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Abstract

We consider how to use the Dj-triangulation in simplicial vari-
able dimension algorithms on R™ for computing solutions of a sys-
tem of nonlinear equations. A new version of the D,-triangulation
is proposed. This version can be used directly in simplicial variable
dimension algorithms on R™. According to measures of efficiency, the
D;-triangulation is superior to all other well-known triangulations of
R™. So we hope that the cost of computation can be reduced through
using the Dj-triangulation in simplicial variable dimension algorithms
on R™.
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1 Introduction

In order to solve a system of nonlinear equations, several simplicial algorithms
have been introduced. A simplicial algorithm subdivides the underlying space
into simplices and searches for a simplex that yields an approximate solu-
tion. To find such a simplex, the algorithm generates a sequence of adjacent
simplices. A simplicial variable dimension algorithm generates a sequence of
simplices of varying dimension. This sequence connects an arbitrary starting
point with an approximate solution. Since van der Laan and Talman pro-
posed the first simplicial variable dimension algorithm on the unit simplex S™
in (8], a lot of contributions have been made, for example, their (n+1)-ray and
2n-ray methods on R™ in [9], Wright’s 2"-ray method on R" in [13], Kojima
and Yamamoto’s (3" —1)-ray method on R" in [7], Yamamoto’s 2-ray method
on R™ in [14], Doup, van der Laan and Talman’s (2"*! — 2)-ray method on S™
in [5], and so on. In [10], a simplicial variable dimension algorithm was intro-
duced by Talman and Yamamoto to find a stationary point of a continuous
function on a polytope. Doup gave an excellent survey about simplicial vari-
able dimension algorithms on the product space of unit simplices in [4]. We
proposed a new triangulation of R" in [2], the D;-triangulation. According
to measures of efficiency of triangulations such as the number of simplices in
the unit cube, the diameter and the average directional density, it is superior
to other well-known triangulations of R*. But it is not straightforward to uti-
lize the D;-triangulation in simplicial variable dimension algorithms except
in the 2n-ray and 2-ray methods on R". To reduce the cost of computation,
we consider how to utilize the D;-triangulation in the other simplicial vari-
able dimension algorithms on R". A new version of the D;-triangulation is
proposed, called the D,p-triangulation. This simplicial subdivision triangu-
lates each of the subsets into which a simplicial variable dimension algorithm
subdivides R™ according to the D;-triangulation.

The second section introduces the D,o-triangulation. The third section
gives its pivot rules. The fourth section presents how the new triangulation
can be utilized in simplicial variable dimension algorithms on R™.



2 The D,;-Triangulation
Let N denote the set {1,2,...,n}. Let
W™ ={z € B"| zi = 3;%55:-:%n = 0}

and
D = {y € W" | all components of y are even} .

The new version of the D;-triangulation, called the D,,-triangulation, sub-
divides W" into n-dimensional simplices.
Take y € D. Let I(y) and J(y) denote the sets

Iy)={ieN|yp=y} and J(y) = {j € N | y1 > y;}.

Take s = (s1,82,...,5,)7 to be a sign vector such that for all i € N, if
yi =0 then s; = 1, and for all 7 € I(y), if s; = —1 then s; = —1. It is obvious
that if there exists : € I(y) with s; = 1 then s; = 1.

Let

K(y,s)={ieI(y)|si=1}.
Let [ denote the number of elements in I(y) and A the number of elements
in K(y, s).

Take an integer p such that when h =0,if l=nthenp=00r2<p<
n—landifl<nthen0<p<n-1,and when h >0,if h=n thenp=10
andif h<nthen0<p<n-—1.

Take a permutation 7 of the elements of N such that for r with =(r) = 1,
if h =0 then 7 > r for all j # r with =(j) € I(y) and if A > 0 then j < r for
all y # r with =(5) € K(y,s), and when h =0, if p > 1 then

{r(k) |p<k<n}#I(y)
and when h > 0, if p > 1 then
{r(k) |p <k <n}# {r(k) € K(y,s) | p < k <n}.
When A = 0, let

0  otherwise,

g.»(1)={ -1 ifi€I(y),



fori=1,2,...,n,and for j =2,3,...,n, let

ge | & Hasg,
9'(’)‘{0 otherwise,
fori =1,2,...,n.

