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Abstract

Two-person repeated games are considered in which there is uncertainty about
the type of one of the players. If there is a possibility that this player is an
automaton committed to a particular pure or mixed stage game action, then this
provides a lower bound on the equilibrium payoffs to a normal type of this player
assuming no discounting. The lower bound is generally lower than that obtained by
Fudenberg and Levine (1989) in the case of short run opponents. If the automaton
is committed off the equilibrium path as well as on it, a better bound is obtained.
The results are proved for the case of no discounting and extended to the case

where the uninformed player discounts.
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1 Introduction

"Reputation effects” arise when a player in a dynamic game is able to exploit some
uncertainty that the other players have concerning his preferences. There may be some
probability that the player is of a type who would play in a particular way independently
of the strategies of the other players; if however the player is not of this type, he might
nevertheless wish he could commit himself to playing in this way. Even if the initial
probability of this type is very small, by mimicking the strategy of this type, the player
can build up a "reputation” for following this strategy. In this paper we shall consider
introducing uncertainty about the type of one of the players in a general two-person
supergame. The existence of such uncertainty will generally lead to a lower bound on
the payoff of this player in any Nash equilibrium.

The idea that reputation effects may be important in determining the set of equilibria
of a repeated game has received much attention since the early work of Kreps and Wilson
(1982) and Milgrom and Roberts (1982), who formalized the concept in the context of
the chain-store paradox. While this work did not involve two long-run players, the
paper of Kreps, Wilson, Milgrom and Roberts (1982) considered the finitely repeated
prisoner’s dilemma, and showed that if there was even a small probability that one of
the players might be an automaton playing a tit-for-tat strategy then cooperation is
sustainable for a large part of the game. While this result is extremely suggestive, it
turned out that the precise form of perturbation is critical. Fudenberg and Maskin
(1986) showed that in finitely repeated games any feasible individually rational outcome
can be approximately supported as an equilibrium if the game is perturbed by a small
probability of appropriately chosen types; moreover this equilibrium is robust (when
the time horizon is fixed) to further arbitrary small perturbations. Aumann and Sorin
(1989) argue strongly that perturbations should not be specific; a wide variety of possible
types should be allowed for, and the desired result would have a particular type - for
example the tit-for-tat type - being selected endogenously from among the range of
possible types as the one which determines the equilibrium outcome. In their paper, in

a class of two-person games they call ”common interest”, where one payoff pair strongly



Pareto dominates all others, they show that if each player might be an automaton with
bounded recall, and the set of possible types of automaton is sufficiently rich, then any
pure strategy equilibrium payoffs must be close to the Pareto dominating pair.

Of more relevance to the current paper is the work of Fudenberg and Levine (1989),
who considered games where a single long-run player faces a sequence of short-lived
(one period) opponents, each of whom can observe and condition on all past history of
moves. If there is positive prior probability that the long-run player may be of a type
who is committed to playing the Stackelberg strategy, ! then the equilibrium payoff of
the long-run player will be bounded below by an amount converging, as his discount
factor converges to one, to the payoff he would get from publicly committing to the
Stackelberg strategy. The idea of the proof is to show that the normal type, by mimicking
the Stackelberg strategy type, can convince the short-run opponents that he will play
the Stackelberg strategy in the following period. In particular it is shown that the
short-run players will believe it unlikely that the Stackelberg strategy is played in only
(at most) a limited number of periods, where this number is independent of the long-
run player’s discount factor. Because the opponent lives for only one period, he will
always play a best response to the anticipated action, which most of the time will be
the Stackelberg strategy, and consequently the long-run player can get very close to
his Stackelberg payoff. Since this is always an option, he cannot receive less than this
amount in equilibrium. In Fudenberg and Levine (1991) this result is extended to the
case where the long-run player’s action is imperfectly observable: this includes the case
where he can build up a reputation for adhering to a mixed stage game strategy; an upper
bound is also provided which for many games converges to the lower bound. What is
particularly appealing about these results is their generality: the Stackelberg type need
only have small prior probability, and the addition of arbitrary further types with any
probability cannot reduce the bound. See Fudenberg (1990) for a general survey of the
reputation literature.

In the current paper we want to see to what extent the same kind of argument can be

!Defined here as the action that the normal type of the player would most like to commit to in
the stage game on the assumption that the opponent plays the least favourable best response from the
long-run player’s point of view.



applied when the opponent is a single long-lived player. The problem is, of course, that
with a long-run opponent, even if he becomes convinced that the Stackelberg strategy
will be played next period, he need not play a best response since the short run gain
from doing so might be more than offset by a reduction in future payoffs. This question
has already been investigated for a class of games by Schmidt (1991) 2. He defines a two-
person game to be of "conflicting interests” if the Stackelberg pure strategy of player
1 holds player 2 down to his minimax payoff. Then suppose that player 1 may be a
Stackelberg type with some positive probability, which is held fixed; and fix player 2’s
discount factor at any value below one. As player 1's discount factor converges to one,
his Nash equilibrium payoffs will be bounded below by an amount converging to what
he could get by publicly committing to the Stackelberg strategy.

In this paper we shall consider general two-person supergames between an ”original”
type of player 1 and a player 2. Player 1 is assumed to evaluate payoffs according to
the limit of the means criterion, while player 2 may be similar or may discount payoffs.
We consider perturbed versions of this game where player 1 may be one of a number
of different types, including an automaton ”commitment” type which plays the same
stage game strategy, the "commitment strategy”, pure or mixed, every period. Player
2 is unaware of the type of player 1, but knows his own payoff matrix. We obtain a
lower bound on the average Nash equilibrium payoffs to the original type of player 1.
This bound is easily described. Consider in the stage game the original type of player 1
playing the commitment strategy, and player 2 playing a possibly mixed response which
minimises player 1’s payoff subject to player 2 getting at least his minimax payoff; this
is the lower bound. It depends only on this commitment type having positive initial
probability, and is independent of any other types which might have positive probability.
Of course different commitment types will provide different lower bounds: the maximum
of these is therefore itself a lower bound. Whenever the lower bound is above the lowest
feasible individually rational payoffs to player 1 we have the result that even the smallest

perturbation in the information structure of the supergame can lead to a large reduction

2We originally obtained our results independently of this paper, though the current version of our
paper has benefitted considerably from our reading of Schmidt’s paper.



in the set of equilibria.

The difference between the lower bound we obtain and the Fudenberg-Levine bound
is that we no longer have player 2 playing a best response to the commitment strategy,
but rather any response which is individually rational for him. This of course generally
lowers the payoff player 1 can guarantee for himself. The reason for this is roughly as
follows: playing the commitment strategy for long enough will convince player 2 that
on the equilibrium path the commitment strategy will continue to be played. However
this is not enough to elicit a best response from player 2 along this path since he does
not necessarily learn about player 1's off equilibrium path behaviour: playing a best
response may lead to a punishment involving player 2 being held to his minimax payoff,
and consequently on the equilibrium path we cannot rule out any response which gives
player 2 an individually rational payoff. In games of "conflicting interests” we get a
corresponding result to that of Schmidt (1991): since the only individually rational
responses to the commitment strategy are also best responses, the bound equals the
payoff obtained from publicly committing to the strategy in question (the ”commitment
payoff”).

A somewhat tighter bound may be derived if the initial probability of the commitment
type is non-negligible and player 2 also uses the limit of the means criterion. This raises
the worst punishment that can be applied to player 2 since with a certain probability
player 1 will continue playing the commitment strategy even after a deviation by player
2, and if the latter is sufficiently patient he will be able to learn if he is facing the
commitment type during the punishment phase and take advantage of this to increase
his punishment payoff. In this case the definition of the lower bound is as before except
player 2 must play a response to the commitment strategy which gives him at lcast this
higher punishment payoff. As the initial probability of the commitment type goes to

one, this bound goes to the commitment payoff.



Example

L R
T|21(0,-1
B|0,0|0,-1

In the supergame with no discounting player 1 could get any payoff between 0 and 2
in equilibrium. Suppose that player 1 may be an automaton always playing T. Then to
calculate the lower bound, the worst response to T from player 1’s point of view which
also gives player 2 his minimax payoff is for the latter to play probability 1on L and
R. This gives a lower bound to player 1 of 1 and is valid whenever the commitment
type has strictly positive probability. Let p* be the probability of the commitment type.
Then we can show that if player 2 does not discount, (p* + 1) is a stricter lower bound:
for p* small this is close to our original bound while for p* near 1 this is close to the
commitment payoff.

Our approach uses a number of ideas first established in the seminal work of Hart
(1985), who considered general two-person repeated games of one-sided incomplete in-
formation. We are also able to draw upon some results established by Shalev (1988) and
Israeli (1989) who characterised equilibrium payoffs in a specialised version of Hart’s
model which is particularly relevant here.

An outline of the paper is as follows. In Section 2 a complete information repeated
game is described; in Section 3 a description is given of a perturbed version of this
game with player 1 being a number of different types; in Section 4 necessary equilibrium
conditions derived from Hart (1985) are given; in Section 5 additional conditions derived
from commitment types are developed; Section 6 uses these conditions to provide a lower
bound on player 1’s equilibrium payoff, and a comparison is made with the results of
Schmidt (1991); Section 7 extends the results to the case where the uninformed player

discounts; the paper finishes with concluding remarks.



