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SELECTING ESTIMATES USING CHI-SQUARE STATISTICS

Quang H. Vuong and Weiren Wang

1. INTRODUCTION

Pearson (1900) type chi-square statistics have been generally used to

test goodness-of-fit, i.e., to test whether a specified parametric model is

consistent with the observed data. Cochran (1952), Watson (1959), and Hoore

(1976,1986) have provided comprehensive survays on Pearson chi-square type

statistics, i.e., quadratic forms in the cell frequencies. Recently, Andrews

(1988a,1988b) has extended the Pearson chi-square testing method to

non-dynamic parametric econometric models, i.e., to models with covariates.

Because Pearson chi-square statistics provide natural measures for the

discrepancy between the observed data and a specific parametr.ic model, they

have also been used for díscríminating among competing models. Such a

situation is frequent in Social Sciences where many competing models are

proposed to fít a gíven sample. A well known dífficulty is that each

chi-square statistic tends to become large without an increase in its degrees

of freedom as the sample size increases. As a consequence goodness- of-fit

tests based on Pearson type chi-square statistícs will generally reject the

correct specification of every competing model.

To circumvent such a difficulty, a popular method for model selection,

which is similar to the use of the Akaike (1973) Information Criterion (AIC),

consists in considering that the lower the chi-square statistic, the better is

the model. Hence the parametric model with smaller value of chi-square

statistic will be chosen. Such a use of chi-square statistics has been

suggested by various researchers. See Massy, Montgomery and Morrison (1970),



Neckman (1981), and Nakamura and Nakamura (1985) among others.

The preceding selection rule, however, is not entirely satísfactory.

Since chi-square statistics depend on the sample and are therefore random,

their actual values are subject to statistical variatíons. Hence a model with

a smaller chí-square statistic is not necessaríly better than one with a

larger chl-square statistic in terms of goodness-of-fit. To take ínto account

statístical variations, we shall propose some conveníent asymptotically

standard normal tests for model selection based on Pearson type chi-square

statistics. Following Vuong (1989) our tests are testing the null hypothesís

that the competing models are as close to the data generatíng process (DGP)

against the alternative hypotheses that one model is closer to the DGP where

closeness of a model is measured according to the discrepancy implicit in the

Pearson type chi-square statistics. Thus the outcomes of our tests provide

information on the strength of the statistical evidence for the choice of a

model based on its goodness-of-fit.

Followíng Moore (1977,1978) and Andrews (1988b), we consider a general

class of estímators that ís very broad and contains most estimators currer~tly

used in practice, when forming Pearson type statístics. This covers the case

sludlcJ lu Vuunp, nnd W;uif; (I'100) whi,ro unly lho corri~::pondity; minlm~un

chí-square estímator is used. In practice, the use of "unmatched" estimators,

i.e., estimators that do not minimimize the chosen Pearson type statistíc, is

quite common and can be found in various works. See Linhart and Zucchini

(1986), Heckman (1981), and Nakamura and Nakamura (1985). Such a

generalization is useful for many reasons.

First, there frequently exíst estimators that are easíer to compute than

the corresponding minimum chi-square estimator. Second, when the original

individual data are available, one is tempted to use more efficient
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estimators, such as the maxímum likelihood estimator (MLE) based on the

individual data when forming the chi-square type statistic. This is in fact

the proceduro recommended ín many textbooks. See for ínstance, Bíshop,

Fienberg and Holland (1975). Third, a particular chi-square statistic is

often chosen to obtain a chi-square límítíng null distribution for a gíven

estímation method. For example, the Rao-Robson statistic has the X2
M-1

limiting null distributíon when the raw MLE is used. However, the raw MLE

does not minimize the Rao-Robson statístic. See Chernoff and Lehmann (1954),

Moore and Spruill (1975), Moore (1977, 1978) and Andrews (1988a).

The paper is organized as follows. Sectíon 2 introduces the basic

notations and defines the class of asymptotically normal (AN) estimators used.