When k >0, for j =1,2,...,n,if (j) € K(y,s), let

(i ) 1 ifi € K(y,s) and j < 71(3),
9i(x(7)) = { 0 otherwise,

for:=1,2,...,n; otherwise let

atx(i)) ={ o> 4=

0 otherwise,

foxz =1, 2,....,n.
Let u' be the i-th unit vector in R* fori =1,2,...,n.

Definition 2.1.
Let the vector y, the permutation 7, the sign vector s and the number 4
be given as above.

Ifp=0,let y° =y,
vE=y+g(r(k),k=1,2,...,n.
Ifp>1,let y°=y+s,

y* = gk — Sxu™ 8 b =1,2,.. ., p— 1,
v =y +g(x(k),k=p,...,n.

Let y°, y',...,y™ be obtained from the above definition. Then it is obvious
that they are affinely independent. Thus their convex hull is a simplex with
vertices y% y',...,y". Let us denote this simplex by D2 (y,m,s,p). Let D,
be the set of all such simplices D,(y,,s,p). Below we show that D, is a
triangulation of W™.

For given y, 7, s and p as above, let

¢=|K(y,s)n {n(k) |1 < k < p} |



and let
{x(k) € K(y,3)| 1< k<n}
= {7(i1),m(i2),..., (i) | 11 <43 < --- < in}.
When 7(:) € K(y,s) and ¢ > 1444, then i_; denotes the index i,_; where k
is such that 1 = ;.

Lemma 2.2. The union of all & in D,; is equal to W™.

Proof. Clearly, every simplex in D, lies in W™. Let z € W™ be arbitrary.
Then z € D,,(y,n,s,p) with y, 7, s and p determined as follows.
"ake the vector y equal to

_ ] =l if |z;] is even,
b= |zi] +1 otherwise,

forz =1,2,...,n, and take the sign vector s equal to

P { 1 if |z;] is even,

—1 otherwise,

for: =1,2...,n. It is obvious that y € D.
Case 1: h=0.

When [ = 1, the proof is the same as that of Lemma 2.2 in [2].

Suppose | > 1. Let

= si(z1 = 1),
i = si(zi — i) — s1(z1 —y), for 1 € I(y)\{1},
and
pi = si(z; — y), fori € J(y).

Let p =30, b5

When p < 1, take w(i) =¢,fore =1,2,...,n,and p=0. Let o =1—
and fB; = u; for1=1,2,...,n. Then it is obvious that B; > 0 for all k, and

n n
zT= Eﬂ,-y’ and Zﬂ, =i,
520 i=0

where y’ is obtained from Definition 2.1 for j =0,1,...,n. Thus

T € Du?(yv‘”as,p)'



Suppose p > 1. Choose 7 such that

Sx(1)(Zx(1) — Yr(1)) < 82(2)(T2(2) = Yx(2)) < *** < S(n)(Ta(n) = Y(n))

and for r with #(r) = 1, 7 > r for all j # r with n(j) € I(y). Let pmaz
denote the largest 1 < p < n — 1 such that

{x(k) | p< k<n}#IQy).

We show that for | = n, there exists 2 < p < pmar and for I < n, there exists
1 € p < Pz such that the following system has a nonnegative solution,

Bo = sx()(ZTx(1) — Y=(1))s

B = 8x2)(Tx2) = Yn(2)) = Sx(1)(ZTx(1) — Yx(1))»

Bo-2 = $x(p-1)(Tx(p-1) = Yr(p-1)) = Sx(p-2)(Tx(p-2) = Ym(p-2))
Bo-1 = —Sx(p-1)(Tx(p-1) — Yr(p-1)) + Ap,

B = Su(k)(Tx(k) — Yn(k)) — Ak,

fork=p,p+1,...,n, where

(2_,1"=p 3r(j)(1r(j) = y‘r(j)) = 1)/("’ == P)

£ i ifr <p,
g (Thep 32) (i) — Yn()) = 1 = (I = D)sa(z1 —))/(n —p—1+1)
otherwise,
and
. A if either r < p or both r > p and = (k) & I(y)\ {1},
T si(@ —w) ifr > pand x(k) € I(y)\ {1},

fork=p,p+1,...,n.

If Bp-1 2 0 for p = Pmaz, it is obvious that B > 0 for all k.

