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Abstract

We propose a new triangulation of (0, 1] x R", called the D~-triangulation, with con-

tinuous refinement oí grid sizes for use in continuous deformation algorithms to compute

solutions oí nonlinear equations. Any positive even integer can be chosen as one of its

factors of refinement of grid sizes. We prove that the DZ-triangulation is superior to

the wel]-known IfZ-triangulation and J2-triangulation when we compare the number of

simplices. Numerical tests show that the continuous deformation algorithm based on the

Dz-triangulation indeed is more efficient.
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1 Introduction

Simplicial methods were originated by Scarf in his seminar paper [18] to compute fixed points

of a continuous mapping from the unit simplex to itself. They are also called the fixed point

mcthods in literaturn. Ry now, tiimplicial methods have been developed for over twenty years.

As a tool to solve highly nonlinear problems, which are derived from decision-making, economic

rnodelling, and engineering, simplicial methods are very powerfuL The so-called continuous

deformation algorithm is one of the most successful simplicial methods. It was initiated by

Eaves in [9] to compute fixed points on the unit simplex, and generalized to R" by Eaves and

Saigal in [10] to find solutions of nonlinear equations. This method is also named the simplicial

homotopy algorithm. The principles of the continuous deformation algorithm are as follows.

Let f: R" --~ R" be a nonlincar mapping, f-(fr, fz,..., f„)T. We want to compute a

zero point of f. Let g: R" -~ R" be an affinely linear mapping with a zero point xo, i.e.,

y(x) - A(x - xo), where A is a n x n nonsingular matrix. Then the homotopy function h is

given by h(t, x) - (1 - t) f(x) t tg(x), for (t, x) E[0,1] x R". The underlying space (0, 1] x R"

is subdivided into simplices by a triangulation, denoted by T, with continuous refinement

of grid sizes. 1'he piecewise lincar approximation H of h with respect to T is given by, for

(t,x) -~~-r ~;y' E a, a simplex in T, with a; ~ 0, for i--1,0,...,n, and ~o-~ a; - 1,

H(t,x) - ~ a;h(y~),
~--~

where y' is a vertex of a for i- - 1, 0, ..., n. Then there exist some piecewise linear paths

defined by the set of zero points of H. In particular, one of the paths starts at xo and gces

to either infinity or converges to a zero point of f. One can trace this path with the standard

lexicographical pivoting rule. Numerical tests have shown that simplicial algorithms heavily

depend on the underlying triangulation. In order to improve the efficiency of the continuous

deformation algorithm, a numbcr of triangulations with continuous refinement of grid sizes has

been proposed, for example, the I(3-triangulation and the J3-triangulation of Todd in [20],

the D3-triangulation and the D2-triangulation of Dang in [5] and [6], the arbitrary grid size
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refinement triangulation of van der Laan and Talman in [15] and of Shamir in (19], the líZ-

triangulation, the J2-triangulation, the K~-triangulation, and the Jz-triangulation of Kojima

and Yamamoto in [14], the triangulation of Broadie and Eaves in [2], and the triangulation

of Doup and Talman in [7]. All these triangulations were derived from the well-known líl-

triangulation or Jl-triangulation, except the D3-triangulation and the Dz-triangulation, which

were obtained from the D~-triangulation. The latter triangulation of R" was proposed in [4]

and is superior to the lil-triangulation and the J~-triangulation according to all measures of

efficiency of triangulations. Theoretical results and numerical tests have proved that the D3-

triangulation is superior to both the IC3-triangulation and the J3-triangulation, and that the DZ-

triangulation is superior to botli the IC2-triangulation and the Jz-triangulation. As mentioned

by Kojima and Yamamoto in [14], the Ií3-triangulation is a special case of the lí~-triangulation

for the factor of refinement equal to two, and the J3-triangulation is a special case of the JZ-

triangulation for the factor of refinement equal to two. Numerical tests have shown in [5] that

the continuous deformation algorithm based on the D3-triangulation is very efficient. However,

its factors of refinement are also equal to two. Motivated by the results in [14], we construct

a new triangulation of (0, 1] x li", called the D2-triangulation, with continuous refinement of

grid sizes for the continuous deformation algorithm, using the Dl-triangulation. Any positive

even integer can be chosen as one of its factors of refinement. This feature is the same as that

of the IC~-triangulation and of the Jz-triangulation. Similarly to the Ií3-triangulation and the

J3-triangulation, the D3-triangulation now becomes a special case of the Dz-triangulation for

the factor of refinement equal to two. To compare with the Dz-triangulation, we also present

the If~-triangulation and the JZ-triangulation, which were given by Kojima and Yamamoto

in [14] without their algebraic definitions. We prove that the DZ-triangulation is superior to

the Iíz-triangulation and the Jz-triangulation when we count the number of simplices. Since

it is rather complicated to calculate the surface density of these triangulations, we refer for

it to [4] and [12]. Numerical tests show that the continuous deformation algorithm based

on the D2-triangulation indeed is more efFicient. We remark that the structure of the Dz-
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triangulation is quite difFerent from that of the Dz-triangulation. Numerical tests show that

the DZ-triangulation is in general faster than the Dz-triangulation. Note that there exists a

number of other interesting triangulations of R", see [17], [16], [22], and [13]. However, it is

not known how these triangulations of R" can be used to obtain triangulations of (0,1] x R"

with continuous refinement of grid sizes.

In Section 2, an algebraic definition of the Dz-triangulation is presented. In Section 3, we

prove that the definition given in Section 2 yields a triangulation. The pivot rules of the D2-

triangulation for moving from one simplex to an adjacent simplex are described in Section 4.

Comparison with other triangulations is presented in Section 5.

2 Algebraic Definition of the D2-~iangulation

Let No denote the index set {0, 1, ..., n} and let u' be the ith unit vectot in R"tt for i-

0, 1, ..., n. Takc ao E(0, 1] at~ci ~3; E { 1 ~ j ~ j - 1, 2, ...} for i- 0,1, ..., and choose a~ such

that a~tt - a~(i~~2 for j - 0, 1,.... Let us set ~-t - 1.

Let a-(~r(0),a(1),...,n(n)) be a permutation of the elements of No. Let q denote the

integer with tr(q) - 0. Take a vector y E (0,1] x R" such that for an integer k~ 0, yo - 2-(kt'),

yx(;)~2ak~i is an integer for i- 0, ..., q- 1, and y„(;)~ak is odd for i- q t 1, ..., n. Then we

define

w„(;) -
~[y„(;)~ak} f 1 if ~yx(;)~akf is odd,

[y„(;)~ak~ otherwise,

for i - O,l,...,q - 1.

