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Abstract

The process of computing the nucleolus of arbitrary transferable utility games
is notoriously hard. A number of papers have appeared in which the nucleolus is
computed by an algorithm in which either one or a huge number of huge linear
programs have to be solved.

We show that on the class of veto-rich games, the nucleolus is the unique
kernel element. Veto-rich games are games in which one of the players is needed
by coalitions in order to obtain a positive payoff. We then provide a fast algorithm
which does not use linear programming techniques to compute the nucleolus on
these games.

Furthermore, we provide several examples of economic situations which belong
to the class of veto-rich games and which are treated in the literature.
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1 Introduction

A Transferable Utility (TU) game (N, v) as introduced by Von Neumann and Morgen-
stern (1944) consists of a finite set N of players, and a characteristic function v: 21`' -~ R,
satisfying v(~) - 0. The aim of this paper is the study of TU-games controlled by a
veto player. A vefo player in a non-negative TU-game (N,v) is a player i E N that is
necessary to obtain a positive payoff, i.e. v(S) - 0 for all coalitions S not containing
player i. A TU-game (N,v) is a veto-rich game if it is non-negative, it has at least one
veto player i, and v(N) ~ v({i}). The last inequality insures that veto-rich games have
imputations. The class VGN of veto-rich games with fixed player set N and a fixed veto
player i is a. convex cone in t.he class of all TL1-games, that. is, if v and 2o are (veto-rich)
games with veto player i, then so is av -~ Qw for all non-negative numbers a and Q.

Subclasses of the class of veto-rich gatnes have been studied by different authors : Big
Boss games by Mtzto, Nakayama, Potters, and Tijs (1988) and Clan games by Potters,
Poos, Tijs, and Muto (1989). In these papers many economic illustrations are presented.
One important difference between these classes and the class of veto-rich games is that
veto-rich games do not have to be monotonic, which allows one to model more economic
situations.

Other economic illustrations containing a veto agent can be found in different circum-
stances. A market with increasing returns to scale, where the agents are one monopolist
and rz - 1 consumers has been studied by Sorenson, Tschirhart, and Whinston (1978).
An information good market with one possessor of information and many demanders
has been studied by Muto, Potters, and Tijs (1989). A variant of this market, where
demanders compete, which destroys the monotonicity of the games of Muto, Potters and
Tijs (1989), is considered in Arin (1992). Different types of auctions have been modeled
as a veto-rich gazne, see Schotter (1974) and Graham, Marshall, and Richard (1990).
Also, production economies with a landowner and landless peasants (cf. Shapley and
Shubik (1967)) can be modeled as games with a veto player. Chetty, Dasgupta, and
Raghavan (1970) computed the nucleolus of these games.

In the present paper we exploit the special properties of veto-rich games to compute
the nucleolus, introduced by Schmeidler (1969) and the kernel, introduced by Davis and
Maschler (1965). The nucleolus was introduced as the unique imputation that lexico-
graphically minimizes the vector of non-increasingly ordered excesses over the set of
imputations. Peleg [see Kopelowitz (1967)] suggested a way to compute the nucleolus.
It is a"translation" of the definition of the nucleolus into a sequence of linear programs.
Theoretically, the sequence can have length 2", but usually, it terminates long before
that. Kolilberg (1972) developed another method to locate the nucleolus. His approach
involves solving a single, but extremely large linear program (O(n) variables and 2"!
constraints for a n-person game). Moreover, the coefficients appearing in the constraints
have a very wide range, causing serious numerical difficulties even for four players. In
Owen's (1974) itnproved version one has to solve a single linear program with O(2")
variables and 4" constraints. Maschler, Peleg, and Shapley (1979) gave a constructive
definition of the nucleolus, in which the set of imputations under consideration is itera-
tively reduced until only oue imputation remains. This approach leads to O(4") linear
programs, each with O(n) variables and O(2") constraints including only coefficients of
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-1,0 or 1. Sankaran (1991) proposed a similar procedure, with only D(2") iterations.
These formulations are numerically stabler than the approach of Kohlberg and Owen,
but the number of linear programs is enormous.

