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Abstract

In this paper we develop a theoretical framework which makes it possible to an-
alyze several aspects of convergence between E.C. countries. The analysis is done
in a dynamic game context, where countries, apart from minimizing individual cost
functions, minimize cooperatively a convergence function, which represents the con-
vergence conditions which are elaborated in the Maastricht treaty (1991). The aspect
of convergence is modeled as a dynamic constraint on the individual cost functions.
We show that the maximum degree of convergence is completely determined by the
non-cooperative outcome of the game. The framework is illustrated in a theoretical
example. The example shows that: (1) the goals with respect to convergence can
seriously influence the outcome of the game. If these goals are set too ambitious the
outcome can be that countries are not willing to cooperate anymore. (2) the costs
involved to obtain convergence can differ substantially between countries. (3) a mi-
nor deviation from a Pareto optimal solution can increase convergence considerably.
An algorithm is devised how to obtain solutions of the game which are politically
more feasible than the Nash bargaining solution and improve on the non-cooperative
solution.

“This research was sponsored by the Economics Research Foundation, which is part of the Netherlands
Organization for Scientific Research (NWO).



1 Introduction

Due to the integration process within the E.C. countries there is an increasing demand for
price stability. To that end the European Council decided, at the Maastricht meeting in
1991, to start, at least in 1999, with irreversibly fixed exchange rates and to establish a Eu-
ropean Central Bank. This final step towards the realization of the EMU sets out, however,
that uneven developments in the process of integration are set aside. Therefore, greater
convergence of economic performance is needed (see the report of Delors Committee [3]).
Another aspect of the integration process is that as a consequence of the strengthened
economic interdependence between member countries the room for independent policy
manoeuvre is reduced and that cross-border effects of developments originating in each
member country become more and more important. So, the stages towards an economic
and monetary union involve on the one hand a process of closer convergence, and on the
other hand coordination of the macroeconomic policies of the various countries. Important
to note is that this of course does not imply that if there is convergence of economic policies
and/or coordination of macroeconomic policies between countries, the integration process
will be balanced and thus the establishment of a single market is justified. In other words
convergence and coordination are prerequisites for obtaining a single market but don’t
guarantee a succesful establishment of it. Now, there is a general consensus amongst the
participating countries that convergence and coordination of policies is needed for moving
towards an economic and monetary union. There is, however, much less consensus how far
and how fast this process should take place. This has, of course, everything to do with the
internal forces working on the markets of each individual country. The possibly long run
significant increases in economic welfare in the Community are much less tangible than the
short term welfare loss effects incurred at various domestic markets. Therefore, a natural
reaction one can expect from participating countries is that they do strive for convergence
in economic variables, but that they are only willing to pay a price (in terms of welfare loss)
for it if the additional increase in the degree of convergence will be significant. Studies
with respect to macroeconomic policy coordination in a dynamic games context appear
frequently in economic literature, see e.g. Brandsma [2], McKibbin and Sachs [6], Hughes
Hallet [4]. However, the influence of the aspects of convergence. analysed in a dynamic
games setting, on the effects of macroeconomic policy coordination are not studied before.
This motivates the study of this paper.

Starting from the point of view that each country has its own individual welfare loss func-
tion it wants to minimize in cooperation with the other countries, we develop a theoretical
framework to analyze the trade off between extra welfare loss and more convergence. The
analysis will be done in a dynamic games framework. We assume that each policymaker
has an individual objective function, he/she wants to minimize and that there is some com-
mon sense on a convergence function which they want to minimize simultaneously. In the
case of the EMU this convergence function may e.g. represent the convergence conditions
which are specified in the Maastricht treaty (1991). In particular the two conditions of



convergence in consumer price inflation and convergence in long term interest rates that are
necessary for admitting a country to the monetary union (see e.g. Bean [1]) can be incor-
porated in such a function. Under the assumption that all policymakers like to cooperate,
we analyze the set of solutions which are obtained by the policymakers when they simul-
taneously minimize their welfare loss functions and convergence function. We assume that
the degree of convergence. which is represented by the value of the convergence function,
depends on the agreements of the outcome of a negotiating process between countries. In
particular we will show that if reducing welfare loss is the primary interest of countries, the
degree of convergence countries can obtain is limited. So, if countries strive for a degree of
convergence which is set too ambitious, the result can be that (some) countries will show
non-cooperative behaviour. In a theoretical example we illustrate two additional aspects
the game may have.

(1) The price (in terms of individual welfare loss) that countries have to pay will for some
countries be higher than for other countries.

(2) There are situations in which by a minor deviation from the Pareto solution, a large
increase in convergence degree is possible. In other words, by paying a small price (in
terms of individual welfare loss) high revenues (in terms of convergence) can be obtained.