Section 3 investigates the model selection problem based on our general

Pearson type statistics. In section 4, methods based on the boostrap are used

to propose alternative testing procedures for model selection. Section 5

presents some simulatíon results. Section 6 concludes the paper and briefly

mentions direc[ions for future research. Some proofs and tables are included

in Appendíx.

2. DEFINITIONS AND ASSUMPTIONS

In thís section, we briefly present the basic assumptions on the model

and parameter estimators, and we define our general chi-square type

statistics.

Assumption A1: The observed data Xi, is1,2,... are independent and

identically distríbuted (iid) with some common true distribution H.

The sample space X is partitioned into M mutually disjoint fixed cells

E1, E2,.. , EM. The partitíon i s sometimes based either on the nature of
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the data, say race and sex, or survey designer. Let h-(hl, h2,.. , hM) be

the vector of true cell probabtlities. Let a specified model be FB-IF(.~B);

BE9) and denote the vector of its predicted cell probabilities by

P(B)-Ipl(B). P2(B),...,PM(B)I' where pi(B)- JEi dF(x~B). Throughout the

paper, we impose the following assumption on h and p(B):

Assumption A2: hi1~, pi(B)~0, and pí(B) is twice contínuously differentiable

for every i-1,2,...,M.

Throughout ít is assumed that FB satisfies some standard additional

regularity conditions to ensure the asymptotic results presented subsequently.

See for instance Moore and Spruill (1975) and Hoore (1984).

Let n be the sample síze. Gorresponding to the partition E1, E2,.. ,

EM, we can compute the vector of observed cell probabilities

n
f-(f1,f2,...,fM)' where fi- 1 E lE (Xj) for i-1,2,...,M,

n j-1 i

and lE (X~) ls the índicator function taking values 1 if X~ falls in cell Ei
i

or 0 otherwíse. Following Moore (1978), ít is convenient to consider the

M-dimensíonal vector

Vn(B) - fn(..., fi-Pi(B), ..)' ,
~Pi(B)

which measure.s the standardízed difference between the observed and the

expected cell probabilities given B.

We are ín a position to dcfinr the class of general chi-square type.

statistics considered in this paper. These statistics are essentially

quadratic forms in the standardized cell frequencies Vn(Bn). Formally, we

have:
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Definition 1: A general chi-square type statistic is of the form

Qn(Bn) - V~(Bn)M(f~Bn)Vn(Bn)

where M(f,B) and B~~ satisfy the following assumptions A3 and A4, respectively.

Assumption A3: Each element of the weightíng matrix M(f,B) í s twice

contínuous.iy differentiable i n (f,B) E RM x 9, and M(h,B) is a positive

definite matrix for every B.

In this paper, we consider estimators tha[ satisfy the next regularity

assumptíon.

Assumption A4: For some B in 9, the estimator B satisfieso n
n

Jn(Bn-Bo) - 1 Rol E d~(Xi,Bo) t op(1) as n--~ m
T i-1

where ib(X,Bo) is a measurable function from F x 6 to Rk that satisfies

EH~(X,Bo)-0, and Vo . EM~(X,Bo)~(X,Bo)' and Ro --EH(8i6(X,Bo)~8B') are

finite and nonsingular. EM(.) denotes expectatíon computed under the true

data generatíng process.

Assumption A4 implies that Bn is a consistent estimator of some value Bo and

that fn(Bn-Bo) is asymptotically normally distributed with zero mean and

covariance matrix Ro1Vo(Rol)'. Given some suitable regularity

conditions, most common estimators Bn fulfill this asaumption. For instance,

the minimum chí-square estimators, the maxímum likelihood ( ML) estimator on

grouped or ungrouped data, any GMM estimator, and other extremum estimators

satisfy assumption A4. See Amemíya (1985).