On spe.cial classes of games, it may be possible to take advantage of the specific
structure of the games to compute the nuclenlus using a more efficient algorithm. For
example, Solymosi and Raghavan (1994) propose an algorithm for computing the nucle-
olus of assignment games. In these games, there are two types of players. If there are m
players of the first type, n players of the second type, and m- min{m, n}, then Solymosi
and Raghavan's algorithm computes the nucleolus in at most m(m -}- 3)~2 steps, each
requiring at most O(na.n) elementary operations. They apply graph-related teclmiques
instead of linear programming.

Granot and Huberman (1984) pruved LLat fur tninimurn wst spanning tree games
the size of the linear programs in the algorithm of Maschler, Peleg, and Shapley can
be reduced : the coalitions whose complement is not connected in the tree constructed
for the grand coalition are not relevant for the computation of the nucleolus. Moreover
they provide a geometric characterization of the nucleolus, which they exploit to give a
sequence of vectors that converges to the nucleolus.

Granot, Maschler, Owen and Zhu (1994) study the kernel and nucleolus of standard
tree games. These games are convex, so the kernel and nucleolus coincide. They give an
algorithm that gives the nucleolus in n steps in a tree game with n players.

Huberman (1980) proved that the nucleolus of an arbitrary game only depends on
so-called essential coalitions if the core is non-empty. In minimum cost spanning tree

games, these are exactly the coalitions that are used by Granot and Huberman. Derks
and Kuipers (1992) use this to find an O(nc2) algorithm for computing the nucleolus of
a game with a particular connectedness property, that has a non-empty core. Here, c
is the number of connected coalitions. A veto-rich game can be viewed as having 2"-r
connected coalitions, so their algorithm is O(n4"-t) on the class of veto-rich games.

An extensive overview of the research on the nucleolus is given in Maschler (1992).

This paper is organized as follows : we introduce all necessary concepts in a prelim-
inary section. Sectiou 3 contains the proof that the kernel of a veto-rich game contains
only the nucleolus. In section 4 we use this result to present an algorithm that com-

putes the nucleohts of an n-player game in at most n stages, each stage requiring taking
the minimum of not more than 2"-t real numbers obtained by 2 subtractions and one
division. [n each stage at least one coordinate of the nucleolus is computed. Section 5

coucludes with a short study of other solution concepts on veto-rich games : we show
that for arbitrary veto-rich games the nucleolus is not a population monotonic allocation
scheme in the sense of 5prumont (1990), nor do the Shapley value, r-value and nucleolus
coincide. As shown in Potters, Muto, and Tijs (1990), the bargaining set and the core

of a veto-rich game coincide if the core is non-empty.
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2 Preliminaries

We will sometimes refer to a game by its characteristic function if this does not create

any ambiguity. The set oj imputations I(N,v) of a TU-game (N,v) is defined as

1(N,v) :- {x E RN ~ x(N) - v(N) and x; ~ v({i}) for all i E N}.

The imputation set of an arbitrary game can be empty, but veto-rich games have a non-

e~npty imputation set. An inessential game (N,v) is a game with only one imputation

i.e. v(N) -~;ETrtl({i}), other games are essential.
If x E RN and S C N, we denote

x(S) :- ~ x;.
iES

For an imputation x E 1(N, v), define the excess of a coalition S C N at x as E(S, x) -

v(S) - x(.S) and let B(x) be the vector of all excesses at x arranged in non-increasing

order of magnitude. The lexicographic order ~~ between two vectors x and y is defined

by x~L y if there exists an index k such that x~ - y~ for all l G k and xk G yk, and the

weak lexicographic order -CL by x~~ y if x~L y or x- y.
5chmeidler (1969) introduced the nucleolus of a TU-game as the unique payoff that

lexicographically minimizes the vector of non-increasingly ordered excesses over the set

of imputations I(N,v). In formula :

{v(N,v)} -{x E I(N,v) ~ B(x) ~~ B(y) for all y E I(N,v)}.