2 The original game

We begin with a standard complete information infinitely repeated game I’y between two
players, 1 and 2 3. Each period player 1 selects an action from his action set I and player
2 simultaneously selects an action from J. Both I and J are assumed to be finite sets.
Payoffs from the stage game are given by a pair of payoff matrices (A, B), so from actions
(4,7) player 1 receives A(z, j) and player 2 B(i, 7). Next we describe the strategies in the
repeated game, which is assumed to be a game of perfect recall. Players can observe all
previous moves. Let H;, ¢t = 1,2,..., be the set of histories h, up to but not including
stage t: H; = (I x J)!"!, and we define H, to consist of a single element.

By Kuhn’s theorem we can restrict attention to behaviour strategies. Denoting by
AL the unit simplex in R%, a behaviour strategy for player 1 is a sequence of maps
o = {04}, where oy : Hy — Al, t = 1,2,...; likewise for player 2 a behaviour strategy
isT = {r}2, where ry : H; — A7, t =1,2,.... Payoffs in the repeated game are defined
as a (Banach) limit of expected average stage game payoffs (it will be convenient to delay
formal definitions until the next section), with Nash equilibrium defined as usual. Define

feasible payoffs in [y as

Fo = co{(A(i,5), B(i,j)): i€ I, j€J},

where "co” denotes convex hull. Denote by val;(A) the value to player 1 in the game
with matrix A, and by valy(B) the value to player 2 in the game B. Then the set of
feasible individually rational payoffs is

Go = {(a,B) € Fo: a 2 valy(A), B > valy(B)}.

The "folk theorem” states that the set of Nash equilibrium payoffs coincides with Gq.
The question we investigate is whether, by allowing for some uncertainty on the part of
player 2 about player 1's true ’type’, the set of possible equilibrium payoffs for player 1
might be reduced.

3Because the analysis draws heavily on Hart (1985), notation will be kept as close as possible to the
notation of his paper.



The following notation will be needed. We start with an abuse: given u € A’ and
v € A7 we let A(u,v) = Tiesjes uivjA(i, j) be player 1’s expected payoff when mixed
stage game strategies u and v are selected. Define B(u,v) analogously. When there is
no risk of confusion we shall also write A(i,v) for Tje; v;A(i,j) (respectively B(t,v)).
We define player 1’s commitment payoff from playing u € A’ by

BR(u) = vT;I:'}’ A(u,v) subject to B(u,v) > B(u,v’) forall v'€ A,

that is, the payoff player 1 would get from commiting himself to u in the stage game on
the pessimistic assumption that player 2 plays the best response player 1 least prefers.
Let BR?(u) be the corresponding payoff to player 2 from playing a best response against
u. The Stackelberg strategy is that u (or any such u if not unique) which maximises
BR!(u), leading to player 1’s Stackelberg payoff; when attention is restricted to pure
strategies we refer to the Stackelberg pure strategy.

3 The game of incomplete information

This section introduces a game which may be considered as a perturbed version of the
original game.

In the new game player 1 may be one of a number of types, including the type
previously described, and while player 1 knows his type, player 2 does not know what type
of player 1 he is playing against (although he knows his own payoff matrix which is fixed).
Using Harsanyi’s (1967) notion of a game of incomplete information, we identify player
1 with a ’type’ k € K, where K is a countable set, and assume it is common knowledge
that a type & is selected at the beginning of the game according to a probability measure
pon K. We identify the type described in Section 2 with k = 1. (We use « to denote the
random variable and k for a particular value.) Otherwise the description of the game is
as before. We denote the new game by I'(p).

A behaviour strategy for player 1 is now a sequence o = {0:}2, where o; : Hy x K —

A, so that o(h; k) is the mixed strategy chosen at stage t by player 1 type k.



We can now define a probability space as follows. Let Ho, = I132,(I x J) be the set of
infinite histories. Define N to be the set of positive integers. For each t € N we define
H; to be the finite field generated on H,, by H; i.e. two infinite histories belong to the
same atom of H, if and only if tﬁey coincide up to stage t — 1. Let M., be the o-field
generated by all the M,’s (i.e. the cylindrical o-field on H,,). Now let @ = H,, x K,
and endow  with the o-field M., ® 2X. Strategies (¢,7) and probabilities p determine
a probability distribution P, ., on this space. Whenever confusion might arise we write
E,,7,p for expectation with respect to P, ,, and E¥ for conditional expectation given
type k.

We now turn to a description of the various types of player 1. While we want to allow
for very general types, including automata, at least some of the types may be similar to
type k = 1. We shall refer to such types as "normal” types. For each such type there is
an I x J matrix A*, and their repeated game payoffs are long-run average payoffs. To
keep notation uniform, let A' = A. Because long-run averages need not converge, we use
some Banach limit L (Dunford and Schwartz, 1988; for a discussion of Banach limits see
Myerson, 1991, ch. 7). The lower bounds we obtain will be independent of the Banach
limit chosen. The average payoff up to stage T for a normal type k of player 1 and for

player 2 is respectively

1§

G'I" = %Z;Ak(ihjt)’ (3-1)
T

br = 53 Blin). (3.2)

1

Repeated game payoffs are then respectively

a* = LIE} (a})], B = L[Eo,(Br)),

where the limits are taken with respect to the index T. Some of the other types may
be automata, by which we mean simply types k with a fixed strategy {o:(-; k)}2,. Of

particular interest will be automata playing the same pure or mixed stage-game strategy



each period independently of history. There may also be other types, for example with

discounted payoffs, but since we are only interested in necessary conditions which must

be satisfied in any Nash equilibrium, explicit description of such types is superfluous *.
If (o, 7) is a Nash equilibrium of I'(p) then for each normal type k

L[E:."(a;')] 2 LlE:',f(a;')]

for all strategies o’ of player 1, and

L[Ea,r.p(ﬂ'l')] 2 L[Ea,f’.y(ﬁr)]

for all strategies 7’ of player 2.

4 Nash equilibria of a repeated game of incomplete
information

In this section we develop certain necessary conditions on any Nash equilibrium of the
game I'(p). To do this we rely heavily on the characterization of Nash equilibria in one-
sided incomplete information games given by Hart (1985). While Hart’s analysis was
in the context of a finite number of what we have called ’normal’ types, his necessary
conditions also apply to more general games, as will be shown below.

We fix throughout this section firstly a Nash equilibrium (o, 7), and secondly some
arbitrary finite subset X C K of types, of whom the set W are normal types (payoff
matrix, zero discounting), including type 1. This is the set of types "under consider-
ation”, for whom we shall develop necessary conditions which hold in the equilibrium.
Without loss of generality index the normal types as k = 1,2,...,W, and the remain-
der as k = W +1,...,X. Let Xp denote the probability of the X types: defining
AX = {Xpe RY : TX, %p* < 1}, we have Xp € AX; define "p likewise. Let a = (a*)}L,

4That is to say, the lower bounds we obtain on payoffs arise solely from the consideration that player
2 and the normal types of player 1 optimise given the other player’s strategy.
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be equilibrium payoffs to the W normal types of player 1 under consideration, with 3
the equilibrium payoff to player 2. Finally, let M = maxiew,;{| A*(i,7) |,| B(%,7) |} be
a constant which bounds payoffs and define Ry = [—-M, +M].

The following discussion and results are derived mainly from Hart. A brief discussion
of how his proofs can be generalised to the case considered here is contained in the
Appendix. For details the reader should consult Hart (1985). For further discussion of
Hart’s method see Forges (1989), Cripps and Thomas (1991).

Split stage s into two half-stages, with player 1’s move comprising the first half-stage
and player 2’s move the second half-stage: the index now increases by halves, so s € N; =
{3,1,1},...}, the half-integers, and for s an integer, hyyy = (hayis), hosr = (hayisy o).
This generates a corresponding sequence of finite sub-fields with respect to which we
shall define a stochastic process. Define pf(h,) to be the conditional probability of the
true type x being k € X given history up to s of h,, that is, the "beliefs” of player
2 about the likelihood of type k, and let *p, = (p¥)rex. Also define f5(h,) to be the
maximum payoff type k € W can achieve given that history h, has occurred and that
player 2 will follow strategy 7 thereafter (for h, occurring with positive probability under
type k’s strategy this must equal what he gets from maintaining his strategy). For player
2 define for each s € N,

6, = L[E(ﬂ’l' I H.)], (4'1)

50 6,(h,) is the limit expected average payoff given h,. Consider the process (*p,, f,,8,) €
AX x R} x Ry. Its initial value corresponds to original beliefs and equilibrium payoffs.
Under P, ., this process is a martingale (for beliefs this is immediate; this will also be
necessary property of the limit of the means criterion). Moreover, it is a special kind
of martingale. In the first half of each period f, cannot vary. Consider type k; if A,
has positive probability under his strategy then he must be playing at s in an optimum
manner; in particular he must have f¥(h,,i,) = f*(h,) for all moves i, € I which he
takes with positive probability, and f¥(h,,1,) < f¥(h,) for zero probability moves. Since
the stochastic process evolves according to total probability summed over all types, it is

possible that one of k’s zero probability moves is selected: in this case f¥(h,,i,) can be
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*scaled up’ to f¥(h,) to maintain the martingale property; since type k thereafter must
have zero probability this causes no problems 5. Of course, %p, may well vary during the
first half-stage if different types follow different mixed strategies at s.