Note that the parameter value Bo depends on the underlying true

distribution M which generates the observations as well as the estimation

method employed. For example, when the mínimum chi-square estimator ls useJ,



then Bo is actually minimízing Q(B) - plim Qn(B)~n. On the other hand, if Bn

is the MLE of B based on the ungrouped sample data, then B is the value at0
which the Kullback-Leibler information criteríon (KLIC) EM[-log f(x~8)J is

mínimízed, where f ís the density function correspondíng to F(.~B). See White

(1982). In general, when the model FB is misspecífied, these two values

for Bo are different.

Note that Qn(Bn) is very general. It includes some well-known

chi-square statistics such as the Pearson statistic with Mn - IM (the

identity matrix), the Modifíed Pearson statístic with M-n
diag(...,pi(B)~fí,...), the Gauss statístíc with Mn - díag(...,pi(B),...)

and the Rao-Robson statistíc with M being the generalized inverse of then
covariance matrix of Vn(Bn). In practice, Mn is specified by researcher

according to his or her preference or objective.

3. SELECTING ESTIMATESD MODELS

As we mentioned earlfer, chi-square statistícs are frequently used to

discriminate among alternative models. It is easy to see that, under the

present regularity conditions, Qn(B)~n converges to Q(B)-V(B)'M(h,B)V(B) in

probability as n goes to infiníty, where V(B)-[...,(hi-pí(B))~Jpi(B),...)'

Thus Q(B) can be viewed as measuring the departure of a particular member

F(.~B) E FB from the observed sample. It is also worth notíng that Q(B)?0

and Q(B)-0 if and only if h~p(B).

Of special interests to us is the situation in which a researcher has two

competing parametric models FB and Gy, and desíres to select tt~e better

of the two models based on their general chi-square type statistics Q(B )n n
and Qn(ryn) where Bn and yn are general estimators satísfying assumption

A4 and the same cells are used in both statistícs.



Definition 2(Equivalent, Better and Worse): Given two competing parametric

models FB and G7 and some chi-square type statistics Qn(Bn) and

Qn(ryn) where Bn and yn are general estimators satisfying A4,

eHo: Q(Bo) - Q(ryo) means that the two models are equivalent,

Hf: Q(Bo) C Q(ryo) means that model FB ís better than G,
o ryo

Hg: Q(Bo) ~ Q(ryo) means that model FB is worse than G.
o ryo

where Q(.) ís the probability limit of Qn(.)~n.

Defínition 2 allows the use of estimators other than the corresponding

minimum chi-square estimators. It does not even require that the same

chi-square type díscrepancy be used in forming Qn(Bn) and Qn(ryn). Note,

however, that choosing different chi-square discrepancíes for evaluating

competing models ís hardly justified.

More importantly, even if the same chi-square discrepancy Q(.) is used,

it is important to note that the preceding hypotheses are not entírely

consistent with the problem of model selection which is that of choosing

between the models FB and Gry and not between the estimates F(.~Bn) and

G(.~7n). This is so because the probability limits Bo and ryo of the

estimators Bn and ryn are not in general equal to the pseudo true values B~

and ry~ associated with the discrepancy Q(.) (B~ - argmin Q(B) and y~ -

argmin Q(ry)). As a consequence Q(Bo) (say) cannot be interpreted as the

discrepancy between the model FB and Che DGP H. Thus the preceding

hypotheses are not only properties of the competing models but also of the

estimation methods employed. The relative effects due to specification errors

and choice of estimation are not exactly known. However, if Bn and ryn are

minimum chi-square estimators, then one can analyze the effect due to
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specifícation errors using procedures developed in Vuong and Wang (1990).

Nonetheless, consideration of the general hypotheses Hó, Hf, and Hg

is useful for two reasons. First, "unmatched" estimators are quíte common ín

practice for reasons mentioned in the introduction section. Secondly, one may

be interested only in comparing the performance of the estimated models

F(.~Bn) and G(.~yn). Then Hó, Hf, and Hg are the relevant hypottieses.