The core of a TU-game (N,v) is the set

Core(N, v) :- {x E I(N, v) ~ x(S) 1 v(S) for all S C N}.

It is well known that the nucleolus v(N,v) lies in the core of the game (N,v), provided

that this core is nonempty.
For two players i, j of a TU-game (N, v) and an allocation x, define the complaint of

i against j at allocation x by

s;~(x) - niax{E(S,x) ~ i E S~ j}.

It is the maximal vahie of a coalition that contains i but not j. The idea captured by the

kernel is that if at aii imputation x, the complaint of a player against any other player is

less than the complaint of this other player against the first player, then the first player

should get less. Of course, the players cannot get less than their individual worths if x

is an imputation, so the kernel is defined as

K:(N,v) -{x E I(N,v) ~ b~i, j E N: s;~(x) ~ s~;(x) or x; - v({i})}.

The kernel of a game (N,v) always contains the nucleolus v(N,v).

We denote the cardinality of a coalition S by ~S~ and its complement N`S by S`.



3 Coincidence of kernel and nucleolus on the class
of veto-rich games

In this section, we concentrate upon the kernel of a veto-rich game and prove it consists
of only one imputation, which then has to be the nucleolus. The proof is based on the
crucial fact ihaí if i is a veto player and j another player in a veto-rich game (N,v),
then E(S,x) - -~kESxk G -x; - E({,7},x) for all imputations x and all coalitions S
containing player j but not the veto player i. Hence s~;(x) --x~.

Lemma 3.1 Let x lie in the kernel of the veto-rich game ( N, v). Then

x; - v({i}) ~ x~

for any veto player i and any player j.

Proof : Suppose an inputation x satisfies x; - v({i}) G x~. Then s;~(x) ~ v({i}) - x; ~
-x~ - s~;(x) and x~ ~ x; - v({i}) ~ 0, because x is an imputation. So x does not lie in
the kernel. o

Note that in an essential veto-rich game, any veto player i is allocated strictly more
than his individual worth v({i}) in a kernel element x. This is easily seen : by lemma 3.1,
x; - v({i}) is larger than or equal to x~ for any other player j and if i gets a payoff
of v({i}), then all other players get 0. But then v(N) - x(N) - v({i.}) -~~EN v({j}),
so the game is inessential. Hence, it holds that s;~(x) ~ sj;(x) for all other players j.

Second, if v({i}) ~ 0 in a veto-rich game (N,v) with veto player i, then this veto
player gets strictly more than any other player in a kernel element.

Third, if there are two or more veto players, their payoffs are equal in a kernel element.
Obviously, in this case, the individual worths of the veto players are zero. It can also
happen that though there is only one veto player, there is another player who gets the
same payoff as the veto player, as is shown by the following example :

Example 3.2 Let N-{0, 1,2}, let 0 be a veto player, and let v({0}) - 0, v({0, 1}) -
1- v({0,2}), v(N) - 3. Then the unique kernel element is the equal split (1, 1, 1).

The next lemma determines the unique kernel payoff of some players.

Lemma 3.3 If x lies in the kernel of the veto-rich game (N,v) and v(S) 1 v(N) for a
coalition S, then E(,S, x) ~ 0 and x~ - 0 for all players j in the complement of S.

Proof : Let j lie in the complement of S. If S contains no veto player, then 0- v(S) 1
v(N), which implies that the zero vector is the unique imputation. If S contains a veto
player i, then

s;;(x) ~ E(S, x) - v(S) - x(S) 1 v(N) - a(S). (3.1)

Because the imputation x is non-negative, v(N) - x(S) ~ v(N) - x(N) - 0. Combining
this with equation 3.1, we obtain -

s;i(x) ~ 0 1 -x~ - s~;(x). (3.2)

If x lies in the kernel, either inequality 3.2 is an equality, or x~ - v({j}) - 0. But if
inequality 3.2 is an equality, then x~ - 0 as well. ~
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Lemma 3.4 If x lies in the kernel of the veto-rich game (N, v) with veto player i, and
v(S) G v(N) for a coalition 5' containing veto player i, then E(S, x) G 0.

