of by-products"” and the classification is



done empirically. This mixed technology model does generalize others, namely
the commodity and by-product technology models, (C) and (B), respectively, as
can be verified by appropriate choices of \ll and VZ' Ir V1 = V and V2 =0,
then A (U,V) = WV T = Ac(U.V). While if V, = 0 and V, =V, then Ag(UV) = (U
-V 0 - A,

Different countries employ different methods of the Just completed
list. For example, the Federal Republic of Germany uses the commodity techno-
logy model (C), Japan adopts the Stone method (B), whereas the U.S. uses the
industry technology model (I). See Stahmer (1982), Office of Statistical Stan-
dards (1974) and U.S. Department of Commerce (1980). viet (1986) surveys more
comprehensively. In practice, statisticians and economists fish after each
others recommendations. This paper aims to provide a way out of the dilemma.

3. Desirable properties

So far methods of constructing input-output requirements tables have
been judged on the basis of the plausibility of the assumptions from which
they are derived. This approach is not very fruitful. We hope to turn around
conventional thinking about the subject by starting at the other end. What are
desirable properties of A(U,V)? Which construct do they pin down? We hope that
our deduction will be a fresh substitute for the more inductive inquiries
which have been carried out so far.

Some desirable properties are implicit in the literature. For example,
input-output matrices are typically used in the Leontief equations, "total
output = input-output coefficients®total output + final demand." So, fulfill-
ment of this material balance by the data and the derived input-output coeffi-
cients constitutes a practical axiom. Also, ten Raa, Chakraborty and Small
(1984, section II) have rejected the industry technology model on the ground
that the choice of base year prices affects the results in more than a scaling
fashion. This suggests an axiom of base year invariance.

We will now 1list reasonable properties of input-output coefficients
and deduce their axiomatic context in terms of construct A which maps data
(U,V) to square matrices of coefficients.

Axiom (M). Leontief's material balance is familiar in the form

X =ax +y



where x is commodity output, a a matrix of input-output coefficients and y
surplus. Formally, in terms of our data-construct framework, they are defined
by

x = Ve,
a = A(U,V),
y = V'e - Ue.

By substitution the material balance is reduced to
A(U,V) VTe = Ue. (M)

In words, the input requirements of total output must match observed total
input. This is the axiomatic content of Leontief's material balance in terms
of mapping A.

Axiom (F). Dual to the material balance is the financial balance. It
is familiar in the form

p‘l' = pTa & vT

where p is the price vector, containing the revenues for each unit of the
various commodities, a the matrix of input-output coefficients and v value
added by commodity. p'a is the cost row vector; the i-th component is the
material cost of a unit of commodity i. Thus, the financial balance states
that for each commodity unit, revenue equals material cost plus value added.
The reduction of the financial balance into our data-construct framework is a
bit more delicate than of the material balance, since, unlike surplus, value
added is reported by sector rather than commodity, as we shall see now. The
account of sector j is obtained by considering an arbitrary output of this

sector, Revenues are PV " Costs are (pTaovT)k v Kk Summing over commo-

Wiz
jk
dities we obtain total revenue of sector j, I pkv.1k = p"'V.1 , and total cost

of sector §, L, (pTa + v"')k Vi ® (p'a + vT)vj . Equation of these two finan-
cial items yields the account of sector j,

Ty L T
\'4 = \' + o
Prvig, RSNy, NN



In words, revenues equals material costs plus value added by sector. Formally,
in terms of our data-construct framework, the constituent parts of the account
of sector j are defined by

P =e,
a = A(U,V),

T T ¥
v'V =eV = @ ..
J. J. -J
The second relationship is as before, the other two are classified now. With-
out loss of generality, in a sense that will be made precise below, data are
assumed to be reported in current prices, so that the physical unit of any
commodity is the amount that costs one dollar and, therefore, the price vector
is e, which explains the first relationship. Consequently, the value of net
output of sector j is e’ (V j. ~ U, 4). which explains the third relationship. By
substitution into the account of sector j and subtraction of e'V § from the
left and right handsides, we obtain
o T
e A(U,V) V =elU ..
(u,v) j. by
In words, the input cost of output must match the observed value of input.
Since this must hold for all sectors j, we can line up the accounts in the row
vector equation,

e"A(U,V) VT = eTu. (F)

This completes the reduction of the financial balance to the axiomatic content
in terms of mapping A. Note that the financial balance (F) is dual to the
material balance (M), in accord with Leontief's (1966, chapter 7) price and
quantity equations.