In any case, since B and ry are consistent estimators of B and yn n o 0

by assumption A4, we can use [Qn(Bn)-Qn(ryn)]~n to consistently estimate

the indicator Q(B )-Q(ry ) whích will be zero under the null hypothesis0 0
He. Following standard exercise, we obtain the asymptotic distríbution0
of [Qn(Bn)-Qn(ryn)]~fn, which is normal distribution with zero mean and

variance m2. The formula for w2 and detailed derívation can be found ín

Appendix. Hence we define the statistic

GCM - 1 [Qn(Bn)- Qn(7n)1
n

fn ~

where w2 i s a consístent estimator of ~2 ( e.g., its sample analog). We have

Theorem 3.2 (Asymptotíc Distribution of GCM Statístic): Gíven A1-A4,n

suppose that ~2 ~ 0, then

(i) under the null hypothesis Hó, GCMn --7 N(0,1) in dístribution,

(ii) under the alternative Hf, GCMn --~ -~ in probability,

(iii) under tlie alternatíve Hg, GCMn --~ tm ín probabílity.

Theorem 3.2 is quíte general and gives us a wide varíety of asymptotic

standard normal tests for model selection based on general chi-square type

statistics. Part (ii) and (iii) also ímplies that the test ís consistent. In

the next section, we detail the testíng procedures based on Theorem 3.2 by

using bootstrap methods.
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The above tests are based on the standardized difference in unadjusted

generalized chí-square statistics. In some cases, especially when the sample

síze i s small, one may want to add adjustinp, factors líke (p-q)~fn to our test

statistics. Similar results are expected to hold. However, as the sample size

becomes very large, the effect of the adjusting factors will vanish.

4. BOOTSTRAP METHODS

Implementation of the model selection procedure proposed in section 3

requires the following computations:

(i) Estimation of the parameters Bn and ryn,

(ii) Computation of the two chi-squares statistics Qn(Bn) and Qn(ryn)
and the difference Sn~ ~Qn(Bn)-Qn(7n)~,Jn'

(iii) f.umputnfir,n of thc variance ~2 of St and finally,

computation of GCMn ~ Sn ~rv.

The estimators Bn and ryn can be obtained by minimízing some objective

function, such as Qn(.), or by maximízing the likelihood function.

Point (íi) is straightforward once Bn and ryn are known. Point (iii) is

somewhat complicated. In particular, the asymptotic formula for calculating

the variance ~2 involves the calculation of the first and second order

partíal derivatives of the expected cell probabilities with respect to the

parameters B and ry. Moreover, such a formula varies across models and

estimation methods. This is not very convenient in applied work.

Fortunately, with the help of advanced computers, rv2 can be obtained via

some simulation techniques. Specifically, we shall consider a method for

evaluating rvZ based on the bootstrap method. In additíon, we sha1.1 propose

two alternative testing procedures for model selectíon based directly on the

bootstrap distribution of the statistic Sn.
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In the preceding section, we have seen that Sn ís approximately

normally distributed with mean zero and variance ~2. Thís suggests that ~2

can be estimated by the sample variance of Sn in a(large) number of

independent and ídentícal samples of size n. This is the basic idea

underlying the bootstzap method which we apply here to the estimatíon of the

varíance wZ. Specifically, we carry out the following steps:

1. For each set of data xl,x2,...,xn, let F be the empírical

probability dístributíon of the data, i.e.,

F: mass L~n at xi, i-1,2,...,n.
~r ,~ t

Then draw an i.i.d. "bootstrap sample" xl,x2,...,x n from F,

t
i.e., draw xi rattdomly wíth replacement from the observed values

xl,x2,...,xn.
t

2. Usíng thís bootatrap sample (xi), estimate the competing models

to obtain Bn and yn. Then calculate the statistíc

Sn-[Qn(Bn) - Qn(~n))I.~n .
3. Independently ropcat- steps 1 and 2 a large number of times B, say

B-1000. Obtain "bootstrap replications" Snl, Sn2, .. , SnB,

~
and compute the sample variance of (snb, b-L,...,B1:

B
~~ - 1 E ( Snb - S~ )2

B b-1
B

where S~ - 1 E Snb
B b-1

is the average of "bootstrap replicatíons".