Likewise in the second half-stage p, cannot vary because only player 2, who is
uninformed, makes a move. In this case f, can vary. Thus the martingale process
{(*®ps, f+,6,)} has the additional property that at each s belonging to the half-integers,
either xp,ﬂ, =Xp, or f,,,,* = f, almost surely. Such a process is called a bi-martingale:
formally it is a sequence {gn}%, of AX x R}y x Ry - valued random variables such
that there exists a nondecreasing sequence of finite fields with respect to which {g,} is
a martingale and for each n either fo41 = f, a.s. or *pp41 =X p, a.s. As a bounded mar-
tingale, (*p,, fa, 8,) converges almost surely to a limiting random variable (*pco, foo,s 8c0)-
Because in the limit beliefs are no longer changing, it must be the case that all types
(which have positive probability) are following the same strategy; otherwise information
would be revealed . Such behaviour is referred to as being 'non-revealing’. These limit

points are easy enough to characterise. Define

F= co{((Ak(i7j))kEW’ B('t]) 1{€ I’ ] € J} (4'2)

to be feasible payoffs in non-revealing strategies; if all types play the same way then
payoffs must belong to this set (think of a two-person game in which player 1 receives
vector payoffs: this would be the feasible set). More explicitly, define the random variable

for each s € Nj:

¢ = L[E(ak | M), keW, (4.3)

which is the payoff type k would get after history h, if he played according to the average
strategy (across all types using the beliefs of player 2) from then on. Hart shows that

5In Hart f, is this latter process: see the Appendix for the formal definition.

6In our context this is slightly inaccurate. If K is infinite the probability of types not under con-
sideration may not have converged in the sense that uniform convergence of all probabilities is not
guaranteed. What is needed is weaker: the types under consideration with positive probability are all
playing the same as the average over all types.
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near the limit type k will lose very little by switching to the average strategy, so roughly
speaking each type plays close to the average, which means non-revealing behaviour is
approximately being followed. Define ¢, = (c¥)xew, and let co, be an a.s. limit (c, is
also a bounded martingale); Hart proves that

k >k, all kyand "peo.foo = Poo-Con  @.5. (4.4)

where "p consists of the first W elements of Xp. Moreover

(cooy 600) €EF (45)

since o, results from assuming all types play non-revealing and é,, also results from

averaging across all types. This leads to conditions (4.8) and (4.9) below.

For g € AV, let val,(A(q)) be the value to player 1 of the one-shot game with payoff
matrix A(g) = 1, ¢*A*. Define the set G as follows, where we now regard (*p, a, B) as
taking arbitrary values: it consists of all triples (*p,a,3,) with Xp € AX a € RY, B e
Ry, such that

g.a > valy(A(q)) forall ge A%, (4.6)

B 2 valy(B), (4.7)

and there exists ¢ € RY with

(c,B) € F, (4.8)

a>c and Ypa=%pc (4.9)

(where a > ¢ means a* > c* for all k € W). Conditions (4.6) and (4.7) represent in-
dividual rationality. If (4.6) does not hold, then by Blackwell’s (1956) approachability
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theorem, whatever player 2’s strategy, at least one type k can get more than a* ((4.6)
implies in particular that a* > val,(A¥), all k).

To sum up: G contains the set of possible limit points of the bi-martingale. (In Hart’s
model G’ may be thought of as the set of "non-revealing Nash equilibria”: beliefs are not
changing because all types of player 1 follow the same strategy, feasibility is satisfied, and
moreover because payoffs are individualy rational any deviation can lead to punishments
which make the deviator worse off (weakly), and so strategies can be devised to support
these payoffs as equilibria.) Knowing the limit points of the bi-martingale, the next step
is to work backwards to all possible starting points, recalling that the initial value of the
original bi-martingale is composed of initial beliefs plus equilibrium payoffs. Define G*
to be the set of all g = (%p,a,8) € AX x Rz x Rz for which there exists a bi-martingale
s = (%psy £, 8,)%2, with starting point g (so g1 = g a.s.) and converging to g € G a.s.
Then we have the following (see Appendix):

RESULT 4.1: If (a, 8) are Nash equilibrium payoffs in the game I'(p) then (*p,q,B) €
G*.

In Hart’s analysis with only a finite number of normal types, this condition is also
sufficient for (a, 8) to be equilibrium payoffs.

Our .procedure now will be to derive further restrictions on the limit set G. This will
reduce the possible set of starting positions G* of the bi-martingale, and lead to a lower
bound on the payoff to type k = 1. (At the moment in the definition of G the probabilities
of the non-normal types play no independent role.) We shall show that whenever the
probability of a commitment type k has a positive limit, p%, > 0, then (cx, 80) satisfy
further conditions, which translate into conditions on ¢ and # in addition to (4.6)-(4.9).
In particular consider the martingale {(c,,,)}sen,, and recall that c(h,) is the payoff
type k would get after h, if instead of playing his equilibrium strategy he played according
to the average strategy over all types k € K, the average being calculated conditional
on h, having occurred. In other words he uses ¥ pex pioe(he; k) instead of oy(hy; k) for
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t > s whenever h, and h, coincide up to s. Because of (4.4) and (4.5) knowledge about
limit points of {(c,,4,)} pins down the limit points of the bi-martingale {(*p,, f.,6,)}.
We shall show that whenever the probability of a commitment type k' has a positive
limit, p¥, > 0, then average play must converge to the commitment strategy. (Intuitively
if this was not the case learning about type k could not have converged.) This means
that ck for k¥ € W must correspond to the payoff type k would get from following
the commitment strategy, and 6, to a payoff player 2 gets from playing against the
commitment strategy. A further restriction on the possible values of 6, is derived from
considering the punishments which a commitment type can deliver: this leads to a
relation between 8o, and p%. These restrictions translate directly into restrictions on
(¢, B) in the definition of G. The last step of the argument will be to calculate G* from
the set G, which leads directly to the lower bound on payoffs stated in our main result,
Proposition 6.1.6.

Finally, in this section we report a result of Aumann and Hart (1986) which enables
the set G* to be derived from G by means of separation properties. This result will be
needed in Section 6.

DEFINITION 4.2: A set Z C AX x R}, x Ry is bi-convez in %p and a, if its Xp— and
a-sections are convex. The bi-convez hull of a set is the smallest bi-convex set containing
it.

DEFINITION 4.3: A function f : Y — R, where Y is bi-convex and Y C AX x RY x
Ry, is bi-convez in *p and a if f(p,.,.) is a convex function on {*%p} x R¥ x Ry NY,
and if f(.,a,.) is a convex function on AX x {a} x Ry NY for all (*p,a) € Z.
DEFINITION 4.4: Let V C Y where Y C AX x R} x Ry is bi-convex in %p and a.
Then let nscy(Y') be the set of points z € Y such that f(z) < sup f(V) for all bounded

bi-convex functions (in *p and a) f(.) on Y which are continuous on V.

A bi-convex set is therefore one which has convex sections, for example the graph of

any monotone function on the real line is a bi-convex set. A function is bi-convex if its
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restriction to any section is convex, for example a C? function h(z,y) on the plane is
bi-convex iff h,; > 0, hy, > 0. The set nscy(Y) is a generalisation of the bi-convex hull
of V: it consists of those points in Y which cannot be separated from V' by bi-convex
functions. Given the set G C AX x R¥ x Ry, Aumann and Hart establish the following

result.

RESULT 4.5: G* is the largest set Y such that nscg(Y) =Y.

5 The convergence of behaviour for player 1

In this section we shall consider the possibility each type of player 1 has to mimic the
strategy of another type. This idea is at the heart of Fudenberg and Levine's results: by
mimicking another type long enough player 1 convinces player 2 that in the next period
he will play as the type being mimicked would play. With a short-run player 2, this is
enough for the result. Here we need something stronger: player 2 needs to be convinced
that play will be according to the type being mimicked for the (infinite) future. The
argument is to suppose that player 2 attaches a positive probability in the limit to the
true type being, say, k’ (recall that beliefs converge). This can only happen if future play
becomes consistent with the strategy of k’; otherwise the belief could not be close to its
limit. If the true type is k, then were he to mimic the k’ strategy the probability of k'
will converge (almost surely) to a positive number, and k will receive a payoff associated
with the k' strategy. Since this is always an option for k, it provides a lower bound on
his equilibrium payoff 7.

Clearly the sequence of random variables pfpf’ converges almost surely. If it converges
to a positive value, then we shall show that oy(he; k) and a¢(h,; k') also converge together.
Here the Bayesian revision of the beliefs p¥,pf’ plays a role, because if the two types
continue to play different strategies then the revision of beliefs must imply that piof

will continue to vary, contrary to assumption.

7While this is the intuition behind the result, it is not the way we choose to prove it. A proof along
these lines would be more direct; nevertheless the use of Hart’s framework gives more general results
and allows us easily to analyse the other normal types case.
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In the proof below we will use some additional random variables. Given a history k,
player 2 will form beliefs about the action to be played by player 1 in period t > 5. We
will let i¢ € I denote the random variable of player 1’s action in period t and i € I to
denote a particular fixed value for this random variable. Also define the non-negative
random variable p,;, = p,i,(h,) to be the probability that action i, is taken by player 1
in period t given the past history h,, whilst the fixed value u,;(k,) gives the probability
that a given action 1 is taken in period t. Notice also E(u,;, | H,) = ¥; p#%. The random
variable p,;, (h,) is not measurable with respect to the information set H, since the actual
action 7, of player 1 is not included in M, (it is H;4; measurable). Finally, let oy;(hs; k)

denote the ith element of the vector oy(h¢; k).

Proposition 5.1: For any types k,k' € K and for all i € I and for fized s the random
variables:

Elpipt | ouilhe k) = ou(hs k) | | M)

converge almost surely to zero as t tends to infinity.