Axiom (P). The above assumption that data are reported in current
prices was claimed not to inflict generality. This is made precise as follows.
In the general case, data are reported in some arbitrary base year money
terms. If the base year is pegged at the current year, we are in the situation
considered so far, with prices equal to e. Otherwise p remains the vector of
price levels relative to the base year. For example, if p; = 2, then good i
bas become twice as expensive and, therefore, the current money based physical
unit is one half of the base year physical unit. Revalued at the new prices,



flows of good i are doubled. For example, input i of sector j revalued at the
new prices is Py 4 All inputs revalued at the new prices are given by pU.
Similarly, primary output of sector j becomes v“pj and all output data re-
valued at the new prices are given by VP. Thus, in the textbook case mentioned
in the introduction, where V is diagonal and aiJ(U.V) = “11/",11' we want that
the new input-output coefficient is au(ﬁu.vﬁ) = (piuij)/(v“pj) =
piaij(U.V)/pJ. Letting i and j run through all sectors, Stone (1961, formula
VIII.37) obtains

A(BU.VB) = PA(U,V)P™! for all p > 0. (P)

Here positivity is defined in the strict way, that is for each and every com-
ponent. The price invariance is equally desirable for the general case where V
is not necessarily diagonal. So we postulate (P) for all U and V.

Axiom (S). Dual to the price invariance axiom is a scale axiom in the
sense of activity analysis. The price invariance axiom considers multiplica-
tion of commodities by factors. Now we consider multiplication of sectors by
factors. So we multiply all inputs and outputs of sector 1 by a common factor,
say s, and similarly for the other sectors. In other words, we imagine a
constant returns to scale economy. Then we expect input-output coefficié&nts to
remain the same. Formally,

A(US,8V) = A(U,V) for all s > O. (s)

This axiom is not a constant returns to scale assumption. It merely postulatés
that if input-output proportions are constant for each sector, then input-
output coefficients must be fixed. The logical negation of this implication is
that input-output coefficients changes must be ascribable to technical change
in some sectors.

Mathematically, the four axioms are independent in a sense that will
be made precise in section 5. Economically however, we wish to postulate the
financial balance axiom in conjunction with price invariance, as has been
motivated above.



4. Performance

Now that we have listed all the established input-output constructs in
section 2 and the desirable properties in section 3, it is interesting to test
how well the various methods perform. Table 1 summarizes the results. Proves
are relegated to the appendix, except for the commodity technology model.

Axiom: Material Financial Scale Price
Model: balance balance invariance invariance
Lump-sum /
European System v 4
Tr.ansfer
Commodity technology / v v /
By-product technology o v/
Industry technology J
CB-mixed technology S ,/

Table 1: Input-output coefficients constructs and the properties they fulfill.

Let us discuss the results. The statistical methods, (L), (E) and (T),
are crude from the theorists point of view. Each of them violates both a ba-
lance and an invariance axiom, although the European System model does not
perform too bad.

Of the economic methods, the commodity technology model fulfills all
properties.

Theorem 1. The commodity technology model fulfills all axioms: material ba-
lance, financial balance, scale invariance and price invariance.

Proof: Under the commodity technology model, the left hand side of the mate-
rial balance, (M), becomes



A(U,V)VTe = AC(U.V)vTe = UV Ve = Ue

which is the right hand side. The left hand side of the financial balance,
(F), becomes

eTA(U,V)VT = e"Ac(u.v)vT = e"UV TV = e"U

which is the right hand side. The left hand side of the scale invariance
axiom, (S), becomes

A(US,8V) = AL(UB,8V) = (U8)(8V) ™™ = (UB)(viE) ! = e lvT - T
= A5(UV) = A(U,V)

which is the right hand side. The left hand side of the price invariance
axiom, (P), becomes

A(BU,V) = A(BUVB) = (BU)(VB) T = (BU)(BV") 1 = puvT 7

~ A-l -1
=P A(UYV) B =5 AWMUY) P

which is the right hand side. Q.E.D.