Definition 2.1. Let y and a be as above. Then the vectors y-t, yo, ..., y" are given as follows.

y-' - y,

y~

y'

- y~-' f 2aktt ux(`), i- 0, 1, . .. , q- 1,

- ak ~~-ó wx(i)u~(i) ~~i att(yx(i) - ak)u~(i) f 2youo

- y~-' i- 2akux('~, i- q f 1, ..., n.
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Let y-', yo, ..., y" be obtained in the above manner. Then it is obvious that they are

affinely independent. Thus their convex hull is a simplex. Let us denote this simplex by

ICz (y, a). Let K~ denote the collection of all such simplices Ká (y, a). It will be shown in the

next section that KZ is a triangulation of (0,1] x R" such that any positive even integer can be

chosen as one of its factors of refinement, and when its factor of refinement is always equal to

two, the K3-triangulation is induced as one of its special cases. We call it the Kz-triangulation.

Let a -(~r(0), ~r(1), ..., a(n)) be a permutation of the elements of No. Let q denote the

integer with ~r(q) - 0. 'I'ake a vector y E (0,1] x R" such that for an integer k~ 0, yo - 2-(k}i),

if 1~(3k is even, y„(;)~2akt~ is even for i- 0,...,q - 1, if l~~ik is odd, yx(;)~2akt~ is odd for

i- 0, . .., q- 1, and yx(;)~ak is odd for i- q t 1, ..., n. Then we define

w„(;) -

(y„(;)~a,~J } 1 if ~y„(;)~akJ is odd and either y„(;)Iak ~ `y,(;)~akJ

or both ~yx(;)~akJ - yx(;)~ak and s„(;) - 1,

~y,(;)~ak J if ~y,c ;)~akJ is even,

Lyx(;)~akJ - 1 otherwise,

for i- 0, 1, ..., q- 1. If 1 ~~ik-~ is odd, let us define

-1 if y,(;)~a~ - 1(mod4),

i,~(;) -

1 if yx(;)~ak - 3(mod4),

for i- q f 1, . .., n, and if 1 ~~3k-~ is even, let us define

( 1 if yx(;)~ak - 1(mod4),

-1 if y„(;)~ak - 3(mod4),tx(;) - J}l

for i- q f 1, ..., n. Take a sign vector s- ( si, s2, ..., s")T such that s; E{-1, t1] for

i- 1, 2, ... , n, and s„(;) - f„(;) for i- q~ 1, ..., n.

Definition 2.2. Let y, ~r and s be as above. Then the vectors y-', yo, ... , y" are given as



5

follows.
y-' - y,

y' - y'-' t 2attisx(~)u'~'~, i- 0,1, ..., q- 1,

y9 - ak ~~-o wx(i)u~(il ~~~-yti(yx(i) - aksx(i))u~li) ~. 2youo,

y' - y'-1 f 2aksx(t)uxl'~, i- 9 f 1, ..., n.

Let y-', yo, , y" be obtained in the above manner. Then it is obvious that they are

affinely independent. Thus their convex hull is a simplex. Let us denote this simplex by

Jz (y, a, s). Let Jz denote the set of all such simplices J~(y, a, s). It will be shown in the next

section that J: is a triangulation of (0, 1] x Ft" such that any positive even integer can be chosen

as one of its factors of refinement, and when its factor o[ refinement is always equal to two, the

J3-triangulation is induced as one of its special cases. We call it the J2-triangulation.

Let a- (rr(0),a(1),...,~r(n)) be a permutation of the elements of No. Let q denote the

integer with ~r(q) - 0. Take a vector y E(0, 1] x R" such that for an integer k~ 0, yo - 2-~kt'~,

if 1~Qk is even, yx~;~~2akt~ is even for i- 0,...,q- 1, if 1~Qk is odd, y„~;1~2ak}1 is odd for

i - 0, ..., q- 1, and yxl;l~ak is odd for i- q f 1, ..., n. Then we define

w„~;I -

~y,~;~~ak~ -1- 1 if ~y„~;~~ak~ is odd and either yxl;~~ak ~ ~y,l;l~ak~

or both ~yx~;~~ak~ - y„I;~~ak and sx~;~ - 1,
~

lyx~;~~ak~ if ~yxl;~~ak~ is even,

lyxl;l~ak~ - 1 otherwise,

for i- 0, I, . .., q- I. If 1~Qk-, is odd, let us define

-1 if yxl;l~ak - 1(mod4),

1 if y„I;l~ak - 3(mod4),

for i- q t 1,...,n, and if l~~iA-i is even, let us define

~ 1 if yxl;l~ak - 1(mod4),

-1 if y„I;l~ak - 3(mod4),
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for i- q t 1,...,n. Take a sign vector s-(81,52,...,9n)T such that s; E{-1,-F1} for

i- 1, 2, ..., n, and sx(;) - t„(;) for i- q d- 1, .. .,n. 1'hen we define

1-
{a(i) ~ w„(;)~2 is even and 0 c i G q- 1} if l~~fk-, is odd,

{~r(i) ~ w„f;)~2 is odd and 0 G i G q- 1} if 1~(ik-~ is even.

Let h denote the number of elements in I. Take two integers p~ and Pz such that -1 G pl G q-2

ifq)l;p,--Iifq-O;whenh-O,OCp~Cn-q-lifqGn,andp2-0ifq-n;when

h~0,p2-n-q.

Definition 2.3. Let y, a, s, p~ and p2 be as above. Then the vectors y-', yo, ., y" are given

as follows.

When P~ - -1,
y-~ - y,

y' - y-F 2ak~ls„(;)ux('), i- 0, 1, ..., q- 1,

and when pl ? 0,

When h ~ 0,

y-~ - y f 2akti ~i-osx(i)ux(i)~

y' - y`-' - 2~ktis„(;)u~('), i- 0,1, ... , Pi - 1,

y' - y t~aktisx(~)ux('), 2- Pi, ... , q- 1.

yQ - ak ~q-ó 2~x i)ux(i) {. ~"- ti(yx i) t ak9x(i))u~(i) ~ 2youo
~- ( ~-v (

y` - y'-1 - 2aks„(t)u'('), : - 4 -f- 1, . . : , n,

and when h- 0, if pz - 0, f.hcn

y' - ak ~,'~-ó wx(i)u~(i) -}. ~i-afi(yx(i) - aksx(i))u'(i) .} 2 youo

y` - y`' -F 2aksn(~)ux(`), z- 9-F 1, ..., n,

and if p2 ? 1, then

y9 - ak ~~-ó wxli)u~(i) d- ~i-yti(yx(i) t~ksx(i))ux(i) ~ 2youo

y` - y'-1 - 2aksx(~)ux('), z- 9 t 1, ..., q f p2 - 1,

y~ - y' -~ 2a~,sx(qu~('), z- 4 f Pz, ..., n,
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where
v-i

y~ - ok ~ w~(i)ux(i)
-h ~ (yx(i) - ak sx(i))ux(i1 ~ 2youo

i-o i-vf~

Let y-', yo y" be obtained in the above manner. Then it is obvious that they are

affinely independent. Thus their convex hull is a simplex. Let us denote this simplex by

Dz (y, a, s, p~, p2). Let DZ denote the set of all such simplices Dz(y, n, s, p~, p~). It will be

shown in the next section that DZ is a triangulation of (0,1] x R" such that any positive even

integer can be chosen as one of its factors of refinement, and when its factor of refinement is

always equal to two, the U3-triangulation is induced as one of its special cases. We call it the

DZ-triangulation.