Proof : Suppose that E(S,x) ~ 0. For any j E N`S, coalition S can be used by the
veto player to complain against j. Now s;;(x) - -x; G 0, so either x; - v({j}) - 0,
or 0 1 s;;(x) ~ s;;(x) ~ 0, in which case s;;(x) - 0. But then x; - 0 as well.
So all players outside S are allocated 0. Then the excess of S equals v(S) - x(S) -
v(.S) - v(N) f x(N `S) - v(S) - v(N) G 0. This is a contradiction. t]

The next corollary asserts that in an essential veto-rich game the players whose payoff
was not determined in lemma 3.3 get a positive payoff in any kernel element.

Corollary 3.5 If x lies in the kernel of the veto-rich game (N, v) with veto player i, and
if for another player j, there is no coalition S C N`{j} with v(S) 1 v(N), then x; 1 0.

Proof : By lemma 3.1, if x; - v({i}) for a kernel element x, then the game has to be
inessential, so v({i}) - v(N), contradicting the hypothesis. Hence, x; 1 v({i}), which
implies s;;(x) ~ s;;(x) --x;. Now s;;(x) - E(S,x) for some coalition S containing
player i but not player j. By assumption, v(S) G v(N), so by lemma 3.4, the excess of
S is strictly negative and hence x; ~ 0. ~

The importance of this result lies in the fact that for a player j that has a positive
payoff in a kernel element, the complaint of j against a veto player i has to equal the
complaint of i against j. So the inequalities in the definition of the kernel can be replaced
by equalities, which makes the process of determining the kernel easier.

Before we give the main theorem of this section, we compute the kernel of a veto-rich
game that arises from an auction with an auctioneer who sells an indivisible object in
an auction with many bidders.

Example 3.6 Let N-{0,...,n} and let the auctioneer (player 0) valuate the object
at ao - 0, while this value is a; ~ 0 to the other players j E N. The worth v(S) of a
coalition .S is zero if this coalition does not contain the auctioneer, and v(S) - max{a; ~
j E S} otherwise.

Let a player with the highest valuation be called h and let a player with the highest
remaining valuation after h has been eliminated be called s. Suppose 0 G at, 1 a, ~ 0.
Now v({0, h}) - v(N), so lemma 3.3 implies that a kernel element x has to satisfy x; - 0
if j~{0, h}. If a, - ati, then also xti - 0, and the seller gets all, i.e. xo - ah. On
the other hand, if a, G ah, then there is no coalition S not containing player h with
v(.S) ? v(N), so by corollary 3.5, xh ~ 0. Remembering the remark after the corollary,
we obtain -xh - sho(x) - soh(x). Any coalition S containing the auctioneer but not
player h has excess E(S,x) - v(S) - xo, which is highest if player s is an element of S.
Hence soh(x) - E({O,s},x) - a, - xo, which implies

xh - xQ - a,.

Together with efficiency (xo ~- xh - v(N) - ah), this implies xo -(ah f a,)~2 and
xh - (ah - aa),i.
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So according to the kernel, the object is sold to the bidder with highest valuation and
the price is the average of the highest and second highest valuation.

Iu the example, the kernel is a singleton. That this is not a coincidence is shown in
the following theorem.
Theorem 3.7 The kernel of a veto-rich game (N,v) consists of a unique element.

Proof : Let x be a kernel element of the veto-rich game (N, v). By lemma 3.3, we
know that x~ - 0 for players j such that there exists a coalition S C N`{ j} with
v( S) ~ v(N). Denote Do the set of players whose payoffs are determined in this way.

Let i be a veto player of the game (N, v). Suppose that there are still players other
tlian veto player i whose payoffs have not yet been determined (if not, go to the last
paragraph). Then from the remark after corollary 3.5, we know s;~(x) - s~;(x) --x~ for
all players j~ i whose payoffs are not yet determined. We now iteratively, in at most ~N~
stages, determine more and more coordinates of x, until all coordinates are determined.
As x was chosen arbitrarily in the kernel, this proves that the kernel contains only one
element, x.

