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Tilburg University, Postbox 90153, 5000 LE Tilburg, Netherlands
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Simulation models may have many parameters and input variables (together called factors), while only a few

factors are really important (parsimony principle). For such models this paper presents an effective and

efficient screening technique to identify and estimate those important factors. The technique extends the

classical binary search technique to situations with more than a single important factor. The technique uses a

low-order polynomial approximation to the input/output behavior of the simulation model. This approxi-

mation may account for interactions among factors. The technique is demonstrated by applying it to a com-

plicated ecological simulation that models the increase of temperatures worldwide.

KEYS WORDS: Sensitivity Analysis; Selection and Ranking; Experimental Design

1. INTRODUCTION

This paper presents a novel technique forscreening, which is the process of searching for a few important

factors among a great many potentially important factors. Whereas in real-life experiments (such as industrial

experiments) it is impossible to control hundreds of factors, computer simulation programs may have many

inputs. For example, stochastic (random) simulation models of computer and telecommunication networks
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have many ’factors’: parameters (such as service and arrival rates), input variables (say, number of servers),

and behavioral relationships (queuing discipline or priority rule). Another example is the case study in this

paper: we shall illustrate our technique by applying it to a complicated ecological deterministic simulation

that models the effects of increasing quantities of carbon dioxide (CO2) and other gases on temperatures

worldwide; we shall screen as many as 281 factors. Morris (1991) also states: ’Often, computational models

have as many as several hundred input variables’.

Screening may be applied in the initial phase of many simulation studies. Screening yields a list of

important factors, which can be further explored in later experiments. Our technique also estimates the

magnitudes of the individual important factor effects. In a follow-up experiment the input-output behavior of

the simulation model can be studied more precisely (including possible curvature of the response surface);

this is not part of our paper. Screening and more precise fitting is discussed in, among others, Welch, Buck,

Sacks, Wynn, Mitchell, and Morris (1992).

Let us have a closer look at the options that statistical analysts have in practice. In this paper we

concentrate on simulation models with N factors, N being so big that it is practically impossible to execute a

number of simulation runs (observations) roughly equal to N. This means that one simulation run requires so

much computer time that the users of the simulation results do not wish to wait until all N runs will have

been executed. For example, our ecological simulation model with 281 factors takes 15 minutes of computer

time per run, so 281 runs would have taken roughly 70 hours of computer time. Of course, computer speed

increases steadily with technological progress, at decreasing costs. But information technology (IT) increases

the users’ aspiration levels: they want to explore bigger, more realistic simulation models. So in practice,

many simulation models will continue to have so many factors that substantially fewer than N runs can be

executed. This assumption eliminates the type of designs developed by Morris (1991).

Note that even if the number of runs were about N, then the statistical analysts would still have to

make assumptions. They may assume that the input/output behavior can be approximated by a first order

polynomial. That assumption permits designs with roughly N runs, such as one at a time designs and

Plackett-Burman designs, which areresolution III designs; see Kleijnen (1987, pp.301-303) and Morris

(1991, p.162).

If the analysts do not know for sure that all interactions betweenpairs of factors are negligible, then
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they may double the number of runs to 2N:resolution IV designs based on the foldover principle (see (9)

and section 3).

If they are certain that besides main effects there are only interactions betweenpairs of factors, then

they can use a design ofresolution V. These designs require many runs; for example, even if N is as small

as 9 then 128 runs are needed; see Kleijnen (1987, p.309).

If they do not wish to assume thatquadratic effects (curved response surfaces) are negligible, then

each factor must be simulated for at least three values, and the number of runs further increases. A well-

known class of designs arecentral compositedesigns; see Kleijnen (1987, pp.312-316) and Morris (1991,

p.162).

As we mentioned before, simulation models may have too many factors to perform N runs. Then

practitioners often assume that they know which factors are unimportant, andonly a few intuitively selected

factors are investigated in a resolution III design, usually a one at a time design; see Van Groenendaal

(1994).

A general scientific principle when studying such large systems isaggregation; for example, in

economics the production volumes of individual companies are aggregated into the General National Product

(GNP). In the case of large simulation models,group screeningmay be applied: individual factors are

combined into groups. Group screening goes back a long time: see Jacoby and Harrison (1962), Li (1962),

Patel (1962), and Watson (1961). Our technique also uses group screening, but we use a different design and

analysis; our technique turns out to be more efficient (see §2 and §5).

To know for sure that individual effects do not cancel out within a group, certainassumptionsmust

be made. All classic group screening techniques assume a first order polynomial (no interactions, quadratic

effects, etc.) with known signs for the main effects. Kleijnen (1975) proved that two-factor interactions do

not bias the main effect estimators if a resolution IV design is used for the group factors.