3 Construction of the D2-7~iangulation

Let N denote the index set { 1, 2, ..., n} and let Q denote the set

{w ~ all components of w are integers} .

We take an arbitrary element w E Q. Then we define

lo(w) - {i E N ~ w; is odd} and I~(w) -{j E N ~ wi is even}.

Furthermore, let A(w) denote the set

{xER"~w;-1Cx;Cw;~lforiElo(w),andx;-w;foriEl~(w)}

and let B(w) denote the set

{xER"~x;-w;foriElo(w),andw;-1 Gx;Gw;tlforiEl~(w)}.

Let k be a nonnegative integer. Then let Dk(w) denote the convex hull of the set

({2-k} x A(w)) U({2-(kt')} x B(w)).
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The following lemmas can be Cound in [5] and [14].

Lemma 3.1.

Dk(w) - S d E[2-(kt') ~-k] x R"
~ d; - w; ~G 2kt'do - 1 for i E ro(w)

~d;-w;~~2-2kt'doforiEl~(w) }.

Lemma 3.2. U,~EQDk(w) -[2-(kt') 2-k] x R".

Lemma 3.3. For w', w~ E Q, Dk(w') fl Dk(w~) is either empty or a common face of both

Dk(w') and Dk(w2), and wlien Dk(w') n Dk(w2) is not empty, it is equal to the convex hull of

the set

({2-k} x (A(w') n A(w2))) U({ 2-(ktl)} x(B(w') fl B(w2))).

For convenience of the following discussion, we give the definitions of the Dl-triangulation,

the If~-triangulation, and the J~-triangulation. For more details, see [4] and [20]. Let e` be the

ith unit vector in R" for i - 1, 2, ..., n.

Let D denote either the sct

{x E R" ~ all components of x are odd}

or the set

{:r E R" ~ all components of x are even} .

Let a -(a(1), n(2), .. ., a(n)) be a permutation of the elements of N. Take a sign vector

s-(s~, szi ..., s„)T with s; E{-1,1 } for i- 1, 2, ..., n. Let p be an integer with 0 C p C n-1.

Take a vector y from the set D.

Definition 3.1. Let y, n, s, and p be as above. Then the vectors yo, yl .., y" are as follows.

If p- 0, then yo - y, and y~ - y f s„(i)e'(i), J - 1,2,...,n.

Ií p 1 1, then
yo-yfs,

y' - y~-r - sx(i)ex(i), J - 1, 2, ... , p- 1,

y' - y f sx(i)ex(i), J- P, P t 1, ..., n.
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Let Dl denote the collection of all simplices D~ (y, a, s,p) that are the convex hull of yo, y',

..., y", as obtained from the above definition. Then Dl is a triangulation of R", called the

D~-triangulation.

Let K denote the set

{x E R" ~ all components of x are integers} .

Let a-( a(1),~r(2),...,n(iz)) be a permutation of the elements of N. Take a vector y from

the set K.

Definition 3.2. Let y and ~r be as above. Then the vectors yo, y', ., y" are given as follows

yo - y, and yi - yi-1 } ex(i), 7 - 1, 2, ..., n.

Let Ifl denote the collection of all simplices K~(y,a) that are the convex hull of yo, y',

... , y", as obtained from the above definition. Then Ifl is a triangulation of R", called the

Itl-triangulation.

Let J denote either the set

{x E R" ~ all components of x are odd}

P

or the set

{ x E R" ~ all components of x are even} .

Let a-(a(1),rr(2),...,a(n)) be a permutation of the elements of N. Take a vector y trom

the set J, and a sign vector s -( sl, 92i ..., 9")T with s; E{-1, 1} for i- 1, 2, ... , n.

Definition 3.3. Let y, a, and s be as above. Then the vectors yo, y', .. . , y" are given as follows.

yo - y, and y~ - y'-' -F sx(i)e'(i), 7 - 1, 2, ..., n.

Let J~ denote the collection of all simplices Ji(y, zr, s) that are the convex hull of yo, yl

..., y", as obtained from the above definition. Then Jl is a triangulation of R", called the

J~-triangulation.



10

We take G to be one of these triangulations o[ R". Let C denote the set of faces of

all simpliccs in G. "1'hen, as before in the second section, we take ao E (0, 1] and Q; E

{l~j ~ j- 1,2,...} for i- 0, 1,..., and choose a; such that a;t~ - a;Q;~2 for j - 0,1,.... We

set p-1 - 1.

Let 2akG ~ akA(w) be the set given by

{o C akA(w) ~ o E 2akG and dim(a) - dim(A(w))}

and let 2akt1G ~ akB(w) be the set given by

{o C akB(1o) ~ o E 2akt~G and dim(o) - dim(B(w))} .

For the D~-triangulation, the K~-triangulation, and the Jl-triangulation, it is obvious that

2akG ~ ákA(w) is a triangulatiou ufakA(w) and 2aktiG ~ akB(w) is a triangulation of akB(w).

Let a denote thc number of elements in the set Io(w), and b the number of elements in the

set I~(w). Let ~A E 2akG ~ akA(w) be equal to the convex hull of yÁ, yA, ..., yÁ, and let

oB E 2akt~G ~ akB(w) be equal to the convex hull of yB, yB, ..., yg. Furthermore, let o

denote the convex hull of the set ({2-k} x aA) U({2-(kt~)} x aB). It can easily be proved that

o is a simplex in [2-(kt'~ 2-k] x ti," and is equal to the convex hull of (2-k,yq)r, (2-k,yq)T

.. , (2-A,YÁ)T, (7-(kt~l,yB)T, (2-(kt~),yÉ)T, - , (2-(kt~),yE)T.

Let T(k, k.}-1) denote the collection of all such simplices o. Then, following the conclusions

mentioned above, we have that, for ol and o~ in T(k, k f I), the intersection ol fl a2 is either

empty or a common face of both o' and v2, and that the union of all o E T(k, k-~ 1) is equal

to [2-(kt~l,'l-k] x!r". Ilence, 'I'(k, k i- 1) is a triangulation of ['l-(kt~~, 2-k] x l2".

Theorem 3.4. 1'he union of T(k, k-F 1) over all nonnegative integers k is a triangulation of

(0,1] x fZ".

Proof. From the choice of a; and Q; for j- 0,1, ..., the theorem follows immediately.

We call the triangulation obtained in the above manner the G2-triangulation. In this way,

we obtain the KZ-triangulation, the Jz-triangulation, and the Dz-triangulation, as described

in Section 2. Considering consistency, one can easily prove these results.
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4 Pivot Rules of the D2-Triangulation

As describcd in the first sect.ion, when a piecewise linear path of zero points is traced, the

problem one faces is how to move from a simplex crossed by the path to an adjacent simplex

crossed by the path with the standard lexicographic pivoting rule. As follows, the pivot rules

of the K2-triangulation, the Jz-triangulation, and the DT-triangulation are described. The

contiiiuous deformation algorithm based on one of these triangulations can be implemented

according to these pivot rules. In these following pivot rules, yo - 2-~kt~1, y- (yl,...,y„)T,

yo - ~-lkt~1, Y - (y~,.. ,j„)T, and u - (1,1,.. ,1)T.