Consider a stage t 1 1. Let the set D~-t consist of the players whose payoffs have
been uniquely determined before stage t. If there are still players other than the veto
player í whose payoffs remain to be determined, consider the set of coalitions admissible
at stage t

,A~ -{S C N ~ i E S and there exists a player j E Dr-1 `S} (3.3)

and tlie subset of coalitions with maximal excess

~t~l~ :- argmax{E(S,x) ~ S is admissible at stage t} (3.4)

and the coalition
S~ - n{S ~ S E ~Ns}.

Furthermore, denote pi :- -E(S, x) for an S E ~li.
By construction, for a player j E Di-„ there exists no coalition containing player i

but not player j with excess higher than -p~. Furthermore, if j E DS-1 `S~, there exists

a coalition ,S E~l~ not containing player j. Hence, E(S, x) - s;~(x) --pt. Vice versa,

for a coalition S E~t~, there exists a player in .S` that has not yet been allocated, and

for any such player j, there exists no coalition containing player i but not player j, with
excess higher than E(S,x), so s;~(x) - E(S,x). Hence by using the coalitions S E~fe,
we can exactly determine the complaints of player i against the players j E Di-1 `S~.

Now take S E~tt. Then -x~ - s~;(x) - s;~(z) - E(S, x) - -pi for any j E Di-~ `S.

So all players outside S~ whose payoffs were not yet determined have the same payoff pi.

We still have to prove that this payoff pi is independent of the allocation x. Now for

S E r1~1 ~,

-Pi - E(S, x)
- v(S) - x(S)
- v(.S) - v(N) f x(N `S)
- v(S) - v(N) -b x(Da-i ~ S) f x(Di-~ ~ S)

- v(S) - v(N) - ~ x(Da-i `S) f ~Di-i ` S~ ' ps,



where - follows because all players in Di-~ `S are allocated p,. Hence,

v(N) - v(S) - x(D,-, `S)
r~ - ID`-1 `SI } 1 ,

which is independent of the choice of kernel element x, because x(Dt-, `S) was uniquely
determined by the previous stages. Note that p~ - -E(S,x) ~ p~-,, because S is
admissible at stage t.

If the payoffs of all players other than veto player i have been uniquely determined,
then efficiency implies x; - v(N) - x(N `{i}), so the payoff of player i is then also
uniquely determined. ~

Corollary 3.8 Let (N, v) be a veto-rich game. Then IC(N, v) -{v(N, v)}.

Proof : The nucleolus lies iii the kernel, which consists of a unique element. o

It has to be noted that although we have singled out a veto player in the proof of
theoretn 3.7,the kernelisindependent of which veto player has been singled out.

4 Computing the nucleolus of veto-rich games

The proof of theorem 3.7 gives insight in the structure of the kernel~nucleolus, and
suggests an algorithm to compute the nucleolus of a veto-rich game with a veto player i.

The idea is as follows : begin by assigning zero to those players j such that there is
a coalition S not containing j, that satisfies v(S) ~ v(N). Call the set of these players
Ao.

Then iteratively, at each step t, look for the coalitions S containing i, that still have
players in their complement whose payoffs have not yet been assigned. Among these

admissible coalitions, select those coalitions that minimize the amount

v(N) - v(S) - x(A,-, `S)

~Ai-i~ t 1

The idea is that for any such minimizing coalition S, the amount v(N) - v(.S) - a(A~-1)
remains to be divided, and dividing it equally between the not yet allocated players

outside .S and the coalition .S itself, will equate the complaints of the veto player i against

the players outside S that have just been allocated and the complaints of those players
against player i. Let Ai equal the set of players whose payoffs have been determined in

step t or earlier.
When all other players have been assigned payoffs in this way, the veto player i obtains

the rest. We now give a more formal description.
Algorithm 4.1 (Nucleolus for veto-rich games)

iiaput : a veto-rich game (N,v) with a veto player i
output : an allocation x (the nucleolus of the game)
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0. Start with the stage t- 0. Define the set of people whose payoff is alloca,ted in
stage 0 :

,40 -{j E N ~ 3S C N~{j} : v(S) ~ v(N)}.