The industry technology model is not price invariant (ten Raa, Chakraborty and
Small, 1984, section II). Table 1 reveals that it is neither scale invariané.
This defect is due to the fixed market share property of the industry techno-
logy model. When some sector is blown up more than others, its market shares
increase and, therefore, the structure of such a sector gets more impact on
the input-output coefficients. Thus industry technology coefficients may vary
without change in technique. ten Raa, Chakraborty and Small's (1984) alterna-
tive constitutes an improvement in both respects. However, slightly to the
dismay of at least one of the present authors, it violates the balance axioms.
This observation, due to Fred Muller, motivated our theoretical inquiry. The
source of the complication is the by-product or Stone component of the ten
Raa, Chakraborty and Small construct. Implications will be discussed later on.
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5. Characterization

True, the results of the preceding section favor the commodity techno-
logy model over all other established constructs. However, this is not enough.
The construction of input-output matrices has become a sort of an industry
and, at least a priori, some establishment may turn out yet another construct
that performs as good as the commodity technology model in the above aspects,
but better in unforeseen ones. Our objective is to settle the issue more defi-
nitely. This will be done by starting with some desirable properties and deri-
ving the commodity technology model. To understand the definitive nature of
this approach, it is illuminating to address two questions. First, what about
other performance criteria? Second, do not similar characterization results
hold for the other models? As regards other performance criteria, we ourselves
have considered a bunch of them. For example, it is natural to require that
the standard model with no secondary products is generalized. Another crite-
rion is that nonnegative data yield nonnegative coefficients, and so on. We
have applied Oscam's razor however, to obtain a minimal set of properties that
characterizes the method that fulfills most properties. The minimal set con-
tains weak properties which are generally accepted. Since they characterize,
other performance criteria are either implied by the properties we have iden-
tified, or inconsistent with them. Now we see the full way of an axiomatic
approach. The next theorems and remarks demonstrate that other performance
criteria, which constitute axioms independent of the ones we have considered
so far, do not exist. For example, the requirement that the standard model is
generalized can be seen to be implied by our desirable properties and the
nonnegativity property is inconsistent with our properties. This brings us to
the second question, the possibility of similar characterization results for
the other models. In principle , this is possible. However, our results con-
tinue to have an enormous impact. For example, the industry technology model
fulfills the nonnegativety property and it is conceivable that yet another
property yields a characterization result. By our settlement, however, it
cannot be a balance and invariance property.

As far as we know, this is the first paper that provides a characteri-
zation result pertaining to the construction of input-output coefficients.
This amounts to a more definite debate settlement than the previous literature
which is confined to partial comparison of alternative methods.

This section presents the main results. They imply that the commodity
technology model is the only construct that fulfills the desirable properties
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listed in section 3. In fact, two axioms are redundant. If we accept one ba-
lance and one invariance axiom, either both in the real sphere or both in the
nominal one, then we must impose the commodity technology model.

The first theorem concerns the real sphere.

Theorem 2. (Real sphere.) The material balance and scale invariance axioms
characterize the commodity technology model.

Proof. The commodity technology model implies that the material balance and
scale invariance are met by theorem 1.

Conversely, let the material balance (M) and scale invariance (S)
axioms hold. By (M),

A(U,V)VTe = Ue
for all (U,V). Substitute (US,SV). Then

A(US,8V) (8V)Te = USe.
By (S) and the fact Se = s,

A(U,V)V's = Us.

Since this is true for all s > 0 and hence for a basis, the matrices acting on
them must be equal:

A(U,V)VT = U.
Hence
A(U,V) = UV T
or
A=A Q.E.D.

The next theorem concerns the nominal sphere. It neatly combines the two
axioms that have been introduced in conjunction with each other in section 3.
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Theorem 3. (Nominal sphere.) The financial balance and price invariance axioms
characterize the commodity technology model.

Proof. Necessity has been proved in theorem 1. Sufficiency is proved as fol-
lows. By the financial balance (F),

eTA(U,V)VT = eTU

for all (U,V). Substitute (PU,VP). Then
e"A(BU,VP) (VB)T = eTPU.

By price invariance (P) and the fact e'p = p',
pTA(U,V)VT = pTU.

Since this is true for all p > 0, we may proceed as in the proof of theorem 2
to obtain

A = Ac. Q.E.D.

Remarks. 1. Singularity of the make table, V, renders the commodity technology
model non-existent and voids the statements and proofs of the theorems. In
practice V is heavily diagonal so that this problem does not occur.

2. Theorems 2 and 3 are as sharp as possible. Table 1 demonstrates this for
theorem 2. Scale invariance cannot be dispensed with, since it may lead us to
the European System or industry technology models, and neither can the mate-
rial balance, since it may lead us to the lump-sum, by-product technology or
mixed technology model. It also shows that in theorem 3 the financial balance
cannot be dispensed with. (Check the European System, by-product technology or
mixed technology model in table 1.) That price invariance is necessary is

shown by the counterexample A(U,V) = e"U V' '. This construct is easily seen
to fulfill the financial balance, but it is not price invariant. For example,