The organization of the paper is as follows. In section two we will introduce the theoretical
framework. We consider N countries which cooperatively agree on minimizing a conver-
gence function and, moreover, all have their own individual objective function they like
to minimize. The aspect of convergence is modeled as a dynamic constraint on the joint
social welfare function. Under the assumption that all of these functions are convex and
(some mild regularity conditions) we show the above mentioned aspects. Furthermore we
show that the cooperative outcome wich yields the largest degree of convergence coincides
with the Nash solution of the game. To help the reader to understand the basics of the pre-
sented theory we illustrate the approach in section three by means of a simple theoretical
example. In section four we present the conclusions.

2 Incorporating convergence criteria: a theoretical
framework

We consider an integrated economy of the European Community with N interdependent
economies, where the policymakers in each country face a dynamic economic model which
connects the endogenous variables (denoted by y), instrumental variables (denoted by u)
and other noncontrollable variables. Each country has control over a set of instruments
for economic policy. denoted by u;. In stacked form v’ = (u,,...,uy). We assume that
each policymaker has a convex objective function, which we specify by J;, which he/she
wants to minimize. We denote the set of Pareto optimal solutions in the Ji,..., Jy-plane



by P. The point N, corresponds to the non-cooperative (Nash) solution, which is used as
a bargaining threat-point, denoted by N¢ := (JN,...,J¥). Furthermore we assume that
the countries agree to strive for a certain amount of degree of convergence for some of their
economic (endogenous and/or instrumental) variables. This agreement will be reflected
in a convex convergence function, denoted by C, which is included in the optimization
process. It is important to stress that the convergence function differs from the countries
objective functions in a way that the latter contains only variables which belong to its own
country whereas the convergence function contains variables of all the countries. Thus
minimizing a costfunction is something that can, in principle, be done by a country alone
whereas minimizing the convergence function has to be done simultanously.

The decision-making process of the policymakers concerning what strategy to follow, will
depend on the following set:

{(J1(w), e In(w), C(w)) | u € U}, (1)

where we suppose that the strategy-space U is a convex set. The policymakers have to find
a cooperative strategy which results in a point in (1) which is acceptable for them all. Now
note that whenever two different strategies yield the same individual costs J;, i =1,..,N,
but different values for the convergence function, only the strategy yielding the lowest value
for the convergence function is of interest to all policymakers. So, the set of relevant control
strategies consists of:

U={uelU|VaelU (Jy(u),..Jxnu)) = (J(@),...In(7@)) = C(u) < C(a)}.

This observation makes it possible to consider the decision problem from the following
point of view. By varying the strategies over the whole set U, we obtain the set of all
possible objective outcomes in the .J;, .., Jy-plane. To each point in this set is attached
a unique value for the convergence function. The problem for the decision makers is now
to select cooperatively a point within this set that is acceptable for everyone. Now, as
mentioned in the introduction we will assume that minimizing their own cost function is
the primary interest of countries and that striving for convergence is of secundary interest.
In that case the aspect of convergence acts as a dynamic constraint on joint social welfare.
If we. furthermore, refrain from the possibility of side-payments and assume that the axiom
of individual rationality holds (see e.g. [7] '), then countries will cooperatively minimize
the joint convergence function as long as their individual costs will be lower than their
non-cooperative costs. So, the set of possible objective outcomes will then restricted on
the one hand by the non-cooperative Nash threatpoint N¢, and on the other hand by the
set of Pareto solutions. We will call this set in the sequel the negotiation area (see figure
1 for an illustration in a two player context). The basic question is now of course, how
we can determine this negotiation area and its corresponding convergence function values

!This axiom states that policymakers, if they behave rational, will never accept an outcome for their
individual object function which is worse than the one a policymaker can obtain by acting independently
(which 1s represented by the non-cooperative outcome N€).
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Figure 1: Representation of the negotiation area in a two player context.

in an efficient way. We will not give a complete answer to this question, but present a
solution which we expect will work for the applications we are aiming at (i.e. situations in
which the set of Pareto-solutions and the Nash-threatpoint are situated not too far from
each other). The solution we will present has a number of nice properties. First of all
it attaches to every point in the negotiation area a unique control strategy that can be
obtained by minimizing a strict convex combination of the individual object functions and
the convergence function. Secondly, we will show that this control strategy is parametrized
by N parameters and that this parametrization is a continuous function of its parameters.
By varying the parameters between 0 and 1, the whole negotiation area can then be covered
(in general (see note above)).