Suppose fp—1 < 0 for p = pmaz. Since p > 1, there exist 2 < po < pmar—1
in case [ = n, and 1 < pg < Ppmaz — 1 in case | < n such that

0 < —8x(po-1)(Zr(po-1) = Yr(po-1)) + Apo
and either bothr =py+1and pp=n—1lor

0 > —Sx(po) (ZTx(po) — Yn(po)) + Apot1-



Thus
Sx(po) (Tx(po) — Yn(po)) — Opo = 0.

Hence, when we choose p = po, then Bx > 0 for all k, and
n n
T = Zﬂij and Zﬂj =i
3=0 =0

where y7 is obtained from Definition 2.1 for j =0,1,...,n. Thus

z € Dyo(y,m,s,p).

Case 2: h > 0.
When h = 1, the proof is the same as that of Lemma 2.2 in [2]. When
h = n, choose p = 0 and = such that

Sr1)(Tx(1) = Y1) < -+ < Sn(n) (Tr(n) = Yn(n))
and m(n) = 1. Let
Bo =1=850)(Tx(n) = Yx(m))>

B S2)(Zx1) — Yx(1))
B2 = 8x2)(Tx(2) — Yn(2)) — Sx(1)(Tx(1) — Y= (1)),

Il

ﬂn = Sx(n) (zr(n) = yr(n)) = sr(n—l)(zr(n-l) — yﬂr(n—l))'
It is obvious that B > 0 for all k, and
n n
T =Eﬁ,~y-’ and Zﬂ,— =
=0 j=0
where y7 is obtained from Definition 2.1 for j =0,1,...,n. Thus
T € sz(y,WyS,P)'

Suppose 1 < h < n. Let uy = si(z1 — y1) and p; = si(zi — i) for
i€ N\K(y,s). Let p = p1 + Fien\K(y,s) Hi-
Suppose p < 1. Take p = 0 and 7 such that

3#(1)(1'1(1) - yar(l)) SRREE- sx(n)(zn(n) = yr(n))



and for r with n(r) = 1, j < r for all j # r with 7(j) € K(y,s).

l’lO:l‘l‘»a'nd

if 7(2) € K(y,s) and 7 > 1y,

{ S(i) (Tx() = Yx(i)) — Sx(iz1)(Tx(iza) — Yx(iza))
Sx(i) (T (i) — Yx(i)) otherwise,

forz=1,2,...,n. Then it is obvious that f; > 0 for all k, and

1:2/3,3/’ and Zﬂ,:l,
=0

j=0
where y’ is obtained from Definition 2.1 for j =0,1,...,n. Thus
T E D.,g(y,W,S,P)‘

Suppose g > 1. Choose 7 such that

s‘l‘(l)(x‘l(l) = yr(l)) B el s’r(n)(zr(n) = yr(n))

Let

and for r with x(r) = 1, j < r for all j # r with 7(5) € K(y,s). Let pmaz

denote the largest 1 < p < n — 1 such that

{r(k) |p <k <n}#{x(k)€ K(y,s) | p< k<n}.

We show that there exists 1 < p < pimaz such that the following system has

a nonnegative solution,

Bo = 3n(1)(33x(1) = yﬂ(l)):

B = 3x@)(ZTx(2) = Yr(2)) — Sx(1)(Tx(1) — Yx(1))>

Bo-2 = 8x(p-1)(Tr(p-1) = Yn(p-1)) — 32(p-2)(T(p-2) — Y(p-2))>
r@p—-l = —sﬂ(p—l)(rr(p—l) = yr(p—l)) * C(p),

Bi = 8xi)(Txi) — Yn(i)) — Vi

fori =p,p+1,...,n, where

(p) = (Z3=p 32) (Zx(i) — Y=(i)) = 1)/(n —p) ifr <p,
W (z:;"=r pxi) —1)/(n—p—h +q+1) otherwise



with

~_Jo if 7(j) € K(y,s) and 941 < j < 14,
Pr(i) = Sx(i)(Tr(j) — Yn(;)) Otherwise,

forj=p,p+1,...,n, and

e = L S (@xn) = Yniy) i1 > 1441 and 7(2) € K(y, 9),
! c(p) otherwise,

fori=p,p+1,...,n.
If Bp—1 = 0 for p = pmaz, it is obvious that Bx > 0 for all k. If not, then
since u > 1, there exists 1 < pg < pmaz — 1 such that
0 < —8(po-1)(Tx(po-1) ~ Yn(po-1)) + (P0)

and
0> —Sx(po) (Tx(po) — Yx(p0)) + (P0 + 1)-
Hence,
3x(p0) (Tx(po) — Yr(po)) — ¥po 2 0.
Thus when p = po, B > 0 for all k. Obviously,

z =zﬂjyj and Zﬂ, ==l

=0 1=0
where y’ is obtained from Definition 2.1 for j = 0,1,...,n. Thus
z € Dy(y, 7, s,p).