Let a simplex of the Iti2-triangulation, o- ICi(y,a), be given with vertices y-~, yo, .. , y".

We want to obtain the simplex of the KZ-triangulation, ó- IC2(y, ir), such that all vertices of

o are also vertices of ó except the vertex y'. As follows, we show how y and á depend on y, ~r,

and i.

i--1: In case q- 0, y- y- aku, ~r -(~r(1), ..., ~r(n), ~r(0)), q- n, and k- k- 1.

In case q 1 1, if yo~o~ -~k(w„lol -~ 1), then y- y-(y,lo) - ak(w„lo~ -f 1))uxlol, ir -

(~(1), ... , ~r(n), n(~)), 9- q-1, and k- k; ifyolol ~ a,t(wx~o)-F1), then y - yt2attiuxlol,

~ - (n( t ), . . . , ~(7 - I ), n(~), ~(q), . . . , a(n)), 7 - 4, and k - k.

0 G i G q- 1: y- y, ~-(n(~),..., a(í -F 1),~(z),...,a(n)), 9- 4, and k- k.

0 G i- q- 1: If y„(v-U -~k(wx(a-il- 1), then y- y, ~-(a(~),...,~(q), a(q-1),...,~r(n)),

4- 9- 1, and k- k. If y„(v-~) ~ ~k(wx(s-~) - 1), then y- y - 2aktiux(v-i) ~-

(~(9 - 1), ~(~), . . . , ~(9 - 2), ~(q), . . . , ~(n)), 9 - 9, and k - k.

c n: y - y. á - ( a(0), . . . , n(4 ~ 1), ~(q), . . . , a(n)), 4 - q -~ 1, and k - k.

q G i G n: y- y, ~- (n(0),...,a(i ~- 1),~(:),...,n(n)), 4 - 9, and k- k.

i-n: In case q G n, y- y - 2~ktluxl"1, á-( ~r(n), a(0), ..., a(n - 1)), q- q i- 1, and k- k.

In case q- n, y- y-~ a~,t~u, ir -(a(n), a(0), ...,~r(n - 1)), q- 0, and k- k-F~ 1.
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Next, let a simplex of Lhc J2-triangulation, o- Jz(y,~r,s), be given with vertices y-', yo,

..., y". We want to obtain the simplex of the Jz-triangulation, ó- Jz (y, ir, s), such that all

vertices of a are also vertices of ó except the vertex y'. As follows, we show how y, á, and s

depend on y, ~r, s, and i.

i--1: In case q - 0, y- y - aks, s- s, ir -(~r(1),a(2),...,a(n),a(~)), 4- n, and

k- k- 1. In case q 1 0, y- y t 4aktls„(o)u'(o), 9- 9- 29x(o)u'(o), fr- a, 9- 4, and

k-k.

OGáCq-1: y- y,s-s,n-(~(0),...,~r(ifl),~(s),...,a(n)),9-9,andk-k.

0 G i- q- 1: In case yx(v-~) - a~(wx(v-~) - sx(v-r)), if sx(v-U - tx(v-i), then y- y, 9- s,

á-(ar(0),...,~(q),~(9 - 1),...,~(n)), 4- 9- 1, and k- k; if sx(v-1) ~ tx(v-1), then

y-y, 9 - s-29x(v-i)ux(v-1)~ ir -(R(0),...,a(4-2),~(q),...,a(n),n(q- 1)) , 4- 4-1,

and k- k. In case yx(v-~) ~ ak(wF(v-~) - sx(v-1)), Y- y, s- s - 2s.(v-1)ux(v-1) n-~

q-q,andk-k.

4- s G n: y- y, s- s, ~-(~(~),...,ar(9 t I),~(q),...,a(n)), 9- 4 f 1, and k- k.

q C á G n: y - y, s - s, ir -(n(0),...,a(i t 1),a(i),...,~r(n)), q- q, and k- k.

á-n: In case q G n, y - Y, s - s-2sx(n)u'(~), n - (A(~), . . . , ~(9-I ), ~(n), n(q), . . . , a(n-1)),

9-4fl,and k-k. Incaseq-n,y-yfaktls,s-s,fr-(ar(n),a(~),...,a(n-1)),

q-0,andk-k-~1.

Finally, let a simplex of the D2-triangulation, a- DZ(y, u, s, pl, pa), be given with vertices

y-~, yo, , y" We want to obtain the simplex of the Dz-triangulation, ó - D2(y,ár, s,pl,p2),

such that all vertices of o are also verticea of á except the vertex y'. As follows, we show how

y, ir, s, pl, and p2 depend on y, n, s, p~, p~, and i.

i--1: In case q- 0, y- y - aks, s- s, ir -(~r(1),...,ar(n),ar(0)), pi - pz - 1, p2 - 0,

9- n,and k- k- 1. In case 4- 1, y- y-~ 4akt~s,(o)u~(o), s- s - 2s„(o)ux(o), á- a,
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p~ -p~,p2-p~,q-y,andk-k. Incaseq~l,whenpl --l,y-y,s-s,

~-~,Pi -Pi}I,Ps -Ps,4-9,and k-k; whenpl -0,g-y,s-s,á-a,

Pi - Pi - 1, Ps - P~, 9- 4, and k- k; when pl ~ 1 and y„(o) - ak(w,(o) - sx(o)), ií

h- 0 and pz - 0, then y- y, s - s- 2sx(o)ux(o), ~-(~(1), ..., a(n), ~(0)), Pi - Pi - 1,

pa - pzi q- q- 1, and k- k, if h - 0 and p~ 1 1, then y - y, s- s- 2sx(o)ux(o),

~-(~(1),...,~(q),~(o),~(q f 1),...,~(n)), Pi - Pi - 1, n~ - P~ f 1, 9 - q- I,

and k- k, if s„(o) - t„(o) and h- 1, then y - y, s- s, ~r -(a(1),.. ,a(n),n(0)),

P1-p~-l,pz-pz,q-q-l,andk-k,ifs„(o)-t„(o)andh~l,theng-y,s-s,

a-(a(I), ..., a(n), a(0)), Pi - Pi -1, Pz - Psf 1, 4- 9-1, and k- k, and if s„(o) ~ tx(o)

and h 7 0, then y- y, S- s - 2sx(o)u'(o), Á-(~(1), ... , a(q), ~(0), ~(9 f 1), ... , a(n)),

Pi - Pi - 1, Px - Ps f 1, 9- 4- 1, and k- k; when pl ~ 1 and yx(o) ~ ak(wx(o) - sx(o)),

Y-y,s-s-2s,.(o)u"(o),~-~,Pi-Pi,Ps-P~,4-9,andk-k.