The solution is motivated by our assumption that each policymaker is primarily interested
in minimizing his own objective function in a cooperative setting and that convergence plays
a minor role. We model this aspect by rewriting the convex combination of individual cost
and convergence cost in a special way. Consider

N+1

&+ o+ @Iy + @naC, o with Y- & = 1.
1=1

This is equivalent with (in the non-trivial case an4; # 1):
(I =M(ardi + ... + anJIy) 4+ AC, where A =anyi, and o; = &/(1 — anyy),

which has the nice property that ¥¥, o, = 1. If we minimize this second convex combi-
nation of the individual object functions and the convergence function then we have the
property that A = 0 resembles the case that countries completely ignore the convergence



goal (and because Z;\;l a, = 1 we find the Pareto optimal solutions), and that A = 1
corresponds with the case that countries only pay attention to their mutual convergence
interests. \We will show (under some smoothness conditions) that the set of cooperative
optimal strategies corresponding with these adapted object functions for each of the N
countries, can be parametrized by the N — 1 parameters a;,...,ay_; and A, and that this
parametrization is a continuous differentiable function of all these parameters. By varying
these parameters, in particular A, it is then possible to analyze the trade off between the
costs individual countries have to pay and more convergence. First, we present a prelim-
inary result. The next theorem shows that if one considers a certain convex combination
of all object functionals J;, 7 = 1...,N and C, the optimal strategy minimizing this
combination will be a continuous differentiable function of N out of N 4+ 1 parameters.

Theorem 2.1 Suppose I is a convez set, Ji(u),i = 1,..., N and C(u) are strictly convez
functionals which arve twice continuously differentiable in u € U. Consider

N
J(u, oy, yan, A) = (1= A) (za,.l.(u)) + AC(u)
1=1

forue U'. A€ [0,1] and a, € [0,1] fori =1,...,N, with E.’:l o; = 1. Let

u” = argminJ(u,ay,...,an, A).
u

Then, for every A € [0.1] and a; € [0,1] fori=1,..,N, with ¥, a; = 1, u™ is uniquely
determined as a function of the parameters ay,...,an_1, A, i.e. u* = u'(ay,...,an_1,A).
Morcover. this function u” is a continuously differentiable function in (ay,...,an_;, A) €
[0.1] X ... x [0.1], with ¥¥3Va; < 1.

Proof. Let a := (ay.....ax.A) € [0,1] x...x [0, 1] be fixed numbers. with ™% & = 1. The
strictly convex properties of Jy. ..., Jy,C imply that the function J(u) is strictly convex in
u € [7. So for every a. .J has a unique global minimum on U. Denote this element in U,
which depends on a. by us. Since J is differentiable we conclude that the derivative of J
with respect to u. evaluated at the point ug is zero. So,

Ffi, iy, Agu) o= H'l(“)=(l—R)GIM+.A.+(1—X)GNanJU)” By =V

du du
evaluated at the point « = us. Note that, since J is by assumption twice continuous
differentiable. the functional F is continuous differentiable in (ay,...,an_;, A, u) € [0,1] x
<o x [0.1] x U, Furthermore. since J;, ....Jx, C are strictly convex functionals in u, we have

that
F(a

Va e [0,1] x ... x [0,1] det(),—’u&2 #0.
du

Applyving the implicit function theorem yields then that there is an unique continuous
differentiable function, say f, such that for all a := (ay,...,an,A) € [0,1] x ... x [0, 1],

9C (u)




Fla. fla)) = 0. with f{a) = @y S0 0™ = 6@ ey A) i= flage..sonA) is a
continuous differentiable function in o € [0,1] x ... x [0. 1]. Using the fact that ™ a; = 1
gives ¥ = W68 ¢ sove Oy a

Remark. In the sequel we will use the notation (a.....ax-1) € [0,1] x ... x [0.1], but, by
doing so. we implicitly assume that the a,.i = 1,.....V = | satisfy the constraint ¥ ¥7'a, <
L

Using the previous result we show now that the set of control strategies defined in theorem
2.1.. parametrized by

U= {u (01 nan-1.A). | (Q1.can_1, A) € [0,1] x ... x [0,1]}

has the advertised properties. Formally the result reads as follows:

Theorem 2.2 There exists a bijective mapping between the set of unique points
{w(ay..cc.oan_1.A) | (@1eeccnan-1,A) € [0,1] x ... x [0,1]}
and the set
{(Ni(u)e oy (w7) Clu)) | (ag.canor A) € [0.1) x .ox [0, 1]}

Furthermore Jy(u™). ... x(u”). Clu™) are continuous functions in (oy.....an_1,A) € [0,1]x
v 20,17,

Proof. Because (1 — A)(Z,a) + A = L. with A € [0.1] and a; € [0.1).for 7 = I,..., NV,
the unique solution «~ of J(u) is a Pareto solution for the objective function .J(u) which
represents a game with .\ + 1 players. where each player minimizes the objective function
represented by J, for playver . (¢ = 1......V) and C for player N + 1. According to .e.g.. de
Zeeuw [9. lemma 3.4.2 and 3.4.3] there is a bijective mapping between the Pareto solutions
for Jy....../x. (" and the optimal solution for /. The set of Pareto solutions can be found
by varving the parameters (ap.....ay.A) between [0,1] x ... x [0.1] with &%, a; = 1.
Because u” is a continmous function in (a;.....ax_;.\) € [0.1] x ... x [0. 1] it is straightfor-
ward that Ji(u (o oanvo )y (ae a1 A)). Clw (. ...ian_y, A)) are con-
tinuous functions in (aj.....ax_;.A) € [0.1] x ... x [0.1]. a

Using the theorem. the set of control strategies r gives ns the following subset of (1):
{(Ji () Iy (7). C(17)) | € (,:'} (2)

To see that this reduction of the set in (1) still contains all the interesting points. we ana-
lvze the set in (2) in combination with .J more specifically. We have that:

(2) the set in (2) contains the whole set of points (Jy......Jy) which belong to the Pareto
optimal solutions. To find these solntions we substitute A = 0 in (" and fill in the resulting



control strategies in (2).

