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Abstract

Two-pereon repeated games aze conaidered in which there ie uncertainty about

the type of one of the players. If there is a possibility that this player is an

automaton committed to a pazticulaz pure or mixed etage game action, then thie

provides a lower bound on the equilibrinm payoffa to a normal type of this player

asauming no discounting. The lower bound ia generally lower than that obtained by

Fudenberg and Levine (1989) in the case ot ahort run opponenta. If the sutomaton

is committed off the equilibrium path as well as on it, a better bound is obtained.

The results are proved for the case of no diecounting and extended to the case

where the unintormed player diacounta.

'An earlier vereion of these reaulte wae pre~ented at the Euwpean Univereity lnstitute Learning

Workxhop, July 1991. The xecnnJ author ie grateful W CentER for its haxpitality and financial eupport,
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Suehiro for helpful diecuneione and participsnte at xminars at Tilburg, CORE, Bona, Dortmund and
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1 Introduction

"Reputation effecta" arise when a player in s dynamic game ia able to exploit some

uncertainty that the other players have coacerning his preferences. There may be some

probability that the player is of a type who would play in a particular way independently

oí the strategies of the other players; if however the player is not of this type, he might

nevertheless wish he could commit himself to playing in this way. Even if the initial

probability of this type is very small, by mimicking the etrategy of thia type, the player

can build up a"reputation" for following thia attategy. In thia paper we shall conaider

introducing uncertainty about the type of one of the playera in a general two-person

supergame. The existence of auch uncertainty will generally lead to a lower bound on

the payoff of this player in any Nash equilibrium.

The idea that reputation effecta may be important in determining the set of equilibria

of a repeated game has received much attention since the early work of Kreps and Wilson

(1982) and Milgrom and Roberts (1982), who formalized the concept in the context of

the chain-store paradox. While thia work did not involve two long-run playera, the

paper of Kreps, Wilson, Milgrom and Roberta (1982) conaidered the finitely repeated

prisoner's dilemma, and ahowed that if there was even a small probability that one of

the players might be an automaton playing a tit-for-tat strategy then cooperation is

sustainable for a large part of the game. While this result is extremely suggestive, it

turned out that the precise form of perturbation is critical. Fudenberg and Maskin

(1986) showed that in finitely repeated gamea any feasible individualiy rational outcome

can be approximately supported as an equilibtium if the game is perturbed by a small

probability of appropriately chosen types; moreover this equilibrium is robuat (when

thc timc horizon is fixed) Lo furthcr arbitrary small pcrturbations. Aumanu aud Soriu

(1989) argue strongly that perturbations should not be specific; a wide variety of possible

types should be allowed for, and the desired result would have a particular type - for

example the tit-for-tat type - being selected endogenously from among the range of

possible types as the one which determines the equilibrium outcome. In their paper, in

a class of two-person games they call "common interest", where one payoff pair strongly
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Pareto dominates all othera, they ahow that if each player might be an automaton with

bounded recall, and the set of possible types of sutomaton ia sufficiently rich, then any

pure atrategy equilibrium payoffa muat be close to the Pareto dominating pair.

Of more relevance to the current paper ia the work of Fudenberg and Levine (1989),

who considered games where a single long-run player faces a sequence of ahort-lived

(one períod) opponents, each of whom can obaerve and condition on all past history of

moves. If there is positive prior probability that the long-run player may be of a type

who ia committed to playing the Stackelberg strategy, t then the equilibrium payoff of

the long-run player will be bounded below by an amount converging, as his discount

factor convetges to one, to the payoff he would get from publicly committing to the

Stackelberg strategy. The idea of the proof is to show that the normal type, by mimicking

the Stackelberg strategy type, can convince the short-run opponents that he will play

the Stackelberg strategy in the following period. In particular it is shown that the

short-run players will believe it unlikely that the Stackelberg strategy is played in only

(at moat) a limited number of periods, where this number is independent of the long-

run player'e discount factor. Because the opponent lives for only one period, he will

alwaya play a best response to the anticipated action, which most of the time will be

the Stackelberg strategy, and consequently the long-run player can get very cloae to

his Stackelberg payoff. Since thia is always an option, he cannot receive less than this

amount in equilibrium. In Fudenberg and Levine (1991) this result is extended to the

case where the long-run player's action is imperfectly observable: this includes the case

where he can build up a reputation for adhering to a mixed stage garne strategy; an upper

bound ia also provided which fot many games converges to the lower bound. What is

particularly appealing about these results is their generality: the Stackelberg type need

only have small prior probability, and the addition of arbitrary further types with any

probability cannot reduce the bound. See Fudenberg (1990) for a general survey of the

reputation literature.

In the current paper we want to see to what extent the same kind of argument can be

rIkfined here as the action that the normal type of the player would moat like to commit to in
the etage game on the assumption that the opponent plays the least favourable beat responae Crom the
long-run player's point of view.
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applied when the opponent is a single long-lived player. The problem is, of course, that

with a long-run opponent, even if he becomea convinced that the Stackelberg strategy

will be played next period, he need not play a beat reaponae aince the ahort run gain

from doing so might be more than offaet by a reduction in future payoffs. Thie queation

has already been investigated for a clasa of gamea by Schmidt (1991) ~. He defines a two-

person game to be of rconflicting intereata" if the Stackelberg pure atrategy of player

I hulds player `2 down to his minimax payoff. Then suppose that player 1 may be a

Stackelberg type with some positive probability, which is óeld fixed; and fix player 2's

discount factor at any value below one. As player 1's diacount factor converges to one,

his Nash equilibrium payoffs will be bounded below by an amount converging to what

he could get by publicly committing to the Stackelberg strategy.

In this paper we shall consider general two-person supergames between an "original"

type of player 1 and a player 2. Player 1 is assumed to evaluate payoffa according to

the limit of the means criterion, while player 2 may be similar or may discount payoffs.

We consider perturbed versions of this game where player 1 may be one of a number

of dil[erent types, including an automaton "commitment" type which plays the same

stage game strategy, the "commitment strategy", pure or mixed, every period. Player

2 is unaware of the type of player 1, but knowa his own payoff matrix. We obtain a

lower bound on the average Nash equilibrium payoffs to the original type of player 1.

This bound is easily described. Consider in the stage game the original type of player 1

playing the commitment strategy, and player 2 playing a possibly mixed response which

minimises player 1's payoff subject to player 2 getting at least his minimax payoff; this

is the lower bow~d. It depends only on this commitmcut typc having positive iuitial

probability, and is independent of any other types which might have positive probability.

Of course different commitment types will provide different lower bounds: the maximum

of these is therefore itself a lower bound. Whenever the lower bound is above the lowest

feasible individually rational payoffs to player 1 we have the result that even the smallest

perturbation in the information sttucture of the supergame can lead to a large reduction

~We originally obtained our results independently of thie paper, though the current version of our
paper has benefitted tonaiderably from our reading of Schmidt's paper.
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in the aet of equilibria.

The difference between the lower bound we obtain and the Fudenberg-Levine bound

ia that we no longer have player 2 playing s beat reaponae to the commitment atrategy,

but rather any reaponse which is individually rational for him. Thia of courae generally

lowers the payoff playet 1 can guarantee for himself. The reason for this is roughly as

followa: playing the commitment etrategy for long enough will convince player 2 that

on the equilibrium path the commitment strategy will continue to be played. However

tóis is not enough to elicit a best response from player 2 along this path since he does

not neceasarily learn about player 1's off equilibrium path behaoiour. playing a best

response may lead to a punishment involving player 2 being held to his minimax payoff,

and consequently on the equilibrium path we cannot rule out any response which gives

player 2 an individually rational payoff. In games of "conflicting interests" we get a

corresponding result to that of Schmidt (1991): since the only individually rational

responses to the commitment strategy are also beat responses, the bound equals the

payoff obtained from publicly committing to the strategy in question (the "commitment

payoff).

A somewhat tighter bound may be derived if the initial probability of the commitment

type is non-negligible and player 2 also uses the limit of the means criterion. This raises

the worst punishment that can be applied to playet 2 since with a certain probability

player 1 will continue playing the commitment strategy even after a deviation by player

2, and if the latter is aufficiently patient he will be able to learn if he is facing the

commitment type during the punishment phase and take advantage of this to increase

his p~miahment payoff. in thia case the definition of the lower bound is as befom except

player 2 must play a response to the commitment strategy which gives him at Icast Lhis

higher punishment payoff. As the initial probability of the commitment type goes to

one, this bound goes to the commitment payoff.
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Example

T
B

L R
2,1
0,0

0,-1

0; 1

In the supergame with no discounting player 1 wuld get any payoff between 0 and 2

in equilibrium. Suppose that player 1 may be an automaton always playing T. Then to

calculate the lower bound, the worst response to T from player 1's point of view which

also gives player 2 óis minimax payoff is for the latter to play probability z on L and

R. This gives a lower bound to player 1 of 1 and is valid whenever the commitment

type has atrictly positive probability. Let p4 be the probability of the commitment type.

7'heu we can show that ií player 'l does ~wt discouut, (~` f 1) ia a atricter lower bound:

for pk small this is close to our original bound while for pk near 1 thia is close to the

commitment payoff.

Our approach uses a number of ideas firat established in the seminal work of Hart

(1985), who considered general two-person repeated games of one-sided incomplete in-

formation. We are also able to draw upon some results established by Shalev ( 1988) and

Israeli ( 1989) who characterised equilibrium payoffs in a specialised version of Hart's

model which is particularly relevant here.

An outline of the paper is as follows. In Section 2 a complete information repeated

game is described; in Section 3 a description is given of a perturbed version of this

game with player 1 being a number of different types; in Section 4 necessary equilibrium

conditions derived from Hart (1985) are given; in Section 5 additional conditions derived

from commitment types are developed; Section 6 uses these conditions to provide a lower

bound on player 1's equilibrium payoff, and a comparison is made with the results of

Schmidt (1991); Section 7 extends the results to the case where the uninformed player

discounts; the paper finishes with concluding remarks.
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2 The original game

We begin witó a standard complete information infinitely repeated game I'o between two

players, 1 and 2 3. Each period player 1 selects an action from his action set I and player

2 simultaneoualy selects an action from J. Botó I and J are assumed to be finite sets.