From the above conclusions, the lemma follows immediately.

Theorem 2.3. D,, is a triangulation of W".
Proof. From Lemma 2.2 and Definition 2.1, the theorem follows imme-

diately.

We call this simplicial subdivision of W™ the D,,-triangulation. The
D,;-triangulation is illustrated in Figure 1 for n =3 and z; < 2.
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Figure 1 The D, - Triangulation of w’




3 The Pivot Rules of the D, -Triangulation

Let 0 = Dy (y,=,s,p) be a simplex of the D,,-triangulation with vertices
y° y', ..., y*. Then we want to obtain the parameters of the simplex
g= .,g(y, 7,3, p) such that all vertices of o are also vertices of & except the
vertex y*, in case the facet of o opposite to the vertex y* does not lie in the
boundary of W". In Table 1, we show how 7,7, 3 and p depend on y,=,s,p
and 7. From this table, it is easy to obtain each vertex §* of 5, k = 0,1,...,n,
and in particular its new vertex.

In this table, j* is equal to w(k) with k such that k # 7, 7(k) # 1 and
n—2 < k < n. Moreover, if r(n—1)=1,s; = —1 and n(n — 1), 7(n) € I(y)
then p* = p— 1, and if 7(n — 1), 7(n) € K(g,3) then

7(j) € K(4,3) for k < j < n,
0 otherwise;

{ k if there exists 1 < k < n — 2 satisfying = (k) € K(7,3) and

otherwise, p* = p. In addition,if 7(n) = 1, s; = —1and 7(n—1),x(n) € I(y)
then 7* = (7(1),7(2),...,7(n — 2),x(n),7(n — 1)) and p* = p — 1, and if
7(n —1),7(n) € K(§,35) then 7* = (x(1),7(2),...,7(n — 2),7(n), n(n — 1))
and

k if there exists 1 < k < n — 2 satisfying 7(k) & K(7,5) and

= 7(j) € K(§,3) for k < j <n,
0 otherwise;

otherwise, 7* = 7 and p* = p.

4 Simplicial Variable Dimension Algorithms
Based on the D,-Triangulation

We only consider how to utilize the D,,-triangulation for the 2"-ray method
proposed by Wright in [13]. It can similarly be derived how to apply the D,;-
triangulation to the (3" —1)-ray method proposed by Kojima and Yamamoto
in [7].

Let t = (t1,%2,...,t,)7 denote a sign vector such that t; € {—1,0,+1}
fori =1,2,...,n. Let T denote the set of all such sign vectors t with t # 0.



___Table 1(1): The Pivot Rules of the D,;-Trian tion for n > 2

1 ? ¥ 3 x P
== n=2 y+2aqu’ s —2su’ |« 1
h=0 n>3 y s x 2
I<n y s x 1
0 h>0 | h=n y+25u" | s—25u’ | x n—1
h<n y 3 T 1
0 1 Yy F] x 0
P22 Yn(1) #0 v $—28,1) | ¥ ]
u™()
Yr(1) =0 case(1)
h=0| =(3) € J(y) Yn(i) # 0 y 8$=28p) [ 7
or x(i) =1 u™(9
Yn(i) =0 case(2)
1< |0 =(3) € I(y) BD(1)
1< x(1) #1
n (1) EK(v.s) |y s =(1),..., x(i-1 — 1),
G x(3), ®(im1 +1),...,x(i — 1),
<=7'(1) x(i-1), (i +1),...,7%(n)
h>0 1 <1 BD(2)
=x"1(1)
1=1 or Yn(i) # 0 v s —28,) | *
*(i) & K(3,9) ur®
Yn(i) =0 case(3)
(1) =1 x(1+1) € I(y) | BD(3)
h=0 (i+1)€1(y) | v s =x(1),...,x(i +1),
x(1), ..., x(n))
1< x(1) #1 v 3 (=(1),....x(1 +1),
1< x(1), ..., x(n))
p— R>0 [ x(s) € K(y,s) [ x(i+1) =1 BD(4)
1 x(i+1)#1 v s (x(1),...,x(i +1),
2(),..., %(n)
(1) € K(v,9) v s (x(1),....x(i +1),
x(1),...,x(n))
x(s) = 1, x(k) v s T
€ I(y) for all
i=p k=0 p<k<n
-1 p22 otherwise v s x
h>0 v 8 T