1

A

if V =1, then A(BU,VP) = p"U $ L and $ A(UV) pL =P eu L. If p tends
to the first unit vector, then we get u . and uuo...ouni. respectively, which
are clearly different. This remark demonstrates that the axioms are indepen-
dent, both in theorem 2 and in theorem 3.
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3. Theorem 2 uses the real balance and invariance axioms and theorem 3 the
nominal balance and invariance axioms. It is natural to ponder other combina-
tions. In other words, can we combine the material balance with price invari-
ance, or the financial balance with scale invariance, to characterize the
commodity technology model? The answer is no. The material balance and price
invariance axioms are fulfilled not only by the commodity technology model,
but also by the European System model AE' as table 1 reveals. As regards the
other combination, the financial balance and scale invariance axioms are ful-
filled not only by the commodity technology model, but also by the counter-
example presented in the previous remark. (Fulfilment of the financial balance
was noted there, while scale invariance is trivial too.) In short, it is not
possible to cross the balance and invariance axioms of theorems 2 and 3.

As a corrollary, note that it is no coincidence that none of the esta-
blished constructs is second best in that three axioms of table 1 are ful-
filled. In such a second best case, either theorem 2 or theorem 3 must apply
and, therefore, the construct must be the commodity technology model and hence
fulfill the remaining axiom as well.

6. Conclusion

Either of the characterizations (theorem 2 or theorem 3) constitutes a pure
theoretical solution to the model selection problem in input-output analysis,
leading to the commodity technology model. Yet we do not expect applied econo-
mists to be convinced fully, as we will discuss now.

In environmental repercussion analysis, pollution should be treated as
a by-product, no matter fine points of pure theory. Inclusion of by-products
in the commodity technology model, yields the mixed technology model of ten
Raa, Chakraborty and Small (1984) instead of the commodity technology model
itself. So? Well, the theorems remain valid. By theorem 2, the material ba-
lance or scale invariance must be violated and, by table 1, we known it is the
former. Consequently, the Leontief equation may not be used to calculate, for
example, total output requirements of a given bill of final goods. It must be
modified. In fact, it can be shown that the Leontief equation remains valid
not in the sense of outputs, but of Koopmans' (1951) activity levels. The
calculated "total output"” levels are valid sectoral activity levels where the
activity level is measured by primary output or independent secondary output
in the sense of ten Raa, Chakraborty and Small (1984). This is implicit in
Fukui and Seneta (1985).
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Another example 1is productivity decomposition analysis. Wolff (1985)
employs standard U.S. Bureau of Economic Analysis input-output matrices to
study the slowdown. But, by theorem 3, the financial balance or price inva-
riance must be violated and, by table 1, we know both are. The violation of
price invariance does not cause much trouble, since macro productivity mea-
sures have this defect anyway. However, the financial balance is a standard
tool in relating the national product to national income and the factor compo-
sition of the latter. The Leontief equation of this balance must be modified.
In fact, productiéity decompositions as of Wolff are biased and the bias can
be determined along the lines of this paper.

A final problem of the commodity technology model is that in practice
some technical coefficients turn out as negatives. In another paper we have
tested the hypothesis that this problem is due to errors in measurment, see
ten Raa and van der Ploeg (1988).

A The intricacies of the modifications of applied input-output analysis
fall, however, outside the scope of the present paper. If one does not want to
deal with delicate modifications of the basic input-output model, but prefers
to stick to the textbook Leontief equations, then theory forces the commodity
technology model. For example, use of the mixed technology model requires a
tedious modification of Leontief's material balance equation and use of the
industry technology model requires a similar adjustment of the value equa-
tions. If one does not want to bother the trouble, then one must use the com-
modity technology model. Convenience limits the choice of model in input-out-
put analysis.
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Appendix

The appendix proves that the established input-output constructs fulfill the
properties as indicated in table 1 of section 4. It also provides counter-
example to the fulfillment of properties that are not checked in table 1. The
commodity technology model is not treated here, but in section 4. To generate
counterexamples, define

t 0 1 2 1 2 2
pU = , U8 = o Np. = and S V_ =
oo, 1% oo 2 % oo 0 1 oo 0 1
Model (L
T3 o3 o I§ o
A=AL(U,V)-U Ve = =
o o''o o o 1 1 1
1 0 1
2 2 2
and, therefore,
1 1
0| |1 0 (o}
AV"-AL(U.V)va'r < |¥ .
o0 o' o "o
b | 1 1

1

Now onze # and eTong * (% 3) .so axioms (M) and (F) do not hold.

NiW N =
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Axiom (S) is easily verified:
-1
=1 ! =1
A, (UB,3V) = (U?)(ée\ PR P TAR A L AL(UY).