If practitioners feel that they know the directions ofall but a few factor effects, then the latter

factors may be treated separately, while the former factors are investigated by group screening. In our

ecological case study we examined the very small group of factors with unknown directions, using the tradi-

tional one-at-a-time method; however, for most factors the system analysts felt confident when they had to

specify the signs of the factor effects (see §3).
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Note that Latin Hypercube Sampling(LHS) is an experimental design that is often used to

investigate deterministic simulation models (computational models), but LHS tackles a fundamentally

different problem: the inputs are assumed to have a certain distribution; see Kleijnen (1994) and Morris

(1991).

Our technique treats the simulation model as ablack box. It approximates the input-output behavior

of the simulation model through alow-order polynomial; this approximation is also known as a metamodel.

More specifically, we start with a first order polynomial, which in Analysis of Variance (ANOVA) is known

as a model with main effects only. If deemed necessary, we augment that approximation with two-factor

interactions. The advantage of the black box approach is that it is simple and applies toall types of random

and deterministic simulation. The disadvantage is that the approach cannot exploit the special structure of the

simulation model at hand (our technique does use prior knowledge about thesigns of the factor effects).

Techniques that do exploit this structure are Perturbation Analysis and Score Function; see Ho and Cao

(1991) and Rubinstein and Shapiro (1993). These techniques, however, are meant for random discrete event

simulations, and they do not consider screening.

The main objective of this paper is to inform practitioners about a novel technique for screening

large simulation models. Space limitations do not permit the presentation of all technicalities, so for

mathematical details we refer to the doctoral dissertation, Bettonvil (1990).

We organize the paper as follows. In § 2 we explain the basics of our technique, first assuming the

simplest approximation, namely a first order polynomial model; next we augment this approximation with

interactions among factors. In § 3 wepresent a case study: we apply our technique to the ecological simula-

tion mentioned above. In § 4 werevisit the assumptions of our technique. In §5 we examine the efficiency

of our technique. In §6 we give conclusions.

2. BASICS OF THE SEQUENTIAL BIFURCATION PROCEDURE

Let s( ) denote the mathematical function that is specified by the computer simulation program; vj the jth

factor among the N factors of that program (j=1,2,...,N); and y the simulation output:
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y = s(v1, ... , vj, ... , vN, r). (1)

2.1 First Order Approximation and Concomitant Experimental Design

The simplest approximation of the simulation model (1) is afirst order polynomial, which is also known as a

metamodel with main effectsβj and the overall meanβ0. We call the resulting approximation errors

’negligible’, if they are ’small’ relative to the factor effects. In this section we assume that the approximation

errors are zero.

In section 1 we mentioned that all group screening techniques assumeknown signsfor the main

effects. Therefore we can define Lj
* as the level of factor j that generates a low value for the output y, and

Hj
* as the level of factor j that generates a higher value for y, provided this factor has any effect at all. Note

that if an increase of factor j reduces the output, then we have Lj
* > Hj

*. Observe further that the domain of

the factor is limited by the area of experimentation; also see section 4 (Assumptions revisited).

It is convenient to transform the original quantitative factors vj in (1) linearly into standardized

variables xj that assume values 0 and 1, where 0 corresponds with the level that generates a lower output.

Note that qualitative factors (such as priority rule) with two levels only (say, FIFO versus LIFO)

may be represented in a similar way. If a qualitative factor has more than two levels, then we may consider

only those two levels that generate extreme outputs (the minimum and the maximum outputs), assuming we

know which two levels give extreme values. However, we have no experience with qualitative factors so far.

Because we shall revisit the assumptions of our technique (§4), we number all our assumptions:

Assumption 1: A first-order polynomial gives ’negligible’ approximation errors over the experimental domain

of the simulation model.

Assumption 2: The direction of the influence that a factor has on the output y,if that factor has any effect at

all, is known.

Because of assumption 1 the simulation model (1) is approximated by (identical to)

y = β0 + β1x1 + ... + βjxj + ... + βNxN. (2)
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In sensitivity analysis the overall mean (β0) is not interesting (when using the approximation for prediction

purposes,β0 is important). Indeed,β0 is not estimated by our technique, as we shall see.

Assumption 2 implies that all main effects are non-negative:βj ≥ 0. In this section we call all

positive effects important (they are bigger than the approximation errors, which are zero in this section).

Next we shall present outexperimental design. We introduce the symbol y(j) to denote the simulation

output observed when the factors #1 through #j are switched on while the remaining factors are off; that is,

the first j original factors have the values Hj
* (the corresponding standardized variables are 1) and the (N - j)

remaining original factors have the values Lj
* (their standardized variables are 0). Then (2) yields

y(j) = β0 + β1 + ... + βj (j=0,1, ... ,N). (3)

Consequently the sequence {y(j)} is nondecreasing in j.

