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Extended Abstract

We formulate a general representation of points z 2 <n
� f0g in terms of pairs (y; r),

where r > 0, y lies in some space Y, and z = ry. In addition, we impose that the
representation is unique. An example of such a representation is polar coordinates, which

corresponds to Y = Sn�1, r = kzk2, the Euclidean norm, and y = z=kzk2, a point in the
unit sphere Sn�1.

As an immediate consequence, we can represent random variables Z that take values
in <n

� f0g as Z = RY , where R is a positive random variable and Y takes values in Y .

By �xing the distribution of either R or Y , while imposing independence between
them, we generate classes of distributions on <n. Many interesting families of multivariate

distributions can be interpreted in this unifying framework. For instance, the well-known

spherical class corresponds to choosing Y = Sn�1 and Y uniformly distributed over Sn�1,
whereas the anisotropic class is obtained by taking Y = Sn�1 and �xing an

p
�2n distri-

bution for the Euclidean radius R. Other families of multivariate distributions, such as
lq-spherical and �-spherical classes, are also seen to correspond to certain choices of Y and
distributions of Y .

Some classical inference procedures can be shown to be completely robust or distribu-
tion free in these classes of multivariate distributions, generated by �xing the distribution
of either R or Y , while imposing independence between them. These �ndings are used in
the practically relevant contexts of location-scale and pure scale models, and we explic-
itly distinguish the case of sampling one multivariate observation from the inferentially
more useful situation of independent sampling from multivariate distributions. Finally,
we present a robust Bayesian analysis for the same models and indicate the links between
classical and Bayesian results. In particular, for the regression model with i.i.d. errors up
to a scale, a formal characterization is provided for both classical and Bayesian robustness
results concerning inference on the regression parameters. Some examples using spherical,
lq-spherical and lq-anisotropic sampling distributions are presented.
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1. INTRODUCTION

This paper investigates perfectly robust inference from vector observations. We are
particularly interested in examining whether any parallels can be found between classical

and Bayesian robust inference results.

We shall call an inference procedure robust (or distribution-free or invariant) if it is

not a�ected by changes in the sampling distribution over a particular class. Thus, we are
not considering robustness with respect to the data (extreme observations), or with respect

to the prior speci�cation in a Bayesian framework, but we focus on exact robustness with
respect to the speci�cation of the sampling model. In particular, we analyze what Box and

Tiao [1973, p.152) call \criterion robustness" in a classical framework, whereas Bayesian
results relate to \model robustness" [see Berger (1985, p.248)].

In order to provide us with a natural way to de�ne classes of sampling distributions
over which we investigate robustness, Section 2 introduces a representation of points in

<
n
� f0g in terms of pairs (y; r), where r > 0 and y lies in some (n � 1)-dimensional

space Y. This representation can be thought of as a generalization of the usual polar
coordinates, where r is the Euclidean norm and Y is the unit sphere Sn�1. A number of
examples in Section 3 show that especially the classes generated by �xing the distribution
of Y while imposing independence between R and Y are practically useful. However,
through �xing the distribution of R or relaxing the independence constraint other types of
classes are naturally generated. In addition, Section 3 extends certain classes of continuous
distributions to this more general context, and investigates some of their properties in more
detail.

Inference is often conducted on the basis of several vector observations, usually the
result of independent sampling. We explicitly discuss inference in such a repeated sampling
framework. Section 4 presents results characterizing distribution-free functions of matrix
random variables, and applies these �ndings to robust classical inference in the context of
regression models with scale and pure scale models. A parallel robust Bayesian analysis
of these models is described in Section 5. For both paradigms, the robustness results
essentially hinge upon the presence of a scale parameter in the model.

Whereas the classical results are derived from distribution theory in a rather general
context, we �nd that practical examples are often illustrative of a simpler special case. In
addition, our classical �ndings pertain to the distributional properties of certain pivots,
but do not suggest any particular way of using these pivots in inferential procedures. In
contrast, the Bayesian robustness results are immediately applicable to practical examples

and inference procedures.

The �nal Section groups some conclusions and puts the similarities between both
classical and Bayesian approaches in perspective.

2. A REPRESENTATION OF <
n

In this Section, we shall introduce a general representation of points in <
n. This

will prove to be a useful tool for generating and analyzing multivariate distributions and
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naturally induces certain useful classes of distributions in which robustness results can be

derived.
We shall represent each point z 2 <

n
� f0g through a pair (y; r), where r > 0, y

is in some set Y , and z = ry. In addition, we impose that the representation is unique,
which means that for each point z there exists a unique pair (y; r) and viceversa. This

implies that Y is an (n � 1)-dimensional manifold, and can be represented in terms of
w 2 W � <

n�1 through a one-to-one function k(�), i.e. Y = fk(w) : w 2 Wg. Without

loss of generality, we shall characterize Y through angular polar coordinates. Thus, we can

also uniquely identify z 2 <n
� f0g with a pair (w; r) 2 W �<+, such that z = rk(w).

In this representation, di�erent choices of Y lead to di�erent interpretations of r and y.

For instance, if Y is the unit sphere Sn�1, we obtain y = z=kzk2 2 Sn�1 and r = kzk2, the
Euclidean or l2-radius. This leads to the usual polar representation. Another possibility

would be to take Y = fx 2 <
n : kxkq � (

Pn
i=1 jxij

q)1=q = 1g, the unit lq-sphere, for
some q 2 [1;1)� f2g, in which case r = kzkq describes the lq-norm or lq-radius, whereas

y = z=kzkq is the corresponding point on the unit lq-sphere.
The representation described here immediately provides us with a representation for

random variables Z that take values in <n
� f0g, as

Z = RY; (2:1)

where R is a positive random variable and Y takes values in Y . Furthermore, we can
identify Y with a random variable W taking values inW � <

n�1 through Y = k(W ); and
we can alternatively represent Z as

Z = Rk(W ): (2:2)

In this way, for a given choice of Y , we have established a one-to-one correspon-
dence between any random variable Z that takes values in <n

� f0g and a pair (Y;R) or,
equivalently, (W;R). In the sequel, we shall either use (2:1) or (2:2), whichever is more
convenient. Clearly, any such Z can always be characterized in terms of Y = Z=kZk2,
which takes values on Sn�1, and R = kZk2. However, as we shall explain in the following,
this standard polar representation does not su�ce for our purposes.

In particular, the correspondence between the distributions of Z and (Y;R) naturally
leads to the de�nition of classes of distributions characterized by �xing the marginal dis-
tribution of either R or Y . Many well-known families of multivariate distributions can be
generated in this way.

If we consider the class generated through �xing the marginal distribution of Y , while

allowing for any conditional distribution of RjY , the standard polar representation will be
enough as there is a one-to-one correspondence between Sn�1 and any Y . Therefore, �xing
a distribution on Sn�1 uniquely identi�es a distribution on any other Y, and any choice
of Y in the representation in (2:1) would induce the same class of distributions. In �xing

the marginal distribution of R, on the other hand, the particular choice of Y is crucial, as
there is no one-to-one correspondence between di�erent representations of the radius if Y is
not speci�ed. For example, the class generated by a certain distribution for the Euclidean
radius will not coincide with the class induced by �xing the distribution of the l1-radius.
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Therefore, we need more than the standard representation if we wish to generate such

classes. In addition, the most interesting classes will be seen to correspond to independence

between R and Y , while keeping the distribution of either R or Y �xed. In this case, the

particular choice of Y in (2:1) will always matter. For instance, independence between

the Euclidean radius and W (and thus Y in Sn�1), is not equivalent to independence

between the l1-radius and W (and thus Y in the unit l1-sphere). Therefore, if we impose

independence between R and Y , we always need our more general framework.

The next Section will discuss some classes of multivariate distributions naturally ob-

tained from our representation under independence between R and Y .

3. CLASSES OF MULTIVARIATE DISTRIBUTIONS

In this Section, we shall de�ne classes of probability distributions on <n
�f0g through

the representation in (2:1), that, for a given Y, correspond to a particular choice of the

distribution of either Y or R, while imposing independence between them.

3.1. FIXING THE DISTRIBUTION OF Y

Given a choice of Y and any probability distribution P
2
on Y, we de�ne the class S

as the following set of random variables on <n
� f0g

S = fZ : Z = RY through (2:1); with R and Y independent and Y distributed as P
2
g:

(3:1)

We now consider the class of distributions corresponding to the random variables in S.

By varying the choice of Y and P
2
, we generate many useful classes of multivariate distri-

butions. We shall now show that many classes of distributions that have appeared in the

literature can be interpreted in the framework of (3:1). In addition, our representation in

Section 2 sheds new light on the properties of some of these classes. In particular, we can

mention:

3.1.1 Spherical Distributions

This class has a long-standing tradition in multivariate distribution theory and is

well-documented in e.g. Kelker (1970) and Fang et al. (1990).

Originally, sphericity was de�ned in terms of distributional invariance under orthog-

onal transformations, i.e. Z has a spherical distribution if for every � belonging to the

group of n � n orthogonal matrices, denoted by O(n), �Z
d
= Z, i.e. �Z and Z have the

same distribution. However, it is well-known [see Theorem 2.5 of Fang et al. (1990)] that

the spherical class can alternatively be characterized in terms of S in (3:1) by choosing Y

to be the unit sphere Sn�1, and Y uniformly distributed over Sn�1.

In the case of continuity, these distributions are characterized by spherical isoden-

sity sets, whereas the labelling function can be chosen freely (provided, of course, that

the resulting density function integrates to unity). Important continuous special cases of
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the spherical class are Normal, Student-t and Pearson Type II distributions. Normality

constitutes the natural reference case in this class.

3.1.2 lq-Spherical Distributions

For the continuous case, these distributions were de�ned in Osiewalski and Steel

(1993), through properties of the density function. Whereas they use a location-scale

model as they focus on inference, we shall, in this Subsection, present lq-sphericity with-

out location and scale parameters. In particular, the density function of Z = (Z1; : : : ; Zn)
0

in <n was chosen to be

p(z) = gf�q(z)g (3:2)

where

�q(z) =

�
(
Pn

i=1 jzij
q)
1=q

if 0 < q <1

maxi=1;:::;n jzij if q =1

and g(�) is any nonnegative function such that p(z) is a proper density.

Given q, the lq-spherical class is generated by allowing for all possible choices of the

labelling function g(�). Note that �q(�) corresponds to the lq-norm extended to values of

q 2 (0; 1). Thus, the class generated by (3:2) corresponds to all continuous multivariate

distributions with lq-spheres as isodensity sets for a particular choice of q. We shall now

verify that, for any �nite q, this class also �ts in the framework of (3:1). For q = 1 a

similar derivation can be given.

Indeed, if we de�ne R = �q(Z) and Di = (jZij=R)
q, i = 1; : : : ; n, Osiewalski and

Steel (1993) show that (3:2) leads to a product of an n-variate Dirichlet distribution for

D = (D1; : : : ;Dn)
0 with parameters 1=q and a distribution forRjD with probability density

function

p(rjd) = p(r) =
[2�f1 + (1=q)g]n

�f1 + (n=q)g
nrn�1g(r):

Following Dickey and Chen (1985), they use the stochastic representation

Z
d
= R(��D1=q);

where R, � and D are all independent, D1=q denotes a coordinatewise power, � �D1=q

is a coordinatewise product of vectors, and the n elements of � independently take the

value 1 or �1 with probability 1=2. De�ning Y = Z=R, we are back in the representation

Z = RY as in (2:1), with Y the unit lq-sphere. Furthermore, Y
d
= � � D1=q, and thus

has a �xed distribution for given q, whereas, by leaving g(�) free, we have allowed for any

continuous probability distribution for R, always imposing independence betweenR and Y .

Thus, extending the class of continuous lq-spherical distributions to possibly noncontinuous

distributions of R, we obtain a class that can be described by (3:1).

A natural reference case for the lq-spherical class is generated by assuming that the

elements of Z are independently sampled from exponential power distributions [Box and

Tiao, 1973, Ch. 3].
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3.1.3 �-Spherical Distributions

Pursueing the idea of characterizing classes of continuous distributions through their

isodensity sets, Fern�andez et al. (1995) consider more exible shapes. For inference pur-

poses they use a location-scale context, which shall not be explicited in this Subsection.

They introduce continuous �-spherical distributions through the following density function

of Z = (Z
1
; : : : ; Zn)

0 in <n:

p(z) = gf�(z)g; (3:3)

where �(�) is a scalar function such that

(i) �(�) > 0, except possibly on a set of Lebesgue measure zero,

(ii) �(�z) = ��(z), for all � � 0, z 2 <n,

and g(�) is a nonnegative labelling function. Furthermore, �(�) and g(�) are such that (3:3)

is proper.

For every admissible choice of �(�), the corresponding class of continuous �-spherical

distributions is obtained by allowing g(�) to be free. Clearly, continuous spherical and

lq-spherical distributions correspond to continuous �-spherical distributions with �(�) the

l2-norm and the lq-norm, respectively. The name \�-spherical" is motivated by the fact

that all members of the same class have common isodensity sets of the form:

fz 2 <n : �(z) = �g (3:4)

where � is a positive constant. We shall call the set in (3:4) the \�-sphere" of \�-radius"

�.

We will now show that the �-spherical class can also be interpreted in the framework

of (3:1), which facilitates the derivation of certain novel properties.