Payoffs from the stage game are given by a pair ofpayoff matrices ( A, B), so from actions

(i, j) player 1 receives A(i, j) and player 2 B(i, j). Next we describe the strategies in the

repeated game, which is assumed to be a game of perfect recall. Players can observe all

previous moves. Let Hi, t- 1, 2, ..., be the set of hiatories hi up to but not including

atage t: Hi -(I x J)''1, and we define Hl to consist of a single element.

By Kuhn's theorem we can restrict attention to behaviour atrategies. Denoting by

OL the unit simplex in RL, a behaviour strategy for player 1 is a sequence of maps

o-{oi}~r where ai : Hi -~ ~~, t- 1,2,...; likewise for player 2 a behaviour strategy

is r- {r~}~ 1 where ri : Hi -. OJ, t- 1, 2, .. .. Payoffs in the repeated game are defined

as a(Banach) limit of expected average stage game payoffs ( it will be convenient to delay

formal definitions until the next section), with Nash equilibrium defined as usual. Define

feasible payoffs in I'o as

Fo - co{(A(i, j), B(i, j)) : i E I, j E J},

where nco„ denotes convex hull. Denote by vall(A) the value to player 1 in the game

with matrix A, and by val~(B) the value to player 2 in the game B. Then the set of

feasióle indivídually rationa! payoffs is

Go -{(~, Q) E Fo : a 1 vah(A), Q? vah(B)}.

The "folk theorem" states that the set of Nash equilibrium payoffs coincides with Go.

The question we itivestigate is whether, by allowing for some uncettainty on the part of

player 2 about player 1's true 'type', the set of possible equilibrium payoffs tor player 1

might be reduced.

,Becauee the analysie draws heavily on Hart (1985), notation will be kept ae cloae as possible to the
notation of hia paper.
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Tbe following notation will be needed. We atart with an abuse: given u E Or and

v E 0~ we let A(u,v) -~;E~,jE~u~ujA(i, j) be player 1's expected payoff when mixed

atage game strategiea u and v are aelected. Define B(u, v) analogoualy. When there ia

no risk of confuaion we shall also write A(i, v) for ~jE~ vjA(i, j) (reapectively B(i, v)).

We define player 1's commitment payoBfrom playing u E t1f by

BRl(u) - min A(u,v) subject to B(u,v) 1 B(u,v') for all v' E OJ,
vEO~

that is, the payoff player 1 would get from commiting himself to u in the stage game on

the pessimiatic assumption that player 2 plays the best response player 1 least prefera.

Let BR~(u) be the corresponding payoff to player 2 from playing a best reaponae againat

u. The StackeJbeng strategy is that u(or any auch u if not unique) which maximisea

BR'(u), leading to player 1's Stackelberg payo~ when attention is reatricted to pure

strategies we refer to the Stackelóerg pure strategy.

3 The game of incomplete information

This section introducea a game which may be considered as a perturbed veraion of the

original game.

In the new game player 1 may be one of a number of types, including the type

previoualy described, and while player 1 knows hia type, player 2 does not know what type

of player l he is playing against (although he knows his own payoff matrix which is fixed).

Using Harsanyi's (1967) notiou of a game of incomplete iu[onnatiou, we identify player

1 with a'type' k E K, where K is a countable aet, and assume it is common knowledge

that a type rc is selected at the beginning of the game according to a probability measure

p on K. We identify the type described in Section 2 with k- 1. (We use K to denote the

random variable and k for a particular value.) Otherwiae the description of the game is

as before. We denote the new game by I'(p).

A behaviour atrategy for player 1 is now a sequence o- {o~}~ 1 where oi : Hi x K-~

0~, so that a~(hi; k) is the mixed strategy choaen at stage t by player 1 type k.
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We can now define a probability space as follows. Let H,o - II~1(I x J) be the set of

infinite hiatories. Define N to be the set of poaitive integers. Fot each t E N we define

9-[t to be the finite field generated on H~ by Ht i.e. two infinite historiea belong to the

same atom of ~tlt if and only if they coincide up to atage f- 1. Let ?(,o be the o-field

generated by all the ~-(t's (i.e. the cylindrical a-field on Ho,). Now let S2 - H~ x K,

and endow f2 with the u-field 9-(„ ~ 2X. Strategies (o, r) and probabilities p determine

a probability distribution P,,,~y on this apace. Whenever confuaion might arise we write

E,,,,D for expectation with respect to P,,,,y, and E;,, for conditional expectation given

type k.

We now turn to a description of the various types ofplayer 1. While we want to allow

for very gencral types, iucluding automata, at least somc of the types may be similar to

type k- 1. We sliall refer to such types as "normal~ types. For each such type there is

an I x J matrix Ak, and their repeated game payoffs are long-run average payoffs. To

keep notation uniform, let A~ - A. Because long-run averages need not converge, we use

some Banach limit L(Dunford and Schwartz, 1988; for a discussion of Banach limits see

Myerson, 1991, ch. 7). The lower bounds we obtain will be independent of the Banach

limit chosen. Thc avc~ragc payo(I' up Lo stage T for a norntal typc k of player 1 and for

player 2 is respectively

T
az - 7, ~ Ak(:e,.lt),

e-1

1 T
~T - ~B(et,Jt).

T t-,

Repeated game payoffs are then respectively

ak - LIEó.r(aT)~, Q - LIEo.,.n(~r)~,

where the limits are taken with respect to the index T. Some of the other types may
be automata, by which we mean simply types k with a fixed strategy {o:(-; k)}~~. Of
particular interest will be automata playing the same pure or mixed stage-game strategy
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each period independently of hiatory. There may also be other typea, for example witó

discounted payofl's, but since we are only interested in necessary conditiona which must

be satiafied in any Nash equilibrium, explicit deacription of auch typea is auperfluoue '.

If (o, r) ia a Nash equilibrium of I'(p) then for eacó normal type k

LIEo.,(aT)1 ? LIEo~.,(aT)]

for all strategies d of player 1, and

LIEe.,.P(QT)1 ? LIEo,r'.n(~r)1

for all strategies r' of player 2.

4 Nash equilibria of a repeated game of incomplete

information

In thia section we develop certain necessary conditions on any Nash equilibrium of the

game I'(p). To do this we rely heavily on the characterization of Nash equilibria in one-

sided incomplete information gamea given by Hart ( 1985). While Hart's analysis was

in the context of a finite number of what we have called 'normal' types, his necessary

conditions also apply to more general gamea, as will be shown below.

We fix throughout thia section firstly a Nash equilibrium (o, r), and secondly some

arbitrary finite aubaet X C K of types, of whom the set W are normal typea (payoff

matrix, zero discounting), including type 1. This is the set of types "under consider-

ation~, for whom we shall develop necessary conditions which hold in the equilibrium.

Without losa of generality index the normal types as k- 1, 2, ..., W, and the remain-

der as k- W f 1,...,X. Let xp denote the probability of the X typea: defming

ÓX -{X p E Rt :~k t Xpr` C 1}, we have X p E OX; define Wp likewise. Let a- (ak)k r

~That ia to say, the lower bounda we obtain on payoffe ariee solely from the cooaideration that player
2 and the nomtal typea of player 1 optimiee given the other player'e etrateóY.
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be equilibrium payoffs to the W normal typea of player 1 under consideration, with Q

the equilibrium payoff to player 2. Finally, let M - rna.xkEw,;~{[ Ak(t,~) ~, ~ B(i, j) ~} be

a constant which bounds payoffa and define RM - [-M, fM].

'1'hc following discussiou and reaults are derived mainly from Hart. A bricf discussion

of how his proofs can be generalised to the case conaidered here is contained in the

Appendix. For details the reader should consult Hart (1985). For further discussion of

Hart's method see Forges (1989), Cripps and Thomas (1991).

Split stage s into two half-stages, with player 1's move comprising the firat half-stage

and player 2's move the second half-stage: the index now increases by halves, so s E Nz -

{~,l,lz,...}, the half-integers, and for s an integer, h,}z -(h„i,), h,ti -(h„i„j,).

This generates a corresponding sequence of finite sub-fields with respect to which we

shall define a stochastic process. Define p~ (h,) to be the conditional probability of the

true type K being k E X given history up to s of h„ that is, the „beliefsr of player

2 about the likelihood of type k, and let xp, -(p;)kEx. Also define f; (h,) to be the

maximum payoff type k E W can achieve given that history h, has occurred and that

player 2 will follow strategy r thereafter (for h, occurring with positive probability under

type k's strategy this must equal what he gets from maintaining his strategy). For player

2 define for each s E N~

b, - L[E(~r I ~-c.)], (4.1)

so b,(h,) is the limit expected average payoff given h,. Consider the process (xp„ f„ b,) E

0x x Rwy x R~y. Its initial value corresponds to original beliefs and equilibrium payoffs.

Under P,,r,y this process is a martingale (for beliefs this is immediate; this will also be

necessary property oí the limit of the means criterion). Moreover, it is a special kind

of martingale. In the first half of each period f, cannot vary. Consider type k; if h,

has positive probability under his strategy then he must be playing at s in an optimum

manner; in particular he must have f; (h„ i,) - f; (h,) for all movcs i, E I which he

takes with positive probability, and f; (h„ i,) G f; (h,) for zero probability moves. Since

the stochastic process evolves according to total probability summed over all types, it is

possible that one of k's zero probability moves is selected: in this case f; (h„ i,) can be
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'scaled up' to f; ( h,) to maintain the martingale property; since type k thereafter muat

have zero probability this cauaes no problema a. Of courae, xp, may well vary during the

firat half-atage if different typea follow different mixed atrstegiea at s.