Proof. First, if {X,} is a sequence of bounded random variables converging a.s. to
X ast — oo and if {F;} is a non-decreasing sequence of o-fields and also if {W,} is
a sequence of uniformly bounded positive random variables, then the random variable
E[W;| Xy41 — X¢| |F] — 0as. ast tends to infinity. This can be proved by noting
that Z, = 2Wsup,>, | X, — X | is a supermartingale with respect to {F;}, where W is
a uniform upper bound for {W;}. It follows that Z; converges a.s. to some limit Z,,, and
since E[Z,] = 0 we have Z,, = 0 a.s. The sequence of random variables {Z,} satisfies:
Zy = 2Wsup,>t | X, — Xoo |2 Wi | Xe41 — X |; thus we have the result ®.

As the random variable pfp}’ converges a.s. for any k, ¥, the result above implies

that for any ¢ € I and k,k’ € K as t tends to infinity,

Elps, fl)z{(l’fn)z = (Pf)’} | Hs] = 0 a.s.,

8This is a minor variant of Hart, Lemma 4.24.
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E[I‘#-‘.P:Pr (P:Pf' = Pﬁ-lptk«l-l} | Ho] = 0 a.s.
Since player 2 knows the form of 1’s strategy then Bayes’ Theorem applies to the revision

of beliefs, so we can calculate E[(pf,,)? | Hi). Note: pf,pf are both measurable with

respect to the information set H,.

B |0 = SO — oy 5 PeCa
st i i€l Hii

If we include the random variable uy, in the expectation above we will therefore
get Elui(pf1)? | H) = (pF)? Tierou(he; k) and similarly Elue,pf,,pl, | He =
PEpF Ticr ui(he; k)owi(he k). If we substitute this into the above two equations and
then add the result, we get

E[Epi(pF ) {(pE1)? = ()} + pPkp¥ (o Pk — pEapba)} | M | M)
E[(pF)2 (0¥ )2 o {oui(he; k)? — pfi + pki — 0wilhe; K)o he; )} | H,)

E[(p})* (k) A oui(hes k)* = oulhe; K)ou(he k)} | Ha] = 0 a.s. (5.1)

v

Swapping the labels of k and k' we can also get

E((p})(#F) Llou(hi ¥)? = ou(hi K)ouhi )} | Hu] = 0as. i€l (52)

Adding (5.1) and (5.2) gives E[(p})*(p')? Ti{oui(he; k) — 0ui(he; k)}? | Ha] — 0 a.s. By
continuity: E[(pF)*(pF')*{owi(he, k') — ou(he, k)}? | H,)} — 0 a.s., but from Jensen's
Inequality

E[(pF)2(pF)? | ouilhe; ') — au(he; k) [P| Ha)t 2 Elpkpt | ou(he k) — 0ui(he k) || Ha).

Therefore E[pfpt | oti(he; k') — owi(he; k) | | Ha] converges almost surely to zero for all
1€l Q.E.D.
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5.1 The set of limit payoffs for player 1

In this subsection we will examine how the results in the previous section can be used to
describe the set of limiting payoffs for the types of player 1. We have shown that if type k
and type k’ both have positive probability in the limit then they must be playing identical
strategies. This implies a restriction across the payoffs of the types k and &’ because if
they are both using identical strategies not all combinations of payoffs to type k and &’
will be possible. The requirement that the limiting payoffs are contained in the set F
will embody this restriction for if both k and k¥’ can use any possible history dependent
strategy. However, we will introduce types k, or automata, which are only able to use a
single strategy; this will limit the set of possible actions of player 1 while mimicking such
a type and thus further restrict its potential payoffs. In this section we will establish
a relationship between the limiting payoffs of the types and their strategies. We will
then introduce commitment types, or automata, in the next subsection and calculate
the implied restrictions on payoffs they introduce.

Type k’s actual payoff in period t is written E[A*(is,j:) | M. where i, is the
random variable of player 1’s action. Similarly the true type x’s expected payoff
will be E[A*(it,5:) | He) = E[SepfA*(it,5:) | He) = Tk pro(k)T A*r, where su-
perscript T is used to denote the transpose of a vector and A* denotes the matrix
A¥(i,7) and we have suppressed the notation for the history argument in the strategies:
oi(k) = ou(k;he), 7o = Te(hi). We will now show that if type k' continues to have pos-
itive probability along a particular play of the game then in the player limit type k’s
payoff cf (recall definition (4.3)) could be achieved by player k employing the strategy
oy(he; k') = oy(K') of K.

Proposition 5.1.1: Let k, k' € K be given. Then the random variables

T i
Pi | LE[T Y oK) A*r | M) =<k |, p¥ | LE[T™' Y ou(K)TBr | M, -6, |
=1 t=1

converge almost surely to zero as s tends to infinity.
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Proof: From the definition (4.3) of the martingale c¥ and by the linearity of the expec-
tations operator and the Banach limit we have

Ct e LE[T-I XT: 2 P“'a((z)TAkﬁ I Hl]y

t=1z€K

80

| LE[T" i ou(K)TA*r | M) =} |=| LE[T™ ET: Y pi{olk) — o)} At | M) |

t=1 t=1z€K

Fix a value t then notice that

P | B[ pi{ouk') — ou()}T Atre | M,] |
<| B[ Apipl - pint’ + pipd HouK) — ou(2)} Arn | ML) |
S ME[| g =o' | | M)+ M Epip | oK) — () [T e | M),

where e is the vector (1,1,...,1). Since payoffs are bounded by M and payoffs up to
period s are bounded by sM we have

7
p¥' | LE[T™' Y au(k')TA*r | My - & IS L[sMT™
t=1

T T
+ MLT Y Ellp —p' | | M+ MLT™ 32 3 Elpip) | oK) — au(z) [Te | 1]

t=241 t=s+l1 T

The first term on the right obviously equals zero. The second term converges almost
surely to zero as s tends to infinity, since L[T-' LT ., E[| p¥' — p¥ | | H.]] £
supi>s | ¥ — p¥ |< 2 supys, | P, — pF' | and this converges a.s. to zero by the argument
given at the beginning of Proposition 5.1. The final term equals zero by Proposition 5.1.
This completes the proof of the convergence to zero of the first random variable. The

convergence of the second is proved by replacing A* by B in the above. Q.E.D.

We have now shown that if type k’ has positive probability in the limit, p¥ > 0, then
the sequence of payoffs for type k behaves as if it were playing the strategy of k’. This
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gives us a general result which we can use to characterize equilibrium payoffs when one
type of player 1 uses a fixed equilibrium strategy. We can now use this to calculate the

set of limiting payoffs where player k¥’ uses a particular stationary strategy .

Proposition 5.1.2: If o,(h,;k’) = 4 € Al for all s and all h, € H, which occur with
positive probability conditional on k = k', then pk, > 0 implies that (coo,6) € Fu where

Fu=co{((Al(ﬁ,j),Az(ﬁ,j),...,Aw(ﬁ,j)), B(‘_"]))J € J}

Proof: Notice that the vector ((A'(4, ), A*(%,7),...,AY(4,n), B(d,7;)) € Fy for any
stage t strategy ;. Therefore since the Banach limit of the average payoffs will also be
contained in this set ?, we have LE[T-' T ((A\(@,7), A%(&,72), - . ., A¥ (@, 72), B(@, 7)) |
H,] € F;. This together with Proposition 5.1.1 with o;(k’) = @ for all ¢t and the fact
that Fj is closed, proves the assertion. Q.E.D.

This gives us an additional restriction on the set G defined in Section 4. If k¥’ always

plays @ on the equilibrium path, then in addition to (4.8) we have the condition

p* > 0 implies that (c,B) € Fy. (5.3)

This says that if the limit probability of ¥’ is positive then limit payoffs must arise from
player 1 playing @ with player 2 playing arbitrarily.

5.2 Commitment off the equilibrium path

In this subsection we consider further restrictions on G which might arise if the automa-
ton is restricted to follow a fixed stage game strategy off the equilibrium path as well as

on it 1% Such a restriction of punishment strategies should be expected to reduce further

9See the argument used in Hart, Lemma 4.7.

10The idea of a player being somehow committed to a mized stage game strategy may seem objection-
able; such behaviour can however be equivalent to having infinite number of pure strategy commitment
types; see Fudenberg (1990), Fudenberg and Levine (1991).
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the possible set of equilibria, and this will indeed be the case. Moreover, if sequential
rationality is demanded off the equilibrium path the possibility that normal players may
choose to mimic the commitment type in a punishment phase may strengthen this latter
argument. This is one of the reasons for investigating such commitment automata: in
a number of respects a normal type with a dominant strategy does not satisfactorily
capture the notion of a commitment type. To make a normal type correspond to a
commitment type in the repeated game the payoffs in the row corresponding to the com-
mitment strategy should be equal and strictly higher than all other payoffs. Nevertheless
in a Nash equilibrium such a type is not restricted in the punishment it can pursue off
the equilibrium path. This can be true even if the notion of equilibrium is refined. Thus

in the complete information game below, playing T is a dominant strategy for player 1.

L R
T|11({13
B|0,0|0,-1

If player 1 was forced to play T in every period off the equilibrium path then it could not
prevent player 2 from attaining a payoff of 3 by simply always playing R. Nevertheless,
even if sub-game perfection is applied, the perfect folk theorem (Aumann and Shapley,
1976) states that payoffs (1,1) can arise in equilibrium . It is also true that with the
limit of the means criterion such a commitment type need not even play its commitment
strategy every period on the equilibrium path. A final reason for considering automaton
commitment types is to allow for mixed strategy commitments, which cannot be modelled
using normal types. Bounds arising from normal types including those with dominant
strategies, are considered in the next subsection.