We explain our technique informally, using the example in Jacoby and Harrison (1962): there are 27

= 128 factors but only the factors #68, #113, and #120 are important (obviously our technique does not know

that there are only three important factors, let alone the magnitudes of these factor effects). We further

introduce the symbolβj-j’ to denote the sum ofβj throughβj’ (j’ > j); for example, β1-128 denotes the sum of

β1 through β128. Our technique issequential; that is, the factor combinations to be simulated (observed)

depend on the results of previous combinations simulated. In stage #0 we always observe y(0) (all factors

low) and y(N) (all factors high). An important sum of effectsβj-j’ makes us obtain a new observation; see the

symbol↓ in Figure 1. In the example we notice y(0) < y(128), so we inferβ1-128 > 0.

Our technique also usesbifurcation: we split the group of factors into two (sub)groups of equal size.

This procedure assumes that the total number of factors is a power of two. If this is not the case, then we

proceed as if we addeddummy factorsafter the last factor so that the new set of factors consists of 2m

factors with 2m the smallest power of two not smaller than the original number of factors, see §5. In the

example, however, we have 27 factors.

So in the next stage (#1) we observe y(64) . We see y(64) = y(0). Hence weeliminateall factors in the

first half. So after only three observations we have already inferred that the factors 1 through 64 have no

effects and that there is at least one important factor in the second half of the group of 128 factors.
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In stage #2 we concentrate on the remaining factors (labelled 65 through 128). Again we bifurcate.

And we go on, until after only 16 observations we have identified the three important factors and have com-

puted their individual main effects, indicated by↑ in Figure 1.

INSERT FIGURE 1

Note that our technique has the following characteristics. If we find that a (sub)group of factors is

’important’, then this group contains at least one important factor. In the next stage we split this group into

two subgroups. We obtain one new observation, switching on all factors from #1 up to halfway the important

original group; for example, in stage #2 we switch on factors #1 through #96. We compare this new

observation with two old observations, to infer the sums of factor effects. That comparison leads to the

elimination of at most one subgroup; obviously it is impossible that both subgroups are unimportant and

eliminated. A formal description of sequential bifurcation is given in Bettonvil (1990, pp.13-22).

Note further that if there is only one important factor, then our procedure is simply classical binary

search; see, for example, Brassard and Bratley (1988).

2.2 Quantifying Importance

So far we assumed that a factor j is declared important if its effectβj is positive, not zero. Our technique

implies that a group of factors that seems important at the end of a stage, is split into two smaller subgroups;

in the next stage those two subgroups are investigated. The new observation splits the sum of effects of the

factors in the original group into two sums: sum #1 equals the sum of the effects of the factors in the first

subgroup; similarly, sum #2 equals the sum of effects of the second subgroup. Obviously no individual effect

can exceed the sum of which it is a part.

Now consider the example in Figure 2: there are 24 factors; the sizes of their main effects are

shown by the vertical solid bars; assumptions 1 and 2 hold (no negative main effects, no interactions, no

approximation errors).
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Suppose that stage #0 (not displayed in Figure 2) yields y(0) = 0.0 and y(24) = 2388.2. Hence after

two observations we know an upper limit for each of individual effect, denoted by U(2), which is 2388.2 --

0.0 = 2388.2. If we were interested only in effects exceeding 2388.2, we would stop! Suppose, however,

that we are also interested in effects smaller than 2388.2.

In the next stage we take observation #3, namely y(16), and compare this observation with the two

preceding ones: we compute y(24) - y(16) and y(16) - y(0). We concentrate on the largest difference; say,

y(24) - y(16). Then at this moment this value is the most stringent upper limit we have forall individual effects

(β1 through β24). Next we make this limit sharper, taking an observation within the group that gives this

limit; in the example, we take y(20). Again we compare this observation with its two predecessors: we

compute y(24) - y(20) and y(20) - y(16). And we compute the largest difference over all groups that have not been

split so far: U(4) = max (y(24) - y(20), y(20) - y(16), y(16) - y(0)). Obviously this maximum does not exceed the

preceding maximum, y(24) - y(16).

So in general, as we proceed through various stages, groups get smaller and upper limits decrease.

The dotted horizontal lines in Figure 2 are the upper limits after 11 through 17 observations. These limits

decrease from U(11) = 383.6 to U(17) = 139.7. For example, after 13 observations we know that the factors

#17 and #20 are ’important’; that is, they have effects larger than 217.9, contrary to the remaining factors.