Table 1(2): The Pivot Rules of the D,>-Triangulation for n > 2

1 P ¥ 3 x P
(1) <p v s (x(1),...,=(p 1), p+1
*(3), 7(P), -, 76— 1),
x(i+1),...,x(n))
x(1) #1 BD(5)
x(s) € I(y) x(1) =1 v s (x(1),...,x(p = 1), x(s), p+1
h=0|x"'(1)2p =(p), ..., =x(i - 1),
x(1+1),...,7(n))
= 1(1)>p x(5) € I(y) Y4280 | s—280u (x(1),...,x(p — 1), x(i), p+1
() €1(y) |forp<si<n *()s .. (i~ 1),
G#9) x(i+1),...,x(n))
p=n-2
*(5) € I(y) ] s (x(1),...,x(p-1),%(i), [p+2
forp<j<n x(p),...,x(i—1),
G#9) x(i+1),...,7(n))
p<n—2
notallp<j;<n |y s (x(1)555 x(p - 1), (i), p+1
(j # i) satisty %), xG - 1),
*(2) € 1(») *(i+1),..., x(n))
p<|1<p [A>0 | x(s) € K(v,8) | 141 <$ y s (X555 x(i-1—1),x(1), [
i< | <n— <x"(1) x(izy +1),...,%(i—1),
n 1 i i x(i-1), x(1 +1),...,%(n))
1941 <t BD(S)
=x(1)
1= g1 v s (x(1),...,x(p-1),=(3), p+1
x(p), ..., =(i—1),
x(i+1),...,%x(n)
*(3) € K(v,8) | =(3) € K(v,3) v+ 2s1u’ s —2su’ (x(1),...,x(p = 1), =(3), n—1
forp<j;<n x(p),...,x(1 1),
(J#19) x(i+1),...,%x(n)
notallp<j;<n |y s (=(1):.: x(p—1),x(3), p+1
(7 # 1) satisfy x(p),...,x(i = 1),
x(7) € K(v,9) x(i+1),...,x(n))
1<p i=n-—1 Y + 28x(n) S — 282(n) x p¥
e ) o)
1 i=n Y+ 280(n-1) | 8= 28x(n-1) | *° IS
a*(n-1) w™(n-1)
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Fort € T, let X(t) denote the set
X(t) = {:c € R |

tizi=tijz; 20ift; #0and t; #0
tiz; >|z;| ift;#0and t; =0

Then it is obvious that for ¢!,¢2 € T, X (') N X (¢2) is a common face of both
X (t') and X (¢?) and that UserX(t) = R™. Let d denote the dimension of
X(t) fort € T, d = dim(X(t)).

The 2"-ray method is based on a simplicial subdivision of R™ which satis-
fies that its restriction on every subset X (%) induces a simplicial subdivision
of X(t). In order to derive a triangulation of X(t) from the D,;-triangulation
of W¢, let Z; denote the sign vector set

_ _ 7, z1=1and
Za—{Z—(Zx,Zz,...,Zd) | 2 & {=1, 41} forj=2,3,,,,,d}'

It can easily be seen that the set X (t) is homeomorphic to the set
U.ez,diag(z)W {z € R? | z; 2| zi |,for i = 2,3,. d} .

where diag(z) denotes the d x d diagonal matrix with the i-th diagonal el-
ement equal to z for i = 1,2,...,d. Given the D,,-triangulation of W¢,
we obtain that U,ez,diag(z) D,z is a triangulation of U,ez,diag(z)W*?. Thus,
using the D,,-triangulation of W, we derive a simplicial subdivision of the
subset X (t), which we denote by D,2(X(t)). Furthermore, it is also obvious
that the union of simplicial subdivisions of all subsets, UierDy2(X (%)), in-
duces a triangulation of R™. Therefore, a simplicial subdivision for the 2"-ray
method has been obtained.