Likewiee in the aecond half-atage p, cannot vary becauae only player 2, who is

uninformed, makes a move. In thia caee j, can vary. Thus the martingale procesa

{(Xp„ f„ó,)} has the additional propetty that at each a belonging to the half-integera,

eithec Xp,t~ -X p, or j,~~ - f, almoet aurely. Such a procesa ia called a bi-martingale:

formally it ie a sequence {g„} á~ oí 0X x Rwy x R,N - valued random variablea auch

that there exiata a nondecreasing aequence of finite fielda with respect to which {g„} ia

a martingale and for each n either j„tt - j~ a.s. or xp„~~ -X p„ a.s. As a bounded mar-

tingale, (Xp„ f„ ó,) converges almost aurely to a limiting random variable (Xp,o, f,o, b„).

Because in the limit belieís are no longer changing, it must be the case that all typea

(which have positive probability) are following the same atrategy; otherwiae information

would be tevealed e. Such behaviour is referred to as being 'non-revealing'. These limit

pointa are easy enough to characteriae. Define

F - co{((Ak(i, j))kEW, B(i, j) : i E I, j E J} (4.2)

to be feasible payoffs in non-revealing atrategies; if all types play the same way then

payoffa muat belong to this set (think of a two-peraon game in which player 1 receivea

vector payoffs: thia would be the feasible aet). More explicitly, define the random variable

for each s E Nz:

~;` - LIE(aT ~~.)~, k E W, (4.3)

which is the payoff type k would get after hiatory h, if he played accotding to the avemge

strategy (acrosa all typea using the beliefs of player 2) from then on. Hart ahows that

61n Hart J, ie thie latter procese: see the Appendi~t for the formal definition.
aIn our context thia is alightly inaccurste. [f K is infinite the probability of typee not under con-

eideration msy not have converged in the aense that uniform convergence of all probabilitie~ is not
guaranteed. What ia needed ie weaker: the types under consideration with poaitive probability are all
playing the same ae the average ovet al! types.
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near the limit type k will lose very little by awitching to the average strategy, so roughly

speaking each type playa close to the average, which means non-revealing behaviour is

approximately being followed. Define c, -(c; )4Ew, and let c,o be an a.s. limit (c, is

alao a bounded martingale); Hart provea that

!~ ~ ci,̀o, all k, and wP,,.j„ -wP,,.c„ a.s. (4.4)

where wp consists of the firat W elements of Xp. Moreover

(c,o, ó~) E F (4.5)

since coo results from assuming all types play non-revealing and b~ also results from

averaging across all types. Thia leada to conditions (4.8) and (4.9) below.

For q E ~w, let val~(A(q)) be the value to player 1 of the one-shot game with payoff

matrix A(q) -~k ~ qkAk. Define the set G as follows, whece we now regard (Xp, a, ~) as

taking arbitrary values: it consista of all triples (Xp, a, ~, ) with Xp E OX , a E R,wy, l3 E

RM, auch that

q.a 1 vall(A(q)) for all q E ~w, (4.6)

f3 ~ vaiz(B), (4.7)

and there exists c E Rw with

(c,~) E F, (4.8)

a? c and wp.a - wp.c (4.9)

(where a 1 c means ak ~ ck for all k E W). Conditions (4.6) and (4.7) represent in-

dividual rationality. If (4.6) does not hold, then by Blackwell's (1956) approachability
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theorem, whatever player 2's strategy, at least one type k can get more than ak ((4.6)

implies in particular that ak ~ val~(Ak), all k).

To suin up: G contains the aet of possible limit pointe of the bi-martingale. (In Hart's

inodel G may be thought of as the set of "non-revealing Naeh equilibria~: belieíe sre not

changing becauae all types of player 1 follow the eame atrategy, feasibility ia satisfied, and

moreover because payoffs are individualy rational any deviation can lead to punishments

which make the deviator worse off (weakly), and ao strategies can be devised to aupport

these payoffs as equilibria.) Knowing the limit pointa of the bi-martingale, the next step

is to work backwarda to all possible starting pointa, recalling that the initial value of the

original bi-martingale is composed of initial beliefe plus equilibrium payoffa. Define G'

to be the set of all g- (Xp, a, Q) E ~X x RWy x R,N for which there exists a bi-martingale

g, -(Xp„ f„ á,);-1 with starting point g(so gl - g as.) and converging to g„ E G a.s.

Then we have the following (see Appendix):

RESULT 4.1: If (a, ~) are Nash equilibrium payoffs in the game I'(p) then (Xp, a, ~) E

C'.

In Hart's analyais with only a finite number of normal types, this condition is also

suf6cient for (a, ~) to be equilibrium payoffs.

Our procedure now will be to derive further restrictions on the limit set G. This will

reduce the possible set of starting positiona G' of the bi-martingale, and lead to a lower

bound on the payoff to type k- 1. (At the moment in the definition ofG the probabilitiea

of the non-normal types play no independent role.) We shall ahow that whenever the

probability of a wmmitment type k has a positive limit, pk,o 1 0, then (c,o, b,o) satisfy

further conditions, which translate into conditions on c and Q in addition to (4.6)-(4.9).

In particular consider the martingale {(c„b,)},EN„ and recall that c;(h,) is the payoff

type k would get after h, if instead of playing his equilibrium strategy he played according

to the average strategy over all types k E K, the average being calculated conditional

on h, having occurred. In other words he usea ~kEK )~oi(hi; k) instead of oi(ht; k) for
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t~ s whenever hi and h, coincide up to a. Becauae of (4.4) and ( 4.5) knowledge about

limit points of {(c„D,)} pina down the limit pointe of the bi-martingale {(Xp„ f„ó,)}.

We shall ahow that whenever the probability of a commitment type k' has a positive

limit, pko; ~ 0, then ave~vge play must converge to the commitment etrategy. (Intuitively

if this wae not the case learning about type k could not have converged.) Thia meana

that cr,̀o for k E W must correspond to the payoff type k would get from following

the commitment strategy, and ó,o to a payoff player 2 geta from playing against the

commitment atrategy. A further restriction on the possible values of ó„ is derived from

considering the punishmenta which a commitment type can deliver: this leads to a

relation between À~ and pk~. These restrictiona translate directly into restrictions on

(c, fi) in the definition of G. The last step of the argument will be to calculate G' from

the set G, which leads directly to the lower bound on payoffs stated in our main result,

Proposition 6.1.6.

Finally, in this section we report a result of Aumann and Hart ( 1986) which enables

the set G' to be derived from G by means of separation properties. This result will be

needed in Section 6.

DEFINITION 4.2: A set Z C pX x RWy x RM is bi-convex in Xp and a, if its ~p- and

a-sectiona are convex. The bi-convex hull of a set is the smallest bi-convex set containing

it.

DEFINITION 4.3: A function f: Y y R, where Y is bi-convex and Y C pX x RWy x

RM, is bi-convex in Xp and a if j(p,., .) ia a convex function on {Xp} x R,Xy x R,~~ n Y,

and if f(. , a, .) is a convex function on ~X x{a} x R,y n Y for all (Xp, a) E Z.

DEFINITION 4.4: Let V C Y where Y C pX x R,W x R,y is bi-convex in Xp and a.

Then let nscv(Y) be the set of points z E Y such that f(z) C sup j(V) for all bounded

bi-convex functions (in Xp and a) f(.) on Y which are continuous on V.

A bi-convex set is therefore one which has convex sections, for example the graph of

any monotone function on the real line is a bi-convex set. A function is bi-convex if its
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restriction to any section ia convex, for example a C~ function h(x, y) on the plane is

bi-convex iff h~~ 1 0, h~ ~ 0. The set nsev(Y) is a generalisation of the bi-convex hull

o[ V: it consista of those points in Y which cannot be separated from V by bi-convex

(unctions. Given the set G C ÓX x R,W x Riy, Aumann and Hart establiah the following

result.

R.ESULT 4.b: G' is the largest set Y sucó that nscc(Y) - Y.

5 The convergence of behaviour for player 1

In this section we shall consider the possibility each type of player 1 has to mimic the

strategy of another type. This idea is at the heart of Fudenberg and Levine's reaulta: by

mimicking another type long enough player 1 convinces player 2 that in the next period

he will play as the type being mimicked would play. With a ahort-run player 2, this is

enough for the result. Here we need something stronger: player 2 needs to be convinced

that play will be according to the type being mimicked for the (infinite) future. The

argument is to suppose that player 2 attaches a positive probability in the limit to the

true type being, say, k' (recall that beliefs converge). Thia can only happen if future play

becomes consistent with the strategy of k'; otherwise the belief could not be close to its

limit. If the true type is k, then were he to mimic the k' strategy the probability of k'

will converge (almost surely) to a positive number, and k will receive a payoff associated

with the k' strategy. Since this is always an option íor k, it provides a lower bound on

his equilibrium payoff ~.

Clearly the sequence of random variables pipi~ converges almost surely. If it converges

to a positive value, then we shall show that o~(hi; k) and oi(ht; k') also converge together.

Here the Bayesian revision of the beliefa pi , pi~ plays a role, because if the two types

continue to play ciifferent strategies then the revision o( beliefs must imply that pipé~

will continue to vary, contrary to assumption.

~While thia ie the intuition behind the reault, it is not the way we chooee to prove it. A ptooi along
theae linea would be more direct; nevertheleas the uee ot Hart's tramework givea more general reaulte
and allowa us eaeily to analyse the other normal typee caae.
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In the proof below we will use aome additioaal random variables. Given a history h,

player 2 will form beliefa about the action to be played by player 1 in period i 1 s. We

will let ir E I denote the random variable of player 1's action in period t and i E I to

denote a particular fixed value for thia random variable. Also define the non-negative

random variable p,;, - p,;,(h,) to be the probability that action ir is taken by player 1

in period t given the past history h„ whilat the fixed value p„(h,) gives the probability

that a given action i is taken ín period t. Notice also E[}~,;, ~~L,] -~; {e„. The random

variable {~„, (h,) is not measurable with respect to the information set 9-L, since the actual

action ir of player 1 is not included in 7{, (it is ~{rtl measurable). Finally, let oi;(hr; k)

denote the ith element of the vector or(hi; k).

Proposition 5.1: For any types k, k' E K and for all i E 1 and for fized s lhe random

variabJes:

E[PiPi ( an(h~; k) - ve;(hs; k~) ~ ~~.]

converge almost surely to zero as t tends to infinity.