After 17 observations we have identified the eight most important factors (#14, #17, #18, and #20 through

#24), all exceeding 139.7, and we know that the remaining factors have effects smaller than 139.7. (Cluster-

ing is bad in this example, so this is not a favorable configuration for our technique; see §5.)

INSERT FIGURE 2.

This example demonstrates a characteristic that we consider a strength of our technique: it does not require

the practitioners to specifya priori a critical value (say)δ that must be exceeded by an effect in order to be

declared important. As soon as the users consider a sum of effects to be small, the investigation of this

subgroup can be stopped. Their critical value is not completely subjective:δ depends on the problem at hand,

i.e. is it worthwhile to perform extra observations to find factors with effects smaller thanδ, while already

knowing all effects exceedingδ. We shall see an application in section 3.
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2.3 Two-factor Interactions and Concomitant Experimental Design

By definition, interaction means that the effect of a specific factor depends on the levels of other factors. It

is simple to adapt our technique to approximations expanded with either two-factor interactions only or with

all interactions. The latter approximation seems less realistic; for completeness’ sake it is presented in

Bettonvil (1990, pp.220-227).

In this section we replace Assumption 1 by the following assumption.

Assumption 1*: A first-order polynomial augmented with cross-products between two factors gives

’negligible’ approximation errors over the experimental domain of the simulation model.

Hence the simulation model (1) is approximated, not by (2), but by

y = β0 + j
N

=1 βj xj + β12 x1 x2 + ... +βN-1,N xN-1 xN. (4)

It is convenient to use a differentparametrization: zj = -1 iff x j = 0, and zj = 1 iff x j = 1. Then (4) is equiva-

lent to

y = γ0 + j
N

=1 γj zj + γ12 z1 z2 + ... +γN-1,N zN-1 zN, (5)

where

γjj’ = βjj’ /4 with j,j’ = 1,...N and j≠ j’, (6)

γj = βj/2 + j’ ≠j βjj’ /4 with j = 1,...N, (7)

. (8)γ0 β0
N
j 1βj/2

N 1
j 1

N
j j 1βjj /4

In the first-order approximation, all main effects were non-negative (βj ≥ 0), because of Assumption 2

(known directions) and the appropriate choice of factor levels (Lj
*, Hj

*). What doesknown directionsof factor
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effects mean when there areinteractions? The standard literature on experimental design and ANOVA

defines themain effectof factor j as the difference between

(a) the average output when factor j is switchingon, when averaging over all 2N-1 combinations of the

remaining (N-1) factors, and

(b) the average output when factor j is switchedoff, again averaging over all 2N-1 combinations.

It is easily verified that in our case the main effect of factor j is 2γj. Therefore we replace assumption 2 by

Assumption 2*: All N main effects in (5) are non-negative:γj ≥ 0.

We call a factor important iff its main effect is ’important’. This means that a factor with an

unimportant main effect but an important interaction goes undetected; we shall return to this issue in section

4 (Assumptions revisited).

Next we shall present outexperimental design. We can simply adapt our technique, as follows. We

double the number of runs: if in the first-order approximation we observed y(j) (defined in (3)), we now also

observe the output with the first j factors switchedoff and the remaining factors switched on: y-(j)

(obviously y-(0) = y(N) and y-(N) = y(0)). We call y-(j) the mirror observation of y(j). The idea of doubling the

number of runs in order to identify main effects in the presence of two-factor interactions resembles the

foldoverprinciple, presented in Box and Wilson (1951, p.35).

It is simple to prove that y(j) - y-(j) is a non-decreasing function of j, and that

{y (j) - y-(j)} - {y (j-1) - y-(j-1)} = 4 γj. (9)

So now our technique proceeds as follows. In stage #0 all factors are off and all factors are on respectively,

which yields y(0) and y(N). Because of (9) we compute

{y (N) - y-(N)} - {y (0) - y-(0)} = 2y(N) - 2y(0). (10)

Suppose this contrast is ’important’:γj ≥ 0 for some j. Then we proceed to stage #1 and obtain y(N/2) and

y-(N/2). Because of (9) we compute
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{y (N/2) - y-(N/2)} - {y (0) - y-(0)} (11)

and

{y (N) - y-(N)} - {y (N/2) - y-(N/2)}. (12)

Iff (11) yields zero, we eliminate the first half of the N factors; otherwise we proceed to the next stage. The

second half of factors is treated analogously. Ultimately we arrive at the individual important factors and we

compute (9).

In section 2.2 we explained that it is not necessary to a priori quantify a thresholdδ for the

importance of the effectsβj in (2). Now βj is replaced byγj in (5), which is the approximation augmented

with two-factor interactions and reparametrized. The results of section 2.2 apply to interactions, mutatis

mutandis, as we shall see in the case study of section 3.