Representing <n in terms of polar coordinates (w; u), where w 2 W � <
n�1 denotes

the angular coordinates and u > 0 is the Euclidean radius, we obtain

z = uh(w); for all z 2 <n
� f0g; (3:5)

where h(w) lies in the unit sphere Sn�1. Now, (3:3) leads to

p(w; u) = g[�fuh(w)g]un�1s(w); (3:6)

where un�1s(w) is the appropriate Jacobian.

However, the correspondence in (3:5) does not lead to a representation of Z in terms

of a product of independent random quantities, as is obvious from (3:6). Nevertheless, if

we consider a further transformation from (w; u) to (w; r), with r = �fuh(w)g = �(z), the

�-radius from (3:4), it is easy to see that

p(w; r) = s(w)[�fh(w)g]�nrn�1g(r); (3:7)

from which independence between W = h�1(Z=kZk
2
) and R = �(Z) is immediately

deduced. Thus, we have a representation of the form (2:2), with k(w) = h(w)=�fh(w)g

whenever �fh(w)g > 0 and ch(w), where c > 0 is an arbitrary constant, otherwise. Note
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that Y = fk(w) : w 2 Wg = fx 2 <n : �(x) = 1g [ fch(w) : �fh(w)g = 0g and, therefore,

represents the union of the unit �-sphere with some other set corresponding to a set of

polar angles with Lebesgue measure (in <n�1) zero. In addition, from (3:7) we see that

only �(�) determines the distribution of W (or, equivalently, the distribution on Y), which

concentrates all the mass on the unit �-sphere and is characterized by the density function

f2(w) / s(w)[�fh(w)g]�n: (3:8)

The distribution of R, on the other hand, is entirely determined by g(�), with density

function

p(rjw) = p(r) / rn�1g(r): (3:9)

Furthermore, note that the only restriction on g(�) is given through properness of (3:3),

and thus of (3:9). This implies, from (3:9), that we can accommodate any proper density

for R. Thus, for a given �(�), the class of continuous �-spherical distributions corresponds

to a subset of a particular S in (3:1), where Y takes values on the unit �-sphere with its

distribution �xed by the choice of �(�) through (3:8). If we extend the class of continuous

�-spherical distributions by also allowing for any noncontinuous distribution of R, we cover

the entire class S.

Thus, for any choice of �(�), the �-spherical class consists of all distributions in <n

that share the common marginal distribution over the unit �-sphere corresponding to the

density of the polar angles in (3:8), while imposing independence between the polar angles

and the �-radius. Note that the integrability condition on (3:3) does not restrict the class

of density functions f2(w) we can accommodate. For any proper f2(w), we can always

�nd a function �(�) such that the induced �-spherical distributions are characterized by

the marginal density f
2
(w) for the polar angles. In particular, we �rst de�ne �(�) on Sn�1

as

�fh(w)g / fs(w)=f2(w)g
1=n (3:10)

and extend it to all of <n by using property (ii) of the de�nition in (3.3), i.e.

�(z) = �fuh(w)g = u�fh(w)g: (3:11)

The density f2(w) in (3:8) uniquely de�nes a probability distribution on the unit

�-sphere. In the special case of sphericity where �(�) is the Euclidean norm, we obtain

f
2
(w) / s(w) which implies a uniform distribution on the unit sphere Sn�1. If �(�) is any

other function, we lose the uniformity on Sn�1 and a natural question to ask is whether

we recuperate this uniformity on the corresponding unit �-sphere instead. The answer,

in general, is no. Even for lq-spherical distributions with n = 2, one can prove that such

uniformity only holds for q = 1; 2 or1. In fact, uniformity on the lq-sphere can, in general,

not even be salvaged if we consider the lq-distance instead of the Euclidean distance. So,

barring some special cases, f2(w) can not be attributed any natural interpretation in terms

of uniformity on the unit �-sphere. However, the distribution induced by f
2
(w) on the unit

�-sphere admits an alternative interpretation:

Let A� be any measurable set on the unit �-sphere. Then the corresponding polar

angles constitute the following Borel set in W:

A = fh�1(z=kzk2) : z 2 A�g:
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Alternatively, we can write

A� = fz 2 <n : h�1(z=kzk2) 2 A and �(z) = 1g

and we can show

P (A�) =

Z
A

f2(w)dw /

Z
B

dz;

where

B = fz 2 <n : h�1(z=kzk2) 2 A and �(z) � 1g:

Thus, the probability of any measurable set on the unit �-sphere is proportional to the
hypervolume that it generates inside the �-sphere. This fact immediately explains why the

interpretation of a uniform distribution on the �-sphere generally does not apply. Both

interpretations only coincide in very special cases, such as sphericity and l1-sphericity.

We stress, once more, the great exibility of the �-spherical class. As mentioned
above, speci�c choices of �(�) generate the spherical and lq-spherical distributions. Another
interesting example of a �-spherical class are the elliptical distributions, with covariance
structure V , which correspond to �(z) / (z0V �1z)1=2 for each positive de�nite symmetric
matrix V of dimension n� n.

As an example, consider the issue of planetary motion in astronomy. Kepler's First
Law states that planets describe an elliptical orbit, with the sun located at one focal point.
According to Kepler's Second Law, the probability of �nding the planet (at any given
time) in a particular subset of its orbit is proportional to the area under that subset with
respect to the sun. Thus, from our previous discussion, a planet's location has a �-spherical
distribution in the plane containing its orbit, with the �-sphere de�ned by the orbit and a
Dirac distribution on the corresponding �-radius. Note, however, that this does not imply
an elliptical distribution as de�ned above, since planetary orbits are not symmetric around
the sun, which is in one focal point, and not in the center of the ellipse.

All classes of distributions mentioned above share the appealing property that in the
continuous case all isodensity sets have a common shape, whereas the choice of the labelling
function is kept entirely free. Thus, these classes are particularly suited to modelling
where one often has a much better idea of the shape of the isodensity sets than of the
labelling function (e.g. tail behaviour). Through judicious choices of �(�) in the, most
general, �-spherical class, we can accommodate a wide range of possible isodensity surfaces
[see Fern�andez et al. (1995)]. Note that the assumption of independence between the
distribution on the unit �-sphere and the �-radius plays a crucial role in obtaining this
characteristic. Consider the class of all continuous random variables Z in <n which share

a common density f2(w) of the polar angles. Choosing �(�) to be compatible with f2(w)
through (3:10) and (3:11), we can easily obtain that the density function of Z can be
expressed as

p(z) / p(rjw)r1�n;

where r = �(z) is the �-radius. Obviously, imposing independence between R and W will

assure us that all isodensity sets are �-spheres as de�ned in (3:4). As an example, consider
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the class of all continuous distributions in <2 which correspond to the, so-called, cardioid

distribution for the polar angle, characterized by

f2(w) =
1 + 0:6 cos(w)

2�
I[0;2�)(w):

Fern�andez et al. (1994) present some members of this class, without, however, imposing

independence between W and the corresponding �-radius for z = (z1; z2)
0,

�(z) / kzk
3=2
2 (0:6z2 + kzk2)

�1=2;

derived through (3:10) and (3:11). In two of their examples they impose independence
between W and the l2-radius instead, thus generating two members of a class S which is
not �-spherical. The resulting density functions possess very di�erent isodensity sets for
each choice of the conditional density of the �-radius. Alternatively, if we focus on the

subclass induced by independence between the �-radius and W , we obtain all the possible

densities with isodensity contours as displayed in Figure 1. Thus, this �-spherical subclass
seems the most interesting one from a modelling perspective.

3.2 FIXING THE DISTRIBUTION OF R

In this Subsection, we shall be concerned with classes of multivariate distributions
which are generated from the representation in (2:1) by choosing a particular distribution
for R, while retaining the independence between R and Y .

Given a particular choice of Y, and a �xed probability distribution P1 on <+, we
de�ne the class of random variables

R = fZ : Z = RY through (2:1); with R and Y independent and R distributed as P1g:
(3:12)

Classes of distributions generated through choosing Y and P1 in (3:12) have received much
less attention in the literature than their conterparts based on S in (3:1). Let us mention
the following example.

3.2.1 Anisotropic Distributions

Nachtsheim and Johnson (1988) introduce the anisotropic family of multivariate dis-
tributions, which exactly �ts into the framework of (3:12), by choosing Y = Sn�1 and ap
�2n distribution for the Euclidean radius R = kZk2. Note that Normality, which corre-

sponds to uniformity of Y = Z=kZk2 on Sn�1, de�nes the intersection of the anisotropic

and spherical classes. Like sphericity, the anisotropic family can be used to represent

departures from Normality. However, it constitutes a generalization in a complementary
direction. Whereas the continuous spherical class allows for any labelling function while
retaining the same isodensity sets, continuous anisotropic distributions do not preserve the

shape of the isodensity sets. Nachtsheim and Johnson (1988) conduct a simulation study
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to investigate the robustness properties of Hotelling's T 2 statistic under independent and

identically distributed (i.i.d.) sampling from distributions in the anisotropic class.

Similarly, we can start from a situation where the elements of Z are independently
sampled from an exponential power distribution. If we then �x the distribution of Y =

Z=�q(Z) and leave that of the lq-radius R = �q(Z) free, but independent of Y , we generate
an lq-spherical class as discussed in Subsection 3.1.2. Conversely, keeping R independent

of Y and distributed as (�2
2n=q)

1=q for �nite values of q and as Beta(n; 1) for q = 1 [see

Osiewalski and Steel (1993)], and letting the distribution of Y change, we will de�ne the
class of lq-anisotropic distributions, for any given q 2 (0;1].

Having established the practical use of the classes generated through S in (3:1) and
R in (3:12), we shall now focus on robustness of inference procedures within these classes.

4. ROBUSTNESS OF CLASSICAL INFERENCE

This Section combines results on distribution theory with inference in a sampling
theory context. From a practical perspective, the most useful classes are generated as
S in (3.1). Therefore, most of the discussion in this Section will be devoted to classes
S. Subsection 4.1 derives results on distribution-free functions of random variables for a
matricvariate generalization of S, and Subsection 4.2 applies this theory to robust inference
on location in a regression model in a context of multiple observations from S. For a
matricvariate generalization of the classes R in (3.12), Subsection 4.3 will group both
theory and inference results.

4.1 DISTRIBUTION INVARIANCE RESULTS IN S

In practice, inference will typically be conducted on certain parameters in the model
on the basis of more than one vector observation. We do not yet introduce parameters
into the sampling model at this stage (we reserve that until the next Subsection), but we
shall now consider matrices of observables, rather than vectors.

In particular, let us now focus on matrix random variables Z = (Z1; : : : ; Zp) where
each column Zi takes values in <

n�f0g and is represented as in (2:1) through Zi = RiYi,
with Ri a positive random variable and Yi taking values in Yi. Then we de�ne

MS = fZ = (Z1; : : : ; Zp) : Z = (R1Y1; : : : ; RpYp) with (R1; : : : ; Rp) independent of

(Y1; : : : ; Yp) and the distribution of (Y1; : : : ; Yp) �xedg:
(4:1)

Thus, for a given Y1; : : : ;Yp and a �xed distribution of (Y1; : : : ; Yp), the class MS is

generated by considering all possible distributions for (R1; : : : ; Rp), while imposing inde-
pendence between (R1; : : : ; Rp) and (Y1; : : : ; Yp). Clearly, in the case p = 1, the classMS
reduces to our earlier S for vector distributions in (3:1). Also note that if Yi = Y for all
i = 1; : : : ; p, and the �xed joint distribution of (Y1; : : : ; Yp) leads to the same marginal

distribution for each Yi on Y , then each of the components of Z belongs to the same class
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S. A class in (4:1) that has appeared in the literature is generated by choosing Yi = Sn�1,

i = 1; : : : ; p, and �xing Y1; : : : ; Yp to have independent uniform distributions on Sn�1. This
is the class of multivariate spherical distributions as studied in Fang and Zhang (1990) and

corresponds to sphericity for p = 1.
We now consider functions of the random variable Z that take values in <k, i.e.,

say, t(z) 2 <k. In case Z describes a sampling process, such functions are usually called
statistics. The next Theorem characterizes the functions that are distribution-free inMS,

in the sense that t(Z) has the same distribution for all Z = (Z1; : : : ; Zp) in MS.

Theorem 1. Let MS be the class as de�ned in (4:1) and t(�) be a measurable function

from <n�p to <k. Then

t(Z1; : : : ; Zp)
d
= t(Y1; : : : ; Yp); for all (Z1; : : : ; Zp) 2 MS (4:2)

if and only if

t(�1Z1; : : : ; �pZp)
d
= t(Z1; : : : ; Zp); for all �1; : : : ; �p > 0; for all (Z1; : : : ; Zp) 2 MS:

(4:3)

Proof: see Appendix. �

While we present (4:2) in terms of a reference case (Y1; : : : ; Yp), which is the element
in MS corresponding to a Dirac distribution on (1; : : : ; 1) for (R1; : : : ; Rp), we could
alternatively state (4:2) as

t(Z)
d
= t(Z�); for all Z;Z� 2 MS:

Thus, this condition is equivalent to saying that t(Z) is distribution-free in MS. On the
other hand, (4:3) can be interpreted as invariance of the distribution of t(Z) with respect
to changes of scale for each of the columns of Z. In fact, Theorem 1 tells us that the latter
property exactly characterizes all the functions of Z that are distribution-free in MS.