0 C i G q: In case pl --1, when y„(;) - ak(w„(;) - s„(;)), ií h- 0 and pz - 0, then

y- y, s - s- 2s,.(;)u'(`), n-(~(0),.. ,n(2 - 1),a(i -F 1),.. ,~(n),~(Z)), Pi - Pi,

pz -pziq-q-l,and k- k,ifh-0andpz 11,theny-y,s-s-2sx(;)u'('),

~-(~(o),...,~(i -1),~(i f 1),...,~(q),~(i),~(q t i),...,x(n)), Pi - Pi, i~ - na t 1,
q-q-l,andk-k,ifs„(;)-t„(;)andh-l,theny-y,s-s,ir-(a(0),...,a(i-

1), a(i-F 1), ..., a(n), ~r(:)), Pi - Pi, Ps - Ps, 9- 4-1, and k- k, if sx(;) - tx(;) and h~ 1,

then y- y, 3 - s, i~ -(n(0), ...,~(i - 1), a(i f 1), ..., n(n), ~r(2)), Pi - Pi, Ps - P2 t 1,

q- q- 1, and k- k, and if s,(;) ~ t„(;) and h~ 0, then y- y, s- s- 2sx(;)ux('), á-

(~(0),...,~r(i-1),~r(ifl),...,~(q),~(:),x(9f1),...,u(n)),Pi - Pi,Ps - Ps-F1, 4 - 9-I,

and k- k; when yx(;) ~ ctik(wx(;)-s„(;)), y- y, s.- s-2s„(;)ux('), á- ~r, Pi - Pi, Pz - Pz,

9- 9, and k- k. In case i C P~ - 1, y- y, é - s, ir -(a(0), . .., a(i ~-1), ar(4), ..., a(n)),

Pt -Pi,Pz -P2,9-9,andk-k. Incasei-P~-l,y-y,s-s,á -a,

pl -p1-l,p~-p~,q-q,andk-k. Incaseilp1 andOCp~ Gq-2,y-y,

s- s, á-(n(0),...,~(Pi - 1),~(2),~(Pi),...,a(i- 1),~r(i i- 1),...,~rÍT')), Pi - Pi t 1,

P~ - P~, 9- 9, and k- k. In case i 1 q- 2 and 0 C pl - 9- 2, y- y ~ 4aktls„(;~)ux(~~),
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s- s- 2s„(;.)u~(''), ir - n, pt - pt, px - px, q- q, and k- k, where

i' -
( q-1 ifi-q-2,

!Il q-2 ifi-q-1.

i- 4: In case h- 0, when px - 0, if q G n- 1, then g - y, s - s, ~r - a, pl - pl,

px-px-Fl,q-q,andk-k,ifq-n-landpt --l,theny-y,s-s,

~ - (~(~), . . . , ~(9 ~ 1), ~(q), . . . , a(n)), Pt - Pt, Px - Px, 4 - 4 f 1, and k - k, if

4- n- 1 and pl 1 0, then Y- y, s- s, n-(A(9 f 1), ~(~), ...,~(q), a(q ~ 2), . .., a(n) ),

Pt - Pt f 1, Px - Px, 9 - 9 t 1, and k; when Px - 1, y- y, 9- s, ~-~, Pt - Pt,

px - px -1, q- q, and k- k; when px ? 2, ifpt --1, then y- y, s- s-2s„(q~l)u'(Qt')

~-(~(0),...,~(4 f 1),~(q),...,n(n)). Pt - Pr, Pz - Px - 1, 4- 9-1. 1, abd k- k, if

Pi ~ 0, then y- y, s - s-2s,.(vtt)ux(att) ~-(~(9f1),n(~),...,~(q),~(4f2),...,a(n)),

pt-pt fl,px-px-l,q-qtl,andk-k. Incaseh~0,whenqGn,ifpl--1,

then Y - y, S - s - ~sx(ctt)ux(q}1), ~ - (tr(0), . .. , x(9 f 1), ~(q), .. . , a(n)), Pt - Pt ,

px - px - 1, q- q t 1, and k- k, and if p, ~ 0, then y - y, s- s- 2sx(ott)u'(9tt),

~-(~(4f 1),~(~),...,~(q),~(4f 2),...,A(n)), Pt - Pt f 1, Px - Px - 1, 9- 9 f 1, and

k- k. In case 9- n, y- J t akfts, 3- s, ~-(~(n),~(~),...,n(n - 1)), Pt --1,

px-p~-F1,q-0and k-k-f-1.

q G i G n: In case h- 0, when px - 0, if p, --1, then y - y, s - s- 2s„(;)ux('), á-

(a(0),..., ~(4 - 1), ~(3), ~(q),...,a(i - 1), A(i t 1),..., ~(n)), Pt - Pt, Px - Px, 4- 4 f 1,

and k- k, and if pt 1 0, then y- y, s- s- 2s„(;)ux('), ir -(a(i), n(0), . .., ~r(i -1), a(i ~

1),...,n(n)), pt - pt i- 1, px - px, g- q~- 1, and k - k; when i G q t px - 1, y- y,

á- s, ~r - (a(t)),.. ,a(i f 1),n(:),.. ,a(n)), Pl - Pi, Px - Px, 9- 9, and k- k; when

i-9tPz-I,TJ--y,.s - s,n-n,Pt -Pt,Px-Pz-1,9-9,andk-k; when

i~q~pxand 1 GpxGn-4-I,Y-y,s-s,~-(tr(0),...,~(4fPx-1),~(t),~(4f

Px), ..., n(i - 1), tr(i f 1), ... , a(n)), pt - Pr, Px - Px -~ 1, 4- 9, and k- k; when

i1n-landl Gpx-n-q-l,ifP1--l,theny-y,s-s,á-(a(0),...,~r(q-
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1) ~(i..),~(9),...,~(i~~-1) ~(ira~l),.. ,~(n)),Pi-Pi,Px-Pz,4-9fl,andk-k,

and if pl ~ 0, then y- y, s- s, ~-(~r(i..),~(0),...,~r(i.. - 1) ~(i.. ~ 1),...,n(n)),

Pi-Pifl,Pz-Pz,9-4fl,andk-k,wherè

( n ifi-n-1,

n-1 i-n.i" - Jll

In case h ~ 0, when i G n, y- y, s - s, á-(a(0),...,~r(i ~ 1),a(i),...,a(n)),

}i~ - pi, ps - px, 4- 9, and k- k; when i- n, if p~ --1, then y- y, s - s,

~-(~(p),...,~(9- 1),~(n),~(9),...,n(n- 1)), Pi - Pr, Pz - Ps - 1, 4- 4t 1, and

k- k, and if pl 1 0, then y- y, s- s, a- ( a(n),a(~),...,~r(n - 1)), Pl - Pl -F 1,

P2-P2-1,9-4-Fl,andk-k.

5 Comparison of Triangulations

Since it is very complicated to calculate the surface density of the KZ-triangulation, of the Jz-

triangulation, and of the Dz-triangulation, we only compare the number of simplices of these

triangulations. For details about the surface density, we refer to [4] and [12]. Let H" denote

the unit cube {x E fi;" ~ 0 C x; G 1 for i- 1,2,...,n}. We set a- 1~Qk.

Theorem 5.1. The number of simplices of the KZ-triangulation and of the JZ-triangulation

in the set [2-Ik}11,2-k] x 2akH" is equal to p"(a) given by

P"(a) - ((2a)"ti - 1)n!I(2a - 1).