Put qo - 0 and allocate x~ - qo - 0 for all j E Ao.

1. While there is a player that i s not the veto player i and whose payoff has not been
allocated, do steps li to liv

i) Putt:-t~-1.

ii) Given the set Ai-~ of players whose payoffs have been allocated before stage t,
call a coalition S admissible at stage t if S contains the veto player i and there
remain players in N`S to be allocated. For all admissible coalitions S, define

v(N) - v(S) - x(At-, `S)
a~(s) :-

~Ai-i `SI f 1
. (4.1)

iii) Define the payoff obtained by players whose payoff is allocated at stage t

q~ :- min{qi(S) ~ S admissible at stage t},

the set of players who are not going to be allocated during this stage

S~ :- nargmin{qi(S) ~ S admissible at stage t}

and the set of players allocated at or before stage t

Ai :- Ai-i U Si - Ai-i U(Ai-~ `Se).

iv) Allocate x~ - qt for all j E At `A~-, - Ai-1 `St.

2. Allocate x; - v(N) - x(N `{i}) to veto player i.

3. Define x- x(N,v) as the vector with coordinates (x~)jEN.

In each stage (except maybe in stage 0), at least one player is allocated, so at the
latest after stage ~N~, each player has been allocated a payoff. Before we prove that the
algorithm yields the nucleolus, we need a lemma.

Lemma 4.2 If the algorithm allocated a payoff to player k before player j, then xk C x~.

Proof : Let (N, v) be a veto-rich game with veto player i. First, let us prove qi 1 q~-t

for all stages t~ 0. Let t- 1 and let S be a coalition. If v(S) ? v(N), then all players

outside S were allocated 0 in stage 0, so coalition S is not admissible at stage 1. So any
coalition S admissible at stage 1 satisfies v(S) G v(N), which implies

v(N) - v(S)
4i(S) - ~Aó `S~ f 1

~ 0.
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Hence
9i - min qi(S) 1 min 4i(S) 1 ~- 40.SEA, - S:v(S)-v(N)GO

Let t 1 1 and suppose there remain players to be allocated at stage t. Let S be an
ad~nissible coalition. Then at stage t - 1, coalition S was admissible too, but was not
used to determine q~-1, so

v(N) - v(S) - x(A,-~ `S)
9~-i c 4i-i(S) - IA~-2 `SI } 1 ~

hence

v(N) - v(S) - x(Aa-z `S) ~(~Ai-s `S~ f 1) ~ 9a-i
- (~Ai-i `S~ f ((Aa-i `Ai-z) `s~ -F- 1)' 9o-i.

Now zk - q~-I for k E(At-1 `Ar-z) `S, so transferring (~(Ai-1 `As-z) ` S~) ' 4e-i -
z((Ai-i `A~-2) ` S) to the left-hand side, we obtain

v(N) - v( S) - x(At-~ `S) - v(N) - v(s) - x(Ai-s `S) - x((A~-~ ` Ai-s) `S)

~ (IA~-~ `SI -~ 1)q~-~,
which implies that

v(N) - v(S) - z(A~-, `S)
4t(S) -

I Aé i `-S~ -F 1 ~ 9t-i.