The above method (call it

frequencies ín every cells are

Method 1) i s quite general. If only the

available instead of the individual data so

that estimatíon methods based on grouped data must be used, the bootstrap

method can sCill be applied with a slight modification of the resampling

procedure. Specifically, the following modífied procedure (Method 1') can be
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used:

1'. Given the observed cell probabilities ~fi, ia1,...,M) and the total

sample size n, we can construct artifícial data aI, a2,...,an, such that it

has the same observed cell probabilities. For example, we can draw nfi points

from uniform distribution in cell i, and treat these nfi points as if they

were true sample observations in cell i.

2' Now we treat the above artíficial sample al, a2,...,an as if they

weze original true sample xl, x2,...,xn and repeat three steps in Method 1.

Once the bootstrap varíance w~ is obtained, the test statistic GCMn is

calculated easily using the initial estimates Bn and ryn. Under suitable

regularity condítíons and for a large number of replícations (see Efron

(1982)), ~~ is a consistent estímator of ~2. Thus, from Theorem 3.2,

a testing procedure for model selection can be based on the comparison of the

value of GCM to crítical values from a standard normal table. For example,n

at SX significance level, we compare GCMn with -1.96 and 1.96. If GCMn

falls between -1.96 and 1.96, we conclude that both estimated models fit the

data equally well. If GCMn is less than -1.96 (or larger than 1.96), then we

reject the null hypothesis in favor of the alternatLve hypothcsis that the

estimated model F(.~Bn) (or G(.~ryn)) is closer to the Crue distribution.

Although using the bootstrap method to obtain an estimate of w2, the

basic justification of the preceding testing procedure comes from the

asymptotic properties obtained in Theorem 3.2. In contrast, the next testíng

procedures rely only on the bootstrap methodology, and in particular on

two bootstrap methods for assigning approximate confidence intervals to
. ~,

Q(Bo) - Q(ryo) based on the bootstrap dístribution of Sn. These two

methods have been discussed ín detail ín Efron (1982), and require steps 1
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and 2 discussed above or steps 1' and 2' if only frequencies are observed.

See also Efron (1984) for the comparíson of nonnested linear models using a

MSE criterion.

The firs[ testing method is based on Che percentile method. Let

~
CDF(t) - number of (b: Snb s t 1~ prob~,( Sn s t)

B

be the empirical cumulatíve distribution functíon (CDF) of the bootstrap

distribution of (S~b, b-1,...,B{. For a gíven significance level a

betveen 0.0 and 1.0, defíne

SL(a~2) - CDF 1(a~2) and SU(a~2) - CDF 1(1-a~2) .

~~ ~~
The percentile method consists in taking (SL(a~2),SU(a~2)] as

an approximate 1-a central confidence interval for Q(Bo) - Q(yo). Thus a

test of the nul] hypohtesis lió of equivalence against the alternative

hypothesis Hf or HQ at the approximate a significance level is:

(i) accept the null 'Hóof equivalence if 0 E jSL(a~2),SU(a~2)],
e ",t

(ii) reject Ho in favor of Fff if SU(a~2) G0,
,~

(iíi) reject Hó in favor of Hg if SL(a~2) ~0.

Or equívalently,

(i) accept Hó if CDF(0) E[a~2, 1-a~2J,

(ii) reject Fló in favor of kif if CDF(0) ~ 1-a~2,

(iii) reject 'H~ in favor of Hg if CDF(0) c a~2.

The percentile method does not use the value Sn for the initial

observed sample. Nore importantly, since the bootstrap distributíon is based

on replications of the observed sample that produces the value Sn, the

precentile method assumes ímplicitly that Sn ís the medían of the

bootstrap distribution. If this is not a proper assumptíon, one should
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incorporate a bias adjustment. This leads to the bías-correction percentile

method. We will only present the procedure. Its rationale can be found in

Chapter 10 of Efron (1982).