(22) the set in (2) contains the points where (7 is minimal. To find these points we substi-
tute A = 1 in " and fill in the resulting strategies in (2).

Furthermore, from theorem 2.2, we have that the set of points in (2) form a continuous
surface in the Jy......Jy.C-plane, which indicates that we have parametrized all the inter-
esting points between (/) and (1) as well. These points can be found by varying A between
0 and 1.

From now on we will skip the «” in the notation and describe the set in (2) as:
{(F5 oo JOY | (@ conntiy=ipA) € [041] 3 .o [0,1] ). (3)

We will now define some sets of interesting points. A projection of the set in (3), on the
Jy, ... In-plane is:

5= (e I) | (000 =i AN € [041] %000 56[0, 1]}
The subset of S:
P:={(....dx) | (@1..coan—1,0) € [0,1] x ... x [0,1]}

represents the set of Pareto solutions. Iso-convergence lines. i.e. lines with the same degree
of convergence. are defined as follows:

b= {0 ) Clay vty Ay =50 (Jhndy) € 8. 48 RY)

Note that a small value of 5 corresponds with much convergence (and vice versa). The

negotiation area is defined hy:
X = i) | F5 €I e iy 2 Y. (T Iy} € 5

Using the axiom of individual rationality it is clear that policymakers will not agree to a
certain degree of convergence. denoted by 5. if [, NN = 0. Moreover. the largest degree

of convergence policymakers are willing to accept is given by:
3 =min{y | L,NN}#0.
b ¢

So. in general policymakers shonld set their degree of convergence with care because if this
degree is set too ambitious policymakers are not willing to cooperate anymore. In the next
theorem we will prove fact that the point in the negotiation area which yields the largest
degree of convergence is the non-cooperative threat point N<,

Theorem 2.3 If.N' C S then the point in the negotiation area N, represented by a r € U,
for which C(x) =47 equals N<.



Proof. According to Theorem 2.2.. (" is the set of Pareto solutions which represents a
game of N + 1 players. where each player minimizes the objective function represented by
J, for player i. (i = 1.....\) and C for plaver N + 1. Suppose that & € U vields a point
in the negotiation area .\" which not equals .V but for which ('(x) = 4". Since r yields a
point (Jy(r).....Jx(x)) in the negotiation area it satisfies the property that Ji(r) < JN.
Because r vields a point which not coincides with N there is an ¢ € 1,.....V for which
Ji(x) < JN. Making use of the special properties of .\ and the assumption .V C S, it is
now always possible to take a point on the boundary of N, represented by a y € U, for

which Ji(y) = J(&)e.dily) = IV idx(y) = Jy(x). The fact that & and y both belong
to the set of the Pareto optimal solutions of the extended game vields that C(y) < C(z).
This fact. however. violates the assumption that C(r) =47, o

[t is important to indicate here that the non-cooperative strategy which results in the point
N¢ e S in general differs from the cooperative strategy which results in the point N¢. In
general, the convergence outcome of the non-cooperative strategy and the cooperative
strategy will differ in the sense that the convergence value for the cooperative strategy
will be lower than the convergence value for the non-cooperative strategy. So, the gains in
convergence policymakers will receive by playing cooperatively will be at most v* —C(zn<),
where ryc represents the non-cooperative strategy which vields N¢. Thus, in general,
Pareto solutions will not vield maximal convergence. Therefore. if policvmakers want a
certain degree of convergence. it will usually not be possible to keep up with the Pareto
optimal solutions. Usefull Pareto solutions will only coincide with solutions with a certain
degree of convergence. say 5. if I, N.N'N P # §. Note. furthermore. that the price to be
paved for reaching convergence of a certain degree will not be the same for every country.
We will illustrate this in an example in the next section.

3 An illustrative example

We consider a theoretic example in a (discrete time) deterministic linear quadratic differ-
ence game framework with two plavers (countries). The dynamic behaviours of player 1
and plaver 2 are described by:

ilt) =t = 1)+ () +0.3y,(t = 1). p(0) =1
yalt) = gt = 1)+ () + 0,65 (F = 1), y2(0) = 0.

where, for ¢ = 1.2, y,(t) € R is the target variable and w,(#) € R is the instrumental
variable. From the interaction terms (0.3y,(t — 1) for plaver 1 and 0.6y, (¢ — 1) for player 2)
follows that each plaver faces a different dynamical structure. Plaver 2 is more influenced
by plaver 1 than vice versa. Each player makes his plans for the future. We assume that
each player has a planning period of 2 and chooses his desired paths for the future, as
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follows:
player 1: yi(l)=2. y;(2)=3
player 2: y3(1) =1.5, y3(2)=13.