The number oí simplices of the D2-triangulation in the same set is equal to q"(a) given by

9"(a) -~(('Lm - 1)Cn amd,"(n - m)! t Cna"`d,"d"-,"),
m-0

where

di -7 tJ(J - 1)f... fj(j -1)...4.3f2

for j 1 2, do - d, - 1, and Cn - n!~m!(n - m)!.

Proof. Let Q denote the set {w E R" ~ w; E{0,1, 2} for i - 1, 2, . .. , n}. We take an arbitrary
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vector w E Q. Let A(w) denote the set

txER"~w;-1cx;Gw;-FlforiElo(w),andx;-w;foriEl~(w)}

and let B(w) denote the set

x; - w; for i E lo(w),

xER" w;Cx;Lw;tlforiEl~(w)andw;-0,

w;-1Gx;Gw;foriEl~(w)andw;-2

Furthermore, let akÍJ(w) denote the convex hull of the set

({2-k} x akÀ(w)) U({ 2-(k}1)} x akB(w)).

Then it is obvious tliat

[2-(kfi) 2-k] x 2akH" - UwEGakD(w).

Let m denote the number of elements in I~(w). Then there are 2mC~ clements in Q such that

m components of each of them are even. Thus the numbers of simplices of the K~-triangulation

and of the J2-triangulation in the set

UwE4,li.(w)lamak D(w)

is equal to

2mamCn (n - m)!m!(- (2a)mn!).

The number of simplices of the D2-triangulation in the same set is equal to

(2m - 1)Cn amd,,,(n - m)! f Cn amdmd"-m.

Since
U'm-o(UwE~,l4(w)1-,,.akD(w)) - [2-(kti) 2-k] x 2akH",

the thcorem follows immediatcly.

Theorem 5.2. When n? 3, q"(a) C p"(a). As n goes to infinity, q"(a)~p„(a) converges to
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e-2.

Proof. The conclusion is obvious, the proof is omitted.

From Theorem 5.2, we have that the number of simplices of the Dz-triangulation is smallest

for these three triangulations.

Let us denote the continuous deformation algorithms based on the Kz-triangulation, the

Jz-triangulation, and the DZ-triangulation by CDAKz, CDAJz, and CDAD~, respectively. We

have tnade computer codes of these algorithms in PASCAL. As introduced about the principles

of the continuous deformation algorithm in the first section, letting A be the identity matrix

and starting at xo -(0.5, 0.5, ..., 0.5)T, we have run theae computer codes on a few functions

for finding a zero point. Numerical tests are given as follows. Let NFE denote the number of

function evaluations. The algorithm terminates when the accuracy for max~~;~„ ~ f,(x')~ of less

than 10-5 has been reached. In the following tables, if the accuracy has not been satisfied when

the number of function evaluations is equal to 40000, a symbol' is marked.

Problem A: The function f: R" ~ R" is given by

n

f;(x) - x; - cos(i~ x~), i- 1,2,...,n.
~-i

When ao - 0.25 and Q~ - 1 for j- 0, 1,..., numerical results are given in t}ie following table.

n NFE(CDAK~) NFE(CDAJ~) NFE(CDADz)
5 376 327 311
6 867 1007 787
7 2732 1794 1671
8 7843 5371 618
9 14505 12573 8663
10 35797 26006 23735

When ao - 0.25 and QZ~ - 1 and (izj}1 - 0.5 for j- 0,1,..., numerical results are given in the

following table.
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n NFE(CDAKZ) NFE(CDAJ~) NFE(CDAD2)
5 377 336 313
6 941 1029 818
7 2873 1817 1691
8 8390 5392 705
9 15209 13342 8060
10 ~` 27453 26418

Problem B: The function f: R" y R" is given by

filx) - xi -
C~~~~i.isi) i- 1,2,...,11.

When ao - 0.25 and Q~ - 1 for j- 0,1, ... , numerical results are given in the following table.

n NFE(CDAK~) NFE(CDAJ~) NFE(CDADz)
5 771 254 199
6 826 543 278
7 6575 1937 1465
8 12781 4152 3476
9 ' 12821 4706
10 ' 30102 23365

When ao - 0.25 and ~1 - 1 and ~zj}1 - 0.5 for j- 0,1, ... , numerical results are given in the

following table.

n NFE(CDAKz) NFE(CDAJ~) NFE(CDADz)
5 781 214 189
6 851 577 300
7 6535 2027 1631
8 11576 4326 3418
9 ' 13585 5357
10 ` 33443 23098

Problem C: The function f: R" -~ R" is given by

!i(~) - xi - gun~~~~.1rJ1 t - 1,2,...,11.

When cro - 0.25 and ~31 - 1 for j- 0, 1,..., numerical resulta are given in the following table.
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n NFE(CDAK2) NFE(CDAJz) NFE(CDADZ)
5 553 298 294
6 1032 286 323
7 7993 454 417
8 22559 463 2077
9 ` 21398 10284
10 ~` 36616 15170

When ao - 0.25 and ~izj - 1 and ,OZJ}i - 0.5 for j- 0;1, ..., numerical results are given in the

following table.

n NFE(CDAKZ) NFE(CDAJZ) NFE(CDAD2)
5 634 307 349
6 1162 335 367
7 7374 588 486
8 1805 651 1999
9 36390 18954 10705
10 ~` ' 16392

Problem D: The function f: R" ~ R" is given by

Ít(~) - y~ - sin(:~ xi), i- 1,2,...,n.
~-i

When ao - 0.25 and ~i~ - 1 for j- 0,1, ..., numerical results are given in the following table.

n NFE(CDAKz) NFE(CDAJ;) NFE(CDADz)
5 452 405 364
6 1123 978 874
7 3499 2279 1726
8 6863 3461 4939
9 17264 16970 7734
10 ' ' 25711

When ao - 0.25 and ~32j - 1 and p2j}1 - 0.5 for j - 0,1, ..., numerical results are given in the

following table.

n NFE(CDAKz) NFE(CDAJz) NFE(CDAD2)
5 444 406 370
6 1131 1088 908
7 3829 2364 1897
8 7358 3726 5107
9 15259 17891 8173
10 ' ` 32636
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From these numerical examples, it appears that the continuous deformation algorithm based

on the Dz-triangulatiun indecd is morc e(ficient.

References

[1] Allgower, E.L. and Georg, K.(1980). Simplicial and continuation methods for approximat-

ing fixed points and solutions to systems of equations, SIAM Review 22, 28-85.

[2] Broadie, M. N. and Eaves, B. C.(1987). A variable rate refining triangulation. Mathemat-

ical Programming 38, 161-202.

[3] Dang, C.(1991). The Di-Triangulation in Simplicial Algorithms. Unpublished PhD Thesis.

CentER, Tilburg University, The Netherlands.

[4] Dang, C.(1991).The D~-triangulation of R" for simplicial algorithms for computing solu-

tions of nonlinear equations. Mathematics of Operations Research 16, 148-161.