In proving that (4:3) implies (4:2) (Appendix), we only use (4:3) to obtain that

t(�1Y1; : : : ; �pYp)
d
= t(Y1; : : : ; Yp); for all �1; : : : ; �p > 0; (4:4)

which looks weaker than (4:3) but can actually be shown to be equivalent. Thus, we

can, equivalently, state Theorem 1 as follows: t(Z) is distribution-free in MS if and
only if it is distribution-free in the subset of MS corresponding to Dirac distributions on
(�1; : : : ; �p) for (R1; : : : ; Rp), for all �1; : : : ; �p > 0. Note that the set of all distributions for
(R1; : : : ; Rp) on (0;1)p is the convex hull of the Dirac distributions described above. Using
this fact and the independence between (R1; : : : ; Rp) and (Y1; : : : ; Yp), we can directly
derive thatMS is the convex hull of its subset corresponding to all Dirac distributions for

(R1; : : : ; Rp). The latter result carries over to distributions of t(Z) and provides us with
an alternative way to prove and interpret the Theorem. This sheds some light on why

the independence between (R1; : : : ; Rp) and (Y1; : : : ; Yp) assumed in MS is crucial to the
result.
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Instead of condition (4:3), let us now consider equality almost everywhere, i.e. point-

wise equality except for a set of measure zero. We could assume the stronger condition

t(�1Z1; : : : ; �pZp)
a:e:
= t(Z1; : : : ; Zp);

for all �1; : : : ; �p > 0 and for all Z = (Z1; : : : ; Zp) such that Z = (R1Y1; : : : ; RpYp), where

Ri > 0, Yi takes values in Yi, and the marginal distribution of (Y1; : : : ; Yp) is �xed. The

latter can be shown to be equivalent to

t(Z1; : : : ; Zp)
a:e:
= t(Y1; : : : ; Yp)

for all such Z, which implies that t(Z) is distribution-free as Z ranges in this class. Ob-

serve that this result now holds in a wider class than MS since independence between

(R1; : : : ; Rp) and (Y1; : : : ; Yp) is no longer required.

As an illustration that the condition stated above is really stronger than (4:3), let

us consider the following example for p = 1, where MS reduces to S, and n = 2. We

represent z 2 <2 through the usual polar coordinates (w; r) 2 [0; 2�) � (0;1), and de�ne

S to be the spherical class, i.e. Y = Z=kZk2 is uniformly distributed on S1. Consider the

function

t(z) =
n
1 if (w; r) 2 f[0; �=2) � (0; 1]g [ f[�=2; �) � (1;1)g
0 elsewhere.

It is easily seen that (4:4) and thus (4:3) hold. However, if we consider the random variable

in S corresponding to a Dirac distribution on 1 for R, and the set A = fz 2 <2 : w 2
(0; �=2) and r = 1g with P (A) = 1=4, we obtain

t(�z) 6= t(z); for all z 2 A;� > 1;

and thus equality almost everywhere does not hold.

In practice, we shall often encounter functions t(z) that only depend on (y1; : : : ; yp) or,

equivalently, the polar angles, and thus the distribution of t(Z) can obviously only depend

on the distribution of (Y1; : : : ; Yp). Such functions of Z are thus trivially distribution-free

in the wider class, where the marginal distribution of (Y1; : : : ; Yp) is �xed without imposing

independence of (R1; : : : ; Rp). In particular, Subsection 4.2 will provide some examples.

Let us now review some special cases of Theorem 1 that have appeared in the literature.

If Y1 = : : : = Yp = Sn�1, the unit sphere, and Y1; : : : ; Yp are independently and uniformly

distributed over Sn�1, Theorem 1 specializes to Theorem 5.1.1 (b) in Fang and Zhang

(1990) for the multivariate spherical class.

In the case of one vector observation (p = 1), Theorem 1 reduces to Theorem 7.3 of

Fang et al. (1990). Formally, their Theorem 7.3 is derived for random variables Z that have

a stochastic representation Z
d
= RY , where R is a positive random variable independent

of Y , which has a �xed distribution, but without imposing a one-to-one correspondence

between points z 2 <n � f0g and pairs (y; r) 2 Y � <+ as introduced in Section 2. Of

course, we could trivially extend Theorem 1 to this more general framework, as the proof

does not rely on this representation of <n. Our reason for adopting the representation

in (2:1) with this one-to-one correspondence is to convey an interpretation to the random
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variables R and Y . Such an interpretation seems instrumental in the use of our framework

for practical modelling purposes, as was illustrated through the classes discussed in Section

3.

Typically, we shall be interested in matricvariate random variables inMS as a way of

representing repeated sampling from random vectors described through S. To aid in the

discussion of these issues, let us present the following proposition.

Proposition 1. For the classMS de�ned in (4:1), all following statements are equivalent:

(i) t(Z1; : : : ; Zp)
d
= t(Y1; : : : ; Yp), for all Z 2 MS,

(ii) t(�1Z1; : : : ; �pZp)
d
= t(Z1; : : : ; Zp), for all �1; : : : ; �p > 0, for all Z 2 MS,

(iii) t(�1Y1; : : : ; �pYp)
d
= t(Y1; : : : ; Yp), for all �1; : : : ; �p > 0,

(iv) t(Z1; : : : ; Zp)
d
= t(Y1; : : : ; Yp), for all Z 2 MS, with R1; : : : ; Rp all independent,

(v) t(�1Z1; : : : ; �pZp)
d
= t(Z1; : : : ; Zp), for all �1; : : : ; �p > 0, for all Z 2 MS with

R1; : : : ; Rp all independent,

(vi) t(Z1; : : : ; Zp)
d
= t(Y1; : : : ; Yp), for all Z 2 MS with R1; : : : ; Rp all independent and

such that Ri
d
= �iR0 for some positive random variable R0 and some scalar �i > 0,

i = 1; : : : ; p,

(vii) t(�1Z1; : : : ; �pZp)
d
= t(Z1; : : : ; Zp), for all �1; : : : ; �p > 0, for all Z 2 MS with

R1; : : : ; Rp all independent such that Ri
d
= �iR0 for some positive random variable R0 and

some scalar �i > 0, i = 1; : : : ; p,

(viii) t(�1Z1; : : : ; �pZp)
d
= t(Z1; : : : ; Zp), for all �1; : : : ; �p > 0, for all Z 2 MS with

R1; : : : ; Rp independent and identically distributed.
In addition, any of (i)-(viii) implies

(ix) t(Z1; : : : ; Zp)
d
= t(Y1; : : : ; Yp), for all Z 2 MS with R1; : : : ; Rp independent and iden-

tically distributed,
which, in turn, implies

(x) t(�Z1; : : : ; �Zp)
d
= t(Z1; : : : ; Zp), for all � > 0, for all Z 2 MS with R1; : : : ; Rp

independent and identically distributed.

Proof: Conditions (i)-(iii) are exactly (4:2)�(4:4), which have been shown to be equivalent
in the context of Theorem 1. The other equivalences and implications are straightforward.

�

In the case p = 1, Proposition 1 reduces to equivalence of Conditions (i), (ii) and

(iii) and all other conditions become redundant. However, when p > 1, none of the ten

conditions is redundant.

Conditions (iv) and (v) will be useful for the case of independent sampling. Note

that MS will never exactly correspond to the class of Z1; : : : ; Zp independently sampled

from S in (3:1), since it does not preclude dependence among the Ri's. In order to have

this interpretation of independent sampling from S, we need to choose MS such that

Y1; : : : ; Yp are i.i.d., and we need to consider the subclass of thisMS where R1; : : : ; Rp are

all independent. Thus, Condition (v) provides us with a characterization of all distribution-

free functions under independent sampling from a given class S.



14

A much more interesting case from the practical perspective will consist in sampling

independently from the same distribution but with possibly di�erent scales. Under i.i.d.

distributed Y1; : : : ; Yp, the characterization of distribution-freeness with this type of sam-

pling from the corresponding S is analyzed through Conditions (vi) and (vii).

If we go to another practically relevant case, namely i.i.d. sampling, we focus on

Conditions (viii)-(x). Again, choosing MS such that Y1; : : : ; Yp are i.i.d., (viii) provides a

su�cient condition and (x) gives a necessary condition for t(Z1; : : : ; Zp) to be distribution-

free under i.i.d. sampling from some random variable in S. Since (viii) and (x) are

not equivalent, we do not have a characterization of all distribution-free statistics in this

case. Unfortunately, many practically useful statistics, like Hotelling's T 2 statistic, will

verify (x) and thus distribution-freeness can not be excluded, but will not satisfy (viii),

which implies that distribution-freeness can not be guaranteed. Thus, we have to remain

inconclusive about the robustness properties of such statistics under i.i.d. sampling from

S. However, due to the equivalence between (viii) and (vi), we can conclude that they are

not distribution-free under i.i.d. sampling up to a scale factor, from S.
Thus, Proposition 1 provides results for three di�erent schemes of repeated sampling

from S, namely, independent sampling, i.i.d. sampling up to a scale factor and pure

i.i.d. sampling. To give a practical example, let us consider the spherical context, which

corresponds to S with Y uniformly distributed over Sn�1. Then, the �rst type of sampling

would allow for each Zi to be independently drawn from a di�erent spherical distribution,

e.g. Normal, Cauchy, Pearson type II, etc.; the second one corresponds to each Zi an

independent random vector with the same type of spherical distribution, e.g. Normal, but

with possibly di�erent scales, whereas the third one really implies i.i.d. sampling from a

particular spherical distribution, such as the standard Normal. Clearly, the last two cases

seem the most interesting from a practical perspective.

In the coming Subsection we shall apply these �ndings to the context of inference

robustness for a regression parameter. Moreover, we shall focus explicitly on the cases of

i.i.d. error vectors and i.i.d. error vectors up to a scale factor, as they seem the most

relevant for practical statistical applications. The reader will note that Proposition 1

directly allows for extending our results to alternative sampling schemes.

4.2. CLASSICAL INFERENCE ON REGRESSION PARAMETERS

In this Subsection we shall investigate robustness of sampling theory inference in the

model

Xi = gi(�) + �i"i; i = 1; : : : ; p; (4:5)

where X1; : : : ;Xp are n-variate vector observations, "1; : : : ; "p are i.i.d. n-dimensional

random variables (the distribution of which does not depend on � and �i), �i > 0, i =

1; : : : ; p, are scale parameters and gi(�), i = 1; : : : ; p, are location vectors, parameterized

in terms of a common vector � 2 B � <m(m � n) through known functions gi(�) from <m

to <n. In the sequel, we shall use the notation Zi � Xi � gi(�), i = 1; : : : ; p, for the error

vectors.

Important examples of (4:5) are the standard location-scale model, where gi(�) = �
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with � 2 <n, the case of a common location, where gi(�) = �� with scalar � and � an

n-dimensional vector of ones, and the regression context, where gi depends on a matrix of

exogenous variables Di.

Usually, the location or regression parameter � is of interest, whereas the scales are

nuisance parameters. We now show how the distribution theory invariance results derived

in the previous Subsection can directly be applied in the context of robust classical inference

on �. Subsection 5.1 will present a parallel Bayesian analysis of this model. We will

examine two di�erent situations:

(i) The case of equal scales, i.e. �1 = : : : = �p = �, which corresponds to Z1; : : : ; Zp i.i.d.

(ii) The case of possibly di�erent scales, which corresponds to Z1; : : : ; Zp i.i.d. up to a

scale factor.

Under the frequentist paradigm, inference on the common location parameter � in

the model introduced in (4:5), will usually be based on the distribution of some function

t(�) of (Z1; : : : ; Zp) = (X1 � g1(�); : : : ;Xp � gp(�)). As the distribution of (Z1; : : : ; Zp) =

(�1"1; : : : ; �p"p) does not depend on �, neither will the distribution of t(Z1; : : : ; Zp). If, in

addition, the distribution of the latter quantity would not depend on (�1; : : : ; �p) either,

t(Z1; : : : ; Zp) would be a pivotal quantity, potentially useful in deriving classical inference

on �, such as con�dence regions and statistics for testing hypotheses, in the presence of

nuisance scale parameters.

In the case of equal scales in (4:5), i.e. �1 = : : : = �p = �, the random quantities

Z1; : : : ; Zp are themselves i.i.d. and Conditions (viii)-(x) of Proposition 1 immediately

translate into the following su�cient and necessary conditions for distribution-freeness of

t(Z1; : : : ; Zp), expressed in terms of � and "1; : : : ; "p.