Axiom (P) is violated as

) % 0 % 0
A (BU, VB, = . » but
oo'' oo
1 ! o 1 1 b &
2 3 2
i § 1 1
8 0 g 2 o| |z o| |5 of Iz 0
o oo
- 1 1 1 1
@ 3]s 2 @ 1 | 3
Model (E
Axiom (M) is easily verified:
-1
A(U,V)VTe = U VTe Ve = Ue.
Axiom (F) is not fulfilled, since
1 1
b -1 5 0 1 0 5 0
Ao & AE(Uo'vo) - Uo Voe = -
1 1 0 1 b | 1
2 2 1]

and, therefore,

NI =

AVT‘ =
o o0

-
o™
[
-
HN N
F- 1
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Axiom (P) is easily verified:

1 -1

-1 -
Ag(PU.VB) = BU (VB)Te = U 94*\e =pu Ve 37 =pa@.wpl.

Axiom (S) is violated by

1 0 3 0 3 0
(Us ,sVv) = = # A .
AE OO0 OO o 1 o 1 3 1 o
2 3 [
Model (T
Neither axiom (M) nor axiom (F) is fulfilled, since
3 Y|z
< T 0!
Ay = AU V) = (uoovo)(voe =Ve =) = .
1 3 0
and, therefore,
1 1 3 1
T 7l 1} 9 1% 3
on; = = .
1 1 3 1
3 5| 2 H & T
which yields the same inequalities as in model (L).
Axiom (S) is violated because
1 2| |3 of |3 ,i,
AT(Uos.svo) = = # A
2 51 0 1 1 1
2 3 2 [

=

Nl =

F- N =
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Axiom (P) is violated, as

1 2 ) }
z 5 1 1 Ef 0 3 3 .
puU.,Vp ) = © . whereas
Ar(py 0’ oo X 1 . 1 1 1
2 2 3 T
p | 1 1 1
2 0 0 1
60 Ao 6;1 1] 2| |12 i 1)
o B Wl o B i
Model (B)
Axioms (M) and (F) are violated, since
1 |
i 3 0 0 0 3 0
Ao = AB(Uo'vo) = (Uo - Vc';) vo =4 1 - be 1
i 3 h ¢ 0 0 3

and, therefore,

T =
AVo = 3 '

which yields the same inequalities as in model (L).

See the more general model (CB) for proof of fulfillment of axioms (S) and
(P).

Model (I

Axiom (M) is easily verified:

WA A1

A
AI(U.V)v*e =UVe VVie Ve =UVe Ve = Ue.
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Axiom (F) is violated, since

i 1
/\-1 /T\-1 3 oll3 ol[1 1 [1 0
Ao = AI(UO.VO) = Uo Voe V° Voe = " Y =
1 3|0 1|]o 1|lo 3
1 1 1 1
T al & 3| | 8
" 1l o 1 1 1
2 2 2 2 2
and, therefore,
1 0 % 3
AVT = A = g
[o e} [o] 1
1 1 1 3
so that
11 5 3 1
eAVS = (g g Hlz 3P -
Axiom (S) is violated because
1 o| |z ol 2 2| |5 0
AI (UOSO ’ Bovo) F 4 =
2 3| [0 1| |o 1| |o 3
1 2 1 i
g o |t 3| (= 3
= - # A
1 1l o 1 1 1 o
2 2 3 2 2

Axiom (P) is disproved by ten Raa, Chakraborty and Small (1984, section II).

Model (CB

First we demonstrate that each of axioms (M) and (F) holds if and only if
model (CB) reduces to model (C).

As for axiom (M):



T LT T L7 = T ‘e 3 T T = = T = = T Ty T .
(U - V)V VTe = (u_ VIV (V] » Yz)e (U - V3)e - (U - V))VI™V3e = Ue
if and only if (U vl*v; - v; - v;vl*v;)e = 0 for all U.

This implies V;Tvze = 0, so V;e = 0, so (because V 2 0) V, = 0, which reduces
the model to model (C).

Similarly for axiom (F):

TTtT 2 ‘TT_T_T‘TT.
e AV e'U if and only if e' (U V1 VZ V2 VZV1 Vz) O for all U.

This holds if and only if V2 = 0, that is model (CB) reduces to model (C)
again.
Axiom (S) is easily verified:

ACB(Ua.sv) = (US -(§V2)T)(§V1)-T = (U - v;)a Q'TV;* = (U - v;)v;T = Acp(U.V).

Axiom (P) is demonstrated analogously:

Acg(BUVB) = (BU - (V,B)T)(V,8) T = (U - VDIV]T BT = Bag(u.v)p L.
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