To consider which payoffs for player 2 are individually rational when facing a possible
commitment automaton we need to consider the repeated zero-sum game I'zs(q) with

payoff matrix —B in which with probability ¢ player 1 can play any strategy (x = 1)

11This would not be the case if either payoffs were discounted or if the overtaking criterion was used:
in sub-game perfect equilibrium player 1’s strategy would specify T" after any history. See Van Damme
(1987, ch. 8).
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and with probability (1 — ¢) player 1 is a commitment automaton (x = 2) and plays
@ every period independently of history (later we shall set ¢ = 1 — p*). So with a
certain probability player 1 has his "hands tied”, but player 2 does not know the value
of k. We would expect this restriction on player 1 to raise player 2’s value whenever
the commitment strategy is not equal to the minimax strategy. Exactly how this might
happen is not immediately clear: in a one shot version of this game type 1 may be able
to choose a strategy such that player 1’s average strategy (using the weights ¢, (1 — gq))
is the minmax strategy (if the latter is mixed); in this case player 1 loses nothing. If
the game is repeated more than once then player 2 will learn about player 1 (since both
types are playing differently) and this will restrict the number of periods in which the
average strategy can be equal to the minimax strategy. In the infinitely repeated game
which is our concern here it might be expected that the asymmetric information does
not help player 1 at all: if type 1 plays differently from the automaton then he will be
found out’ eventually, and playing the same will not generally be optimal. We shall
show that the value of this game will indeed be the same as when the state & is revealed
to player 2.

More formally we consider the infinitely repeated zero-sum game with payoff matrix
—B. Player 1’s type is determined at the beginning of the game: « = 1 or 2 with
respective probabilities ¢, (¢ — 1). The realisation of  is known to player 1 but not to
player 2. Player 1’s strategy o is restricted by the condition oy(h,2) = @ all h;. We
define Br = T~ L, B(is, j:) to be player 2’s payoff up to stage 7.

To proceed we consider a transformed game I';5(q) which is defined as follows. We use
the general zero-sum model of one-sided incomplete information in which the assumption
of full monitoring is dropped (Kohlberg, 1974; Mertens, Sorin and Zamir, 1990; Aumann
and Maschler (1966) developed the original results in the full monitoring case). In other
words the moves at each stage t are no longer announced to the players; rather each
player receives an individual message whose (joint) distribution depends upon &, iy, j.
We assume that the message player 1 receives reveals the true action j; taken by player 2.
There is a message space S for player 2 which is isomorphic to I so let § = {1,2...,I}.

If x = 1 then at the end of stage t the message player 2 receives is m; = i; if £k = 2
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then m, is distributed according to @ (hence independently of i, and j;). The payoff
matrix is —B! = —B if k = 1. Let w = (1,1...,1)TeR/, and define vT = aTB
to be the row vector containing player 2’s average payoff to each of its actions if it
faces the automaton; then if x = 2 the payoff matrix is —B? = wv”. Intuitively this
new game is very close to the original game: in state x = 1 the game is the same
and in state x = 2, player 1 "appears” to play like the automaton from the point of
view of the signal received by player 2, who moreover receives for any given action j,
the average payoff at that stage which he would have got against the automaton by
playing that action. The next lemma makes this precise. By a history h} for player 2
in I';5(q) is meant ((m1, j1), (M2, J2), ..., (Me-1,je-1)) and a strategy 7’ for player 2 in
this game maps from such histories to mixed actions. Likewise a history h} for player
1is h} = ((i1,51), (42, 72)5- -+, (§t=1,Je-1)). We say a history h, in the original game is
equal to a history h¥, k = 1,2, in the transformed game if they are equal in the usual
sense. Finally let ¢; and g; be respective conditional probabilities that k = 1 after A,
and h? in T'zs(q) and I';5(q), and P, P’ be the respective probability distributions over
infinite histories induced by ¢ and the strategy combinations (¢,7) and (¢’,7’) in each
game, with E, ;. and E,, . the corresponding expectations. The next lemma asserts
that if both players follow the "same” strategies in the two games then expected payoffs

at each date are the same.

Lemma 5.2.1: Suppose that (0,7) and (o', 1') are strategy combinations in I'zs(q) and
I,5(q) respectively satisfying oy(he, 1) = oj(h},1) and 7y(hy, 1) = 7/(h},1) wheneverh, is
equal to h} and h?. Then E, 1 4[B(is, j:)] = E,» 1 o[B*(it,5e)] for all t > 1.

Proof: Consider any given history h, in the original game and the same history A} in
the transformed game. Under 7, the conditional distribution over j; will be the same in
both games. If x = 1, then h} = A} and oy(h}; 1) = a:(hs; 1) so the distribution over i, is
the same as that over my; if x = 2 this holds necessarily. Hence if P(h,, k) = P'(h?,k),
then we have P(hq, iy, ji; k) = P((ie,Ji) | hes k)P(he; k) = P'((my, 5i) | B3 k) P'(h}; k) =
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P(h?,my, ji; k) for any k, iy, j;, m¢ with i = mq. Since P(hy; k) = P'(h}; k) by induction
P(hg; k) = P'(h?; k) whenever h; and h?} are equal. This implies P(k,) = P’(h?), and
hence using Bayes rule g;(h;) = g¢}(h?) for k = 1,2, whenever h, and h? are equal and
have positive probability. Thus for each ¢t > 1

Eqy 11q[B" (i1, 3¢)] E., .. {dioi(h},1)T B' + (1 — ¢))oi(h},2)" B*}7/(h})]
Eqrql{@0e(he;1)T B + (1 — q)a" B}ri(he)]
Ey 79[ B(its jit))-

Q.E.D.
The value of the game I';¢(g) can be found by applying the results of Aumann and
Maschler (1969) and Kohlberg (1974); see also Mertens, Sorin and Zamir (1991).

Consider the one shot version of this game, and let P, be the probability distri-

w24
bution induced by a mixed strategy u* of player 1 type k, a pure strategy j of player 2,

and the initial probability ¢ of state x = 1.

DEFINITION 5.2.2: (u!,u?) € Af x Al is non-revealing at ¢ if:

for any jeJ, P, (m) > 0 implies P}, ,, ;. (k=1|m) =g, forallme S.

Yl g

Denote by NR(q) the set of non-revealing strategies at gq.

This means that player 1 plays so as not to reveal any information about his type.
The non-revealing game derived from I';5(g) is the one shot game in which player 1’s
strategy set is restricted to NR(g) - the structure of the game is otherwise the same.

Let nr(q) be the value of this game. Then

RESULT 5.2.3: The value of I[';5(q) = Cav(nr(q)) for all ¢, where Cav(nr(q)) is the

smallest concave function at least as big as nr(g).

To find NR(q) in our case is straightforward. If 0 < ¢ < 1 then the distribution of
m must be the same for k = 1,2 (Mertens, Sorin and Zamir, 1990, Lemma 3.3, Chapter
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5). Since for x = 2 this is fixed at u? = @, type £ = 1 must set u' = 4. Hence NR(q)

! = u? = 4. The value to player 2 is BR?(u), player 2’s best response

is a singleton: u
payoff in the matrix B to strategy u, hence nr(q) = —BR?*(a). If ¢ = 0, only u? matters
so the value is the same. If ¢ = 1, then NR(1) = {(u',u?) : u'eA!,u? = @} so type 1 is
unrestricted: clearly nr(1) = —valy(B). Thus Cav(nr(q)) = —q valy(B)—(1-q)BR?*()

since —valy(B) > —BR?*(u), and we have

Corollary 5.2.4: The value of ['z5(q) is —q valy(B) — (1 — ¢) BR*(1).
Hence by definition of the value, player 2 has a strategy 7' (depending on ¢) such that
T
l;.nlinfE;,.,,_'(T“ 3" B*(it,jt)) > — Cav(nr(q)) = q valo(B) + (1 — q)BR*(@) (5.4)
o0 t=1

for all o’. Thus by Lemma 5.2.1 in the game I'z5(g) player 2 has a strategy 7 - the same

as 7' - such that

liminf £, 4,o(T"" ZT; B(is, j¢)) > g vala(B) + (1 — q)BR(q), (5.5)

=1

for all strategies o of player 1 (if the inequality failed for some o, the same strategy
played in I';5(q) would lead to (5.4) failing since by the lemma the two sequences of
expected payoffs are the same). Notice that the value obtained is exactly that which
would obtain if player 2 was informed of the realization of « at the beginning of the first
period.

Returning to I'(q), we can conclude that

éu(hs) 2 (1 = p(ha))valy(B) + pf;(h,) BR? (&) (5.6)

after any h, with positive probability: otherwise changing the continuation strategy to
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7 would, by (5.5), increase player 2’s total payoffs 2. Taking limits in (5.6) implies
6o 2 (1 — pk.)valy(B) + pX, BR*(@) a.s. which leads to the additional restriction on G:

B > (1 — p*)valy(B) + p* BR* (). (5.7)

In other words the limit payoff to player 2 must satisfy a stricter condition than individual
rationality (whenever BR?(i) > valy(B)); this condition becomes tighter the higher limit
beliefs about type k are.

6 The lower bound on payoffs

In the previous two sections general necessary conditions on the stochastic process rep-
resenting beliefs and payoffs for a restricted set of types were developed. Using these
results it will be possible to derive a lower bound for equilibrium payoffs to player 1 type
1. We are particularly interested in lower bounds derived from considering just one other
type for player 1, say type k, which may be normal or otherwise. As we shall see, there
is a sense in which a single additional type, chosen appropriately, can deliver a robust
bound which cannot be improved upon.