Proof Firat, if {Xi} is a sequence of bounded random variables converging a.s. to

X~ as t -r oo and if {.Fr} is a non-decreasing sequence of o-fields and also if {Wi} is

a sequence of uniformly bounded positive random vatiables, then the random variable

E[W~ ~ X~}i - Xr ~ ~.Fi] --~ 0 a.s. as t tends to infinity. This can be proved by noting

that Zt - 2,Y}!sup,~t ~ X, - X~ ~ is a supermartingale with respect to {,Fr}, where ~ is

a uniform upper bound for { Wr}. It follows that Z~ converges a.s. to some limit Z~, and

since E(Z~] - 0 we have Zo, - 0 a.s. The sequence of random variablea {Zi} satisfies:

Zr - 2~sup,~~ ~ X, - X,o ~~ Wr ~ Xrtr - Xr ~; thus we have the result 8.

As the random variable p~ pi ~ converges a.s. for any k, k', the result above implies

that for any i E I and k, k' E K as t tends to infinity,

E(J~t;~(Pi ) ~{(Ptt)~ -(Pi )~} ~ 1-l,] -a 0 a.s.,

BThis ie a minor variant of Hart, Lemma 4.24.
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E[Iki~PiPé~{PiPi`~ - PtttPé}i} ~ 7í.] -~ 0 a.e.

Since player 2 knows the form of 1's strategy then Bayes' Theorem applies to the revision

of beliefs, so we can calculate E((pé}1)~ ~ 7{t]. Note: pi,p;~ are both measurable with

respect to the information set 9{t.

trti(he; ')~(Pé )~
- (Pé )~ ~lie:ot;(ht;

k)~
E((Peti)~ ~ ~e] - ~Ftei Pé .

~EI Pt~ iE!

If we iuclude the random variable pt;, in the expectation above we will therefore

get E(~tt;,(Pitt)~ ~~t] -(Pé)~~:Erst:(he;k)~ and similarlY E(~tt;,PitiPitt ~ xt] -

pip~' ~;EI ot;(ht; k)ot;(ht; k'). If we substitute this into the above two equations and

then add the result, we get

E(E(pt;,(PéI ) ~{(Pitt)~ -(Pé )~} t Pei,PiPi {Pi~Pé - PitiPeti} I~t] I x.]

1 E((Pi) ~(Pi )~ ~{ot~(ht; k)~ - Ni f Pé - ae:(ht; k')st~(he; k)} ~~,]

- E((Pé )~(Pi )~ ~{oti(ht; k)~ - Qt~(he; k~)on(ht; k)} ~ xs] ~ 0 a.s. (5.1)
~

Swapping the labels of k and k' we can also get

E((Pi )~(P~)~ ~{aec(ht; k~)~ - vei(ht; k~)Qei(he; k)} ~ 7{,] ~ 0 a.s. i E I. (5.2)
~

Adding (5.1) and (5.2) gives E((pé )~(p~~)'~;{ot;(ht; k') -at;(ht;k)}~ ~ 7{,] ~ 0 a.s. By

continuity: E((p~)~(pi~)~{ot;(ht,k') - ot;(ht,k)}~ ~?{,]~ y 0 a.s., but from Jensen's

Inequality

G((Pi)~ÍPi)~ ~ ot~(he; k~) - oa(ht; k) (~~ x.]' ~ E(PiPi~ ~ t'ei(he; k~) - ot:(ht; k) ~~ x,].

Therefore E(pi pi ~ ~ at;(ht; k') - ot;(ht; k) ~ ~ 7{,] converges almost surely to zero for all

i E !. Q.E.D.
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5.1 The set of limit payoffs for player 1

In thia aubaection we will examine how the reeulta in the previoua section can be used to

describe the aet of limiting payoffa for the typea of player 1. We have ahown that if type k

and type k' both have poaitive probability in the limit then they must be playing identical

strategies. This implies a restriction acrose the payoffs of the types k and k' because if

they are both uaing identical strategies not all wmbinatione oí payoffa to type k and k'

will be posaible. The requirement that the limiting payoffs are contained in the set F

will embody this restriction for if both k and k' can use any possible history dependent

strategy. However, we will introduce types k, or automata, which are only able to use a

single strategy; this will limit the set of possible actions of player 1 while mimicking such

a type and thus further restrict its potential payoffs. In this section we will establish

a relationship between the limiting payoffs of the types and their strategies. We will

then introduce commitment types, or automata, in the next subsection and calculate

the implied restrictions on payoffa they introduce.

Type k's actual payoff in period t ia written E[Ak(i~, ji) ~ 7~1~] where ii ia the

random variable of player 1's action. Similarly the true type K's expected payoff

will be E[AK(ii, je) ~~ls] - E[~kPiAk(tnlo) ~~r] -~k Pé Qt(k)TAkTi, where su-

perscript T is used to denote the transpose of a vector and Ak denotes the matrix

Ak(i, j) and we have suppressed the notation for the history argument in the strategies:

o~(k) - at(k; ht), Tt - ri(hi). We will now show that if type k' continues to have pos-

itive probability along a particular play of the game then in the player limit type k's

payoff ct` (recall definition (4.3)) could be achieved by player k employing the strategy

ai(ha;k') - ae(k') of k'.

Proposition 5.1.1: Let k, k' E K 6e given. Then the random variables

T T

P; I LE[T-' ~ o~(k')T AkTt ~~,] - ~; ~, P; I LE[T-' ~ oe(k~)T BT~ ~ x,] - ó, ~e-i s-i

converge almost surely to zero as s tends to inftn4ty.
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Proo~ From the definition ( 4.3) of the martingale c; and by the linearity of the expec-

tationa operator and the Banach limit we hsve

T
e; - LE[T-1 ~~ Piue(s)TA'`Tt ~~,],

t:l zEK

a0

T T

~ LE[T-' ~ at(kt ) T AkTt ~~{.J - c; I-I LE[T-' ~ ~ Pé {oe(k~) - oe(x )}TAkTt ~~e.1 ~.
t-1 tsl rEK

Fix a value t then notice that

P; ~ E[~Pi {ot(k~) - ot(2)}T A'`Tt ~~.1 ~
s

CI E[~{PéP.~ - PiPé ~ f Pé P~}{ot(k~) - ve(x)}T AkTe ~ x.] ~
s

C ME[I P:~ - Pé~ ~ ~ x.) f M~ E[PiPé~ ~ ot(k~) - oe(x) ~T e ~~.),
:

where e is the vector ( 1,1, ...,1). Since payoffa are bounded by M and payoffa up to

period s are bounded by sM we have

T

P: I LE[T-' ~oe(k~)TAkTt ~ 1{,j - c; ~C L[sMT-']
e-t

T T

f ML[T-' ~ E[~ P:~ - Pé~ ~ ~ ?l.j] t ML[T-' ~~ EÍPiPé ~ ae(kt )- ae(i) ~T e ~ x.[[
t-,t1 t3,t1 s

The first term on the right obviously equals zero. The second term converges almoet

surely to zero as s tends to infinity, aince L(T'1 ~T ,~l E(I P;~ - Pé ~ ~~.[~ C

supt~, ~ p;~ - pi~ ~C 2 supt~, ~ p~ - pi~ ~ and this converges a.s. to zero by the argument

given at the beginning of Proposition 5.1. The final term equals zero by Pmpoaition 5.1.

This completes the proof of the convergence to zero of the firat random variable. The

convergence of the aecond is proved by replacing Ak by B in the above. Q.E.D.

We have now ahown that if type k has positive probability in the limit, p~ 1 0, then

the sequence of payoffa for type k behaves as if it were playing the strategy of k. This
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gives us a general result which we can use to characterize equilibrium payoffs when one

type of player 1 uses a fixed equilibrium strategy. We can now use this to calculate the

aet of limiting payoffs where player k uaea a particular atationary strategy u.

Proposition 5.1.2: If o.(h,; k) - u E Of jor a!I s and a!1 h, E H, which occur with

positive probaóility conditionat on K- k, íhen p~ ~ 0 implies that (c~, b,o) E F,; whene

Fa-~{((Al(u,j),A~(u,1),...,AW(u,j)), B(u,j)):j E J}.

Proof Notice that the vector ((At(u, ri), A~(u, r~), . .. , AW(u, r~), B(u, ri)) E Fa for any

stage t strategy r~. Therefore aince the Banach limit of the average payoffs will also be

contained in this set s, we have LE(T-t ~~r((A'(u, r~), A'(u, rt), . .., AW ( u, r,), B(u, r~)) ~

7{,] E F4. This together with Proposition 5.1.1 with Qi(k') - u for all t and the fact

that F~ is closed, proves the assertion. Q.E.D.

This gives ua an additional restríction on the set G defined in Section 4. If k' always

plays u on the equilibrium path, then in addition to (4.8) we have the condition

pk~ ~ 0 implies that (c,~) E F,;. (5.3)

This says that if the limit probability of k is positive then limit payoffs must arise from

player 1 playing u with player 2 playing arbitrarily.

5.2 Commitment off the equilibrium path

In this aubsection we consider further restrictions on G which might arise if the automa-

ton is restricted to follow a fixed stage game strategy off the equilibrium path as well as

on it ~o. Such a restriction of punishment strategiea should be expected to reduce further

9See the argument used in Hart, Lemma 4.7.
~oThe idea of a player being somehow committed to a mized atage game atrategy may seem objection-

able; auch behaviour can however be equivalent to having infinite number of pure atrategy commitment
types; see Fudenberg (1990), Fudenberg and Levine (1991).
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the poasible set of equilibria, and this will indeed be the case. Moreover, if sequential

rationality is demanded off the equilibrium path the possibility that normal players may

choose to mimic the commitment type in a punishment phase may atrengthen thia latter

argument. This is one of the reasons for investigating such commitment automata: in

a number of tespects a normal type with a dominant strategy does not satisfactorily

capture the notion of a commitment type. To make a normal type correspond to a

commitment type in the repeated game the payoffe in the row corresponding to the com-

mitment strategy should be equal and strictly higher than all other payoffs. Nevertheless

in a Nash equilibrium such a type is not reatricted in the punishment it can puraue off

the equilibrium path. Thia can be true even if the notion ofequilibrium ia refined. Thus

in the complete information game below, playing T is a dominant strategy for player 1.