Hence also q~ ~ q~-~, as qi is the minimum of qi(S) over all admissible coalitions S.
Fiually, we prove that veto player i has a larger payoff than the other players. If all

other players are allocated payoffs at stage 0, then they all get the same payoff zero,

which is not more than i's payoff. If not all other players are allocated zero, then in the

stage t where the payoff of the last player j other than i is allocated, coalition {i} is

adinissible. Then

xi - 9~ G 4i({i}) -
v(N) - v({i}) - z(As-i) ~ y(N) -~x(A~-t)

~Ai-i `{i}~ f 1 - IAt-i~

The last fraction is what the not yet allocated players would get if v(N) -x(Ai-i) were
divided equally. They are getting less from the algorithm, so player i must get more

from the algorithm, hence x; 1 z~. By the first part of this proof, j gets as least as much

as the other players ( except i), so i gets more than any other player. Together with the

first part of the proof, this proves the lemma. ~

Theorem 4.3 Tlie allocation z defined in the algorithm is the nucleolus.

Proof : This theorem can be proved directly using Kohlberg's (1971) characterization

of the nucleolus, but we prove the theorem by proving that the allocation is the unique

keruel element. Let i be a veto player of the game (N, v) and apply the algorithm to

(N,v), with i as the special veto player.
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First, the algorithm allocates a zero payoff to any player j such that there exists a
coalition S that does not contain player j and that satisfies v(S) ~ v(N). So the set of
players Aa that are allocated a payoff of zero in the first stage of the algorithm, coincides
with the set of people Do whose payoff is determined to be zero in the first step of
theorem 3.7.

Suppose that up to stage t-1, exactly those players have been allocated whose payoffs
are determined in theorem 3.7 and that these players have exactly been allocated their
kernel payoffs. Then a coalition is admissible in stage t of the algorithm if and only if it
is admissible in the same stage of theorem 3.7.

Because A~-1 - Di-~, equation 3.5 implies that pi - qi(S) - qi for all coalitions
S E Mi. It remains to bc provcd that if T is admissible at stage t and E(T, v) G-p~ -
max{E(U,v) ~ U admissible at stage t}, then qt(T) ~ pi. For this, take a coalition T
admissible at stage t such that E(T, v) G-pi. Rewriting the excess of T, we obtain
-p~ 1 v(T)-v(N) fx(At-, `T)~-x(Ai-, ` T). By lemma 4.2, we know that any players j
that have not yet been allocated will be allocated payoffs that are larger than or equal

to qi - p~ by the algorithm. Hence -p~ 1 v(T) - v(N) f x(At-1 `T) f pt . ~A~-, `T~,
which implies

v(T) - v(N) f x(A~-, `T) -
Pt G

~Ai-i `T~ t 1
- 4i(T).

So q~(T) attains its minimum qi - pt only at those admissible coalitions that have
minimal excess amongst the admissible coalitions. But then exactly those players whose
payoffs were determined in this stage in theorem 3.7 will be allocated in this stage of the
algorithm and furthermore, they are allocated their kernel payoff p~, which is positive.

So the players other than the veto player i are allocated their kernel payoffs. And in
step 2, player i is allocated the remainder, which is exactly player i's kernel payoff. ~

Note that if there are more than one veto players in a game, the veto players that are
not singled out by the algorithm get the same payoff as the veto player i that is singled

out, so tlieir payoff is allocated in the last iteration of step 1: any players allocated
at a later iteration would have to get strictly more by the proof of lemma 4.2, which is
impossible by lennna 3.1.

5 Other solutions of veto-rich games

We now turn our attention to other solution concepts.
Proposition 5.1 For a veto-rich game (N,v), the following are equivalent :

1. Core(v) ~ 0

2. v is N-monotonic, i.e. v(S) G v(N) for all S C N.

Proof : As v({i}) ~ 0 for all players i E N, it is clear that `v(S) G v(N) for all
coalitions S' is a necessary condition for the game to have a non-empty core. That it is
also sufficient is shown by the next allocation x: let i be a veto playet, let x~ - 0 for
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j ~ i and let x; - v(N). Then x(S) - v(N) ~ v(S) if i E S and x(S) - 0- v(S) if
i~ S. Hence x E Core(v). o

Furthermore, if the core of a veto-rich game is not empty, it coincides with the bargaining
set JV1~({N}), as defined in Aumann and Maschler (1964). This is a result credited to
Maschler in Potters, Muto, and Tijs (1990).