3. CASE STUDY: A LARGE ECOLOGICAL SIMULATION MODEL

To demonstrate the application of our technique in practice, we apply this technique to alarge simulation

model that hasnot been constructed for the purpose of testing our technique (so our test is ’unbiased’). The

users of this large model are interested in screening their model. This model is a deterministic computational

model of the ’greenhouse effect’: how do temperatures increase worldwide, as the fraction of gases such as

carbon dioxide (CO2) in the atmosphere increases? The model has been developed by the Dutch National

Institute of Public Health and Environmental Protection (RIVM). The model is called IMAGE, Integrated

Model to Assess the Greenhouse Effect. It consists of many modules (submodels): for details we refer to

Rotmans (1990).

An essential part of IMAGE represents the worldwide circulation of CO2 in the atmosphere, the

oceans, and the terrestrial biosphere. We apply our technique to this part. The output y denotes the simulated

CO2 concentration in the year 2100. We investigate as many as 281 factors, and specify a metamodel with

two-factor interactions; see (5). The ecological experts (not we) must specify the ranges of these 281 factors.
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Further we use the experts’ prior knowledge to label the factors such that their effects are sorted in

increasing order, we hope (also see §4 where we revisit assumptions).

Stage #0 gives y(0) = 988 and y(281) = 1496. Since it seems obvious that the difference between these

two outputs is ’important’, we proceed to stage #1, where we observe y(256) and its mirror observation y-(256);

see §4. And so on.

Table 1 gives the results after 77 pairs of observations. The upper limits for the main effectsγj have

decreased to 2.5 (remember Figure 2). We have found 15 factors with main effectsγj that exceed 2.5. The

other 281 - 15 = 266 factors have effects smaller than 2.5 and, in view of the factor effects already found,

are declared unimportant. (In this table some ranges start from the high value in order to make the signs

positive; see § 2.1).

INSERT TABLE 1

How are we assured that the results of our technique applied to this simulation, are correct? This simulation

is so complex that nobody really knows the true factor effects! Prior to our findings, the ecological experts

expected eight factors to be important, namely the factors labeled #250, #246, #19, #281, #13, #86, #20 (see

Table 1) and a factor called DIFF (not listed in Table 1). So it turns out that seven of their factors are also

declared important by our technique, and one of their factors is not declared important. We verify the results

of our technique as follows.

We execute an additional experiment with only these eight factors. Such a small number of factors

can be observed in aresolution IV design(by definition, a resolution IV design gives estimators of all main

effects not biased by possible two-factor interactions; the estimators for the two-factor interactions are biased

and estimate specific sums of these interactions). For eight factors a resolution IV design requires 16

observations. Table 2 gives the results. In that table, factor #250 is relabeled as factor (1), factor #246

becomes (2), and so on (left hand side of table). The symbol (1,2) (right hand side of table) denotes the

interaction between the factors 1 and 2, but actually resolution IV means that the interaction estimator is alia-

sed with other two-factor interactions. The symbol (0) denotes the estimate of the grand meanγ0 in the

approximation (5), computed from the resolution IV design. The other symbols have obvious meanings.
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INSERT TABLE 2.

Comparing Tables 1 and 2 shows that our technique indeed detected the seven factors expected to be

important by the ecologists. Our technique also gives roughly the same point estimates as the resolution IV

design gives. The latter design shows that the factor DIFF is indeed ’unimportant’, namely smaller than 2.5

(the upper limit reached by our technique after 77 pairs of observations). Table 2 suggests that two-factor

interactions are unimportant for these eight factors.

We point out that some of the important factors detected by our technique, were neglected by the

ecologists in their original experiments (namely factors listed in Table 1 but not in Table 2). So our results

are surprising and they provide new insight for the users.

4. ASSUMPTIONS REVISITED

Assumption 1 stated that the first-order polynomial (2) gives zero approximation errors; assumption 1*

claimed that adding two-factor interactions (resulting in (5)) gives zero approximation errors. First we called

factors important when they have positive main effectsβj in (2) andγj in (5) respectively. Next we redefined

important effects, introducing the upper limits illustrated by Figure 2.

To examine these assumptions, we first emphasize that in screening we are interested, not in local

(marginal) effects, but inoverall effects: what happens if a factor changes from its lower level (Lj
*) to its

higher level (Hj
*)? The experimental area should be selected such that the simulation model is valid in that

area. A simulation model isvalid only when the variables remain within a certain area, which Zeigler (1976)

calls the ’experimental frame’. Indeed, in the ecological case study we found that we had to reduce the

experimental area because the two input combinations corresponding with all inputs ’off’ and ’on’ respective-

ly, gave an unrealistically low and high value respectively for the response variable (that is, the ecologists

rejected these two response values).