Define

z-~ 1(CDF(Sn)) and zo~2 -~ 1(1-a~2)

where ~ is the cumulative distribution function for a standard normal

varíable. The decision rule for model selection based on the bias-correction

percentile method at the a signíficance level is:

(i) accept Hó if 0 E[CDF 1(~(2z - zQ,2)), CDF-1(m(2z t za,2))],

(ii) reject Hó in favor of Hf if CDF-1(~(2z t za~2)) ~0,

(iii) reject Hó in favor of Fig if CDF-1(~(2z - z~,2)) 10.

Let z0 ~~ 1(CDF(0)). It is easy to see that the preceding decisíon

rule is equivalent to:

e(i) accept Ho if ~z0 -2z~ G zQ,2,

(ii) reject Íió in favor of kif íf z0 ~ 2z t zQ,2,

(íií) reject Hó in favor of F1g íf z0 ~ 2z - zo~2.

We wíll refer to the percentile method without the bías-correction as

Method 2, and to the percentile method with the bias-correction as Method 3.

5. AN EXAMFLE

To illustrate the model selection procedures discussed in f.he preceding

section, namely, Methods 1, 2 and 3, we consider an example. The limited

Monte Carlo study that we conduct will also gíve an idea on the relative

performance of these methods. We need to define the competing models, the

estimation method used for each competing model, and the chi-square type

statistic used to measure the departure of each proposed parametric model from
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the true data generating process. These are now presented.

For our competíng models, we consider the problem of choosing between the

famíly of log-normal distributions and the family of exponential

distríbutions. Thís problem has a long history in the statistical literature.

See, e.g., Cox (1962) and Atkinson (1970) among others. The log-normal

distríbution is parameterized by a-(al,a2) and has densíty

1 (log x-al)2
f(x;al,a2)- exp(- ) for x 7 0

x(2a)1j2a2 2a2

and zero otherwise. The exponential distribution with parameter ~ has density

g(x;~)- 1 exp(-x~~) for x~ 0
~

and zero otherwise.

The estimator used for each competing model is the ungrouped maximum

Likelihood estimator (MLE). This choice is particularly convenient here

because the ungrouped ML estimator for each model has a closed form and hence

is easily computed. Specifically, for log-normal model,

n
al -- E logxi and a2 - 1 E(logxi - al)2

n i-1 n i-1

For the exponential model, the ungrouped HLE is the sample average, í.e.,

1 n
~ -- E xi .

n i-1

Lastly, we use the Pearson chi-square statistic to evaluate the

discrepancy of a proposed model from the true data generating process.

We partition the real line ínto M intervals {(ci l,ci), i-0,1,...,M) where

c0 - 0 and cM -~. The choice of the cells ís discussed below. The

chi-square statistics for the log-normal and exponential models are:

" 1 ..
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M (fi-Pi(a))2
Qn(a) L n E

i-1 pi(a)

M ífi-Pi(~))2
Qn(~)~ n E

i-1 Pi(9)

where pi(a) and pi(~) are the probabilities of the interval (ci-1'ci)
under f(x,a) and g(x,~), respectively.

In our limited Monte Carlo study, we consider various sets of

experiments in which the daea are genPrated from a mixturo of an exponential

distribution and a log-normal distribution. These two distributions are

calibrated so that they have the same population means a~id varíances, namely

one and one. Hence the data generating process has the density

h(x) - x Exponential(1) t(1-a) Log-normal(-0.3466,0.8326),

where x is set to some specific value for each set of experiments. In each

set of experiments, several random samples are drawn from this mixture of

distributions. The sample size varies from 100 to 1000, and for each sample

size the number of duplicatíons is 1000.