L R

T 1,1 1,3

B 0,0 0,-1

If player 1 was forced to play T in every period off the equilibrium path then it could not

prevent player 2 from attaining a payoff of 3 by simply always playing R. Nevertheless,

even if sub-game perfection is applied, the perfect folk theorem (Aumann and Shapley,

1976) atates that payoffs (1,1) can arise in equilibrium ". It is also true that with the

limit of the means criterion such a commitment type need not even play its commitment

strategy every period on the equilibrium path. A final reason for considering automaton

commitment types is to allow for mixed strategy commitments, which cannot be modelled

usiug normal typc~s. Bounds arising from normal types includiug those with domiuant

strategies, are considered in the next subsection.

To consider which payoffs for player 2 are individually rational when facing a possible

commitment automaton we need to conaider the repeated zero-sum game I'ys(q) with

payoff matrix -B in which with probability q player 1 can play any strategy (K - 1)

"This would not be the case if either payotfs were dixounted or if the overtalcing criterion wae used:
io sub-game perfect equitibrium player 1's strategy would specify T after any hietory. See Van Damme
(19g7, ch. 8).
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and with probability (1 - q) player 1 ia a commitment automaton (K - 2) and plays

u every period independently of history (later we ahall set q- 1- p'k). So with a

certain probability player 1 has his "hande tied", but player 2 does not know the value

of ~c. We would expect this restriction on player 1 to raise player 2's value whenever

the commitment atrategy is not equal to the minimax strategy. Exactly how thia might

happen ia not immediately clear: in a one ahot veraion of this game type 1 may be able

to choose a etrategy such that player 1'e average strategy (using the weighta q,(1 - q))

is the minmax atrategy (if the latter is mixed); in this case player 1 loses nothing. If

the game is repeated more than once then player 2 will learn about player 1(since both

types are playing differently) and this will restrict the number of periods in which the

average strategy can be equal to the minimax atrategy. In the infinitely repeated game

which is our concern here it might be expected that the asymmetric information dces

not help player 1 at all: if type 1 plays differently from the automaton then he will be

'íound out' eventually, and playing the same will not generally be optimal. We shall

ehow that the value of this game will indeed be the same as when the state K ia revealed

to player 2.

More formally we conaider the infinitely repeated zero-sum game with payoff matrix

-B. Player 1's type is determined at the beginning of the game: ~c - 1 or 2 with

respective probabilities q, (q - 1). The realisation of K is known to player 1 but not to

player 2. Player 1's sttategy v is restricted by the condition at(hi,2) - u all hi. We

define ~- T-' ~T ~ B(ii, j:) to be player 2's payoff up to stage T.

To proceed we consider a transformed game I'ís(q) which is defined as follows. We use

the genetal zero-sum model of one-sided incomplete information in which the assumption

of full monitoring is dropped (Kohlberg, 1974; Mertens, Sorin and Zamir, 1990; Aumann

and Maschler (1966) developed the original resulta in the full monitoring case). In other

words the moves at each atage t are no longer announced to the playera; rather each

player receives an individual message whose (joint) distribution depends upon k,it, ji.

We assume that the message player I receives reveals the true action ji taken by player 2.

There is a message space S for playet 2 which is isomorphic to I so let S-{ 1, 2..., I}.

If ~c - 1 then at the end of stage t the message player 2 receives is mi - i~; if x- 2
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then mi is distributed according to u(hence independently of ii and jt). The payoff

matrix ia -B~ --B if K- 1. Let w-(1,1 ... ,1)TER~, and define vT - t~T B

to be the row vector containing player 2'a aversge psyoff to each of ita actions if it

faces the automaton; then if K- 2 the payoff matrix is -B~ - wvT. Intuitively this

new game is very close to the original game: in atate K- 1 the game is the same

and in state K- 2, player 1"appears" to play like the automaton from the point of

view of the signal received by player 2, who moreover receives for any given action j~

the average payoff at that stage which he would have got against the sutomaton by

playing that action. The next lemma makes this precise. By a hiatory h~ for player 2

in I'ys(q) is meant ((m~, jl), (m~, j~),... ,(mi-1i ji-~ )) and a strategy r' for player 2 in

this game maps from such histories to mixed actiona. Likewise a history h~ for player

1 is h~ -((il, ji),(i~, j~),..., (ii-~, ji-~)). We say a history h~ in the original game is

equal to a history h~ , k- 1, 2, in the tranaformed game if they are equal in the uaual

sense. Finally let qi and qi be respective conditional probabilities that rc - 1 after h~

and hi in I'ZS(q) and I'~S(q), and P, P' be the respective probability distributions over

infinite histories induced by q and the etrategy combinations (v, r) and (v', r') in ea.ch

game, with E,,,,Q and Eé,.,,,a the corresponding expectations. The next lemma asserts

that if both players follow the "same" strategies in the two games then expected payoffa

at each date are the same.

Lemma 5.2.1: Suppose that (o, rJ and (d, r') are strategy comóinations in I'ZS(q) and

I'ZS(q) respectively satisfying oi(h~, l) - oi(hi, l) and ri(hi, l) - ri(hi, l) wheneverh~ is

equal to h~ and hi . Then E,,,,a[B(it, j~)] - E,,,,,,o[BR(ii, ji)] for al! t~ 1.

Proof.- Consider any given hiatory h~ in the original game and the same history h~ in

the tcansformed game. Under r, the conditional distribution over j~ will be the same in

both games. If a- 1, then hi - hi and oi(h~; l)- oi(hi; l) so the distribution over ii is

the sarne, as that over m~; if K- 2 this holds necessarily. Hence if P(h~, k) - P'(hi,k),

then we have P(hi, ia,7e; k) - P((iei Ji) ~ hri k)P(h,; k) - P'((mi, Je) ~ hi; k)P'(hé; k) -
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P(hi, mr, jr; k) for any k, ir, jt, mr with ir - mr. Since P(hl; k) - P'(hi; k) by induction

P(hr; k) - P'(h~; k) whenever ht and hi are equal. This implies P(ht) - P'(hi ), and

hence using Bayes rule qr(ht) - qi(hi) for k - 1,2, whenever hi and hi are equal and

have positive probability. Thus for each t? 1

Eó,,,,~[B~(is,jr)) - Eo'.r'.v[{qé~(hi,l}TBrf(1-4é}d(hé,2)TB~}Ti(hé))

- Eo.r.a[{qeoe(hs, l)T B -f- (1 - 9e)uTB}rr(hr)~

- Eo.,.v[B(it,jr)1 ~

Q.E.D.

The value of the game IZS(q) can be found by applying the results of Aumann and

Maschler (1969) and Kohlberg (1974); see also Mertens, Sorin and Zamir (1991).

Consider the one shot version of this game, and let P,;,.,,,á,q be the probability distri-

bution induced by a mixed strategy uk of player 1 type k, a pure strategy j of player 2,

and the initial probability q of state K- 1.

DEFINITION 5.2.2: (u~, u~) E 0~ x Of is non-revealing at q if:

for any jc.l, l'u,,,,,á,e(m) ~ 0 implies Py,,u,á,o(K - 1 ~ m) - q, for all m E S.

Denote by NR(q) the set of non-revealing strategies at q.

This means that player 1 plays so as not to reveal any information about his type.

The non-revealing game derived from I'ZS(q) is the one shot game in which player 1's

strategy set is restricted to NR(q) - the structure of the game is otherwise the same.

Let nr(q) be the value of this game. Then

RESULT 5.2.3: The value of I'is(q) - Cav(nr(q)) for all q, where Cav(nr(q)) is the

smallest concave function at least as big as nr(q).

To find NR(q) in our case is straightforward. If 0 G q G 1 then the distribution of

m must be the same for K- 1, 2(Mertens, Sorin and Zamir, 1990, Lemma 3.3, Chapter
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5). Since for K- 2 this is fixed at u~ - u, type K- 1 must set u' - u. Hence NR(q)

is a aingleton: u' - u~ - u. The value to player 2 is BR~(u), player 2's beat reaponae

payoff in the matrix B to strategy u, hence nr(q) --BR'(u). If q - 0, only u' mattera

so the value is the same. If q- 1, then NR(1) - {(u', u~) : u'EO~, u~ - u} so type 1 is

unrestricted: clearly nr(1) --val~(B). Thua Cav(nr(q)) - -q val~(B)-(1-q)BR~(u)

since -val~(B) ~ -BR~(u), and we have

Corollary 5.2.4: The value of rZS(q) ia - q vah(B) - (1 - q)BR~(u).

Hence by definition of the value, player 2 has a strategy r' (depending on q) auch that

T
1',Tni~f Eó,,r,v(T-~ ~ B~('e,Je)) 1 - Cav(nr(q)) - 4 vah(B) -} ( 1 - 4)BR~(u) (5.4)

i-i

for all a'. Thus by Lemma 5.2.1 in the game rys(q) player 2 has a atrategy T- the same

as T' - such that

T
liminf E,,;,q(T-' ~ B(ii, ji)) ~ q val~(B) f(1 - q)BR~(u), (5.5)
T~~ t-l

for all strategies o of player 1(if the inequality failed for some o, the same atrategy

played in rZS(q) would lead to ( 5.4) failing aince by the lemma the two sequencea of

expected payo(is are Lhe same). Notice that the value obtained is exactly that which

would obtain if player 2 was informed of the realization of K at the beginning of the firat

pcriod.

Returning to r(q), we can conclude that

á,(h,) 1 (1 - p;(h,))val~(B) -}. p;(h,)BR~(u) (5.6)

after any h, with positive probability: otherwise changing the continuation strategy to



26

T would, by (5.5), increase player 2's total payoffa t~. Taking limits in (5.6) impliea

À„ 1 (1 - pk„)val~(B) t p~,̀oBR'(u) a.s. which leads to the additional restriction on G:

~ ? (1 - pk)valz(B) ~ pkBR~(u). (5.7)

In other worda the limit payoff to player 2 muat satisfy a atricter condition than individual

rationality (whenever BR~(u) ~ valz(B)); this condition becomes tighter the higher limit

beliefs about type k are.