It is natural to express the experimental frame in terms of the original variables vj; also see (1).

Related to the experimental frame is theexperimental area. For example, when investigating an anti-fever
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medicine, one experiments with (simulated) patients who have a temperature between (say) 37 and 42

degrees centigrade (not between 0 and 100 degrees). Our technique uses the experimental area defined by the

N-dimensional rectangle that corresponds with (Lj
*, Hj

*).

We further distinguished vj (the original variables of the simulation model), xj (standardized

variables that are either 0 or 1), and zj (-1 or +1); see (1) through (5). Factor effects should be measured at

the centerof the experimental area; in other words, the model in z is relevant, not the model is x (the model

in x measures factor effects at one of the corners of the experimental area, namely the point where xj = 0 for

all j). For details we refer to Bettonvil and Kleijnen (1990).

Note that in section 2.1 we used the variables x, because they simplify the explanation of our

technique when there are only main effects. If there are no interactions, then both x and z give essentially

the same factor effects:γj = βj/2; see (7) (the factor 2 is well-known in experimental design theory).

Let us next consider three cases:

a) Monotonic response surfaces, that is, the simulation output increases as an input increases.

b) Non-monotonic response surfaces. Then the output might happen to be approximately the same at the two

extreme values investigated in our technique (L* and H*). In that case we falsely infer that this factor is

unimportant. Non-monotonicity may be quantified by quadratic effects (γjjzj
2 is added to the metamodel).

Such effects can be estimated by observing the output at a value halfway the two extremes. We have not

investigated this complication, but it certainly deserves future research; also see Andres and Hajas (1993).

c) Interactions only. Consider the following academic example: the simulation response (y) is determined

solely by the interaction between two factors (say, y =γ12z1z2). Then our technique fails (unless the analysts

switch to a logarithmic scale: log y = log(γ12) + log(z1) +log(z2)).

In other words, our technique is not a panacea. But then again, no technique is: a scientific analysis

always requires assumptions. We propose that in order to make progress, the analysts explicitly specify an

approximation to the complicated, nonlinear input/output behavior of simulation models. Also see section 1

(Introduction).

We can also drop the assumption of perfect fit, and model theapproximation errors(say)

statistically, using the standard assumptions ofwhite noise: errors are additive and distributed normally; iff

the approximation is adequate, the errors have zero expectation; the errors have constant variance (say)σ2;
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and they are independently distributed. For white noise Bettonvil (1990, pp.49-142) developed three

statistical techniques. These techniques work only if the signal/noise ratio is high, say,γj/σ > 6. For such

high signal/noise ratios, however, we may as well ignore noise. Ignoring noise is not so bad: in screening

there are so many factors that only those factors with a high signal/noise ratio should be detected.

Note that we might use a covariance stationary process (instead of white noise) to model the

approximation errors. Sacks, Welch, Mitchell, and Wynn (1989) use such a process to model the systematic

effects of the inputs (not the noise part). If the simulation model itself is stochastic, then the intrinsic noise

may exceed the fitting errors. We have not investigated these complications.

Next we shall investigate the remaining assumptions. Assumption 2 stated that all N main effects in

the first order approximation (4) are non-negative (βj ≥ 0); assumption 2* stated that all main effects in the

approximation with two-factor interactions (5) are non-negative (γj ≥ 0). So these assumptions postulated

known signsof the main effects.

When a factor does not meet the assumption of known signs, the simulation response may show so:

the response decreases when switching this factor on, assuming its negative effect exceeds the sum of the

positive effects of the other factors within its group. In our case study this happened twice; however, the

response decreased so little that we ignored it.

Nevertheless, aggregation of factors may give wrong conclusions. For example, if there are only two

important factors and they have effects with the same sizes but opposite signs, then in stage #0 they will

cancel and we shall terminate the search, concluding that there are no important factors at all.

We further point out that as the search continues, the groups get smaller and hence theprobability

of having important factors within the same group decreases (unless we have tried to place important factors

within the same group, in order to increase the efficiency of our technique). Of course, this low probability is

no guarantee.

If practitioners feel that they know the directions of all but a few factor effects, then the ’unknown’

factors may be treated separately, while the ’known’ factors are investigated by our method. In the ecological

case study we examined the very small group of factors with unknown directions through the traditional one-

at-a-time method; however, for most factors the system analysts felt confident when they had to specify the

signs of the factor effects.
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We give one more example. Consider a logistics system that is modeled as a network with nodes

representing individual machines; through that network travel individual jobs (orders, customers, transac-

tions). Suppose the response of the system is the throughput per year. Then we may assume that higher

speeds of nodes have non-negative effects on the response; and so does an increasing arrival rate of jobs at

the source of the network. Our screening technique can identify the ’bottleneck’ nodes, that is, the nodes that

have speeds with important effects on the throughput of the total system.