[5] Dang, C.(1989). The D3-triangualtion for simplicial deformation algorithms for computing

solutions of nonlinear equations. Discussion paper 8949, Center for Economic Research,

Tilburg University, Tilburg, The Netherlands. To appear in a forthcoming issue of Journal

of Optimization Theory and Applications.

[6] Dang, C.(1990). The D~-triangulation for simplicial homotopy algorithms for computing

solutions of nonlinear equations. Discussion paper 9024, Center for Economic Research,

Tilburg University, Tilburg, The Netherlands. ACceptéd for publication in Mathematical

Programming (Series A).

[7] Doup, T.M.(1988). Simplicial Algorithms on The Simplotope. Lecture Notes on Economics

and Mathematical Systems, Springer-Verlag, Berlin.

(8] Doup, T.M. and Talman, A.J.J.(1987). A continuous deformation algorithmon the product

space of unit simplices. Mathematics of Operations Research 12, 485-521.



21

[9] Eaves, B.C.(1972). Homotopies for computation of fixed points. Mathematical Program-

ming 3, 1-22.

[10] Eaves, B.C.(1984). A Course in Triangulations for Solving Equations with Deformations.

Lecture Notes on Economics and Mathematical Systems, Springer-Verlag, Berlin.

[ll] Eaves, B. C. and Saigal, R.(1972). Homotopies for the computation of fixed points on

unbounded regions. Mathematical Programming 3, 225-237.

[12J Eaves, B. C. and Yorke, J. A.(1984). Equivalenceof surface density and averagedirectional

density. Mathematics of Operations Research 9, 363-375.

[13] Haiman, M.(1989). A simple and relatively efHcient triangulation of the n-cube.

Manuscript, Department of Mathematics, Massachusetts Institute of Technology, Mas-

sachusetts.

(14] Kojima, M. and Yamamoto, Y.(1982). Variable dimension algorithms: basic theory, in-

terpretation, and extcnsions of some exiatíng methods. Mathematical Programming 29,

177-215.

(15] van der Laan, G. and Talman, A.J.J.(1980). A new subdivision for computing fixed points

with a homotopy algorithm. Mathematical Programming 19, 78-91.

[16] Lee, C.(1985). Triangulating the d-cube. In: Discrete Geometry and Convexity, editted by

J.E. Goodman, E. Lutwak, J. Malkevitch, and R. Pollack, NY Academy of Sciences, New

York, 205-211.

[17] Sallee, J.F.(1984). Middle cut triangulations of the n-cube. SIAM Journal on Algebraic

and Discrete Methods 5, 407-418.

[18] Scar[, tL(1967). The approximation oí fixed points of a continuous mapping. SIAM Journal

on Applied Mathematics 15, 1328-1343.



22

[19] Shamir, S.(1980). Two triangulations for homotopy fixed point algorithms with an arbi-

trary refinement factor. In: Analysis and Computation of Fixed Points, edited by S.M.

Robinson, Academic Press, New York, 25-56.

[20] Todd, M.J.(1976). The Computation of Fixed Pointa and Applications. Lecture Notea on

Economics and Mathematical Systems, Springer-Verlag, Berlin.

[21] Todd, M.J.(1976). On triangulations for computing fixed points. Mathematical Program-

ming 10, 322-346.

(2`l] Todd, M.J. and Tuncel, L.(1990). A new triangulation for simplicial algorithms. 'fECH-

NICAL REPORT NO. 946, School of Operations Research and Industrial Engineering,

Cornell University, Ithaca, NY.



Díscussion Paper Series, CentER, Tilburg University, The Netherlands:

(For previous papers please

No. Author(s)

9021 J.R. Magnus and
B. Pesaren

9022 K. Kamiya and
D. Talman

9023 w. Emons

9024 c. Dang

9025 K. Kamiya end
D. Talman

9026 P. Skott

9027 C. Dang and
D. Talman

9028 J. Bai, A.J. Jakeman
and M. McAleer

9029 Th. van de Klundert

9030 Th. van de Klundert
and R. Gradus

9031 A. Weber

9032 J. Osiewalski and
M. Steel

9033 C. R. Wichers

9034 C. de Vries

9G35 M.R. Baye.
D.W. Jansen and Q. Li

9036 J. Driffill

9037 F. van der Plceg

consult previous discussion papers.)

Title

Evaluation of Moments of Quadratic Forms in
Normal Variables

Linear Stationary Point Problems

Good Times, Bad Times, and Vertical Upstream
Integration

The D2-Triangulation for Simplicial Romotopy
Algor3thms for Computing Solutions of
Nonlinear Equations

Variable Dimenaion Simplicial Algorithm for
Balanced Oames

Efficiency Wages, Mark-Up Pricing and
Effective Demand
The D-Triangulation in Simplicial Varieble
Dimenáion Algorithms for Computing Solutions
of Nonlinear Equations

Discrimination Between Nested Two- and Three-
Paremeter Distributions: An Application to
Modela of Air Pollution

Crowding out and the Wealth of Nations

Optimal Government Debt under Distortionary
Taxation

The Credibility of Monetary Target Announce-
ments: An Empirical Evaluation

Robust Bayesian Inference in Elliptical
Regression Models

The Linear-Algebraic Structure of Least
Squares

On the Relation between GARCR and Stable
Processes

Aggregation end the "Random Objective"
Justification for Disturbances in Complete
Demand Systems

The Term Structure of Interest Rates:
Structural Stability and Macrceconomic Policy
Changes in the UK

Budgetary Aspects of Economic and Monetary
Integration in Europe



No. Author(s)

9038 A. Robson

9039 A. Robson

904o M.R. Baye, G. Tian
and J. Zhou

9041 M. Burnovsky and
I. Zang

9o4z P.J. Deschamps

9043 S. Chib, J. Osiewalski
and M. Steel

9044 H.A. Keuzenkamp

9045 I.M. Bomze ana
E.E.C, ven Damme

9046 E. van Damme

904~ J. Driffill

9048 A.J.J. Talman

9049 H.A. Keuzenkamp and
F. van der Plceg

905o C. Dang and
A.J.J. Talman

9051 M. Baye, D. Kovenock
and C. de Vries

9052 H. Carlsson and
E. van Damme

9053 M. Baye and
D. Kovenock

9054 Th. van de Klundert

9055 P. Kooreman

Title

Existence of Nash Equilibrium in Mixed
Strategies for Games where Payoffs Need not
Be Continuous in Pure Strategies

An "Informationally Robust Equilibrium" for
Two-Person Nonzero-Sum Games

The Existence of Pure-Strategy Nash
Equilibrium in Games with Payoffs that are
not Quasiconcave

"Costleas" Indirect Regulation of Monopolies
with Substantiel Entry Cost

Joint Tests for Regularity and
Autocorrelation in Allocation Systems

Posterior Inference on the Degrees of Freedom
Parameter in Multivariate-t Regression Models

The Probability Approach in Economic Method-
ology: On the Relation between Haavelmo's