6 The lower bound on payoffs

In the previoua two sections general necessary conditiona on the stochastic process rep-

resenting beliefa and payoffs for a restricted set of types were developed. Using these

reaults it will be poasible to derive a lower bound for equilibrium payoffs to player 1 type

1. We are particularly interested in lower bounds derived from considering just one other

type for player 1, say type k, which may be normal or otherwise. As we ahall see, there

is a sense in which a single additional type, chosen appmpriately, can deliver a robust

bound which cannot be improved upon.

The approach we adopt is to project the set G already considered 13 onto the space

of payoffs for player 1 type 1 and beliefs about player 1 type k. It is then possible to

find a lower bound for at given pk from conaideration of this set alone. If E is a set in

Rm x R,,,, x OX, then let proj E be the projection of E onto the coordinates for a' and

pk; proj E C Ii,,, x 0. (Type k is considered fixed throughout the discussion.)

Consider the stochastic process {( f; , p; )}KN, on the same probability space and with

respect to the same sequence of fields as before. Then it is immediate from Result 4.1

that thia ia a bi-martingale satisfying

(Íi,Pi) - (a~,pk) a.s.

i~See Hnrt, Propoeition 4.40 for the exact details involved in this last etep.
19Actually our talk of G here is loaee. As we apply additional restrictione a emaller set reeulta than

that was originally defined in Section 4. All we mean hete is a set to which the limit of the bi-martingale
is Icnown to belong. The context will ma~e clear which exact eet is being referred to.
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and if ( j~, pk,o) is an a.s. limit of ( f; , p;) then (j;,, pk~) E proj G a.s. Hence defining

the a-operator as before (all starting pointa of s bi-martingale converging to the set in

question) we can conclude that (a~,pk) E(proj C)' :

Proposition 8.1: Let (a, ~) be equiliórium payojfs in I'(p). Then (ai, pk) E (proj G)'.

6.1 Lower bound derived from a commitment type

We are at last in a position to characterize the set G and derive the lower bound on

payoffs: this is the content of our main result, Proposition 6.1.6 below. Let k be the

index of a commitment type playing mixed atrategy u. Choose the set X to consist of

just type 1 and type k(so W- 1). Then applying the results of the previous aection we

can describe proj G as follows: when pk - 0, ar can take on any payoff to type 1 which

is feasible and individually rational in the complete information game; when pk ~ 0, a~

can correspond to an individually rational payoff to player 1 when he plays u in the stage

game and player 2 plays a possibly mixed strategy response such that he (player 2) gets

at least his value - this could be empty - and al can also be any number greater than

this. This much follows from the restriction on G given by (5.3): - recall that this arises

from the on equiliórium path conaiderations. To differentiate the two restrictions we use

the notation G- G' for the set obtained when the first restriction (5.3) is applied and

C- C" when the further restriction (5.7) ia applied. I'ormally in the first ca.ve we have

Proposition 8.1.1: Ij type k has o(h,, k) - u jor all h~ with positive proóaóility then

the pk-seetéons of proj G' are

(i) ijpk - 0 : {al : ihere exists ~ such that (ar,~) E Ga};

(éiJ ij K ~ 3 and 0 G pk C 1 :{M 1 a~ 1 valr(A) : there exèsts ve~~ such that

c~ - A(u, v) with c' c a' and B(u, v) ~ val~(B)}
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(iii) ijK- 2 and 0 G pk c 1:{al : there eziata ve0~ auch that al - A(u, v) ~ vall(A)

and B(u,v) ? valZ(B)} ; jor pk - 1 the aection is as in (ii);

Proof.. (i) If pk - 0 then conaider any point (al, ~) E Go (feasible individually rational

payoffs in the original gamc) and let p' - 1. Then the triple ((1,0),a',A) satiafi~5 (9.fi)

and (4.7) and letting c' - a', (4.8) and (4.9) are satisfied; (5.3) does not apply. (ii)

Consider a point a' from the section as defined with the corresponding v and c1 and let

p' - 0. Then the triple ((0,pk),a', B(u, v)) satisfies (4.6) and (4.7) as a' 1 vall(A) and

B(u, v) ~ val~(B), (c', B(u, v)) -(A(u, v), B(u, v) E F;, so (4.8) and (5.3) are satisfied,

and (4.9) is satiafied. (iii) If K- 2 then 0 G pk G 1 implies that p' ~ 0 so (4.9) requires

that al - c1, hence this smaller section. Q.E.D.

Restricting G further by the off equilibrium path arguments of Section 6.2 which led

to (5.7) gives the following set.

Proposition 8.1.2: !j type k is an automaton with oi(ht; k) - u for all hc, then the

pk-sections aj G" are:

(if if pk - 0: {a' : there ezists (3 such that (a',(i)eCo};

(iiJ ij K 1 3 and 0 G pk C 1{M ~ a' 1 vall(A) : there ezists ve0~ such that

c' - A(u,v) with c' G a' and B(u,v) 1 pkBR~(á) f(1 - pk)valz(B)}.

(iii) if K - 2 and 0 G pk G 1: {a' : thene ezists ve0~ such that a' - A(u, v) ~ vah(A)

and B(u,v) ? pkBR2(u) ~- ( 1 - pk)valz(B)};

Proof.~ Same as 1'roposition 6.1.1 with (5.7) replacing (4.7).

To find (proj G)' in both cases it is first necessary to calculate the bi-convex hull

(definition 4.2) of proj G, bi-co(proj GJ. We can then show that bi-co~proj G] -

(proj G)'. To find bi-co(proj G~ it is only necessary to convexify all the a'-sections.
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Proposition 8.1.3: Bi-co[proj C'J and 6i-oo[proj G"J are found 6y making all

a~-aectiona convez; in addition

bi-co(proj G"] - proj G' U[max{vall(A), BRr(u)}, max ar] x[0,1].
(o~,~) E Oo

This is proved in the Appendix, and we present instead an example whicó demonstrates

geometrically the argument for G". Consider the following original game:

U

D
2,2 1,1 0,-1 3,1
4,-1 0,0 -1,-1 0,0

Both players' values equal zero. Let K - 2'~. Suppose that with probability p' player

1 may be a commitment type playing always U. The heavily ahaded area A in Figure

1 showa the individually rational part of the convex hull of the top row. Suppose that

instead of ineasuring ~ on the vertical axis we measure p~, acaled so that p~ - 0 at

the point ,9 - val~(B) ( equal to 0 here), and p~ - 1 where ,B - BR~(U) ( player 2's

beat reaponse payoff against U, equal to 2). Then the constraint ~ 1 p~BR~(U) f (1 -

p~)valz(B) impliea that for a given value of p~ ~ 0, any payoff al in the p~-section of

proj G" must arise from a point in A lying above p~, and consequently proj G" for

0 G p~ c 1 is simply areas A plus B. When p~ - 0 thc projection of the individually

rational part of the convex hull of all payoffs ( whose boundary is the dotted line) onto

the a~ -axis ia the line C, and at p~ - 1 we get the line D. So proj G" ie A -~ B f C t D.

To find bi-co[proj G"] convexify the ar-sections: thus adding area E. It should be

clear that the properties of this example are general: area A clearly must be convex and

moreover the convexification ot the a~-aections will only ever add points to the right of

the apex of A.

'~The difference between the case K- 2 nnd K~ 3 arieea from the conatraint (4.9) and valuea of at
and ie irrelevant for the lower bound.
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Rather than using separation arguments to find (proj G)', we appeal to the follow-

ing lemma, proved in the Appendix usiag the Aumann-Hart characteriration based on

separation properties.

Lemma 6.1.4: Let X and y 6e compact internals of the real line and let G be a closed,

connected 6i-convex set in X x y. 7hen G' - C.

Proposition 6.1.5: For both G- G' and G- G", bi-co~proj G] -(proj G)'.

Proof.. It follows immediately ftom Propositions 6.1.1, 6.1.2 and 6.1.3 that bi-co[proj G]

is a connected set; moreover the closure of this set is bi-convex and involves at most the

addition of points in the pk - 0-section greater than those already in the set: such points

do not belong to the convex hull of proj G. By Lemma 6.1.4 (closure [bi-co(proj G]])'

- closure [bi-co[proj G]]; hence (bi-co [proj G])', which cannot contain the points of

closure, must equal bi-co[proj G]. Since bi-co[proj G] C(proj G)' C(bi - co[proj G])"

the result follows. Q.E.D.

Thus a lower bound on the equilibrium payoff of player 1 type 1 for pk ~ 0 is given

by the left frontier of the aet bi-co[proj G]. In the example this is the left frontier of

area A for G"; notice that as p~ increases the bound is increasing and converges to the

commitment payoff (two) as p~ ~ 1, and as p~ ~ 0 it converges to the bound from G',

which is simply constant at the lowest value of a' in area A(one half). These properties

are easily seen to be general (the bound írom G" is strictly increasing whenever it is

greater than val~(A)).

To describe the general result we define the following set of mixed stage game strate-

gies for player 2:

~~lu,Pk) - {VEO~ : B(U, V) ~ pkBRZ(fl) ~ ( 1 - p~`)Val2(B)},

and notice that 0~(u, 0) -{vE~f : B(u, v) ~ val~(B)}. We shall denote the lower bound
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derived from G' as a'(u), and that from C" as a"(6,pk); recall that the latter depends

upon initial belief pk. Thus uaing the descriptiona of the pk-aections from Propositiona

6.1.1(ii), (iii) and 6.1.2(ii), (iii), together with Propoaition 6.1.3 we have

Propoaition 8.1.6: (i) In any equilibrium in which player 1 type k has poaitive prob-

ability and always plays uc0~ on the equilibrium path, i.e. o~(h~, k) - n for all h~

with positive probabitity conditional on K- k, player 1 type 1 must receive at least

a'(u) - min„~o~~e,ol A(u, v); (ii) if in addition type k plays u off the equilibrium path, so

o,(h~, k) - u for all h~, then type 1 must receive at least a"(u,pk) - min„~o,is.D.l A(u, v).