Let f: R® — R" be continuous. We want to compute a zero point of f,
i.e., a vector z* € R™ such that f(z*) = 0. Let z° € R™ and let § be positive.
Fort € T, define

Dua(X(1),5°,8) = {60 +{2°} | o € Dua(X (1))}

The point z° is the starting point of the algorithm and 6 is the grid size of
the triangulation. Starting at z° with ¢ = sign(f(z°)), the 2"-ray method
generates for varying sign vector t a sequence of adjacent d-dimensional sim-
plices in X (¢) having t-complete facets until ¢ becomes the zero sign vector.
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If t becomes 0, an approximate zero point of f(z) has been found (see Wright
[13]). Let o denote a d-dimensional simplex in Dyz(X(t),z° ) with vertices
v0, vt v', i € H(t) := {j | t; = 0}. Let 7 denote the facet of o opposite to
the vertex vt.

Definition 4.1. The facet 7 is t-complete if there exists a nonnegative
(n+ 1)-vector A = (Ao, A1, ..., As)T such that

/\010+Alll+-"+Anl" =e(n+1),

where I' = (f(v*),1)T fori =0andi € H(t), ! = (0,...,t,...,0,0)T € R*+!
for i with t; # 0, and where e(n + 1) is the (n + 1)-th unit vector in R**!.

The 2"-Ray Method Based on the D,,-Triangulation:

Initialization: Without loss of generality we assume that f;(z°) # 0 for all

i. Set

= —1 if f;(2°) >0,

S (T 1 o R
fori=1,2...,n.Set 2, =1,y =0,5s =1, 7 = (1) and p = 0. Further, set
v° = z° and 7y = {v°}. Finally,set k=0andd=1.

Step 1: Let o be the simplex in D,(X(t),z° §) corresponding to the sim-
plex Dy, (y,7,s,p). Thus 74 is a facet of ok. Let v* denote the vertex
of o} opposite to 7x. Set It = (f(v*),1)7.

Step 2: Perform a linear programming pivoting step with {* in the system
of linear equations
Y Al =e(n+1),
=0
where I = (f(v*),1)T fore = 0and ¢ € H(t)and I* = (0,...,t,...,0,0)T
for ¢« with ¢, # 0. Let I’ be replaced by I*.

Step 3: If j satisfies t; # 0, then set v/ = v+ if I* = (f(v*),1)T and go to
Step 4; otherwise, set v~ = v? and set v7 = vt if I+ = (f(v*),1)7,
and go to Step 5.
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Step 4: When d = n, stop; otherwise perform the following increasing di-
mension procedure. Set T4y = 0x and k = k+ 1. Set 244y = tj,t; =0,
kiy1 = J, Ya41 = v1 and sg41 = s;. Let m denote the integer such that
w(m) = 1. Then 7 and p are adapted as follows.

1. When p =0, if s; = —1 then 7 := (7 (1),...,7(d),d+1); otherwise
= (r(1),...,7(m —1),d+ 1,7(m),...,x(d)).
2. Whenp > 1,if m < p and s; = —1 then 7 := (7(1),...,m(m),d+
1,7(m +1),...,7(d)) and p := p+1 if m < p and s; = 1 then
= (x(1),- . n(m—l)d+1 n(m ,7(d)) and p :=p+ 1; if
m > p and s; = —1 then 7 := (7r(1) ..,7r(d) d+1);ifm>p
and s; =1 then 7 := (7x(1),...,7(m —1),d + 1,x(m),...,n(d)).
Set d = d+ 1 and go to Step 1.

Step 5: Let y* be the vertex of D, (y, T, s, p) corresponding to the vertex v—.
Consider Table 1. If one of the cases BD(1), BD(2), BD(3), BD(4),
BD(5) or BD(6) occurs, then the facet 744, of o opposite to the vertex
v~ lies in the boundary of X(t).

1. When either BD(1) or BD(5) occurs, set tx, ., = zx(),

B = k  ife<x(i),
T By (@) <y,

fort=1,2,...,d—1,

Sy ife< (i),
Y=\ v if7(i) <o,

forc=1,2,...,d—1,

w(¢) if 7(¢) < 7(z) and ¢ < t,
_ 1r(L+1) if w(e+1 )<7r(z)andz<L,
)= w(¢) — if w(¢) > w(z) and ¢ < ¢,
1r(L+1)—1 ifw(e+1)>m(i) and ¢ <,

fort=1,2,...,d—1, and

Vs  He<a(i),
S = s ifm() <o,
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for « = 1,2,...,d — 1. Finally, set o4, equal to 744y, It =
(0;:::51% .,0,0)T,d=d—1and k= k+1, and go to Step
2.