desired [)a[h.\{

These desired paths reflect the policymakers own wishes of the future and are obtained
independently from each other. In this example the players have different preferences but,
as can be seen from the ideal paths. both players are striving for convergence of their target
variables in period 2. It is of course not necessary to choose desired paths wich converge
but by doing so we will he able to demonstrate the fact that Pareto optimal solutions do
not coincide with convergence solutions. even if policymakers strive for convergence in their
desired values. We represent the costfunctions Jy, J; for every individual player by:

Il

|

Jr = 050001 =2)2 + (11(2) = 3) + uy(1)2 + uy(2)?)
Jr = 05((y2(1) = 13)* + (12(2) = 3)* 4 wa(1)? + ua(2)

).

Each player wants to play a strategy. during his planning period. which minimizes his costs.
So the control problem for every individual player (1 = 1,2) is:

min J,.
(1) (2)

Because the target variable (and indirectly the instrumental variable) of each player is
directly related to those of the other plaver. the control problem of each player depends on
the actions undertaken by the other plaver. This gives rise to various solution concepts.
From the non-cooperative solitions we will just consider the open loop Nash solution,
which we denote by N The cooperative solntions are represented by the set of Pareto
solutions which can he fonnd by solving:

min oy + (1 —a)J,.

for a € [0.1]. where w = (wy (1), uy(2). wy(1). uy(2)).

However. hefore plaving the game both plavers want to be sure that there will be some
degree of convergence of their target variables. In this example we assume that both plavers
want to converge to the average of their target variables. We take as a measure for the

degree of convergence the tollowing convergence function:

2

C=Y () =T + Hm(2) = 7(2))%

where 77(#) := 050 (1) = y2(1)) for ¢+ = 1.2, So. both players agree that they want to
minimize the variance of their target variables in each period. Moreover. minimizing the
variance in period 2 is given more weight than minimizing the variance in period 1. which
is represented by the weights of | in period | and 4 in period 2. These weights indicate that
both players find it more important that there is convergence at the end of the planning
period than during the planning period.



1

Now. together. the players have to take a decision about the strategy they are going to
follow. In order to choose a strategy they have to weigh out all possible strategies. So,
ultimately they have to find a strategy which is "optimal™ in some sense. In the next
subsection we demonstrate the solution concepts developed in section 2 and analyze the
space of interesting ontcomes. After that we give one possible interpretation of “optimal”
and give a proposal to determine a feasible degree of convergence, 5. for both players.

3.1 Analysis of the possible outcomes

As stressed in section 2. the decision abont what strategy to follow, will depend upon the
following set:

{(Ji(w), Jo(w). C(u)) | w € R} (4)

Because Jy..J,, (" are strictly convex functions which are twice differentiable in u, the set

(" can be found by solving the following problem:
Let a. A € [0.1]. and
J(u) = (1 = A)ay + (1 —a)ly)+ AC

Find now for every .\ € [0.1]:
i 9= arg m“in J(w)
From section 2. the set of control strategies {7 is given by:
{u (0. ) | (a.A) €[0.1] x [0.1]}
Substituting these control strategies in (4) gives the following set (compare with (3)):

{00 (a A (0 M) Cla.N)) | (e M) € [(). l} pd [(J. lj} (:

(S]]
~—

In the sequel we will analyse this set of poiuts for the given example.

Remark. Compnting the outcomes for A = 1. a = 0. a = | gives some difficulties because
in that case we have a singular svstem of equations. However. we are not particularly
interested in those situations so we used in our calculations values which are close to these
points.

A projection of the surface in (3). on the Jy.Jy-plane is drawn in figure 2. This set of
points is denoted by 5. like in section 2.

S ={{Ahla.X).Jya X)) | (a.A) € [0.1] x [0. 1]}

The black lines in figure 2 represent the edges of 5. One of these edges is the set of Pareto
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J2

0.2 : . : . . &

Figure 2: The parametrized area S. the most left curve represents the pareto solutions P,
the small triangle on this curve represents the negotiation area .V.

solutions. which is given by the left black line. It is obtained by computing for various a:
P ={(h(a.0)..:(a.0))]a€0.1]}

Points on the upper part of the Pareto line correspond with a high value of a and points
on the lower part to a low value of a. The edge Ly in figure 2 is obtained by computing for
various A € [0.1]: (y(1.A)./y(1. X)) and the edge L, by computing for various A € [0, 1]:
(J1(0.A). Jy(0.A)). The edge in the figure which corresponds to (Ji(a.1).Jy(a.1)) for
a € [0.1] is reduced 1o one point in the figure. We denoted this point by Ls. The small
triangle on the Pareto line denotes the negotiation area N as defined in section 2. Note
that the negotiation area N is completely covered by S,

To get an idea of the degree of convergence in every point of the set in (3) we plotted figure
3. This figure shows a three dimensional plot of the following surface:

{C(a.A) | (a,X)€[0.1] x [0.1]}

Note that the points where A = 0 give the degree of convergence for the Pareto solutions.
As can be seen in the figure. points on the Pareto line where a almost equals 1 or 0,
give a very high (" value. which indicates that in those points the degree of convergence
is rather small. Moreover we marked in this figure the point with the largest degree of
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Convergence

Figure 3: A three dimensional plot, where for each a, A € [0,1] x [0,1] the corresponding
convergence outcome is plotted. The curve on the back, where A\ = 0, represents the Pareto
solutions P.