Corollary 1. Let Xi = gi(�) + �"i, i = 1; : : : ; p, where "i are i.i.d. random vectors with

"i
d
= " for some " 2 S in (3:1) , and let t(�) be a measurable function from <n�p to <k. If

t(�1fX1 � g1(�)g; : : : ; �pfXp � gp(�)g)
d
= t(X1 � g1(�); : : : ;Xp � gp(�));

for all �1; : : : ; �p > 0 and for all " 2 S;

then
t(X1 � g1(�); : : : ;Xp � gp(�)) has the same distribution

for all " 2 S;

which, in turn, implies

t(�fX1 � g1(�)g; : : : ; �fXp � gp(�)g)
d
= t(X1 � g1(�); : : : ;Xp � gp(�));

for all � > 0 and for all " 2 S: �

Observe that, for (Z1; : : : ; Zp) = (X1 � g1(�); : : : ;Xp � gp(�)), t(Z1; : : : ; Zp) having

the same distribution for all " 2 S, immediately leads to the following two consequences

of practical interest:

First, the distribution of t(Z1; : : : ; Zp) does not depend on the scale parameter �, and

t(Z1; : : : ; Zp) is thus a pivotal quantity, that can be used for inference on � when � is a

nuisance parameter.
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In addition, the distribution of t(Z1; : : : ; Zp) is exactly the same for all possible choices

of " in the class S. As an example, if S is the spherical class, it would not matter whether
" has a Normal distribution or any other spherical distribution. We would thus achieve

robustness with respect to deviations from Normality in the spherical class.
Corollary 1 tells us that the su�cient condition for distribution-freeness of t(Z1; : : : ; Zp)

when " 2 S is the invariance of its distribution to arbitrary rescaling of each column of

(Z1; : : : ; Zp) for any " 2 S. The necessary condition is the invariance to rescaling of the
whole matrix. Note that, for the model with common scale �, this latter condition is equiv-

alent to saying that the distribution of t(Z1; : : : ; Zp) does not depend on �, i.e. is a pivotal
quantity, for any " 2 S. Obviously, the necessary and su�cient conditions in Corollary

1 coincide when p = 1, i.e. in the case of one vector observation. However, for p > 1
we do not have a characterization of all distribution-free pivotal quantities t(Z1; : : : ; Zp),

and the mere fact that t(Z1; : : : ; Zp) is a pivot does not guarantee distribution-freeness.
The crucial assumption that prevents us from obtaining a full characterization is that the

Zi's share exactly the same distribution, i.e. not only the same distributional shape, but

also the same scale. If we relax the latter requirement by allowing for possibly di�erent
scales �i, while retaining the former, we can easily deduce from Conditions (vi)-(vii) in

Proposition 1:

Corollary 2. Let Xi = gi(�) + �i"i, i = 1; : : : ; p, where "i are i.i.d. random vectors with

"i
d
= " for some " 2 S in (3:1) , and let t(�) be a measurable function from <n�p to <k.

Then
t(X1 � g1(�); : : : ;Xp � gp(�)) has the same distribution

for all �1; : : : ; �p > 0 and for all " 2 S;

if and only if

t(�1fX1 � g1(�)g; : : : ; �pfXp � gp(�)g)
d
= t(X1 � g1(�); : : : ;Xp � gp(�));

for all �1; : : : ; �p > 0 and for all " 2 S: �

Observe that, for (Z1; : : : ; Zp) = (X1 � g1(�); : : : ;Xp � gp(�)); distribution-freeness
of t(Z1; : : : ; Zp) for �1; : : : ; �p > 0 implies that this function is a pivotal quantity that
can be used for inference on � in the presence of nuisance scale parameters. In addition,
distribution-freeness for " 2 S implies that inferences based on such a t(Z1; : : : ; Zp) will
be perfectly robust with respect to the choice of " in the class S.

Corollary 2 tells us that t(Z1; : : : ; Zp) is a distribution-free pivot for all " 2 S if and

only if the distribution of t(Z1; : : : ; Zp) is invariant with respect to arbitrary changes of
scale of each of the columns of (Z1; : : : ; Zp) for any " 2 S. For the model with possibly
di�erent scales �i, i = 1; : : : ; p, this latter property is equivalent to saying that, for any
" 2 S, the distribution of t(Z1; : : : ; Zp) does not depend on (�1; : : : ; �p), i.e. t(Z1; : : : ; Zp)
is a pivotal quantity. Therefore, Corollary 2 says that any function t(Z1; : : : ; Zp) that is a

pivotal quantity for any choice of " 2 S, has the same distribution for all " 2 S.
Due to the equivalence of Conditions (i)-(vii) in Proposition 1, we know that the

characterization in Corollary 2 automatically extends to the much wider classes where
Z1; : : : ; Zp are drawn independently from S, or even (Z1; : : : ; Zp) 2 MS, whereMS is the
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matricvariate class in (4:1) corresponding to S. However, in statistical practice one will

usually be interested in the situation of independent replications of the same experiment,
up to, at most, scale changes, and thus we will not consider these wider classes.

Trivially, sets of distribution-free functions of (Z1; : : : ; Zp) are never empty, because
all constant functions belong to them. However, we obviously look for nontrivial elements

of these sets. Often we possess useful pivotal quantities for the case of just one vector
observation (p = 1). The following construction is a simple fashion to extend them to

independent sampling:

Assume that ti(�) are measurable functions from <n to <mi , i = 1; : : : ; p, such that

ti(�Z)
d
= ti(Z) for all � > 0 and for all Z in a certain set S of the type introduced in

(3:1), and that f (�) is any measurable function from <m1�:::�mp to <k. Let us de�ne
t : <n�p 7! <k as

t(z1; : : : ; zp) = fft1(z1); : : : ; tp(zp)g; for (z1; : : : ; zp) 2 <
n�p:

Then we obtain

t(�1Z1; : : : ; �pZp) = fft1(�1Z1); : : : ; tp(�pZp)g
d
= t(Z1; : : : ; Zp);

for all �1; : : : ; �p > 0 and for all Z1; : : : ; Zp independently drawn from S:

Any t(Z1; : : : ; Zp) constructed in this way is a pivotal quantity that is completely
robust under independent sampling from S. Of course, exactly the same pivotal quantity
is also distribution-free in the more practically interesting situations of i.i.d. sampling up
to a scale and pure i.i.d. sampling from S.

In practice, it will often be the case that the given ti(�)'s are scale invariant almost
everywhere and not only in distribution, i.e. ti(�z) = ti(z) for all � > 0 and z 2 <n �Ai

where PfZ 2 Aig = 0 for all i = 1; : : : ; p and for all Z in some class S. This implies that,
for any measurable f (�), fft1(Z1); : : : ; tp(Zp)g is distribution-free not only for Z1; : : : ; Zp

independently sampled from S, but from the much larger class of multivariate distributions

C = fZ : Z = RY through (2:1); with Y distributed as P2g; (4:6)

characterized by the same marginal probability distribution P2 for Y as �xed in S, but
without imposing independence between R and Y . Thus, the characterizations of robust-
ness derived from Theorem 1 and Proposition 1 are important from the distribution theory
point of view, but may often not be required in an applied statistical context.

In the following examples, this simpler case applies, as the pivotal quantities consid-

ered will only be functions of the angular coordinates of Z1; : : : ; Zp.

Example 4.1: Linear regression under independent sampling.
Consider the sampling model for Xi, random vectors in <n,

Xi = Di� + �i�i; i = 1; : : : ; p;

which is a special case of (4.5) with gi(�) = Di�, where Di is an n � m �xed matrix,

"1; : : : ; "p are i.i.d. with "i
d
= ", a random vector with a standard n-variate Normal
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distribution, �i > 0 is a (possibly observation-speci�c) scale parameter, and � is a common

vector of m regression parameters.
Let �̂i and �̂i denote the OLS estimator based on the i-th vector observation and the

corresponding estimator of �i, respectively. That is, assuming full column rank for Di and
n > m,

�̂i = (D0

iDi)
�1D0

iXi; �̂i =

�
1

n�m
(Xi �Di�̂i)

0(Xi �Di�̂i)

�1=2

:

The sampling distribution of Si = Si(�) � �̂i
�1(�̂i � �) is an m-variate Student-t dis-

tribution with n � m degrees of freedom, location vector 0 and precision matrix D0iDi,
the density function of which is denoted by fmS (sijn �m; 0;D0

iDi). Thus the density of

(S1; : : : ; Sp) takes the form

p(s1; : : : ; spj�; �1; : : : ; �p) =

pY
i=1

fmS (sijn�m; 0; D0iDi);

which does not depend on the parameters. Therefore, under Normal error vectors with
possibly di�erent scale factors, functions of (S1; : : : ; Sp) are pivotal quantities, potentially
useful for inference on �.

In order to apply our previous results, �rst note that Si = ti(Xi �Di�), where

ti(z) =

�
1

n�m
z0fIn �Di(D

0

iDi)
�1D0

igz

�
�1=2

(D0

iDi)
�1D0

iz;

and ti(�z) = ti(z) for all � > 0 and for all z 2 <n such that ti(z) is well-de�ned, i.e.
for z 2 <n � Ai where Ai = fDi :  2 <mg is an m-dimensional subspace of <n. This
scale invariance implies that (S1; : : : ; Sp) is distribution-free whenever � is in a given class
C of n-variate random variables characterized by some marginal distribution of the polar
angles, or, equivalently, a probability distribution on some space Y as described in Section
2. Of course, this marginal distribution on Y should be chosen such that Pf� 2 Aig = 0 for
all i = 1 : : : ; p, and for all " 2 C. Due to the fact that the scale invariance property of ti(�)
holds everywhere, and not only in distribution, we obtain robustness in the entire class C
in (4.6). As an example, the Si's keep their independent m-variate Student-t distributions

when " ranges in the class C characterized by the uniform marginal distribution over Sn�1.
This class C contains the family of all n-variate spherical distributions as its subclass S of
special interest.

The aim of this paper is to present conditions which would lead to complete robust-
ness of inference procedures, but we are not proposing any particular robust sampling
theory techniques. Therefore, we will not discuss the open question of which functions of

(S1; : : : ; Sp) could be considered and how they should be used for making classical infer-
ences on �. It should be clear, however, that robustness of inferences based on (S1; : : : ; Sp)

is achieved at the cost of e�ciency losses in the case of equal scale factors, where we know
that �1 = : : : = �p = �. The latter information is not used by (S1; : : : ; Sp) which is
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constructed as if the scales were di�erent, and is thus invariant to individual rescaling of

each error vector Xi �Di�.
In the case of a single Normal vector observation, say Xi, some functions of Si(�)

are not just arbitrary pivots, but follow from some general principles of classical inference.
For instance, it is well-known that the statistic Fi(�0) � Si(�0)

0D0iDiSi(�0)=m can be

derived using the likelihood ratio principle for testing H0 : � = �0 against H1 : � 2
<m � f�0g. Therefore, this test statistic has a particular interpretation in the reference

case of Normality, and it keeps its F (m;n � m) distribution under the null hypothesis

whenever "i has a non-Normal spherical distribution.
The likelihood ratio principle, when applied to some reference distribution, often leads

to robust test statistics and pivotal quantities in the case of one vector observation. The
arbitrariness is then reduced to the particular use we make of those quantities in the case

of several vector observations, if we wish to retain robustness.

Example 4.2: Distribution-free pivots for lq-spherical observations with common location.
Let us assume the sampling model Xi = ��+ �i"i, i = 1; : : : ; p, where � is the scalar

parameter of interest and "1; : : : ; "p are i.i.d. with "i
d
= ", an n-dimensional random vector.

In this example we will examine robustness when " follows an lq-spherical distribution,
introduced in Subsection 3.1.2, for a �xed value of q 2 (0;1). The case q = 1 can be
analyzed in a similar fashion.

We �rst consider just one vector observation, Xi = (X1i; : : : ;Xni)
0. In the reference

case where the elements of "i are i.i.d. draws from an exponential power distribution, the
likelihood function is given by

l(�; �i;Xi) / ��ni exp

8<
:�

1

2
�
�q
i

nX
j=1

jXji � �jq

9=
; :

The likelihood ratio principle for testing H0 : � = �0 against H1 : � 6= �0 leads to the
statistic

LR(�0;Xi) =

0
@ nX

j=1

jXji � ~�ij
q

1
A

n=q0
@ nX

j=1

jXji � �0j
q

1
A
�n=q

;

where ~�i, the maximum likelihood estimator of � based on Xi alone, solves

nX
j=1

jXji � �jq�1I[0;1)(Xji � �) =

nX
j=1

jXji � �jq�1I(�1;0](Xji � �)

and, in particular, is the median of X1i; : : : ; Xni if q = 1, and the sample mean, Xi, if

q = 2. It is easy to check that LR(�0;Xi) is a function of Xi � �0�, say t(Xi � �0�), and
that t(�z) = t(z), for all � > 0 and all z 2 <n � f� :  2 <g.

Thus, the likelihood ratio principle leads to the scale invariant pivotal quantity t(Xi�
��) = LR(�;Xi), which is therefore distribution-free in the class C of all n-variate dis-

tributions of "i that share the same marginal distribution of the polar angles as in the
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reference case of independent sampling from the exponential power distribution. In par-

ticular, LR(�;Xi) will have the same distribution for any "i in the lq-spherical subclass
S of C: Any measurable function ffLR(�;X1); : : : ; LR(�;Xp)g will now de�ne a pivotal

quantity which will be distribution-free when " ranges in the lq-spherical class, and thus
potentially useful for robust inference on �. The choice of f (�) remains an open problem.

Of course, except for q = 2, the sampling distribution of LR(�;Xi) and of functions
thereof has to be investigated through numerical techniques.

4.3. DISTRIBUTION AND INFERENCE INVARIANCE IN R

In this Subsection, we shall analyze the extent to which exact robustness results can

be characterized under repeated sampling from the class R de�ned in (3.12).
Since inference will often be based on repeated sampling from vector observations,

it is natural to consider matrix random variables. In particular, we shall again focus
on matrices Z = (Z1; : : : ; Zp), where each column Zi is a random variable in <n � f0g

represented as Zi = RiYi through (2:1), with Ri taking values in <+ and Yi in a space Yi.

We then de�ne

MR = fZ = (Z1; : : : ; Zp) : Z = (R1Y1; : : : ; RpYp) with (R1; : : : ; Rp) independent of

(Y1; : : : ; Yp) and the distribution of (R1; : : : ; Rp) �xedg:
(4:7)

Obviously, for p = 1, MR reduces to the class R in (3:12). Also note that if Yi = Y,
i = 1; : : : ; p, and the �xed joint distribution of (R1; : : : ; Rp) leads to the same marginal
distribution for each Ri, then Z1; : : : ; Zp are all in the same class R.