Legacy and the Methodology of Economics

A Dynamical Characterization of Evolution-
arily Stable States

On Dominance Solvable Games and Equilibrium
Selection Theories

Changes in Regime end the Term Structure:
A Note

General Equilibrium Progremming

Saving, Investment, Covernment Finance and
the Current Account: The Dutch Experience

The D-Triangulation in Simplicial Variable
Dimenáion Algorithms on the Unit Simplex for
Computing Fixed Points

The All-Pey Auction with Complete Information

Global Games and Equilibrium Selection

How to Sell a Pickup Truck: "Beat-or-Pay"
Advertisements as Facilitating Devices

The Ultimate Consequences of the New Crowth
Theory; An Introduction to the Views of M.
Fitzgerald Scott

Nonparametric Bounds on the Regression
Ccefficients when an Explanatory Variable is
Categorized



No. Author(s)

9056 R. Bartels and
D.G. Fiebig

9057 M.R. Veall and
K.F. Zimmermann

9058 R. Bartels and
D.G. Fiebig

9G59 F. van der Plceg

9060 H. Bester

9061 F. van der Plceg

9062 E. Bennett and
E. van Damme

9063 S. Chib, J. Osiewalski
and M. Steel

9G64 M. Verbeek and
Th. Nijman

9065 F. van der Plceg
and A. de Zeeuw

9066 F.C. Drost and
Th. E. Nijman

906~ Y. Dai and D. Talman

9068 Th. Nijman and
R. Beetsma

9069 F. van der Plceg

90~0 E. van Damme

90~1 J. Eichberger,
H. Haller and F. Milne

90~2 G. Alogoskoufis and
F. van der Plceg

9073 K.C. Fung

Title

Integrating Direct Metering and Conditional
Demend Analysia for Estimating End-Use Loads

Evaluating Pseudo-R2's for Binary Probit
Models

More on the Grouped Heteroskedasticíty
Model

Channels of International Policy Transmission

The Role of Collateral in a Model of Debt
Renegotiation

Macrceconomic Policy Coordination during the
Various Phases of Economic end Monetary
Integration in Europe

Demand Commitment Bargaining: - The Case of
Apex Games

Regreasion Models under Competing Covarience
Matrices: A Bayesian Perspective

Can Cohort Data Be Treated as Genuine Panel
Data?

International Aspects of Pollution Control

Temporal Aggregation of GARCH Processes

Linear Stationary Point Problems on Unbounded
Polyhedra

Empirical Teata of a Simple Pricing Model for
Sugar Futures

Short-Sighted Politiciens and Erosion of
Government Assets

Fair Division under Asymmetric Information

Naive Bayesian Learning in 2 x 2 Matrix
Gamea

Endogenous Growth and Overlapping Generations

Strategic Industrial Policy for Cournot and
Bertrend Oligopoly: Management-Labor
Cooperation as a Possible Solution to the
Market Structure Dilemma

9101 A. van Scest Minimum Wages, Earnings and Employment



No. Author(s)

9102 A. Barten and
M. McAleer

9103 A. Weber

9104 G. Alogoskoufis and
F. van der Plceg

9105 R.M.W.J. Beetsma

9106 C.N. Teulings

9107 E. ven Damme

9108 E. van Damme

91G9 G. Alogoskoufis and
F. ven der Plceg

9110 L. Samuelson

9111 F. van der Ploeg end
Th. van de Klundert

9112 Th. Nijman, F. Palm
and C. Wolff

9113 H. Bester

9114 R.P. Gilles, G. Owen
and R. van den Brink

9115 F. van der Plceg

9116 N. Rankin

9117 E. Bomhoff

9118 E. Bomhoff

9119 J. Osiewalski and
M. Steel

9120 S. Bhattacharya,
J. Glazer and
D. Sappington

9121 J.W. Friedman and
L. Samuelson

Title

Comparing the Empirical Performance of
Alternative Demand Systems

EMS Credibility

Debts, Deficits and Growth in Interdependent
Economies

Bands and Statistical Properties of EMS
Exchange Rates

The Diverging Effects of the Business Cycle
on the Expected Duration of Job Search

Refinements of Nash Equilibrium

Equilibrium Selection in 2 x 2 Games

Money and Growth Revisited

Dominated Stretegies and Commom Knowledge

Political Trade-off between Growth and
Government Consumption

Premia in Forward Foreign Exchange as
Unobserved Components

Bargaining vs. Príce Competition in a Market
with Quality Uncertainty

Games with Permission Structures: The
Conjunctive Approach

Unanticipated Inflation and Government
Finance: The Case for an Independent Common
Central Bank

Exchenge Rate Risk and Imperfect Capital
Mobility in an Optimising Model

Currency Convertibility: When and How7 A
Contribution to the Bulgarian Debate!

Stability of Velocity in the G-7 Countries: A
Kalman Filter Approach

Bayesian Marginal Equivalence of Elliptical
Regresaíon Modela

Licensing and the Sharing of Knowledge in
Research Joint Ventures

An Extension of the "Folk Theorem" with
Continuous Reaction Functions



No. Author(s)

9122 S. Chib, J. Osiewalski
and M. Steel

9123 Th. van de Klundert
and L. Meijdam

9124 S. Bhattacharya

91z5 J. Thomas

9126 J. Thomas
and T. Worrall

9127 T. Gao, A.J.J. Talman
and Z. Wang

9128 S. Altug and
R.A. Miller

9129 H. Keuzenkamp and
A.P. Barten

Title

A Bayesian Note on Competing Correlation
Structures in the Dynamic Linear Regression
Model

Endogenous Growth and Income Distribution

Banking Theory: The Main Ideas

Non-Computable Rational Expectations
Equilibria

Foreign Direct Investment and the Risk of
Expropriation

Modification of the Kojima-Nishino-Arima
Algorithm and its Computational Complexity

Human Capital, Aggregate Shocks and Panel
Data Estimation

Rejection without Falsification - On the
History of Testing the Homogeneity Condition
in the Theory of Consumer Demand

913o G. Mailath, L. Samuelson Extensive Form Reasoning in Normal Form Games
and J. Swinkels

9131 K. Binmore and
L. Samuelson

Evolutionary Stability in Repeated Games
Played by Finite Automata

9132 L. Samuelson and
J. Zhang

9133 J. Greenberg and
S. Weber

9134 F. de Jong and
F. van der Ploeg

9135 E. Bomhoff

9136 H. Bester and
E. Petrakis

913~ L. Mirman, L. Samuelson
and E. Schlee

9138 C. Dang

Evolutionary Stability in Asymmetric Games

Stable Coalition Structures with Uni-
dimensional Set of Alternatives

Seigniorage, Taxes, Government Debt and
the EMS

Between Price Reform and Privatization -
Eastern Europe in Transition

The Incentives for Cost Reduction in a
Differentiated Industry

Strategic Information Manipulation in
Duopolies

The D~-Triangulation for Continuous
Deformation Algorithms to Compute Solutions
of Nonlinear Equations



P.O. BOX 90153. 5000 LE TILBURG. THE NETHERLANDS
Bibliotheek K. U. Brabantuii~ o ~r N ~~~u~ p wM i~ M Ui~


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31