J J, ¢ a A
(looperation
N¢ 0.505 0.370 0.1059 0.080 0.270
A 0.497 0.370 0.1258 0.625 0
B 0.505 0.359 0.1483 0.523 0
D 0.472 0.451 0.0896 0.836 0
Non-Cooperation
N€ 0.505 0.370 0.1365 - -

Table 1: Characteristics of some interesting points.
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convergence on the Pareto line. It is denoted by D and it corresponds with a = 0.836.
In table 1 the corresponding (J,,J;,C) of point D is given.  Moving away from the
Pareto line, by increasing A just a little bit, we see that the degree of convergence increases
also. This means that if the players choose an outcome outside the Pareto line P their
costs will increase but in return for these increasing costs the value of the convergence
function will decrease, which means more convergence. In this example, if A increases to
1. the convergence function will go to 0, which means complete convergence (in period 1
and period 2). Zooming in on figure 2, around the negotiation area N, gives us figure 4.

Ja
0.39
0.38
Io.0924
NC
0.37 Ip.10s9
A ————— To.1104
——Igaes
0.36
B
To.1420
0.35 I
0.49 0.495 0.5 0.505 0.51 0.515

Figure 4: Zooming in on figure 2 around the negotiation area. Iso-convergence lines are
drawn.

Specific information about the points A, B, and N¢ can be found in table 1. In table 1
the cooperative outcome N¢ corresponds with a strategy which yields a lower convergence
value than the non-cooperative outcome N¢. The reason for this is that the non-cooperative
strategy differs from the cooperative strategy. Playing the cooperative strategy gives, with
the same individual costs. an increase in convergence of 0.306! In figure 4 we draw some
iso-convergence lines, as defined in section 2. In the figure for each iso-convergence line the
corresponding convergence value is given. The degree of convergence on the Pareto line
increases from B to A. As proven in section 2 and visible in the figure, the point with the
largest degree of convergence in the negotiation area lies on the edge of the negotiation
area and is exactly the N point which belongs to the iso-convergence line Iy 10s9. So, the
~*, as defined in section 2, equals 0.1059.
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Zooming in on figure 3, from a different viewpoint, we get an indication of which values
of a, A belong to the negotiation area N, which is drawn on the surface in figure 5. The
corresponding a, A-values for A, B, and N°¢ are given in table 1.

Convergence

Lambda

Figure 5: Zooming in on figure 3 aronnd the negotiation area (0.05 < a < 0.65) and
(0 £ A <£0.4). The curve on the back (A=0) represents a subset of the Pareto solutions P.
The interior of the curve drawn on the surface represents the negotiation area N.

3.2 Fixing the degree of convergence

In this subsection we assume that both players agree they want a degree of convergence of
at least 4. So, the players will play a strategy which results in a point in (4) which belongs
to the iso-convergence line /,. In figure 6 we have drawn for three different values of A
the convergence values for all @ € [0,1]. On the one hand it gives an indication of how
quickly convergence declines when increasing A, and on the other hand it illustrates how
the convergence depends on a for constant A\. Again, A = 0 corresponds with the Pareto
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optimal strategies. Moreover. in figure G four different levels for 4 are drawn. Each level
distinguishes a group of solutions with different properties which we will analyze below.

C

A=0
0.35
0.3
0.25
0.2

A
0.15 0.1483
~. /
N€ \

Figure 6: For various A, and varying a € [0, 1] the corresponding convergence outcome is
plotted.

(a) v < 0.0896

Both players play a strategy which results in a point on the iso-convergence line I.,. However
(see figure 4). for this v, /,NP =0, and I,NN = 0, which implies that the chosen strategy
is not a Pareto optimal strategy and that the corresponding (J, J;) point falls outside the
negotiation area. So, at least one of the players will have higher costs than when he plays
the non-cooperative open loop Nash strategy. Such an ambitious setting of the degree of
convergence is very unrealistic, it means that convergence prevails over individual costs.
Therefore we excluded this possibility in section 2 by our assumption of rational behaviour.

(b) 0.0896 <~ < 0.1059

For this v (see figure 4). I, N N = @, but [, N P # B. So, a strategy can be played
which coincides with the Pareto optimal strategies. From figure 6 follows that there are
two possible Pareto optimal strategies, which corresponds in both cases wih an a > 0.625.
So player 2 will have higher costs than when he plays the open loop Nash strategy. On
the other hand. playing one of the two Pareto optimal solutions will be very profitable for
player 1. Without any other additional agreements between the players (see (a)), player 2
will never accept such an outcome.