Alternatively, we could use the representation in (2:2) and characterize Z through
Z = (R1k1(W1); : : : ; Rpkp(Wp)), where each ki (i = 1; : : : ; p) is a one-to-one transformation
from W � <n�1 to Yi. Therefore, we could equivalently de�ne MR in terms of the
latter representation by �xing the distribution of (R1; : : : ; Rp) and imposing independence
between (R1; : : : ; Rp) and (W1; : : : ;Wp). In fact, this equivalent representation will prove
to be more convenient for the subsequent discussion, where we shall assume, without loss
of generality, that the (n� 1)-dimensional vector of zeros belongs to W.

We are now concerned with characterizing the measurable functions t(�), taking values
in <k, that are distribution-free in MR, or in certain subsets of MR. The following
Theorem provides some useful results in this respect.

Theorem 2. Consider the class MR in (4:7) and some measurable function t(�) taking

values in <k. The following statements are equivalent:

(i) t(Z1; : : : ; Zp)
d
= t(R1k1(0); : : : ; Rpkp(0)), for all Z 2 MR,

(ii) t(R1k1(w1); : : : ; Rpkp(wp))
d
= t(R1k1(0); : : : ; Rpkp(0)), for all w1; : : : ; wp 2 W ,

(iii) t(Z1; : : : ; Zp)
d
= t(R1k1(0); : : : ; Rpkp(0)), for all Z 2 MR, with W1; : : : ;Wp all inde-

pendent.

In addition, any of (i)-(iii) implies

(iv) t(Z1; : : : ; Zp)
d
= t(R1k1(0); : : : ; Rpkp(0)), for all Z 2 MR, with W1; : : : ;Wp indepen-

dent and identically distributed,
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which, in turn, implies

(v) t(R1k1(w); : : : ; Rpkp(w))
d
= t(R1k1(0); : : : ; Rpkp(0)), for all w 2 W.

Proof: see Appendix. �

As was the case in Theorem 1, the proof of Theorem 2 does not rely on the one-to-one

correspondence between points z 2 <n � f0g and pairs (y; r), established in Section 2.

Therefore, the Theorem could alternatively be stated and proved without this restriction.
Condition (i) means that t(Z) is distribution-free in the entire class MR, whereas

Condition (ii) indicates distribution-freeness in the subclass of MR corresponding to all
Dirac distributions for (W1; : : : ;Wp). Thus, t(Z) is distribution-free in all of MR if and

only if it has that property in this much smaller subclass. This, again, derives from the
fact that under independence between (R1; : : : ; Rp) and (W1; : : : ;Wp), MR is the convex

hull of its subclass generated by all Dirac distributions for (W1; : : : ;Wp).

If we focus on independent sampling, we naturally consider (iii). Choosing ki(�) =
k(�) (i = 1; : : : ; p) and MR such that R1; : : : ; Rp are i.i.d., Condition (iii) states that
t(Z1; : : : ; Zp) is distribution-free under independent (not necessarily identical) sampling
of Z1; : : : ; Zp from the corresponding class R, de�ned in (3:12). Clearly, this will imply
that t(Z1; : : : ; Zp) is distribution-free if we additionally restrict ourselves to sampling in-
dependently from the same distribution in R (i.i.d.), as is stated in Condition (iv). Thus,
either of (i)-(iii) provide su�cient conditions for distribution-freeness under i.i.d. sampling
from R, whereas Condition (v) is merely necessary for such robustness. Again, like in
Proposition 1, we do not obtain a characterization of robustness in the case of pure i.i.d.
sampling.

In contrast to Theorem 1, Theorem 2 does not provide us with a characterization
of distribution-freeness in terms of invariance under transformations of the observables.
In Subsection 4.1, such invariance was described in (4:3). In order to obtain a similar
condition for the class MR, we need to �nd a set of transformations, denoted by Q, such
that the condition

t(Q(Z))
d
= t(Z); for all Z 2 MR; for all Q 2 Q (4:8)

holds if and only if (i), (ii) and (iii) apply. Then (4:8) would be a characterization of
distribution-freeness in MR in terms of transformations Q on the observables. It can
be shown that one choice for Q satisfying the above would be the set of all possible
transformations that only a�ect the angles of each column of Z 2 MR, i.e.

Q(Z) = Q(R1k1(W1); : : : ; Rpkp(Wp)) � (R1k1(W
�

1
); : : : ; Rpkp(W

�

p
)); (4:9)

where W
�

1
; : : : ;W

�

p are any random variables taking values in W . However, the class
described through (4:9) is so large that it does not lead to a characterization that is easy to

check in practice. Similarly, for robustness inMS we could have considered in Subsection
4.1, instead of the transformations in (4:3), all possible transformations that only a�ect the

radius of each column of Z. However, (4:3) is still equivalent to (4:2) and is very easy to
verify in practice and to interpret. Thus, we would ideally want to characterize robustness
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in MR through a subclass of Q de�ned through (4:9), which still preserves equivalence

with (i), (ii) and (iii) in Theorem 2, yet makes (4:8) easy to check if we restrict it to this
subclass.

In the case where each ki(�) = h(�), i = 1; : : : ; p, where fh(w) : w 2 Wg = S
n�1, the

unit sphere, such as in repeated sampling from the anisotropic class, a natural subclass

with these properties is given by all the transformations Q such that

Q(Z) = (�1Z1; : : : ;�pZp);

where �1; : : : ;�p 2 O(n) are any orthogonal matrices. If we consider the general case, a
possible choice would be the subclass of (4:9) characterized by W

�

i
= h

�1f�ih(Wi)g, i =

1; : : : ; p and �i 2 O(n). This corresponds to �rst transforming from Yi = fki(w) : w 2 Wg

to Sn�1, then multiplying by any orthogonal matrix, and �nally transforming back to Yi,

for each i = 1; : : : ; p.

In some applied statistics problems, pivotal quantities can be found that are only a
function of (R1; : : : ; Rp). Clearly, such quantities will be distribution-free as long as the
marginal distribution of (R1; : : : ; Rp) is �xed. Thus, we will directly obtain invariance in
MR, and also in the wider class where independence between (R1; : : : ; Rp) and (Y1; : : : ; Yp)
is no longer imposed. A context in which such a situation naturally appears is that of i.i.d.
sampling from the scale model

Xi = �"i; i = 1; : : : ; p; (4:10)

where � > 0 is the scale parameter, as illustrated by the following example.

Example 4.3: Independent sampling from an lq-anisotropic scale model.
We assume that the observations are generated from the scale model in (4.10), where

each n-vector "i is the result of independent sampling from an exponential power distri-
bution, with a �xed q 2 (0;1]. Furthermore, all vectors "1; : : : ; "p are i.i.d.

The distributional assumption on each "i implies that the qth power of its lq-radius
�q("i), de�ned in Subsection 3.1.2, has a �2

2n=q
distribution for �nite q, and the l

1
-radius

is Beta(n; 1) distributed. Thus, for 0 < q <1,

ti

�
Xi

�

�
�

�
�q(Xi)

�

�q
� �

2

2n=q
; i = 1; : : : ; p;

and taking the sum over all the observations

t

�
X1

�
; : : : ;

Xp

�

�
�

pX
i=1

ti

�
Xi

�

�
= �

�q

pX
i=1

f�q(Xi)g
q � �

2

2np=q
:

In the case of q =1, we know

t
�

i

�
Xi

�

�
�

maxj=1;:::;n jXjij

�
� Beta(n; 1); i = 1; : : : ; p;
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where Xi = (X1i; : : : ;Xni) for i = 1; : : : ; p, leading to

t
�

�
X1

�
; : : : ;

Xp

�

�
� max

i=1;:::;p

t
�

i

�
Xi

�

�
=

maxj=1;:::;n;i=1;:::;p jXjij

�
� Beta(np; 1):

The pivotal quantities t(X1=�; : : : ;Xp=�) and t
�(X1=�; : : : ;Xp=�) can now be used for

inference on �.

Writing "i = RiYi with Ri = �q("i) and Yi = "i=�q("i) as in Subsection 3.1.2, we

note that t(�) and t
�(�) only depend on "i throught its lq-radius Ri. Thus, the distribution

of these pivotal quantities will be the same as long as the distribution of Ri is �xed. If,

in addition, we impose independence between Ri and Yi, we obtain perfect robustness
whenever "i ranges in the lq-anisotropic class, introduced in Subsection 3.2, for given q.

5. ROBUSTNESS OF BAYESIAN INFERENCE

In this Section we shall consider the issue of robust inference from a Bayesian angle.
The nature of the Bayesian paradigm will lead to a somewhat di�erent approach, not based
in the distribution theory of Subsection 4.1, but rather in the joint distribution of observ-
ables and parameters. We shall consider both the regression model in (4.5) (Subsection
5.1) and the scale model in (4.10) (Subsection 5.2).

5.1. THE REGRESSION MODEL

5.1.1. Inference on location and regression parameters

Let us consider again the model in (4:5), Xi = gi(�) + �i"i, i = 1; : : : ; p, where
"i; : : : ; "p are i.i.d. n-dimensional random vectors (such that the conditional distribution
of "i given (�; �i) does not depend on these parameters), �i > 0, i = 1; : : : ; p, are scale
parameters and gi(�), i = 1; : : : ; p, are location vectors, parameterized in terms of a
common vector � 2 B � <m (m � n) through known functions gi(�) from <m to <n.

In Corollaries 1 and 2 of Subsection 4.2 we examined robustness of classical inference
procedures when "i is a random variable from the class S in (3:1). As will be clear in the
sequel, our Bayesian robustness results will be obtained for the wider class C, de�ned in
(4.6), where independence between R and Y is not required. Therefore, we shall now take

"1; : : : ; "p to be i.i.d. random vectors from C.

As in Subsection 4.2, we will consider both the case of equal scale factors, i.e. �1 =

: : : = �p = �, and the case of possibly di�erent scales. In both situations we will assume
Je�reys' improper prior density on the scale parameter(s), which conveys the idea of prior
ignorance about scale. The following Theorem constitutes the basis for deriving Bayesian

robustness results.

Theorem 3. Consider the general multivariate location-scale model X = �+�"; where "

is an n-dimensional random vector represented as " = RY through (2:1), � > 0 is a scale

parameter and � 2 M � <n is a location parameter.
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Let us choose a prior distribution for (�; �), which is the product measure corresponding

to the improper density p(�) = c��1 (c > 0) for � and any �-�nite prior measure for �.

Then the joint distribution of X and � does not depend on the conditional probability

distribution of R given Y .

Proof: see Appendix. �

From the proof it is easy to see that the key to this result is the invariance of the

density p(�) = c��1 under the group of transformations f�r : r > 0g. As a consequence of

this, it is obtained that (�; �R; Y; R) has the same distribution as (�; �; Y;R), from which

can be derived that the distribution of (�; �R; Y ) does not depend on the conditional
probability of R given Y . Thus, the distribution of (�RY; �) = (X � �; �), and therefore

that of (X;�), do not depend on the conditional probability of R given Y either. The
improper density p(�) / ��1 is the only one with this invariance property.

Observe that, paralleling the discussions following Theorems 1 and 2, the proof of this

result does not make use of the unique representation of points z 2 <
n in terms of pairs

(y; r). Therefore, Theorem 3 also holds in the more general situation where "
d
= RY for

some positive random variable R. In contrast to Theorems 1 and 2, independence between
R and Y is now not required.

Theorem 3 implies that, under the Je�reys' prior for the scale parameter �, the joint
distribution of (X;�) only depends on the distribution of " through the marginal proba-
bility of Y . Therefore, if we �x the distribution of Y and we consider the corresponding
class C in (4:6), the joint distribution of (X;�) will be exactly the same for any choice of
" 2 C. In addition, if the marginal distribution of X is �-�nite, the posterior probability
distribution of � given X is well-de�ned, and will also be una�ected by the particular
choice of " 2 C. Thus, posterior inference on �, whenever it can be conducted, is perfectly
robust when " ranges in an entire class C. This result generalizes the �nding in Fern�andez
et al. (1994), which treated the special case where all the distributions are dominated by
the Lebesgue measure in the corresponding space.

So far, we have presented a Bayesian robustness result for the case of one single vector
observation. We now examine the case of independent sampling. In the practically relevant
situation of independent sampling from (4:5) with unknown and possibly di�erent scale
factors, perfect inference robustness is easily derived from Theorem 3. The result is stated
in the following Corollary.

Corollary 3. Consider the sampling model

Xi = gi(�) + �i"i; i = 1; : : : ; p;

where "1; : : : ; "p are i.i.d. n-dimensional random vectors represented as "i = RiYi through

(2:1), �i > 0, i = 1; : : : ; p, are scale parameters and gi(�), i = 1; : : : ; p, are location vec-

tors, parameterized in terms of a common vector � 2 B � <
m(m � n) through known

measurable functions gi(�) from <
m to <n.

We adopt a prior distribution for (�; �1; : : : ; �p) which is the product measure of the im-

proper density p(�1; : : : ; �p) =
Qp

i=1 p(�i) = c
Qp

i=1 �
�1
i (c > 0) and any �-�nite prior

measure for �.
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Then the joint distribution of (X1; : : : ;Xp; �) does not depend on the conditional distri-

bution of Ri given Yi.