The approach we adopt is to project the set G already considered '* onto the space
of payoffs for player 1 type 1 and beliefs about player 1 type k. It is then possible to
find a lower bound for a! given p* from consideration of this set alone. If E is a set in
RY x R x AX | then let proj E be the projection of E onto the coordinates for a! and
p*; proj E C R, x A. (Type k is considered fixed throughout the discussion.)

Consider the stochastic process {(f!, p¥)}.cn, on the same probability space and with
respect to the same sequence of fields as before. Then it is immediate from Result 4.1

that this is a bi-martingale satisfying
(fi,ph) = (a',p") as.

13Gee Hart, Proposition 4.40 for the exact details involved in this last step.

13Actually our talk of G here is loose. As we apply additional restrictions a smaller set results than
that was originally defined in Section 4. All we mean here is a set to which the limit of the bi-martingale
is known to belong. The context will make clear which exact set is being referred to.
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and if (f1,pt) is an a.s. limit of (f!,p%) then (fL,pL) € proj G a.s. Hence defining
the *-operator as before (all starting points of a bi-martingale converging to the set in

question) we can conclude that (a',p*) € (proj G)*:

Proposition 6.1: Let (a,) be equilibrium payoffs in I'(p). Then (a',p*) € (proj G)*.

6.1 Lower bound derived from a commitment type

We are at last in a position to characterize the set G and derive the lower bound on
payoffs: this is the content of our main result, Proposition 6.1.6 below. Let k be the
index of a commitment type playing mixed strategy #. Choose the set X to consist of
just type 1 and type k (so W = 1). Then applying the results of the previous section we
can describe proj G as follows: when p* = 0, a' can take on any payoff to type 1 which
is feasible and individually rational in the complete information game; when p* > 0, a!
can correspond to an individually rational payoff to player 1 when he plays @ in the stage
game and player 2 plays a possibly mixed strategy response such that he (player 2) gets
at least his value - this could be empty - and a' can also be any number greater than
this. This much follows from the restriction on G given by (5.3): - recall that this arises
from the on equilibrium path considerations. To differentiate the two restrictions we use
the notation G = G’ for the set obtained when the first restriction (5.3) is applied and
G = G” when the further restriction (5.7) is applied. Formally in the first case we have

Proposition 6.1.1: If type k has o(h, k) = @ for all h, with positive probability then
the p*-sections of proj G' are
(i) if p* = 0: {a' : there ezists B such that (a',8) € Go};

(i) if K >3 and 0 < p* < 1:{M > a' > valh(A) : there ezists veA” such that
¢ = A(@i,v) with ¢* < a' and B(i,v) > valy(B)}
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(i) if K =2 and 0 < p* < 1: {a' : there ezists veA” such that a’ = A(@,v) > valy(A)
and B(ii,v) > valy(B)} ; for p* =1 the section is as in (ii);

Proof: (i) If p* = 0 then consider any point (a!,8) € Go (feasible individually rational
payoffs in the original game) and let p' = 1. Then the triple ((1,0),a', 3) satisfics (4.6)
and (4.7) and letting ¢! = a', (4.8) and (4.9) are satisfied; (5.3) does not apply. (ii)
Consider a point a! from the section as defined with the corresponding v and ¢! and let
p' = 0. Then the triple ((0, p*), a', B(#,v)) satisfies (4.6) and (4.7) as a® > val;(A) and
B(i,v) > valy(B), (¢!, B(@,v)) = (A(&,v), B(ti,v) € F; so (4.8) and (5.3) are satisfied,
and (4.9) is satisfied. (iii) If K = 2 then 0 < p*¥ < 1 implies that p' > 0 so (4.9) requires

that a' = ¢!, hence this smaller section. Q.E.D.

Restricting G further by the off equilibrium path arguments of Section 6.2 which led
to (5.7) gives the following set.

Proposition 6.1.2: If type k is an automaton with oy(hi; k) = @ for all hy, then the

pF-sections of G" are:
(i) if p* = 0: {a' : there ezists B such that (a',3)eGo};

(it) if K > 3 and 0 < p* < 1{M > a' > valy(A) : there ezists veA’ such that
c! = A(&,v) with ¢' < a' and B(i,v) > p* BR*(@) + (1 — p*)valy(B)}.

(iii) if K =2 and 0 < p* < 1: {a' : there ezists veA? such that a' = A(@,v) > valy(A)
and B(u,v) > p* BR* (1) + (1 — p*)valy(B)};

Proof: Same as Proposition 6.1.1 with (5.7) replacing (4.7).

To find (proj G)* in both cases it is first necessary to calculate the bi-convex hull
(definition 4.2) of proj G, bi-co[proj G]. We can then show that bi-co[proj G] =
(proj G)*. To find bi-co[proj G] it is only necessary to convexify all the a'—sections.



Proposition 6.1.3: Bi-cofproj G'] and bi-cofproj G"] are found by making all

a'—sections convez; in addition

bi-co[proj G"] = proj G" U [maz{val;(A), Bl?.'(ﬁ)},(“lu.ﬁn)a.é(a° a'] x [0,1].

This is proved in the Appendix, and we present instead an example which demonstrates

geometrically the argument for G”. Consider the following original game:

Ul122|11]|0,-1]3,1
D|4-1|00(-1,-1/0,0

Both players’ values equal zero. Let K = 2 ™. Suppose that with probability p? player
1 may be a commitment type playing always U. The heavily shaded area A in Figure
1 shows the individually rational part of the convex hull of the top row. Suppose that
instead of measuring 8 on the vertical axis we measure p?, scaled so that p? = 0 at
the point f = valy(B) (equal to 0 here), and p* = 1 where 8 = BR*(U) (player 2’s
best response payoff against U, equal to 2). Then the constraint 8 > p? BR*(U) + (1 —
p*)valy(B) implies that for a given value of p* > 0, any payoff a' in the p?-section of
proj G" must arise from a point in A lying above p?, and consequently proj G” for
0 < p* < 1 is simply areas A plus B. When p? = 0 the projection of the individually
rational part of the convex hull of all payoffs (whose boundary is the dotted line) onto
the a'—axis is the line C, and at p? = 1 we get the line D. So proj G"is A+ B+C +D.
To find bi-co[proj G"] convexify the a'—sections: thus adding area E. It should be
clear that the properties of this example are general: area A clearly must be convex and
moreover the convexification of the a'—sections will only ever add points to the right of

the apex of A.

14The difference between the case K =2 and K > 3 arises from the constraint (4.9) and values of a!
and is irrelevant for the lower bound.



30

Rather than using separation arguments to find (proj G)*, we appeal to the follow-
ing lemma, proved in the Appendix using the Aumann-Hart characterization based on

separation properties.

Lemma 6.1.4: Let X and Y be compact intervals of the real line and let G be a closed,
connected bi-convez set in X x Y. Then G* = G.

Proposition 6.1.5: For both G = G' and G = G", bi-co[proj G] = (proj G)*.

Proof: It follows immediately from Propositions 6.1.1, 6.1.2 and 6.1.3 that bi-co[proj G|
is a connected set; moreover the closure of this set is bi-convex and involves at most the
addition of points in the p* = 0-section greater than those already in the set: such points
do not belong to the convex hull of proj G. By Lemma 6.1.4 (closure [bi-co[proj G]])
= closure [bi-co[proj G]]; hence (bi-co [proj G])*, which cannot contain the points of
closure, must equal bi-co[proj G]. Since bi-co[proj G] C (proj G)* C (bi — co[proj G])*
the result follows. Q.E.D.

Thus a lower bound on the equilibrium payoff of player 1 type 1 for p* > 0 is given
by the left frontier of the set bi-co[proj G]. In the example this is the left frontier of
area A for G”; notice that as p? increases the bound is increasing and converges to the
commitment payoff (two) as p* — 1, and as p* — 0 it converges to the bound from G’,
which is simply constant at the lowest value of a! in area A (one half). These properties
are easily seen to be general (the bound from G” is strictly increasing whenever it is
greater than val;(A)).

To describe the general result we define the following set of mixed stage game strate-

gies for player 2:

AY(@,p*) = {veA : B(@,v) > p* BR* (@) + (1 — p*)vala(B)},

and notice that A7(@,0) = {veA’ : B(4,v) 2 valy(B)}. We shall denote the lower bound
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derived from G’ as o/(ii), and that from G” as o”(i, p*); recall that the latter depends
upon initial belief p*. Thus using the descriptions of the p*—sections from Propositions
6.1.1(ii), (iii) and 6.1.2(ii), (iii), together with Proposition 6.1.3 we have

Proposition 6.1.6: (i) In any equilibrium in which player 1 type k has positive prob-
ability and always plays ueA’ on the equilibrium path, i.e. oy(h, k) = @ for all h,
with positive probability conditional on k = k, player 1 type 1 must receive at least
o/(@) = min,as(g0) A(&,v); (i) if in addition type k plays @ off the equilibrium path, so
ou(he, k) = @ for all hy, then type 1 must receive at least o”(i1,p*) = min,as (g pr) A(8,v).

Naturally these lower bounds may be below type 1’s value in which case the proposi-
tion has no force. Whenever the bound in part (i) is greater than type 1’s value however,
and the value can arise from a payoff in Gy, the payoff set will be discontinuous at
p* =0 (as in Figure 1). If type 1 is able to create a small amount of uncertainty about
his type, he would choose #eA’ to maximise minyeas(a,0) A(%,v): note that this need not
correspond to the Stackelberg strategy.