(c) 0.1059 < 7 < 0.1258
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In this case, , NN # 0, and I, NP # @, but I, N NN P = Q. If the players decide to
play a Pareto optimal strategy, player 2 will again have higher costs than when p]a.;'ing the
open loop Nash strategy. More likely is an outcome within the negotiation area N. For
instance if the players agree on a v = 0.1104 then they have to find a point in g 1104 N N.
Looking again at figure 4, we see that there is a whole range of possible outcomes. A
unique outcome may be obtained using bargaining theory (7, 9]. As already can be seen
in figure 4, any outcome of such a game will be that player 2 does not gain much in a
bargaining situation whereas the gains for player 1 can be considerable.

(d) 0.1258 < 4
Now, I, N NN P # @, which means an outcome can be played on the Pareto line between
A, B. Also here, bargaining theory can be applied to select a unique outcome.

Concluding we see that if the desired degree of convergence is set too high the players
have to pay a price for that and can not obtain Pareto optimal solutions. Furthermore,
if they can not obtain solutions within the negotiation area the player(s) will have an
incentive to deviate towards the threatpoint and forget about any degree of convergence
at all. Moreover, we observe that in almost all cases player 1 can gain more than player
2. In the figures this depends on the shape of the iso-convergence lines and ultimately is
traced back to the fact that player 1 has more influence on player 2 than vice versa.

3.3 An approach to determine a reliable degree of convergence

In this section we present an algorithm to determine a feasible degree of 4. The previ-
ous subsection states that. without any other agreements between the players, a degree of
convergence which has no correspondending outcome in the negotiation area is unlikely to
happen. The question remains, however, which degree of convergence within this negoti-
ation area ultimately will be selected by the players. In fact without making any further
assumptions on the negotiation process, every point in the negotiation area is possible.
One way to come to a unique point within the negotiation area is by axiomatizing the
negotiation game. We shall not elaborate this subject here, since for the moment we are
more interested in qualitative rather than quantitative statements. All we will do is sketch
how a feasible degree of y can be determined, using some heuristic arguments. First we
will give an example and then we will present two algorithms which illustrate the approach
in general.

In figure 7 the convergence value is plotted against the costs of player 1, along the line
A to N, where the costs of player 2 remain constant. Starting at point A and moving
towards N, the convergence value declines rapidly. This continues untill the point where
(J1,C) = (0.4987,0.1098). After that point the derivative of the slope of the curve gets
larger than —1. In figure 7 we denoted this point by E. From that point on, towards N¢,
the costs increase more rapidly than the degree of convergence. If player 1 has to choose an



18

. J
0.498\ 0.502  0.504  0.506 '
0.105 \\L

Figure 7: For the edge of the negotiation area, from A to N°, the convergence value is
plotted. Point E is the point where the derivative of the tangent of the curve is -1.

outcome on the line in figure 7, he will start in point A where his costs are minimal. From
thereon, if player 1 wants to increase convergence, he will have to weigh out costs against
convergence. For instance, if player 1 starts in A and moves towards N¢ and accepts only
points where the slope d("/d.J; < —1, the result will be the outcome E.

The general idea expressed in the above example is that players accept an increase in con-
vergence only if the corresponding costs stay within a prespecified region. So, a sketch of
a numerical approach for determining a feasible degree of 4 would be the following:

(1) Start from a point (J;,.J;) on the Pareto line between A, B. It seems reasonable to
start at a bargaining outcome [7, 9].

(2) Determine the direction v = (vy, v,), for which thereisa t > 0 for which (J;, Jo)+t(vy, v2)
€ N, and convergence increases maximal.

(3) Choose a small t > 0.

(4) Calculate x. = —0C/dv. Check if 0J,/dv < x:i(x.), for i = 1.2 where x;(x.), 7 = 1,2
are (decreasing) functions of y. which indicate the weight players want to assign to the
tradeoff between convergence and costs. That is, if the additional increase in convergence
(reflected by a smaller value for C) equals x. then the additional increase in costs for each
player seperately should be less than y;(x.) for : = 1,2.

(5) If (4) holds then use this new point as a starting point and start again in (2). Stop, if
no point in V can be found for which (2) and (4) hold.

A drawback of this approach is that it is timeconsuming, even for small models. The rea-
son is that the functions Jy, J;,C are parametrized in o and A and therefore calculating
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“simple looking™ expressions ke o /de or il Jde for ¢ = 1.2, or findine a direction v in
| 1 T 2

step (2). take a lot of tine.

A good alternative which is stronely related with the previous algorithm. but is easier to
compute. is the following algorithm:

(1) start in some feasible point between A B.  With this point there corresponds an
uniguely determined o.

(2) Fix a.