We conclude that the assumption of known signs may be more realistic than it may seem at first

sight.

5. EFFICIENCY OF SEQUENTIAL BIFURCATION

Above we investigated the effectiveness of our technique: can sequential bifurcation detect important factors?

Now we examine its efficiency. We measure efficiency by the number of simulation runs (observations), not

by the precision of the main effect estimators: assumptions 1 and 1* state that the approximation errors are

negligible; hence (2) and (4) have no error terms. Consequently the estimated effects (see (11) and (12)) are

100% precise. We emphasize that the alternative group screening designs also assume negligible error terms!

If N is not a power of two, then at first sight it seems obvious to split the factors (nearly) equally.

For example, a group of six factors would be split into two groups of three, the latter into groups of two and

one. This can be described as addingdummy factorsat positions four and eight. However, as Bettonvil

(1990, pp.40-43) demonstrates, it is more efficient to split six factors into two groups of sizes four and two.

This can be described as adding dummies at the end: clustering improves efficiency. In general, if the size of

a group is not equal to a power of two, and it must split, then the first subgroup has a size equal to the

largest possible power of two. In the ecological case study we split the 281 factors into two groups, one

group of 256 factors, and one group of 25 factors. 25 Factors are split into groups of sizes 16 and 9.

The clustering argument implies that our technique is most efficient if the original factors are

labelled from 1 through N inincreasingorder of importance. After stage #0 the important factors are then

clustered in the second group, not in the first group of factors. So our technique can take advantage of a

priori knowledge about factor effects.



17

Next we shall compare our technique with some other group screening techniques, already

mentioned in section 1; all these techniques use the assumptions 1 and 2, explicitly or implicitly.

First we examine themaximumnumber of observations needed to find the k important factors

among the N = 2m factors. This number, say n, represents the worst case, caused by lack of clustering.

In sequential bifurcationn is given by the following equation if the number of important factors is a

power of two; otherwise this equation gives an approximation:

n = 1 + k {log2(2N/k)}; (13)

see Bettonvil (1990). For example, in the Jacoby and Harrison case (Figure 1), N is 128 and k is 3, so the

approximation gives n = 20.2. Because the important factors show some clustering, the actual number of

observations is smaller, namely 16.

Two-stage group screening, introduced by Watson (1961), has already been evaluated by Mauro

(1984).

Note that Mauro and Burns (1984) show that random designs are less efficient than two-stage group

screening designs are.

Both Patel (1962) and Li (1962) generalize two-stage group screening tomulti-stage group

screening. They assume that each factor has an a priori probability (say) p of being important, which yields

an optimal group size and an optimal number of stages.

Morris (1987) devisesmultiple grouping, which is a variant of two-stage group screening. Bettonvil

(1990) derives the formula for n (because it is a complicated formula that requires many details on Morris’s

technique, we do not display that formula).

Jacoby and Harrison (1962)’s sequential bifurcationuses two observations where we use a single

one: they use a less efficient design at each stage.

Note thatsearch linearmodels were introduced by Srivastava (1975), assuming that the number of

important factors is small butknown.Srivastava gives specific designs only for k equal to one or two. Ghosh

(1979) generalizes this approach to multi-stage designs in such a way that his technique resembles ours. His

number of observations equals ours. Because his technique uses more restrictive assumptions than we do, it



18

will not be further considered in this paper.

The maximum number of observations required by the various group screening techniques is shown

in Table 3 for the case N = 1024. We add some comments:

1. The number of observations in Two-stage group screening and in Morris’ s group screening depend ona

priori guesses of the number of important factors; we report the number of observations for optimal guesses.

2. For multi-stage group screening we use the formula for the expected number of observations, which is

smaller than the worst case number.

Table 3 shows that, even though the data in that table favor our competitors, our technique has better worst

case performance. The comparisons in Table 3 (and Table 4) also hold for other values of N, as Bettonvil

(1990, pp.25-32) proves for general N and k.

Note that N = 1024 may be a realistic number; that is, not too high. For example, in the ecological

case study we have N = 281, but we restricted our study to a subset of modules of the whole simulation

model. Morris (1991) also states: ’Often, computational models have as many as several hundred input

variables’.