We are now in a position to compare our results with those of Schmidt (1991), who
extends the Fudenberg-Levine lower bound to the long-run opponent case for a class of

discounted games.

DEFINITION (Schmidt (1991): A stage game (A, B) is of conflicting interests if
there exists a Stackelberg pure strategy of player 1 (cf. Section 2) which holds player
2 to his minimax payoff, i.e. there exists i* € I with i* € argmazie;BR!(¢)'® and
BR*(i*) = valy(B).

While we consider general stage games, Schmidt restricts attention to repeated games
of conflicting interests. The other difference is that he considers the case where player ¢
discounts with discount factor u',i = 1,2,. He shows that if a commitment type playing

i* cach stage has positive initial probability then for any fixed value of 0 < ur <1,

15\Where we abuse notation again to write i for the mixed stage game strategy which puts probability
one on the ith action.
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normalised equilibrium payoffs to player 1 are bounded below by an amount converging
to the Stackelberg payoff (BR!(i*)) as p! tends to one (initial beliefs being held constant).

We get a corresponding result. For original games of conflicting interests perturbed
in the same way o’(i*) = BR!(i*): the lower bound equals the Stackelberg payoff. This
is immediate from the definition of o/(i*): note that A”’(&,0) is composed only of best
responses to :* because i* minimaxes player 2, i.e. player 2 must play a best response to
i*. (We also have o'(i*, p*) = BR!(i*) for all p* > 0).

For games not of conflicting interests, which also satisfy the condition that BR!(:*) >
val;(A)- the Stackelberg payoff gives player 1 more than his value - Schmidt shows that
as u' — 0 there will be equilibrium payoffs to player 1 in the perturbed game bounded
below the Stackelberg payoff, even when the normal type has initial probability close
to one (true for u? fixed in some neighbourhood below one). In this sense conflicting
interests is necessary and sufficient for the Fudenberg-Levine bound to extend to the
discounted case. Again a similar result is true in our no discounting case. For such
games we have even the tighter bound o”(i*,p*) < BR'(i*). To see this, first note that
by definition of val; there exists ' € J such that A(:*, ;') < val;(A) and it must be
that B(i*,j') < BR?*(:*) (otherwise B(i*,j') = BR?(:*) and so BR'(:*) < val,(A); recall
BR!(:*) arises from the least favourable best response to i* from player 1’s point of view).
Given p* < 1, consider v € A7(i*, p*) defined by putting probability A on action j* which
satisfies A(i*,j*) = BR'(i*), and (1— ) on j/, so that ABR?*(i*) + (1 —\)B(i*, j') = pk; if
this implies A < 0 then set A\ = 0. Certainly A < 1, so o”(i*) < A(i*,v) < BR'(:"). (See
Section 8 for discussion of the attainment of a”.) Despite this result one can show that
for games "close™'® to conflicting interest games, o/(:*) will be close to the Stackelberg
payoff. While the above discussion was in terms of a pure Stackelberg strategy, in fact

exactly the same arguments work for any mixed strategy @, and we have

Proposition 6.1.7: Suppose it € Al holds player 2 to his minimaz payoff, BR*(i1) =
valy(B), then o/(7) = o'(a,p*) = BR'(u) (for p* > 0). If BR*(#) > valy(B) and

18]n the following sense: if i* holds player 2 close to valy(B) and the latter has no other response j
to i* with B(i*, j) close to val;(B) and A(i*,j) < BR'(i*).
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BR'(1) > valy(A) then for all 0 < p* < 1,a"(4,p*) < BR'(4).

Finally we briefly discuss the tightness of our bound for the case of type k, an automa-
ton, playing a pure action i* on and off the equilibrium path, with 0 < p* < 1. Consider
V" € argmin, ea(ie o) A(E%, v), 50 A(2, v) is the lower bound on type 1’s payoffs, and for
simplicity we shall consider only the case where A(i*,v*) > val;(A) (otherwise the bound
has no impact). Then there is a game with this automaton with probability 0 < <l
such that A(i*,v*) is a Nash equilibrium payoff to type 1. To see this, let type 1 be
the only other type, so p! = 1 — p*; both types play i* on the equilibrium path (so
long as player 2 has not deviated) and player 2 plays a pure strategy with frequencies
corresponding to v* so long as player 1 has not deviated from :*. If player 2 deviates
first, then player 1 type 1 minimaxes player 2 for ever, while if player 1 deviates first
then player 2 minimaxes type 1 for ever. Because v* € A(i*, p*), it cannot pay player 2
to deviate since player 1’s strategy holds player 2 down to p* BR?(i*) + (1 — p*)valy(B)
(player 2 could not achieve a higher payoff even if the true type was revealed before the
punishment started), and likewise player 1 will not wish to deviate. Hence our bound is

attained.

6.2 Lower bound derived from normal types

In this subsection lower bounds arising from the possibility that player 1 might be another
normal type will be considered. A simple characterization of equilibrium payoffs in the
Hart model when player 2 is aware of his own payoff matrix - the case we are interested in -
has been given by Shalev (1988). Given the arguments of Section 4, this characterization
can be used in the case where there are also arbitrary types present.

Let the set of types under consideration be X = W, a finite set of normal types.
Then the set G* is precisely the set characterised by Shalev: (a, 8, *p)eG* if and only if
there exist W probability distributions 7*¢A™7 for keW (where rf; is the probability of
playing (i, 7)) with &, ; 75 A% (3, 7) = a*, keW, Teew p* Ti; xk;B(i,7) = B, and satisfying
individual rationality (i.e. (4.6) and (4.7)) and ¥;; 75 A*(4,5) > ¥ r,"j’A"(i,j) for all

k, k'eW. This relatively simple characterization arises because it is possible to show that
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all equilibrium payoffs can be achieved through completely revealing strategies 7: each
type k of player 1 is content to reveal his true type and play the complete information
game with frequencies 7*. Of more interest here is the following result which gives the
highest possible lower bound arising from normal types: only one other type is needed
- perhaps surprisingly in view of the individual rationality condition (4.6) which links
together all normal types.

RESULT 6.2.1: (Shalev (1988), Israeli (1989)): For X = W,p* > 0 for all keW, the
projection of the *p—section of G* onto the (a!, ) coordinates is of the form {(a?, 8)eFy :
a' > a, > valy(B)} where the lower bound « depends only on (A*),.w and B. The

greatest value a® of « is achieved when W = 2 and A? = —B; then

Pi= in A(u,v). 6.1
& Eg’l(ug}l(ﬁ.o) (u U) ( )

In other words type 1 would most like player 2 to believe that he might have objective
diametrically opposed to those of player 2: i.e. that he wants to minimise player 2’s

payoff ((A?, B) would be a zero sum game). By Result 4.1 we have immediately:

Corollary 6.2.2: If k = 2 is a normal type with A> = —B and 0 < p? < 1, then player

1 type 1 must receive at least o in equilibrium.

What is particularly interesting about this result is that a* is exactly the same bound
o’(@) that is achieved from choosing optimally a commitment strategy type (ignoring the
tighter bound attained from off equilibrium path considerations). Consequently if such
a commitment type exists with positive probability, not only is the lower bound robust
with respect to the existence of any other type in the sense that it cannot be weakened,

but bounds arising from other normal types cannot exceed this bound.

17This is not true of equilibria which attain the lower bound in the commitment automata case.
Whenever the lower bound has some bite we have a”(@,1) > o”/(i, p*) for p* < 1; if the equilibrium
which attains the bound involved complete revelation then in the event that the type is revealed to be
the commitment type, player 2 must play a best response. Type 1 could, by mimicking the commitment
type, achieve the payoff a”/(ii, 1), which is greater than the equilibrium payoff a’(, p*).
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7 The lower bound when the uninformed player
discounts

In this section we look at a lower bound on payoffs when player 2 discounts his payoffs.
Intuitively this change in the model should not reduce the bound. The option player 1
type 1 has to mimic a commitment type still exists, and the results on the convergence
of player 1’s play to the commitment strategy still hold. We shall show that in the
limit player 2’s average behaviour would satisfy the same conditions as before, and so
our lower bound on type 1’s payoffs is still valid. The key idea here is to show that if
player 2's payoff sequence is individually rational when he discounts, it will also be so if
the same payoff sequence is evaluated according to the limit of the means criterion. Of
course for low discount factors the best lower bound may be much higher as the model
would be approaching that of the short-run opponents case considered by Fudenberg and
Levine.

Let 4 be player 2’s discount factor, 0 < s < 1, so that normalised payoffs are § =
E[(1 — p) T2, pt~'B(it, j:) | Ha]'®. Define 6, to be the random variable representing
expected payoffs discounted to date s after history &, : 8, = E[(1—p) 2, p#*~* B(it, ji) |
M,). If h, occurs with positive probability then in Nash equilibrium we must have 6, >
valy(B); otherwise player 2 has a strategy after h, with a payoff against o of at least
valy(B) and changing to this strategy will increase his initial payoff. Using this fact we
can show that the random variable §,, as defined earlier in (4.1), has exactly the same
properties as before.