. When either BD(2) or BD(6) occurs, set tx,, | = zx(i_,),

(1)) " *

- k. if e <7w(isy),
cT kt+l if W(i_l) S L,

for ¢ =1,2,.:7d =1,

o if ¢ < 7(2-4),
V= g if (i) <o

fort=1,2,...,d -1,

w(¢) if w(e) < w(i-1) and ¢ < iy,
_ ) w(e+1) ifr(¢+1)<m(izg) and iy <o,
)= 7(e)—1 if 7(¢) > 7(i-1) and ¢ < iy,

m(e+1)—1 ifw(e+1)>7(i-1) and iy <,
forc=1,2,...,d—1, and

o { S; if ¢ < w(2-1);

8,41 if W(i-l) L4,

for « = 1,2,...,d — 1. Finally, set ox4; equal to 7x4q, It =
(0,...,tkﬂ__l),...,O,O)T, d=d—-1and k = k+ 1, and go to
Step 2.

. When BD(3) occurs, set tk,_ ., = Zz(i+1),

R T
CT ke ifw(E41) <y

<
Il

vy, ife<m(z+1),
Yt if ”(2 + 1) S L
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(¢) ifr()<w(i+1l)and e <i+1,
w(e+1) fr(e+1)<m(z+1)andi+ 1<y,
(¢)—1 ifr(e) >7(i+1)and e <i+1,
m(e+1)—1 ifr(e+1)>n(i+1)andi+1<y,

_J s ife<w(i4+1),
T s ifw(i4+1) <y

for « = 1,2,...,d — 1, and p = p — 1. Finally, set 044 equal to
The1s I = (0,0 s thyipyr+-+10,0)T,d=d—1and k=k+1, and
go to Step 2.

. When BD(4) occurs, set tk, ., = zx(i),

w o[k i<,
W= Ry i wE < 0

fort=1,2,...,d-1,

S if ¢ < 7w (2),
Y=y if7(d) <o

for.¢=1,2;ss:,d =1,

m(e) if m(¢) < w(i) and ¢ < 3,
_ ) w(e+1) ifr(e+1)<w(z)andi <y,
{3} = 7(e) =1 if 7(¢) > n(z) and ¢ < 1,

w(e+1)=1 ifx(¢e+1)>n(i) and i <,
forc=1,2,...,d -1,

P if ¢ < m(i),
CT) s ifw(2) <o,

for ¢ = 1,2,...,d — 1, and p = p — 1. Finally, set o4, equal to
Thii, IV = (0,...,tk'(l),...,0,0)7, d=d—1and k = k+1, and
go to Step 2.
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5. In all other cases in Table 1 the facet 744, of ox opposite to the
vertex v~ does not lie in the boundary of X(¢). If case(1) occurs
then set zx(1) = —2,(1); if either case(2) or case(3) occurs then set
Zp(i) = —Zn(i); Otherwise set y = §, 7 = 7, s = 5 and p = p accord-
ing to Table 1. Set 041 equal to the simplex in D(X(t),z°,6)
corresponding to Dy,(y, 7, s,p). Let v+ be the vertex of ox41 op-
posite to Teyy. Set ¥ = (f(vt),1)T and k = k + 1, and go to
Step 2.

Under the convergence condition in [13], the algorithm terminates in Step
4 within a finite number of iterations. Then an n-dimensional simplex o is
obtained with vertices v, v*, ..., v" for which ©7_¢ A; f(v7) =0, T7oA; =
1, and A; > 0 for all 5. The point ' = ¥°7_; Ao’ can be considered as an
approximate zero point of f(z) and lies in o. If the accuracy of approximation
is not satisfactory then the 2"-ray method can be restarted at z! with smaller
grid size § in order to improve the accuracy.

The well-known K,-triangulation, Ji-triangulation, and K’-triangulation
of R™ are also available to underly simpicial variable dimension algorithms.
According to measures of efficiency of tringulations, the D;-triangulation is
superior to all these triangulations. Thus it is hoped that using the D,,-
triangulation in simplicial variable dimension algorithms can reduce the cost
of computation.
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