Naturally these lower bounda may be below type 1's value in which case the proposi-

tion has no force. Whenever the bound in part (i) ia greater than type 1's value óowever,

and the value can arise from a payoff in Go, the payoff aet will be discontinuoue at

pk - 0(as in Figure 1). If type 1 is able to create a small amount of uncertainty about

his type, he would choose uctlr to maximise min,~o,t4,o1 A(u, v): note that this need not

correspond to the Stackelberg strategy.

We are now in a position to compare our resulta with those of Schmidt (1991), who

extends the Fudenberg-Levine lower bound to the long-run opponent case for a clasa of

discounted games.

DEFINITION (Schmidt (1991): A stage game (A,B) is of confiicting interests if

there exista a Stackelberg pure strategy of player 1(cf. Section 2) which holds player

2 to hia minimax payoff, i.e. there exiats i' E I with i' E argmax;E~BRI(i)15 and

BR~(i') - valz(B).

While we consider general stage games, Schmidt restricts attention to repeated games

of conflicting interests. The other difference is that he considers the case where player i

discouuts with discouut factor p', i- 1, 2,. He shows that if a committnent type playing

i' cach stagc haa posit,ive initial probability then for any fixed value of 0 G p~ G 1,

1óWhere we abuae notation again to write i for the mixed etage game strategy whicó pute probability
one on Lhe ith action.
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normalised equilibrium payoffs to player 1 are bounded below by an amount converging

to the Stackelberg payoff (BRl(i')) as pt tends to one (initial beliefa being held constant).

We get a corresponding result. For original games of conflicting interests perturbed

in the same way a'(i') - BRl(i`): the lower bound equals the Stackelberg payoff. This

is immediate from the definition of a'(i'): note that ~~(u, 0) ia composed only of beat

responses to i' because i' minimaxes player 2, i.e. player 2 must play a best response to

i'. (We also have a"(i', pk) - BR'(i') for all pk ~ 0).

For games not of conflicting interests, which also satiafy the condition that BR'(i') 1

vah(A)- the Stackclberg payofFgives player 1 more than his value - Schrnidt shows that

as pr ~ 0 there will be equilibrium payoffs to player 1 in the perturbed game bounded

below the Stackelberg payoff, even when the normal type has initial probability close

to one (true for p~ fixed in some neighbourhood below one). In thia sense conflicting

interests is necessary and sufficient for the Fudenberg-Levine bound to extend to the

discounted case. Again a similar result is true in our no discounting case. For such

games we have even the tighter bound a"(i',pk) G BRl(i'). To see this, first note that

by definition of valr there exists j' E J such that A(i', j') C vall(A) and it must be

that B(i', j') G BR~(i') (otherwise B(i', j') - BR~(i') and so BRr(i') C val~(A); recall

BRl(i') arises from the least favourable best response to i' from player 1's point of view).

Given pk G 1, consider v E t1~(i', pk) defined by putting probability ~ on action j' which

satisfies A(i', j") - BR~(i`), and (1-a) on j', so that aBR~(i')-}(I-a)B(i', j') - pk; if

this implies a G 0 then set a- 0. Certainly ~ G 1, so a"(i') C A(i', v) G BR'(i'). (See

Section 8 for discussion of the attainment of a".) Despite this result one can show that

for games nCI08en16 to conflicting interest games, a'(i') will be close to the Stackelberg

payoff. While the above discussion was in terms of a pure Stackelberg strategy, in fact

exactly the same arguments work for any mixed strategy u, and we have

Proposition 6.1.7: Suppose u E ~I holds player 2 to his minimax payoff, BR2(u) -

valz(B), then a'(u) - a"(u,pk) - BRr(u) (for pk ~ 0). If BR~(u) ~ val2(B) and

~Bln the following sense: iï i' holds player 2 cloee to vala(B) and the latter has no other response j
to i' with B(i', j) close to valz(B) and A(i', j) G BR~(i').
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BR~(u) ~ val~(A) then jor ull 0 G pk G l,c~(u,pk) G BR~(u).

1''inally we briefly discuss the tightneae of our bound for the case of type k, an automa-

ton, playing a pure action i' on and off the equilibrium path, with 0 G pr` G 1. Consider

v' E argmin„ Eo~;.,n.lA(i', v), so A(i', v) is the lower bound on type 1's payoffa, and for

simplicity we shall consider only the case where A(i', v') ~ vall(A) (otherwise the bound

has no impact). Then there is a game with this automaton with probability 0 G p~` G 1

such that A(i',v`) is a Nash equilibrium payoff to type I. To see this, let type 1 be

the only other type, so pl - 1- pk; both types play i' on the equilibrium path (so

long as player 2 has not deviated) and player 2 plays a pure atrategy with frequencies

corresponding to v' so long as player 1 has not deviated from i'. If player 2 deviates

first, then player 1 type 1 minimaxes player 2 for ever, while if player 1 deviates first

then player 2 minimaxes type 1 for ever. Because v' E ~(i',p~`), it cannot pay player 2

to deviate since player 1's strategy holds player 2 down to pkBR~(i') ~(1 - pk)valz(B)

(player 2 could not achieve a higher payoff even if the true type was revealed before the

punishment started), and likewise player 1 will not wiah to deviate. Hence our bound is

attained.

6.2 Lower bound derived from normal types

In this subsection lower bounds arising from the possibility that player 1 might be another

normal type will be considered. A simple characterization of equilibrium payoffs in the

Hart model when player 2 is aware of his own payoff matrix - the case we are interested in -

has been given by Shalev ( 1988). Given the arguments of Section 4, this characterization

can be used in the case where there are also arbitrary types present.

Let the set of types under consideration be X- W, a finite set of normal types.

Then the set G' is precisely the set characterised by Shalev: (a, ~1, Xp)eG' if and only if

there exist W probability distributions xke0~x~ for kcW (where a~ ia the probability of

playing (i,7)) with ~;~ x~Ak(i, J) - ak, kcW, ~~w p~` ~;à x áB(:,i) - Q, and satiafying

individual rationality (i.e. (4.6) and (4.7)) and ~;~ x~Ak(i, j) ?~;,~ ~r~ Ak(i, j) for all

k, k'eW. This rclatively aimple characterization arises because it is possible to show that
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all equilibrium payoffs can be achieved through completely revealing strategies ~~: each

type k of player 1 is content to reveal hia true type and play the complete information

game with frequenciea Ak. Of more intereat here ia the following result which gives the

highest poasible lower bound arising from normal types: only one other type is needed

- perhapa aurpriaingly in view of the individual tationality condition (4.6) which links

together all normal types.

RESULT 8.2.1: (Shalev ( 1988), Israeli (1989)): For X- W, pk ~ 0 for all keW, the

projection of the Xp-section of G' onto the (at, Q) coordinates is of the form {(at , fi)eFo :

at 1 a,~1 ~ val~(B)} where the lower bound a depends only on (Ak)k~w and B. The

greatest value a' of a is achieved when W - 2 and A~ -- B; then

a' - max min A(u, v).
ueG~ veG~(u,0)

In other words type 1 would most like player 2 to believe Lhat he might have objective

diametrically opposed to those of player 2: i.e. that he wanta to minimise player 2's

payoff ((A~, B) would be a zero sum game). By Result 4.1 we have immediately:

Corollary 8.2.2: If k- 2 is a normal type with A~ --B and 0 C p~ G 1, then player

1 type 1 must receive at least a' in equilibrium.

What is particularly interesting about this result is that a' is exactly the same bound

a'(u) that is achieved from choosing optimally a commitment strategy type (ignoring the

tighter bound attained from off equilibrium path considerations). Consequently if such

a commitment type exists with positive probability, not only is the lower bound robust

with respect to the existence of any other type in the sense that it cannot be weakened,

but bounda arising from other normal types cannot exceed this bound.

~~Thia is not true of equilibria which attain the lower bound in the commitment automata case.
Whenever the lower bound hae some bite we have a"(u, l) ) a"(n,pk) for pr C l; if the equilibrium
which attaina the bound involved complete revelation then in the event that the type ia revealed to be
the commitment type, player 2 must play a best reeponse. Type 1 could, by mimicking the canmitment
type, achieve the payoft a"(u, 1), which is greater than the equilibrium payoff a"(n,pk).
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7 The lower bound when the uninformed player

discounts

In this section we look at a lower bound on payoffe when player 2 discounts his payoffs.

Intuitively this change in the model should not reduce the bound. The option player 1

type 1 has to mimic a commitment type atill exista, and the reaults on the convergence

oí player 1's play to the commitment atrategy still hold. We shall show that in the

limit player 2's average behaviour would satiafy the same conditions as before, and so

our lower bound on type 1's payoffa is atill valid. The key idea here is to ehow that if

player 2's payoff aequence is individually rational when he discounts, it will also be so if

the same payoff sequence is evaluated according to the limit of the means criterion. Of

course for low discount factors the best lower bound may be much higher as the model

would be approaching that of the short-run opponents case considered by Fudenberg and

Levine.

Let p be player 2's discount factor, 0 G p G 1, so that normalised payoffs are B-

E[(1 - p) ~~t p`-t B(ii, ji) ~ 7{t]ra. Define 9, to be the random variable representing

expected payoffs discounted to date s after history h, : B, - E[(1-{~) ~~, p`-'B(it, ji) ~

7{,]. If h, occurs with positive probability then in Nash equilibrium we must have B, )

valz(B); otherwise player 2 has a strategy after h, with a payoff against o of at least

val~(B) and changing to this strategy will increase his initial payoff. Using this fact we

can show that the random variable b„ as defined earlier in (4.1), has exactly the same

properties as before.