Proof: The proof of this Corollary parallels that of Theorem 3. We now obtain that
(�; �1R1; Y1; R1; : : : ; �pRp; Yp; Rp) has the same distribution as (�; �1; Y1; R1; : : : ; �p; Yp; Rp).

As a consequence, the distribution of (�; �1R1; Y1; : : : ; �pRp; Yp), and thus the distribution
of (X1; : : : ;Xp; �), do not depend on the conditional probability of Ri given Yi. �

Corollary 3 implies that, under the standard non-informative prior on the scale pa-
rameters, we obtain exactly the same distribution of (X1; : : : ;Xp; �) for any choice of "i
in a given class C of the type described in (4:6). Therefore posterior inference on � and
predictive inference, provided they can be conducted, are perfectly robust with respect to

deviations of "i within an entire class C. This Bayesian robustness parallels the classical
robustness result of Corollary 2, although it is now obtained for the wider class C.

In the case that the class C considered corresponds to some density f2(w) on the

polar angles w 2 W , and if the prior distribution for � is given by some density p(�), the

resulting distribution for (X1; : : : ;Xp; �) has density function

p(x1; : : : ; xp; �) = cp(�)

pY
i=1

kxi � gi(�)k
�n
2

s
n
h�1

�
xi�gi(�)

kxi�gi(�)k2

�of2
�
h�1

�
xi � gi(�)

kxi � gi(�)k2

��
; (5:1)

where fh(w) : w 2 Wg = Sn�1 and un�1s(w) is the Jacobian of the polar transformation
(u denotes the Euclidean radius).

In order to have a proper posterior distribution of �, we require a �-�nite predictive
distribution, i.e. p(x1; : : : ; xp) =

R
B
p(x1; : : : ; xp; �)d� < 1 for almost all (x1; : : : ; xp) 2

<
n�p. We will show that in most practically relevant situations this requirement will not

be met in the pure location-scale model, where gi(�) = �, i = 1; : : : ; p, and � 2 <
n is not

restricted to a lower dimensional subspace.

Proposition 2. Consider p independent observations from the multivariate location-scale

model

Xi = � + �i"i; i = 1; : : : ; p;

where "1; : : : ; "p are i.i.d. n-dimensional random vectors from a class C characterized by a

density f2(w) on the polar angles w 2 W .

We assume the prior density

p(�; �1; : : : ; �p) = p(�)

pY
i=1

p(�i) = cp(�)

pY
i=1

��1i (c > 0); (5:2)

where p(�) is any density, either proper or �-�nite, that does not restrict � to a lower

dimensional subspace of <n.

If there exists some positive constant K such that f2(w)=s(w) > K for all w 2 W, then

the predictive distribution of (X1; : : : ;Xp) is not �-�nite.

Proof: see Appendix. �
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As an immediate consequence of Proposition 2, we will typically not be able to conduct
posterior inference on � in pure location-scale models under the prior structure in (5:2),

which ensures perfect robustness of p(x1; : : : ; xp; �) for "i 2 C. A su�cient condition

preventing such inference is that f2(w)=s(w) > K > 0 for all w 2 W and some positive
constant K. Alternatively, we can rewrite this su�cient condition in terms of the function
�(�) associated with f2(�) through (3:10) and (3:11), as

�fh(w)g < K 0 <1; for all w 2 W and some positive constant K 0:

This covers most of the practically relevant cases, such as all classes C associated to e.g.
the spherical class, any lq-spherical class or any �-spherical class whenever �(�) is a norm

or the isodensity contours are bounded away from the origin.

This clearly shows that the perfect robustness of p(x1; : : : ; xp; �) with respect to the
form of the distribution of "i in the wide class C is sometimes achieved in cases where

inference on the location parameter is precluded.

Inferentially useful robustness can be obtained, however, when the location is param-
eterized through a lower dimensional vector, i.e. when � 2 B � <

m with m < n, as the
following example shows.

Example 5.1. Independent linear regressions.

Consider the same sampling model as in Example 4.1, i.e. p independent Normal
regression equations Xi = Di� + �i"i, and the prior structure as in (5:2).

The resulting Bayesian model was studied by Tiao and Zellner (1964), Dickey (1968),
Zellner (1971), Box and Tiao (1973) and Dr�eze (1977). For m < n, the marginal posterior
density of � is proportional to the product of p m-variate Student-t kernels and the prior
of �:

p(�jx1; : : : ; xp) / p(�)

pY
i=1

fmS (si(�)jn�m; 0;D0
iDi);

where Si(�) = �̂�1i (�̂i � �) and �̂i and �̂i are as de�ned in Example 4.1, i = 1; : : : ; p.
If p(�) is improper uniform over <m, this posterior density is proportional to the joint
sampling density of (S1(�); : : : ; Sp(�)) in Example 4.1, considered as a function of �. Such
a posterior density is called a p � 0 poly-t density [see Dr�eze (1977)], and for m < n is
clearly proper. Thus, as a result of the deeper parametric structure on the location vector
we can conduct posterior inference on � in this example.

In the Bayesian literature, product form poly-t densities were obtained as the posteri-
ors resulting from independent Normal samples with di�erent variances. Corollary 3 shows
that the assumption of Normality is not necessary. Under the prior structure in (5:2), the

same marginal posterior p(�jx1; : : : ; xp) is obtained whenever "1; : : : ; "p are i.i.d. random
vectors sharing the uniform marginal distribution over Sn�1. This implies perfect robust-
ness of Bayesian inference on � in the large class C of error distributions which includes
the class of all n-variate spherical distributions as its subclass of special interest.
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In order to obtain the result in Corollary 3, it was crucial to assume p unrelated scale

factors �i with Je�reys' improper prior on each of them. As the density p(�i) / ��1i is
invariant under the group of transformations fri�i : ri > 0g, each scale factor �i absorbes

the inuence of the corresponding Ri. The latter is not possible in the case of equal scales,
i.e.

Xi = gi(�) + �"i; i = 1; : : : ; p;

where "1; : : : ; "p are i.i.d. n-dimensional random vectors represented as "i = RiYi through
(2:1), � > 0 is a common scale parameter and � 2 B � <m is a common location (or

regression) parameter. In this case, it is impossible to achieve robustness when "i ranges
in a class C of the type described in (4:6). To illustrate this fact, let us consider the

special situation where all measures considered are dominated by Lebesgue measure in the
corresponding space. The prior density will take the form

p(�; �) = p(�)p(�) = p(�)c��1; (c > 0):

We shall consider the density of "i, represented as "i = Rik(Wi) through (2.2), in terms
of its coordinates (Wi; Ri), factorized as the product of the marginal density of Wi,
f2(wi), and the conditional density of Ri given Wi, f1(ri;wi). Thus, the joint density
of (�; �;R1;W1; : : : ; Rp;Wp) is given by

p(�; �; r1; w1; : : : ; rp; wp) = p(�)c��1
pY

i=1

f1(ri;wi)f2(wi):

Transforming from (�; �;R1;W1; : : : ; Rp;Wp) to (�; �; �1;W1; : : : ; �p;Wp), where �i = �Ri

is the radial coordinate of Xi � gi(�), i = 1; : : : ; p, leads to

p(�; �; �1; w1; : : : ; �p; wp) = cp(�)
1

�p+1

pY
i=1

f1

�
�i

�
;wi

�
f2(wi):

Therefore, p(�; �1; w1; : : : ; �p; wp), and thus p(x1; : : : ; xp; �), depend on the form of f1(�)
and we do not have robustness with respect to the choice of "i 2 C.

From this discussion we conclude that in the case of a common scale parameter, which
corresponds to i.i.d. error vectors Zi = �"i, robustness of Bayesian inference in a class C in
(4:6) seems impossible when p > 1. The crucial di�erence with the situation in Corollary

3 that prevents robustness in this case, is that now there is just one scale factor � which
can only absorb the inuence of one of the Ri's.

5.1.2. Inference on scale parameters

In Subsection 5.1.1 we proved that for the model in (4:5), with the prior structure in
(5:2), the distribution of (X1; : : : ;Xp; �) is exactly the same whenever "i ranges in a given
class C as de�ned in (4:6). In this Subsection, we shall analyze inference on scale in the
same model.
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We start from the assumptions in Theorem 3, i.e. we consider the n-variate location-

scale model, X = �+ �", where " = RY through (2:1), and a prior distribution on (�; �)
which is the product measure corresponding to the improper density p(�) = c��1 (c > 0)

for � and any �-�nite prior for �. From the proof of Theorem 3 follows that the marginal
distribution of (�; �; Y ), where � = �R, derived from the joint �-�nite distribution of

(R;�; �; Y ), is �-�nite. This implies that the conditional probability distribution of R
given (�; �; Y ) is well-de�ned. Due to the one-to-one correspondence between (R;�; �; Y )

and (�; �; �; Y ), we conclude that the conditional distribution of � given (�; �; Y ) is also

well-de�ned. In particular, for any Borel measurable set A � <+,

P�j(�;�;y)fAg = PRj(�;�;y)

�
�

�
: � 2 A

�
= PRjY=y

�
�

�
: � 2 A

�
; (5:3)

where the latter equality follows immediately from the expression of the joint distribution

for (R;�; �; Y ) derived in the proof of Theorem 3. Note that P�j(�;�;y) represents the
conditional distribution of � given (x; �), since (y; �) are the coordinates of x � � in the

particular representation chosen for <n, i.e. � > 0, y 2 Y and �y = x��. Thus, from (5:3),

the conditional posterior distribution of the scale parameter � depends on the conditional

distribution of R given Y , PRjY , and it will not be robust for " 2 C in (4:6). On the other
hand, it is perfectly robust with respect to the choice of the marginal distribution of Y , PY ,
although this robustness is lost when we consider the marginal posterior distribution of �
given the observation (provided, of course, that it exists), since the posterior distribution
of � depends on PY .

However, if we are interested in certain characteristics of the posterior distribution of
�, we can still achieve robustness of such quantities in a certain subclass of C. For instance,
from (5:3) we can immediately derive that for any value � 2 <, the conditional posterior
expectation of �� takes the form

E[��jx; �] = ��E[R��
j�; �; y] = ��E[R��

jy];

where (y; �) are the coordinates of x � � as explained above. As the distribution of �
given x, provided that it exists, does not depend on PRjY (see Theorem 3), the marginal

posterior expectation of ��, E[��jx], will only depend on PRjY through its (��)th moment.
Therefore, if we focus on the subclass of C such that E[R��jy] has a �xed value, we will
obtain perfect robustness of E[��jx] when " ranges in that class.

In order for this result to be of practical interest, we would like the scale parameter �

to have some meaning in terms of sampling properties of the observables. A natural such
condition would be

V [X j�; �] = �2In;

i.e. where �2 describes the variance of the sampling distribution. This condition translates
into

V ["] = V [RY ] = In;

which is clearly not ful�lled in general, unless we impose some restrictions on the distri-
bution of (Y;R). Natural conditions that lead to this situation are

E[Y ] = 0; V [Y ] = bIn; for some �nite b > 0;

E[RjY ] does not depend on Y; E[R2
jY ] = b�1:
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This implies that we can not have just any class C in (4:6), since we impose restrictions

on the two �rst order moments of PY . Once we have chosen PY ful�lling these conditions,
we further restrict the corresponding class C by only considering distributions PRjY that

satisfy certain moment restrictions. We shall denote the resulting class by C0. There are
many rich classes of n-variate distributions that are compatible with these assumptions,

as will be illustrated in Examples 5.3 and 5.4.
From our previous discussion follows, taking � = �2, that the conditional expectation

E[��2jx; �] is exactly the same for all choices of " 2 C0, and the same result holds for

E[��2jx], the posterior expectation of the inverse variance, provided that it exists.
These results can directly be applied to the case of independent sampling from the

model in (4:5), with unknown and possibly di�erent scales, Xi = gi(�)+�i"i, i = 1; : : : ; p,
where "1; : : : ; "p are i.i.d. and "i = RiYi through (2:1), under the prior structure in (5:2).

If we further assume V ["i] = In, �
2
i describes the sampling variance of Xi. Following a

similar reasoning as indicated above, we can derive that

P (�1 2 A1; : : : ; �p 2 Apjx1; : : : ; xp; �) =

pY
i=1

PRijYi=yi

��
�i

�i
: �i 2 Ai

��
; (5:4)

where (yi; �i) are the coordinates of xi�gi(�), i = 1; : : : ; p, in the chosen representation of
<n. Therefore, the conditional posterior means of the inverse variances, E[��2i jx1; : : : ; xp; �],
i = 1; : : : ; p, are perfectly robust when "i ranges in a class C0 as de�ned above. The
same robustness result holds for the marginal posterior means of the inverse variances,
E[��2i jx1; : : : ; xp], i = 1; : : : ; p, provided that they exist, since the posterior distribution of
� given x1; : : : ; xp (whenever it is well-de�ned) does not depend on PRijYi

(see Corollary
3). Of course, integrating out the common regression parameter � destroys the condi-
tional posterior independence of the �i's implicit in (5:4). In particular, in the case that
the marginal distribution of Yi, PYi

, corresponds to some density function f2(w) of the
polar angles w 2 W, and the prior distribution of � is given through a density p(�) for
� 2 B, we can obtain through (5:1)

E[��2i jx1; : : : ; xp] = E[R2
i jyi]

R
B
��2i p(�)

Qp
i=1 kxi � gi(�)k

�n
2

f2(wi)

s(wi)
d�R

B
p(�)

Qp
i=1 kxi � gi(�)k

�n
2

f2(wi)

s(wi)
d�

; (5:5)

where (yi; �i), �i > 0, yi 2 Y , are the coordinates of xi � gi(�) as described in (2:1),

wi = k�1(yi) are the angular polar coordinates as described in (2:2), and s(w) comes from

the Jacobian, un�1s(w), of the polar transformation.