INSERT TABLE 3

Besides worst case results we also derive theexpectednumber of observations. Using the a priori probability

p and assuming N = 2m, Bettonvil (1990) derives that the expected number of observations in Sequential

Bifurcation is

. (15)1 N m
j 1 2m j(1 p)2

j

Morris (1987) gives the expected number of observations for his technique and for two-stage group

screening. Table 4 shows that our technique is more efficient under this criterion too.
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INSERT TABLE 4

Note that statistical efficiency should be distinguished from ’handling’ efficiency: sequential procedures

require that the analysts switch back and forth between the simulation program and the statistical analysis

and design program. Two-stage procedures are more efficient in that respect. The development of parallel

computer architectures may further complicate the implementation of sequential procedures; also see Kleijnen

and Annink (1992).

6. CONCLUSIONS

Simulation models may have many factors, whereas only a few factors are really important. To detect these

important factors we derive the sequential bifurcation technique. This group screening uses a design and

analysis that requires fewer simulation observations than other group screening techniques do.

Our experimental design depends on the simulation model’s approximation or metamodel. If that

approximation assumes first-order effects only, then the number of observation is half the number used in

approximations that assume two-factor interactions. In general, however, we recommend a more cautious ap-

proach, that is, we recommend the metamodel with interactions.

Our technique can be applied without a priori quantifying the importance of main effects: as simu-

lation outputs are observed, upper limits for the main effects become available, and the users can stop as

soon as these limits are judged to be sharp enough, depending on the system being simulated.

Sequential bifurcation has already been applied to a complicated ecological simulation model, giving

surprising results that are confirmed by a classical resolution IV experiment.
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TABLE 1

Important Factors in IMAGE according to Sequential Bifurcation

label

j

effect

γj

range

L*
j H*

j

meaning

250

246

19

237

243

242

241

240

281

13

86

239

22

20

244

12.7475

8.3725

7.35

7.0925

6.8

5.6

5.26

5.2075

4.8305

4.46

3.5525

3.4175

3.4125

3.0475

2.8625

0.0 0.6

0.9 1.4

19.0 21.0

0.0 0.3

0.5 0.0

0.4 0.0

0.5 0.0

0.3 0.0

0.41 0.38

0.81 0.79

0.11 0.095

0.2 0.0

1282.23 1482.23

2.27 2.37

0.2 0.0

shift from temperate forest to agricultural land

shift from temperate forest to grassland

residence time in the (thick) cold mixed layer

shift from temperate forest to open tropical forest

shift from human area to temperate forest

shift from agricultural land to temperate forest

shift from grassland to temperate forest

shift from open tropical forest to temperate forest

biotic stimulation factor

rate of precipitation of carbon in the oceans

fraction of charcoal formed upon burning of branches

shift from closed tropical forest to temperate forest

initial area of ecosystem 1 (tropical closed forest)

circulating massflow (Gordon flow)

shift from semi-desert to temperate forest
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TABLE 2

Important Factors in IMAGE according to

Resolution IV Design

(1) # 250 13.07

(2) # 246 8.54

(3) # 19 7.31

(4) # 281 5.16

(5) # 13 4.42

(6) # 86 3.54

(7) # 20 3.10

(8) DIFF 1.98

(0) 1224.33

(1,2) -0.05

(1,3) 0.10

(1,4) 0.09

(1,5) 0.08

(1,6) 0.07

(1,7) 0.07

(1,8) 0.06
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TABLE 3

Maximum number of observations if N = 1024

Technique Number of important factors (k)

0 1 2 3 4 5 6 7 8

Two-stage group screening

Multi-stage group screening

Morris group screening

Jacoby & Harrison

Sequential Bifurcation

2 68 96 116 136 152 168 180 192

2 20 35 49 62 74 85 96 107

2 12 33 53 73 80 89 100 113

3 21 39 55 71 85 99 113 127

2 12 21 29 37 44 51 58 65

TABLE 4

Expected number of observations for N = 1024

Technique A priori probability p

.0001 .001 .01 .1

Two-stage group screening

Morris " "

Sequential Bifurcation

21.9 64.3 198.2 521.1

10.3 26.4 130.3 521.1

3.0 11.4 70.5 374.2
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FIGURE I

Finding 3 important variables amongst 128 candidates.

y(0) → β1-128 ← y(128)

↓

β1-64 ← y(64) → β65-128

↓

β65-96 ← y(96) → β97-128

↓ ↓

β65-80←y(80)→β81-96 β97-112←y(112)→β113-128

↓ ↓

β65-72←y(72)→β73-80 β113-120←y(120)→β121-128

↓ ↓

β65-68←y(68)→β69-72 β113-116 ← y(116) → β117-120

↓ ↓ ↓

β65-66←y(66)→β67-68 β113-114←y(114)→β115-116 β117-118←y(120)→β119-120

↓ ↓ ↓

β67←y(67)→β68 β113←y(113)→β114 β119←y(119)→β120

↑ ↑ ↑
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FIGURE 2. Main effects and upper limits in various stages.