We have, for each t, l7~ - E[(1 - p)B(i~, j~) f pBstt ~~ii]. Fix s, and let t 1 s. Taking

expectationsconditionalon 7-[„E[6: ~ 7{,] - E((1- p)B(ii, ji)tpBi~t ~ ~-L,] whichimplies

that E[B(ii,~~) ~ 7{,] -(1 - p)-r(E[Bt ~ 7-l.] - pE[Bi}t ~~l,]). Using this in the definition

of (iT(3.2),

1 T
EfHT ~~.1- T(1- ~)(E[e, ~ x.1 f~(1-,~)E[ee ~~.] - t~E[BTtr ~ x,]),

e-s

laStrategies o and r and the probability space are defined ae before.
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and because B~ 1 val~(B) after h~ with poaitive probability, we have E[Bi [?{,] ?

valz(B) a.s.; thus

E[~i' [ 7{,] ?(T - 1)(1 - p)va(z(B)
- p E[BTt1 [~.) a.s.

T(1 - p) T(1 - p)

so that

ë, - LE(QT ~ 9-(,] ? 1'1mi~f E[Qt [ 7{,] ? val~(B) a.s. (7.1)

using the property that the Banach limit is at least as big as liminf. Next, notice that

b, is a martingale as before: this property depends only on the fact that it is a long-run

average and not on any optimality properties of player 2's strategies (Hart, Proposition

4.17). Hence it has an a.s. limit á,o and taking the limit in (7.1) we conclude that

b~ 1 val~(B) a.s. Also {(Xp„ f„ b,))aENy is a bi-martingale, exactly as before.

Finally (c~, 6~)eF a.s. as before as this depends only on the fact that, for every T,

((aT)k.w,Í~r)eF (Hart, Proposition 4.20).

These results imply that the set G' is defined exactly as before, and likewise the set

(G')'. The interpretation of (Xp,a„0) E (G')' is however different. If (o,r) is a Nash

equilibrium with initial beliefs p then the equilibrium payoffs a to the Í-i-' normal types

of player 1 and the payoff p player 2 would receive (under o, r) if he used the limit of the

means criterion must satisfy (Xp,a,Q) E(G')'. Of course player 2's actual discounted

payoff will in general be different. Nevertheless since we are only interested in player 1's

payoff, this is of no consequence. Projecting onto the space (a',pk) leads to precisely

the same set as before. Consequently the lower bound a'(u) characterised in Proposition

6.1.6(i) ia atill valid.

Oddly enough, although in general a tighter bound is to be anticipated in the case

with discounting, the tighter bound arising írom the off-equilibrium path punishments

by an automaton discussed in Section 5.2 cannot be shown to apply here. The reason for

this is that as player 2 discounts the future more heavily the informational advantage of
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player 1 will tend to increase and hence the potential punishment may be greater, and

a bigger punishment allows more equilibria.

8 Concluding comments

In this paper we have conaidered the extent to which a player can guarantee himaelf a

certain level of payoffs by exploiting reputation effecta when he is playing against a long-

run opponent. Even a small amount of uncertainty on the part of the opponent about

the player's type can lead to a large reduction in the set of possible equilibrium payoffs.

Moreover the lower bound we derive is robust to the exiatence of other possible types.

Nevertheless a number of questions remain open. The exact relationship of the resulta

of this paper to the case where both players diacount is not known. We do not know

whether there exist other, non-commitment types which can improve upon our bound.

Nor do we yet have general results when there is two-sided incomplete information.

A. Appendix to Section 4

The purpose of this appendix is to briefiy indicate how to extend the necessary condition

derived in Hart (1985; Section 4) to the case where there is an arbitrary countable set of

types. Because Hart derives necessary conditions on the processes representing beliefs

and payoffs associated with any equilibrium, it is only required to show that additional

types of player 1 do not affect these necessary conditions. The probability space is as

in Hart, and beliefs {p; }, satisfy the conditions given by Hart, Proposition 4.12. Next,

define an average payoff to player 1 equal to the actual payoff if rc E W or zero otherwise:

T~ii A~`(te,Je) if ~c E W
aT -

0 otherwise,

(in Hart K - W; our definition of ~T differa by assigning 0"payoffs" to all types outside

W). Notice that aT is (7{Ttl ~2K) - measurable. For each s E N~ define the martingale

y, - L[E(aT ~ il,)]. The proof oí Hart's Proposition 4.23 that ( ry, -Wp,c,) -~ 0 a.s.

can be essentially repeated with the difference that where he sums over all k E K, we
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need to sum over only k E W. Again thie impGes y~ -W po,c,o (Hart, Corrollary 4.25),

where ry,o is an a.s. limit of ry,. The definitions and properties of the random variables

{e; }„ {f; }, are the same but now only defined for k E W: e; - sup,~L[E;,,,(aT ~ 9{,)],

and to define f; let 0 C J~i~~ C 1 satisfy M-ei - ai}~)(M - eit~) for all t E N. Then

f; -M- ~H a;`}i l (M-e;)
~. J

This leads to Hart, Proposition 4.31 that fa, 1 co, and Wp~ f~ - y~ -W p~ca, a.s.

For player 2's payoffs simplication is possible because we assume state independence;

there is no need to define 6T and d; : ó, is the only random variable needed and Hart

(4.22) becomes (~~~,ó~) E F a.s. Individual rationality conditions, being necessary

conditiona, must hold for any subset of normal types: if there exists q E OW with

val~(A(q)) ~~kE~y qke;(á,) then tliis contradicts the definition e; for at least one k;

likewise for player 2. This leads to Hart, Proposition 4.43 and the characterization of C

given in Section 4 together with Result 4.1.

B. Proof of Proposition 6.1.3

Wc dcal with thc more diff'icult case C"; the case G' is similar. Assume first that

K- 2. Note that for 0 G pk G 1,projG" is wnvex: given ( a~,pk),(à',pk) E projG",0 G

pk, pk ~ 1, we have by definition a' - A(u, v), à' - A(u, v) with v, v satisfying the

conditions given in Proposition 6.1.2.(ii). Then for any a,0 C~ G 1, there exists

va E t1~ with A(u,va) - aa' f(1 - J~)à' (let va - av ~- (1 - a)G), and we have

A(u,va) 1 va!(A'),B(u,va) - aB(u,v) -} (1 - a)B(u, "v) ? (apk -{- (1 - a)pk)BRz(u) -~

(J~(1-pk)f(1-a)(1-pk))valz(B); hence(aa'.}(1-a)à',~pkt(1-a)pk) E projC". Next

consider the a'-sections ofprojG" for val~(A) C a' C BR'(u) (this can be empty). If for

pk 1 0 thete is no ( a',pk) E projG" then the section is just {(a',0)} which is of course

convex; otherwise it is the convex set {(a',pk) : 0 C pk G max„{B(u,v) : A(u,v) -

al}}. For max{vah(A),BRI(u)} C a' G max~,~,p~E~oa',(a1,0) and (a1,1) belong to

projG"; hence bi-co[G"J must contain all (a',pk),0 C pk c 1. For (max~,~,p~E~oa') G

a' G M,projC" contains only ( a', 1), which again is convex. So taking the union with

[max{val~(A), BRI(n)},max~,~,A1E~o a'] x[0,1], we have all al-sections convex. Now
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consider the pk-sectiona. By the fact that projG" ie convex for 0 G p'k G 1, we have all pk-

sectiona of projG" convex; additionally {(BRl(u),pk) : 0 C pk C 1} C projG" whenever

BR'(u) 1 val~(A) and óence the union also óas wnvex pk-aectiona (if BR'(u) G val~(A)

then it is immediate). We conclude that the aet deacribed ia the amallest bi-convex aet

containing projG". When K 1 3, for 0 G p~` G 1, the pk-aections contain additionally

all values of a' C M greater than those in the pk-sectiona in the K- 2 case. The

proposition clearly holds in this case: indeed G" is bi-convex. Q.E.D.

C. Proof of Lemma 6.1.4

Suppose contrary to the assertion that G' ~ G, so there exiata an (x',y') E G' - G.

First note that (x',y') cannot be a boundary point of X x y in ft~ since G' is a subaet

of the convex hull of G and this would imply immediately that (x', y') E G. The point

(x',y') has the property that there exista no continuoua bounded bi-convex function f

on X x J~ auch that f(x', y') 1 sup{ f(x, y) :(x, y) E C}, which iinplies LhaL there exist

points {(x', y')}! 1 E G, not necessarily distinct, with xl 1 x`, yl ? y'; x~ ? x', y~ C

y'; x3 G x', y3 G y'; x~ C x', y~ 1 y'. Suppose this were not the case, for example

assume no such (x', y' ) exists. Then define E 7 0 auch that there is alao no (x, y) E G

with (x,y) 1 (x' - E,y' - c), which is possible as G is compact. Define the piecewise

bi-affine function f:

f(x,y) -
( (x-x'tE)(y-y'i-e) ifxlx'-e or y~y'-e

(l h0 ot erwise

and hence for any bi-convex B C X x y such that G C B, f is bounded, bi-convex

and continuous on G and separates (x',y') from G so (x',y') E nscG(B) for any such

B; consequently (x', y') ~ G' contrary to assumption. Likewise for the other 3 points.

Next, consider (x', y') and (x', y3). Suppose that G contains no point (x, y) with x- x'

and y 1 y' nor a point with x 1 x' and y- y'. Then G fl R~ and G fl (R' - Rt~) are

non-empty diajoint closed sets which partition G, contrary to the assumption that G ia

connected, so at least one such point must exist. Repeating the argument in the negative

orthant shows there exists a point in G with either x- x' and y G y' or with x G x'
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and y- y'. Because (x', y') does not belong to the bi-convex óull of these two points,

we conclude that there exists (xs, ys), (xa, ye) E G aucó that either (i) xs - x., ys ~ y.

and xe G x', ye - y', or (ii) xs - x', ys G y' and xe 1 x', ye - y'. By a symmetric

argument for (x~, y~) and (x4, y') there exista (x~, y~), (xa, ya) E G such that either (iii)

x~ - x', y~ ~ y' and xa ~ x', ye - Y`, or (iv) x~ - x', y~ G y' and xa G x', ys - Y'.

Whichever combination of cases (i) and (ii) with (iii) and (iv) occurs, (x', y') belongs to

the bi-convex hull of the two pointa, contradicting the original asaumption. Q.E.D.
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