Example 5.2. lq-spherical distributions with unitary variance
Assume the model in (4:5), Xi = gi(�) + �i"i, i = 1; : : : ; p, where "1; : : : ; "p are

n-dimensional i.i.d. random vectors following an lq-spherical distribution with unitary
variance, for some �xed value of q 2 (0;1]. We further consider the prior density in (5:2).

Following Osiewalski and Steel (1993), the covariance matrix of an lq-distributed "i
takes the form

V ["i] = c�1q E[�q("i)
2]In;
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where �q(�), de�ned in (3:2), coincides with the lq-norm for q � 1,

c1 =
3n

n+ 2
; and cq = c1

�
�
1 + 1

q

�
�
�
1 + n+2

q

�

�
�
1 + 3

q

�
�
�
1 + n

q

� for �nite q:

The unitary variance assumption implies E[�q("i)
2] = cq, thus de�ning a subset of the

class of lq-spherical distributions through �xing the second order moment of Ri = �q("i).

Direct application of (5:5), with f2(�) given through (3:8) with �(�) = �q(�), leads
to the following expression for the posterior mean of the inverse variance, common to all

distributions in this restricted lq-spherical class:

E[��2i jx1; : : : ; xp] = cq

R
B
[�qfxi � gi(�)g]

�2p(�)
Qp

j=1[�qfxj � gj(�)g]
�nd�R

B
p(�)

Qp
j=1[�qfxj � gj(�)g]�nd�:

From our previous discussion we know that this result also extends to all conditional distri-

butions of Ri = �q("i) given Yi such thatE[RijYi] does not depend on Yi andE[R2
i jYi] = cq.

However, the case of independence between Ri and Yi, i.e. the subset of the lq-spherical
class, seems the most interesting from a practical perspective. For instance, we know that,
in the continuous case, all distributions for "i will then share the same isodensity sets.

Example 5.3. Linear regression with elliptical errors
Let us consider the model X� = D� + �"�, where "� is an n-variate elliptical random

vector with mean zero and a known positive de�nite symmetric covariance matrix V , and
D is a known n�m matrix of full colum rank with n > m. In terms of X � V �1=2X� and
" � V �1=2"�, we have a linear regression model with a spherical error vector,

X = V �1=2D� + �";

where E["] = 0 and V ["] = In, which directly �ts into the framework of this Subsection.
Since " follows a spherical distribution, Y = "=k"k2 is uniformly distributed over the
unit sphere Sn�1 and independent of R = k"k2 (see Subsection 3.1.1). As the covariance
matrix of the uniform distribution over Sn�1 is 1

nIn [see Fang et al. (1990, p.34)], we
obtain E[R2] = n as the only restriction on the distribution of R = k"k2, which can also
be seen from the previous example with q = 2.

Under the prior density p(�; �) = p(�)p(�) / ��1, the marginal posterior density for

�, derived from (5:1) and (3:8), with �(�) = k � k2, is the following:

p(�jx) = p(�jx�) = fmS (�jn�m; �̂; �̂�2D0V �1D);

which corresponds to the m-variate Student-t distribution with n � m degrees of free-
dom, location vector �̂ = (D0V �1D)�1D0V �1x�, and precision matrix �̂�2D0V �1D, where

�̂�2 = (�̂2)�1 = (n�m)f(x� �D�̂)0V �1(x� �D�̂)g�1. Observe that this posterior distri-
bution can alternatively be derived from Example 5.1 with p = 1.
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Integrating out E[��2jx�; �] with p(�jx�), leads to the posterior mean of the inverse

variance

E[��2jx�] = n

Z
<m

1

(x� �D�)0V �1(x� �D�)
fmS (�jn�m; �̂; �̂�2D0V �1D)d� = �̂�2;

common to all spherical distributions for " with unitary variance.

Since �̂2 is an unbiased estimator of �2, we have, for any elliptical distribution of "�

with a �xed covariance matrix V , an interesting classical-Bayesian parallel:

E[��2�̂2j�; �] = 1 and E[�̂2��2jx�] = 1;

�rst noted by Osiewalski and Steel (1995).

5.2. THE SCALE MODEL

Let us consider the pure scale model introduced in (4:10), Xi = �"i, i = 1; : : : ; p,

where "1; : : : ; "p are i.i.d. n-dimensional vectors (such that the distribution of "i given �

does not depend on this parameter), and � > 0 is a scale parameter. We shall now present

some robustness results for inference on �, under any �-�nite prior distribution.

We �rst develop the theory for the case of one single vector observation. The next

Theorem states the main result.

Theorem 4. Consider the multivariate scale model X = �", where " is an n-dimensional

random vector represented as " = RY through (2:1), and � > 0 is a scale parameter. We

shall factorize the joint probability distribution of (Y;R) into the marginal distribution of

Y , PY , and the conditional distribution of R given Y , PRjY .

Then, under any �-�nite prior measure for �, the posterior distribution of � given X,

provided it exists, does not depend on PY .

Proof: see Appendix. �

From the proof of the Theorem follows that the key to this result is the product

structure between the distributions of � and Y , which is preserved under the one-to-one

transformation from (�; Y;R) to (�; Y; �), where � = �R. Thus, the conditional distribution

of � given (Y; �), whenever it is de�ned, does not depend on PY . Note that, since (Y; �)

are the coordinates of X in the chosen representation of <n, we can immediately derive

the posterior distribution of � given X from the conditional distribution of � given (Y; �).

In order for the posterior distribution of � to exist, we require a �-�nite predictive

distribution. Again from the proof of Theorem 4 we can deduce that if the following

function of any Borel measurable set C � <+,

�(C) =

Z 1

0

PRjY fr : �r 2 CgD�(d�);
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where D� represents the prior distribution of �, is a �-�nite measure on <+, then the

marginal distribution of (Y; �), and thus the predictive distribution of X , are �-�nite. In

this case, the posterior distribution of � is de�ned.

In most practical situations the prior chosen for � will either be a probability dis-

tribution, in which case the posterior distribution of � will obviously be de�ned, or the

standard non-informative prior, which corresponds to the density p(�) = c��1 (c > 0). In

this latter case, following a similar reasoning as in the beginning of Subsection 5.1.2, we

can derive the following proper posterior distribution for �

P�jX=x = PRjY=y

�
�

�
: � 2 A

�
;

where (y; �) are the coordinates of x.

For inferential purposes on �, we shall often be interested in a sample of several inde-

pendent observations rather than in one single vector observation. The theory developed

for the case of just one observation, can easily be extended to the context of repeated

sampling. The following Corollary addresses this situation.

Corollary 4. Let us consider the scale model in (4:10), Xi = �"i, i = 1; : : : ; p, where

"1; : : : ; "p are i.i.d. n-dimensional vectors, represented as "i = RiYi through (2:1), and

� > 0 is a scale parameter. We factorize the joint probability distribution of (Yi; Ri)

into the marginal distribution of Yi, PYi , and the conditional distribution of Ri given Yi,

PRijYi .

Then, under any �-�nite prior distribution for �, the posterior distribution of � given

(X1; : : : ;Xp), provided it is de�ned, does not depend on PYi .

Proof: Paralleling the proof of Theorem 4, the one-to-one transformation from (�; Y1; R1;

: : : ; Yp; Rp) to (�; Y1; �1; : : : ; Yp; �p), where �i = �Ri, preserves the product structure

between the distributions of � and Y1; : : : ; Yp. Therefore, the conditional distribution of �

given (Y1; �1; : : : ; Yp; �p), and thus the posterior distribution of �, provided they exist, do

not depend on PYi . �

If the prior distribution of � is a probability measure, the posterior distribution of �

given (X1; : : : ;Xp) will always exist. However, if the prior distribution of � is unbounded,

we require the predictive distribution to be �-�nite in order to obtain a proper posterior.

If the function of any Borel measurable set C � <
p
+
de�ned as

�(C) =

Z 1

0

(P�1j(Y1;�) � : : :� P�pj(Yp;�))fCgD�(d�);

where P�ij(Yi;�)fAg = PRijYifri : �ri 2 Ag, for each measurable set A � <+, is a �-�nite

measure on <
p
+
, then the marginal distribution of (Y1; �1; : : : ; Yp; �p), or, equivalently, the

predictive distribution of (X1; : : : ;Xp), is �-�nite. In this case, the posterior distribution

of � given (X1; : : : ;Xp) is well-de�ned.

Finally, let us examine the situation in which both PRijYi and the prior distribution

of � are given through density functions f1(ri; yi) and p(�), respectively. The posterior
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distribution of � given (X1; : : : ;Xp) will now be characterized through the density

p(�jx1; : : : ; xp) / p(�)

pY
i=1

1

�
f1

�
�i

�
; yi

�
;

where (yi; �i) are the coordinates of xi, i = 1; : : : ; p, which requiresZ
1

0

p(�)

pY
i=1

1

�
f1

�
�i

�
; yi

�
d� <1

in order to be proper. Clearly, this density does not depend on the distribution of Yi, PYi ,

as we already knew from Corollary 4.

From the discussion in this Subsection we conclude that in the pure scale model in

(4:10), inference on �, whenever it can be conducted, does not depend on PYi . Therefore,

inference on � is perfectly robust in the class of distributions for the error term "i = RiYi
that share the same conditional distribution PRijYi .

Note that, when we discussed robustness of classical inferences for the same scale

model in (4:10), we considered pivotal quantities that are only functions of � and (�1; : : : ;

�p), the radial coordinates of each of the observations, and, therefore, their sampling dis-

tribution only depends on the marginal distribution of Ri, PRi , derived from P(Yi;Ri). This

immediately leads to robustness of classical inference on � with respect to the choice of the

conditional distribution of Yi given Ri. On the other hand, Corollary 4 states robustness of

Bayesian inference on � with respect to the choice of the marginal distribution of Yi, PYi .

Thus, our classical and Bayesian robustness results refer to opposite factorizations of the

joint distribution of (Yi; Ri). In addition, Corollary 4 tells us that drawing inferences only

on the basis of (�1; : : : ; �p), the radial coordinates of the observations, while discarding the

data on (Y1; : : : ; Yp), leads to a loss of relevant information about � if Ri and Yi are not

independent. Of course, if we are interested in distributions of the error term "i = RiYi
that impose independence between Ri and Yi, PRijYi no longer depends on Yi, both fac-

torizations of P(Yi;Ri) coincide and we obtain a parallelism between classical and Bayesian

results. In this case, both classical and Bayesian inference on scale are completely robust

when "i ranges in a class R in (3:12). Robustness of classical inference in the lq-anisotropic

class, de�ned in Subsection 3.2, was illustrated in Example 4.3. We now present a parallel

Bayesian example.

Example 5.4. Independent sampling from an lq-anisotropic scale model

As in Example 4.3, the p vector observations are generated from the scale model (4.10)

Xi = �"i, i = 1; : : : ; p, where each element of each vector "i is independently sampled from

the same exponential power distribution with some q 2 (0;1]. For q =1, this corresponds

to a uniform sampling distribution on the n-rectangle (��; �)n for each Xi.

For the scale parameter �, we assume a proper prior, corresponding to

b��q � �2
2a=q; for some a; b > 0; for q 2 (0;1);

and

b��
�1 � Beta(a�; 1); for some a�; b� > 0; for q =1:
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Since we have a proper prior, the posterior distribution of � will clearly exist. In order to

calculate the latter, we recall that for Ri = �q("i) the distribution given Yi = "i=�q("i) is

characterized by

f1(ri; yi) = n

�
�

�
1 +

n

q

���1

2�n=qrn�1i exp(�r
q
i =2); for �nite q;

and by its limit

f1(ri; yi) = nrn�1i I(0;1)(ri); for q =1:

Direct calculations lead to the posterior distribution of �, described by 
b +

pX
i=1

f�q(xi)g
q

!
��qj (x1; : : : ; xp) � �2

2(a+pn)=q; when 0 < q <1;

and by

maxfb�; max
j=1;:::;n;i=1;:::;p

jxjijg�
�1j (x1; : : : ; xp) � Beta(a� + np; 1); for in�nite q;

where xji, j = 1; : : : ; n, represent the n components of the ith observation. Applying the

theory described above, we obtain that whenever the distribution of Ri given Yi remains

the same distribution as assumed here, i.e. when "i ranges in the entire lq-anisotropic class

for given q, the posterior distribution of � is una�ected.

In the limit as a; b; a� and b� all tend to zero, the kernels of our prior densities of �

tend to p(�) / ��1, and the posterior distribution of � tends to the sampling distribution

for the pivots in Example 4.3, considered as a function of �.

6. CONCLUSIONS

In this Section we shall summarize the main �ndings, especially those that we deem

of more relevance to the applied modeller, and we shall, once again, indicate the parallels

that we have found between sampling-theoretic and Bayesian inference.

One of the main aims of this paper was the use of results from multivariate distri-

bution theory in the context of regression with scale and pure scale models to analyze

the robustness of classical inference in certain classes of distributions. We do not actu-

ally investigate particular inference procedures, but rather analyze this robustness through

distribution-freeness of pivots in these classes.