Note that our aigorïthm computes the nucleolus of a veto-rich game even if the core
of the game is empty. When the core of a game is non-empty, it is known that the
nucleolus coincides with the prenucleolus. It would seem that a slight modification of
our algorithm could yield the prenucleolus of a non-balanced game, but the obvious
modification of eliminating step 0 of the algorithm does not yield the prenucleolus.

Furthennore, for general veto-rich games, the nucleolus does not have to coincide with
the r-value, nor with the Shapley value. This can be seen in the following games.

Example 5.2 Let N-{0,1}, let v({0}) - 10, v({1}) - 0 and v({0,1}) - 5. Here
v(N, v) - (5, 0), the Shapley value is ~(N, v) - (7.5, -2.5) and the r-value does not
even exist, because the game is not quasi-balanced.

Even if we restrict ourselves to quasi-balanced games the r-value and nucleolus do not
coincide.

Example 5.3 Let N-{0, 1, 2}, let v({0}) - 1, v({0, 1}) - 2- v({0,2}), v({0, 1, 2}) -
6 and let the values of the other coalitions equal zero. Then v(N, v) -(8, 5, 5)~3,
r(N, v) -(38, 20, 20)~13 and ~(N, v) -(3, 1.5, 1.5).

Muto, Nakayama, Potters, and Tijs (1988) proved that on the subclass of Big Boss
games, the nucleolus coincides with the r-value and moreover that if the game is a convex
Big Boss game, then the Shapley value coincides with the nucleolus as well.

Sprutnont (1990) introduced population monotonic allocation schemes (PMAS). A
PMAS of a game (N, v) is a collection x-{x~s ~ j E S C N} that satisfies the following
two conditions

~ xs(S) :- ~;ES x;s - v(S) for all S C N.

~ x;sCx;rif j ESCT.

A game (N, v) is called totally balanced if all its subgames (S, vs)scN have core elements.
Here the subgame ( S,vs) is defined by vs(T) - v(T) for all T C S. Sprumont (1990)
proves that a TU-game (N,v) that has a PMAS x is totally balanced. For example,
xs -(x~s)tes is a core element of the subgame ( S, vs) for every coalition S.

For a veto-rich game ( N, v) total balancedness is equivalent to monotonicity, i.e.
v(T) C v(S) if T C S. Moreover, a monotonic veto-rich game has a PMAS : choose a
veto player i and assign x;s - v(S) if S contains i and x;s - 0 for all other players j

and all coalitions S containing j. So we have the following theorem.

Theorern 5.4 The following are equivalent for a veto-rich game (N,v) :

~ (N, v) has a PMAS.

~ (N, v) is totally balanced.
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~ (N, v) is monotonic.

The (extended) nucleolus of a game (N, v) is a PMAS if the set {v~s ~ j E S C N}
fonns a PMAS, where v~s - v~(S, vs) is the coordinate of player j in the nucleolus of the
subgame (S, vs). The next example shows that there exist veto-rich games which have
a PMAS, in which the extended nucieoius is not a PMAS.

Example 5.5 Consider the game ({0,1,2},v), defined by v({0,1}) - v({0,2}) -
v(N) - 2, and v(S) - 0 for all other coalitions S. This game is monotonic, so it
has a PMAS, but the extended nucleolus is not a PMAS, because it violates the second
condition for a PMAS : v{o,i} -(1, 1, -), v{o,s} -(1, -,1), while vN -(2, 0, 0).

Two solutions that are related to the nucleolus and the kernel are the per capita
nucleolus and the per capita kernel. They are based on the per capita excesses of coali-
tions instead of the usual excesses. The per capita excess of a coalition is defined as the
quotient of the excess of the coalition and the number of elements of the coalition. It
can be shown along similar lines as the proof of theorem 3.7 that the per capita kernel
of a veto-rich game contains only the per capita nucleolus. In the per capita kernel, the
coalition used by a player j to complain against a veto player is the coalition consisting of
j and all players that have a smaller payoff than j. Up to now, no algorithm generating
the per capita nucleolus has been found.
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