(3) Increase A from 0 to 1 by nusing a stepsize of. for instance. 0.01. Check if the point
stavs in the negotiation arca .

(4) Check for every A\ whether =0 /AN > 0y JOX and =dC [N > T,/ DA,

(5) Stop if no A can be fonud for which (3) and (4) holds.

The conditions in step 1) of the aleorithim can be compared with the conditions in step
(4) of the previons aleorithim. These conditious state that if for each plaver seperately
costs rise less thau couvergence falls when A lnereases by one nnit both players are willing
to accept more convergence (as long as they stav within the negotiation area). Note that
for our convenience we took \ = \; = \,. We used the last algorithm to determine a
feasible ontcome 1 onr example. As a starting point we choose the axiomatic Nash bar-
gaining sohition (see e.o. [T.9]). This solution corresponds with a = 0.375 and lies on the
Pareto curve approximatly in the middle hetween A and B. I fignre 8 we have drawn for
0 <A< I the cnrves =AC /)N A0y /AN aud dJy/IN. The fignre shows some interesting
facts. First of all the couditions of step (4) of the algorithm are violated when A > 0.26.
Secondly. when increasing A the costs of playver 1 fall! This lasts till A = 0.4 where 9.J,/0A
gets positive. On the other hand plavers” 2 additional costs for increasing convergence are
for all A higher than the additional costs player 1 is faced with. Finally in figure 9 we have

drawn a small part of the curve:
{CL ST N 0.5T3.0)) | X € [0 1]})

The curve tends to stay very close to the Pareto curve and crosses the negotiation area al-
ready for a verv small A = 0,04, This corresponds with a (. 00 ) = (0.498.0.370.0.1150).
Remarkable is thar plaver 1 (the stronger plaver) has lower costs than he would have in
the Nash baveamine solntion. a solution which would he acceptable if the playvers did not

have to reckon with auv convereence aspects at all.

4 Conclusions

In this paper we presented a theoretical approach how to deal with the issne of convergence
between E.C'. conntries. Based on the assumption that the primary interest of the countries
is minimizing their own individual welfare loss. we considered the question how cooperative
strategies vielding maximal convergence can be determined. We showed that for a large
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Figure 8: For increasing A. the three cnrves —dC/dA. 0., /dX and 9.J,/OA are drawn.

J,
0.375
1\'r
o 0.37 .
A
S
N
0.365 t
»
Nish
bargaining
solution =
e | gy
0.496 0.498 0.502 0.504 ‘\"0.506 0.508 0.51
B g
| \\\
0:355 r

Figure 9: Starting from the Nash bargaining solution. fixing a and slowly increasing A
gives a curve which tends to stay very close to the Pareto solutions.
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class of problems. i.e. problems were the individual costfunctions and convergence function
are twice differentiable and convex, a parametrization for a large set of cooperative strate-
gies can be determiued. This set covers the Pareto optimal solutions by construction and,
in general (see note in section 2). covers all the cooperative strategies which improve over
the non-cooperative solution. Using this approach a number of interesting questions can be
considered. For instance whether it is possible that for a particular time horizon the E.C.
countries can satisfy the convergence conditions in such a way that for every country the
corresponding costs are acceptable, and how these costs differ among countries. In section
three we showed in a simple theoretical example how to analyze such questions. The next
step should be to use the same approach on more realistic dynamic (macro)econometric
country models. or just on a part of these models where the interaction between countries
is most essential. e.g. the monetary sector. In dealing with that problem countries should
realize that

(1) it must be clear where one should converge to [8]. Should they converge to the lowest,
the highest or the average rates of their target/instrumental variables? In our approach
this means that countries should agree on a common convergence function C.

(2) the preferences of countries should be finetuned on each other. It is clear that if these
preferences differ strougly among countries, convergence will be a very tough issue. In
the dynamical game approach this can be analysed with the desired paths and choice of
weights for the target/instrumental variables [5]. The theoretical example was chosen in
such a way that in the last period of the planning horizon the countries, at least, strive
for convergence. which was implemented by choosing equal values for the corresponding
desired paths.

(3) the time-horizon. necessary for reaching the convergence conditions within a limited
period. plays a crucial role too. This aspect is strongly related to the determination of the
degree of convergence. We expect that for a short planning period the costs for convergence
can be very costly and this may nltimately result in non-cooperative behaviour of some
countries. This subject remains. however. a topic for future research.

(4) costs for convergence differ among conntries. The example in the paper gives a way how
to determine these costs for any given degree of convergence. In general these differences
will depend on the econovmical strnctures of the participating countries. The theoretical
example gives already an indication that these costs could be much higher for countries
which have less influence in the Community.

The approach designed Lere for analysing convergence can be used for many other prob-
lems as well. If players in a dynamic game have common objectives. apart from their usual
costfunctions. the approach can he nsed as long as we take twice differentiable convex func-
tions. If we stay in a multicountry setting, common ohjectives appear in e.g. environmental

issues and trade issies.
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