Establishing a one-to-one correspondence between points z 2 <n � f0g and pairs

(y; r), where r > 0 and y is in some (n � 1)-dimensional manifold Y, such that z =

ry, leads to a representation of n-variate random variables Z as Z = RY , where R is

a positive random variable and Y takes values in Y . This naturally induces classes of

multivariate distributions by �xing the marginal distribution of either R or Y . Especially

the latter, while keeping R and Y independent, seems of practical interest. In such classes,

denoted as S, it is found that functions of a sample of vector observations t(Z1; : : : ; Zp)
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are distribution-free if and only if their distribution is not a�ected by rescaling each Zi.

Applying this result in the context of the regression model under i.i.d. sampling up to a

scale, Xi = gi(�)+�i"i, i = 1; : : : ; p, we �nd that a function t(X1�g1(�); : : : ;Xp�gp(�))

is distribution-free for "i 2 S if and only if it is a pivotal quantity, i.e. its distribution does

not depend on (�; �1; : : : ; �p). This immediately leads to robustness of classical inference

on the regression parameter based on such pivots.

For the, practically less interesting, classes where we �x the distribution of R, obtain-

ing a characterization of invariance in terms of a set of transformations on the observables

is less immediate. Clearly, functions that only depend on R will be distribution-free in such

classes. In fact, inference procedures based on them will be una�ected by the conditional

distribution of Y given R. For the pure scale model this situation arises naturally.

Another major goal of the paper was to investigate the robustness of Bayesian inference

for the same type of models. In addition, we set out to compare these results with the

classical �ndings. Our Bayesian robustness results are not derived from distribution theory

results applied to the sampling distribution, but rather follow from the use of measure

theory on the joint space of observables and parameters. This gives the results a somewhat

di�erent nature. However, interesting parallels can be uncovered.

For the regression model mentioned above, under a prior distribution which is the

product measure corresponding to the density p(�1; : : : ; �p) /
Qp

i=1 �
�1
i and any prior for

�, we prove that posterior inference on � (if it is possible) is perfectly robust when "i
ranges in a class C that extends S by allowing for dependence between R and Y . Although

Bayesian robustness holds for this larger class, in practice we shall often be interested in

classes of distributions for the error term "i that impose independence between R and Y ,

thus leading to robustness of both classical and Bayesian inference in the same classes of

distributions. For this model, the key to the classical robustness result is distributional

invariance of pivotal quantities with respect to scale transformations, whereas the Bayesian

result derives from the invariance with respect to scale transformations of the prior on

the scale parameter. In a context of independent sampling, it is crucial for inference

under both paradigms that each observation has its own scale parameter. However, the

reasons are di�erent: the sampling theory results no longer lead to a characterization of

the distribution-free quantities under a common scale and, in particular, not all pivotal

quantities are distribution free for "i 2 S, whereas Bayesian robustness disappears under

a common scale. Of course, the Bayesian analysis always has to formally incorporate the

extra information that all scales are equal (through specifying a prior on the common scale

parameter), whereas this is often not the case in a classical framework.

If we wish to conduct inference on the mean of the precision of the observables in a

regression model, we �nd that a Bayesian analysis will lead to the same posterior mean in

a subclass of C. Basically, this posterior mean will only depend on the distribution of R

given Y through the second order moment E[R2jY ], so �xing the latter will naturally lead

to robustness. In the special case of a linear regression model with elliptical errors, this

�nding also has a classical counterpart (which, however, does not rely on ellipticity).

We stress that both classical and Bayesian robustness results in the regression model

ultimately depend on the presence of a scalar scale parameter. It is this parameter that

naturally leads to distribution-free pivotal quantities in the classical framework, and in
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a Bayesian setting integrating out this scale parameter (with a particular �-�nite prior)

generates our robustness results. Introducing a location vector into the model, or other ad-

ditions like e.g. a parametric covariance structure, is only important for inference purposes

on the associated parameters, but does not drive any of the invariance results. Once we

have a scale parameter, all our robustness results hold given these additional parameters,

which are often the parameters of interest.

Bayesian robust inference on the scale parameter in the pure scale model is seen to

hold for any prior. However, in contrast to the classical result, we now have robustness

with respect to the marginal distribution of Y . The Bayesian perspective clearly shows

that inference on the scale based on only R involves a loss of information, unless R and Y

are independent. Again, under independence between R and Y , we have a perfect parallel

between sampling theory inference based on any function of R and Bayesian inference.

An important issue in the Bayesian paradigm is whether the posterior distribution of

the parameter of interest is actually proper, so that it can be used as a basis for inference.

We �nd that the standard location-scale model, Xi = �+�i"i, i = 1; : : : ; p, under the prior

on the scales p(�1; : : : ; �p) /
Qp

i=1 �
�1
i that assures robustness when "i 2 C, typically does

not allow for a proper posterior of the location parameter �. In order to conduct inference

on the location, we usually require a reparameterization in terms of a lower dimensional

regression parameter �.

We feel it is useful, both for practical purposes and for our insight in more fundamental

theoretical issues, to amalgamate multivariate distribution theory with sampling-theoretic

inference in the context of independent sampling from the commonly used models treated

here. In addition, we think our understanding of statistical inference procedures in such

models is furthered by contrasting these classical results with their Bayesian counterparts.

APPENDIX

Proof of Theorem 1

First, assume (4:2), which is equivalent to t(Z)
d
= t(Z�), for all Z;Z� 2 MS. From

the de�nition ofMS in (4:1) it follows that if (Z1; : : : ; Zp) is inMS, so will be the random

variable (�1Z1; : : : ; �pZp) for any choice of �1; : : : ; �p > 0. Thus, we immediately obtain

(4:3).

The proof in the other sense goes as follows, in terms of distribution functions. For

any x 2 <k we have

Ft(Z1;:::;Zp)(x) = Ft(R1Y1;:::;RpYp)(x)

=

Z
(0;1)p

Ft(R1Y1;:::;RpYp)j(R1;:::;Rp)=(r1;:::;rp)(x)F(R1;:::;Rp)(dr1; : : : ; drp):

Due to the independence between (R1; : : : ; Rp) and (Y1; : : : ; Yp) assumed inMS, we obtain

that

Ft(R1Y1;:::;RpYp)j(R1;:::;Rp)=(r1;:::;rp)(x) = Ft(r1Y1;:::;rpYp)(x):

For any r1; : : : ; rp > 0, we can apply (4:3) with �i = ri to obtain that

Ft(r1Y1;:::;rpYp)(x) = Ft(Y1;:::;Yp)(x):
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Substituting the latter inside the integral, the result (4:2) follows. �

Proof of Theorem 2

Here we shall only prove that (ii) implies (i), as all other results are easily derived.

For Z = (Z1; : : : ; Zp) 2 MR, we consider the distribution function of t(Z):

Ft(Z1;:::;Zp)(x) = Ft(R1k1(W1);:::;Rpkp(Wp))(x)

=

Z
Wp

Ft(R1k1(W1);:::;Rpkp(Wp))j(W1;:::;Wp)=(w1;:::;wp)(x)F(W1;:::;Wp)(dw1; : : : ; dwp):

Due to the independence between (R1; : : : ; Rp) and (W1; : : : ;Wp) imposed in MR, we

obtain that

Ft(R1k1(W1);:::;Rpkp(Wp))j(W1;:::;Wp)=(w1;:::;wp)(x) = Ft(R1k1(w1);:::;Rpkp(wp))(x);

to which (ii) can be applied directly. Thus, the result follows. �

Proof of Theorem 3

We shall derive the joint distribution of (X � �; �), from which the distribution of

(X;�) immediately follows.

First note that

(X � �; �) = (�"; �) = (�RY; �) = (�Y; �); where � = �R:

By assumption, the distribution of (�; �; Y;R), denoted by D(�;�;Y;R), is the product mea-

sure

D(�;�;Y;R) = D� �D� � P(Y;R);

where D� is the prior measure of �, D� corresponds to the density p(�) = c��1 (c > 0),

and P(Y;R) is the joint probability measure for (Y;R), which can be decomposed into the

marginal probability of Y , PY , and the conditional probability of R given Y , PRjY .

If we now consider the one-to-one transformation from (�; �; Y;R) to (�; �; Y;R), where

� = �R, the distribution of (�; �; Y;R) will be given by D(�;�;Y;R) = D� �D(�;Y;R), where

the distribution of (�; Y; R) is computed in the following way:

For each measurable set C,

D(�;Y;R)(C) = D(�;Y;R)ff
�1(C)g;

where f�1(C) = f(�; y; r) : (�r; y; r) 2 Cg:

Applying the Classical Product Measure Theorem, we obtain

D(�;Y;R)ff
�1(C)g =

Z
Y�(0;1)

D�ff
�1(C)(y;r)gP(Y;R)(dy; dr);
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where

f�1(C)(y;r) = f� : (�; y; r) 2 f�1(C)g = f� : (�r; y; r) 2 Cg = f� : �r 2 C(y;r)g;

where C(y;r) = f� : (�; y; r) 2 Cg:

Due to the invariance property of D� under the group of transformations fr� : r > 0g, it

is immediately derived that for each value of r > 0:

D�ff
�1(C)(y;r)g = D�

�
� : �r 2 C(y;r)

	
= D�fC(y;r)g:

Substituting the latter expression inside the integral above leads to

D(�;Y;R)(C) = D(�;Y;R)ff
�1(C)g = D(�;Y;R)(C);

which implies

D(�;�;Y;R) = D� �D� � P(Y;R); where D� = D�:

In order to recuperate the distribution of (X � �; �) = (�Y; �), we would be interested in

the distribution of (�; �; Y ). By de�nition of the marginal distribution, the measure of any

set A will be given by

D(�;�;Y )(A) = D(�;�;Y;R)fA � (0;1)g = (D� �D� � PY )fAgPRjY f(0;1)g:

As PRjY f(0;1)g = 1 for all possible choices of probability measures PRjY , the distribution

of (�; �; Y ) does not depend on PRjY . Therefore, the distributions of (�Y; �) = (X � �; �)

and (X;�) do not depend on PRjY either. �

Proof of Proposition 2

We can always �nd an open set, say A0 � <
n, with positive Lebesgue measure, such

that p(�) > K� for all � 2 A0 and some constant K� > 0. Now let us consider any

sample (x1; : : : ; xp) such that x1 2 A0, and choose a constant � > 0 such that the n-ball

B(x1; �) = f� 2 <n : kx1 � �k2 < �g is contained in A0.

Using the triangle inequality, we obtain for i = 2; : : : ; p, kxi � �k2 � kxi � x1k2 +

kx1 � �k2. From (5:1) it can be seen that

p(x1; : : : ; xp) � cK�

Z
B(x1;�)

kx1 � �k�n2

pY
i=1

f2

n
h�1

�
xi��

kxi��k2

�o

s
n
h�1

�
xi��

kxi��k2

�o d�

pY
i=2

(kxi � x1k2+ �)�n:

Our assumption that f2(w)=s(w) > K > 0 for all w 2 W, leads to

p(x1; : : : ; xp) � cK�

Z
B(x1;�)

Kpkx1 � �k�n2 d�

pY
i=2

(kxi � x1k2 + �)�n:
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Making the change of variables from � to the polar coordinates of x1 � �, we can imme-

diately verify that the latter integral is not �nite.

Since this reasoning holds for any sample (x1; : : : ; xp) 2 A0 �<
n�(p�1), which obvi-

ously has non-zero Lebesgue measure, the predictive distribution of (X1; : : : ;Xp) is not

�-�nite.

Proof of Theorem 4

First note that

(�;X) = (�; �RY ) = (�; �Y ); where � = �R:

Observe that (Y; �) are the coordinates of X in the chosen representation of <n and, thus,

from the conditional distribution of � given (Y; �), we can immediately derive the posterior

distribution of � given X.

By hypothesis, the joint distribution of (�; Y;R), denoted by D(�;Y;R), can be factorized as

D(�;Y;R) = D� � P(Y;R) = D� � PY � PRjY ;

where D� is the �-�nite prior distribution of �, and P(Y;R) represents the joint probability

distribution of (Y;R), which we further factorize into the marginal distribution of Y , PY ,

and the conditional distribution of R given Y , PRjY .

If we now consider the one-to-one transformation from (�; Y;R) to (�; Y; �), where

� = �R, we obtain that for any measurable set A � B, the measure of the event f� 2

A and (Y; �) 2 Bg is given by

D(�;Y;�)fA�Bg = D(�;Y;R)f(�; y; r) : (�; y; �r) 2 A �Bg

=

Z
Y

Z
A

PRjY=yfr : �r 2 BygD�(d�)PY (dy);
(A:1)

where By = fs > 0 : (y; s) 2 Bg. From the latter expression follows that

D(�;Y;�) = D� � PY � P�j(Y;�);

where, for each measurable set C,

P�j(Y;�)fCg = PRjY fr : �r 2 Cg:

In order for the conditional probability distribution of � given (Y; �) to be de�ned, we

require that the marginal distribution of (Y; �) is �-�nite. This marginal distribution,

derived from (A:1), takes the form

D(Y;�)(B) = D(�;Y;�)f(0;1)�Bg =

Z
Y

Z
1

0

PRjY=yfr : �r 2 BygD�(d�)PY (dy); (A:2)
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where By was de�ned above, for each measurable set B. From (A:1) and (A:2) immediately

follows that the conditional distribution of � given (Y; �), whenever it exists, does not

depend on PY .
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