We have, for each t, 8, = E[(1 — p)B(it, ji) + pbi41 | Hi]. Fix s, and let t > s. Taking
expectations conditional on H,, E[6; | H,) = E[(1—p)B(i, j¢) +#8i41 | M,] which implies
that E[B(is, ji) | Ha) = (1— )~ (E[8; | Ha) — pE[8i41 | H,)). Using this in the definition
of fr(3.2),

T
BlBr | M) = ey =y (B0 | 7l + 30~ W) B0 | o] = uElfran | ),

18Gtrategies o and 7 and the probability space are defined as before.
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valy(B) a.s.;thus

and because 0; > valy(B) after h, with positive probability, we have E[6, | H,] >

E[ﬂ‘l‘ | H,] > (T = 1)7(121—-11‘2'))412(3) - T(l"_ ”)E[0T+l l.H.] &
so that
8, = LE[fr | H.] > liminf E[8, | 1] 2 valy(B) a.s. (1.1)

using the property that the Banach limit is at least as big as liminf. Next, notice that
&, is a martingale as before: this property depends only on the fact that it is a long-run
average and not on any optimality properties of player 2’s strategies (Hart, Proposition
4.17). Hence it has an a.s. limit 6. and taking the limit in (7.1) we conclude that
80 > valy(B) a.s. Also {(*ps, fs,85)}seN, is a bi-martingale, exactly as before.

Finally (oo, 8c0)€F a.s. as before as this depends only on the fact that, for every T,
((a%)kew , Br)eF (Hart, Proposition 4.20).

These results imply that the set G’ is defined exactly as before, and likewise the set
(G')". The interpretation of (*p,a,8) € (G')" is however different. If (o,7) is a Nash
equilibrium with initial beliefs p then the equilibrium payoffs a to the W normal types
of player 1 and the payoff 8 player 2 would receive (under o, 7) if he used the limit of the
means criterion must satisfy (*p,a,3) € (G')*. Of course player 2’s actual discounted
payoff will in general be different. Nevertheless since we are only interested in player 1’s
payoff, this is of no consequence. Projecting onto the space (a',p*) leads to precisely
the same set as before. Consequently the lower bound /(i) characterised in Proposition
6.1.6(i) is still valid.

Oddly enough, although in general a tighter bound is to be anticipated in the case
with discounting, the tighter bound arising from the off-equilibrium path punishments
by an automaton discussed in Section 5.2 cannot be shown to apply here. The reason for

this is that as player 2 discounts the future more heavily the informational advantage of
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player 1 will tend to increase and hence the potential punishment may be greater, and

a bigger punishment allows more equilibria.

8 Concluding comments

In this paper we have considered the extent to which a player can guarantee himself a
certain level of payoffs by exploiting reputation effects when he is playing against a long-
run opponent. Even a small amount of uncertainty on the part of the opponent about
the player’s type can lead to a large reduction in the set of possible equilibrium payoffs.
Moreover the lower bound we derive is robust to the existence of other possible types.
Nevertheless a number of questions remain open. The exact relationship of the results
of this paper to the case where both players discount is not known. We do not know
whether there exist other, non-commitment types which can improve upon our bound.

Nor do we yet have general results when there is two-sided incomplete information.

A. Appendix to Section 4

The purpose of this appendix is to briefly indicate how to extend the necessary condition
derived in Hart (1985; Section 4) to the case where there is an arbitrary countable set of
types. Because Hart derives necessary conditions on the processes representing beliefs
and payoffs associated with any equilibrium, it is only required to show that additional
types of player 1 do not affect these necessary conditions. The probability space is as
in Hart, and beliefs {p’}, satisfy the conditions given by Hart, Proposition 4.12. Next,

define an average payoff to player 1 equal to the actual payoff if x € W or zero otherwise:

{ %ZLI A*(ie5e) ifxeW
ar =

0 otherwise,

(in Hart K = W; our definition of ar differs by assigning 0 " payoffs” to all types outside
W). Notice that ar is (Hr41 ®2K) - measurable. For each s € N; define the martingale
v, = L[E(ar | M,)]. The proof of Hart’s Proposition 4.23 that (v, —%p,c,) — 0 as.

can be essentially repeated with the difference that where he sums over all k € K, we
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need to sum over only k € W. Again this implies 7o =" poocoo (Hart, Corrollary 4.25),
where 7, is an a.s. limit of 4,. The definitions and properties of the random variables
{€*}s, {f¥}, are the same but now only defined for k € W : e = sup, L[E%,  (a% | H,)],

and to define f* let 0 < z\:'_% <1 satisfy M —ef = AL_;)(M - e:‘+§) for all t € N. Then

ff=M- (H Afﬂ) (M —eb)
%

This leads to Hart, Proposition 4.31 that fo > cw and "o foo = Yoo =" PooCoo 2.5.
For player 2’s payoffs simplication is possible because we assume state independence;
there is no need to define b% and d* : §, is the only random variable needed and Hart
(4.22) becomes (¢o,6x) € F a.s. Individual rationality conditions, being necessary
conditions, must hold for any subset of normal types: if there exists ¢ € A" with
vali(A(g)) > Trew g*€¥(hs) then this contradicts the definition e* for at least one k;
likewise for player 2. This leads to Hart, Proposition 4.43 and the characterization of G
given in Section 4 together with Result 4.1.

B. Proof of Proposition 6.1.3

We deal with the more difficult case G”; the case G’ is similar. Assume first that
K = 2. Note that for 0 < p* < 1,projG" is convex: given (a',p*),(a',p*) € projG”,0 <
p*,p* < 1, we have by definition a' = A(#,v),a' = A(@,v) with v, satisfying the
conditions given in Proposition 6.1.2.(ii). Then for any A\,0 < A < 1, there exists
v* € A7 with A(@,v*) = Aa' + (1 — A)a' (let v* = Av + (1 — A)d), and we have
A(@,v") > val(A'), B(@,v*) = AB(@,v) + (1 — \)B(@,9) > (M + (1 — \)p*)BR3 (@) +
(A(1=p*)+(1=A)(1=5*))valz( B); hence (Aa'+(1—A)a!, Apk +(1—A)p*) € projG”. Next
consider the a!-sections of projG” for val;(A) < a' < BR'(@) (this can be empty). If for
p* > 0 there is no (a!,p*) € projG” then the section is just {(a',0)} which is of course
convex; otherwise it is the convex set {(a!,p*) : 0 < p* < max,{B(&,v) : A(i,v) =
a'}}. For max{val;(A), BR' (&)} < a' < max( g)ec, @', (a',0) and (a',1) belong to
projG"; hence bi-co[G"”] must contain all (a*,p*),0 < p* < 1. For (max(: g)eq, a') <
a' < M,projG” contains only (a',1), which again is convex. So taking the union with

[max{val;(A), BR' (@)}, max( g)eq, a'] X [0,1], we have all a'-sections convex. Now
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consider the p*-sections. By the fact that projG” is convex for 0 < p* < 1, we have all p*-
sections of projG” convex; additionally {( BR!(#),p*) : 0 < p* < 1} C projG" whenever
BR! () > valy(A) and hence the union also has convex p*-sections (if BR! () < val,(A)
then it is immediate). We conclude that the set described is the smallest bi-convex set
containing projG”. When K > 3, for 0 < p* < 1, the p*-sections contain additionally
all values of a! < M greater than those in the p*-sections in the K = 2 case. The
proposition clearly holds in this case: indeed G” is bi-convex. Q.E.D.

C. Proof of Lemma 6.1.4

Suppose contrary to the assertion that G* # G, so there exists an (z*,y*) € G* — G.
First note that (z*,y*) cannot be a boundary point of X x ) in R? since G* is a subset
of the convex hull of G and this would imply immediately that (z*,y*) € G. The point
(z*,y*) has the property that there exists no continuous bounded bi-convex function f
on A’ x Y such that f(z*,y*) > sup{f(z,y) : (z,y) € G}, which implies that there exist
points {(z*,y*)}&, € G, not necessarily distinct, with z' > z*,y' > y*;2? > z°,y* <
vz < 2%,y < y42t < z%,y* > y°. Suppose this were not the case, for example
assume no such (z',y") exists. Then define € > 0 such that there is also no (z,y) € G
with (z,y) > (z* — €,y* — €), which is possible as G is compact. Define the piecewise

bi-affine function f:

(z—z*+€)(y—y"+e¢) ifr>z"—cory>y" —e¢
f(z,y) = .

otherwise

and hence for any bi-convex B C X x Y such that G C B, f is bounded, bi-convex
and continuous on G and separates (z*,y*) from G so (z*,y*) € nscg(B) for any such
B; consequently (z*,y*) ¢ G* contrary to assumption. Likewise for the other 3 points.
Next, consider (z!,y') and (z°,y°). Suppose that G contains no point (z,y) with z = z*
and y > y* nor a point with z > z* and y = y*. Then GN R} and GN(R? - R},) are
non-empty disjoint closed sets which partition G, contrary to the assumption that G is
connected, so at least one such point must exist. Repeating the argument in the negative

orthant shows there exists a point in G with either z = z* and y < y* or with z < z*
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and y = y*. Because (z*,y") does not belong to the bi-convex hull of these two points,
we conclude that there exists (2°,y°), (2%, y®) € G such that either (i) z° = z*,y° > y°
and z8 < z*,y® = y*, or (ii) z° = z*,y°® < y* and z° > z*,y® = y*. By a symmetric
argument for (z2,y?) and (z*,y*) there exists (z7,y7), (z%,3®) € G such that either (iii)
z7 =z%y" > y* and 28 > z°,y® = y*, or (iv) 27 = z*,y7 < y* and 28 < z*,38 = y".
Whichever combination of cases (i) and (ii) with (iii) and (iv) occurs, (z*,y*) belongs to

the bi-convex hull of the two points, contradicting the original assumption. Q.E.D.
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