Throughout, the chosen partition has four cells defined by the values

c0 - 0, cl - 0.1, c2 - 1.0, c3 - 3.0 and c4 - t m. Note that because the

log-normal distribution has two free parameters, four is the mínimum number of

cells for which a perfect fit is not always achíeved when fitting this

distriburion by minimwn chl-square methods. The power of our tests for model

selection ís likely to improve by increasing the number of cells. Note also

that the shapes of the log-normal and exponential densities differ greatly

around the origin. This motívates the choice of cl - 0.1. The value c2 is

equal to the common population mean, whíle c3, whích is two standard

deviations away from the mean, is used to control for large deviations.



We choose five different values for x which are 0.0, 1.0, 0.5357, 0.25,

and 0.75. Although our proposed model selection procedure does not require

that the data generating process belong to either of the competing models, we

consider the two limiting cases x- 0.0 and x- 1.0 for they correspond to the

correctly specified cases. The value x- 0.5357 ís determined to be the value

for which the estimated log-normal distribution and the estimated exponential

distribution are approximately at equal distance from the mixture h(x)

according to the Pearson discrepancy and the above cells. Thus this set of

experiments corresponds approximately to the null hypothesis of our proposed

model selec[ion test CCM . Finally, to ínvestigate the cases where bothn
competíng models are misspecified but not at equal distance from the data

generating process, we consLder the cases where x-.25 and x-.75. The

former case corresponds to a data generating process which is log-normal but

slightly contaminated by an exponential distributíon. The second case is

ínterpreted similarly with an exponential distribution slightly contaminated

by a log-normal dístríbution.

The results of our five sets of experimen[s are presented in Tables 1-5.

The fírst half of each table gives the average values of the ungrouped HL

estimators o and ~, the Pearson goodness-of-fi[ statistics Qn(a) and

Qn(~), and the model selection statistic GCMn with íts bootstrap

estímated variance ~~ (see Method 1). The values in parentheses are

standard errors. The second half of each [able gives in percen[age the number

of times our proposed model selection procedures based on three methods

described ín the last section, favor the log-normal model, the exponential

model, or are indecisive. The tests are conducted at the SX nominal

sígnificance level. In the firs[ two sets of experiments (x - 0.0 and a-

1.0) where one model is correctly specified, we use the labels "correct" ai~d



"incorrect" when a choice i s made. Finally, in the case where x-.5357, we

give in addítion the 2.SX, S.OX, 95X, and 97.SX fractiles of the observed

diqtrlhutf~~n ol Iho CCM vtivti~aio. 'Phi.v r~llows n compnrison w{th then
asymptotic N((l,l) approxlmntion under our null hypothesis of cyuivalence,

Tables 1 and 2 report the cases when one model is correctly specifíed.

It is well-known that the MLE is consistent for the true parameter value under

correct specification. For example, in Table 1, the log-normal model ís

correctly specified, and the MLE of a-(ol,a2) approaches the true values

a-(-0.3466, 0.8326) as the sample size increases from 100 to 1000. However,0
the Pearson chi-square statistic Qn(a) for this model does not have a

standard chi-square limiting distribution even under correct specification

because the ungrouped MLE ís used. In fact, the limitíng dístribution is

somewhere between a X2(1) and a x2(2). See Chernoff and Lehmann (1954). In

Table 1, Q (a) has a mean around 1.79 which lies between 1 (mean ofn
X2(1)) and 2 (mean of X2(2)). For the misspecifíed model, which ís the

exponential model here, the MLE ~ converges to the pseudo-true parameter

~~ which minimizes the KLIC. The corresponding Pearson chi-square statistic

Qn(~), as we expect, increases at the rate of n. The bootstrap estítaator

of rv also converges as the sample size becomes larger. The test statistic for

model selection GCM approximately increases at a rate fn. In Table 2, wheren

the exponential model ís correctly specffied, one can observe similar results.

The second half of Table 1 summarízes the results for our three model

selection procedures. Method 1 performs quíte well and for small sample sizes

(n-100 or 250), this method seems to dominate the other two methods in

selecting the correct model, which is the log-normal model in this case.

However, as the sample size increases to n-500 or 1000, the three methods

perform equally well. The three methods also select the correct model almost



100X of the times, as expected.

The second half of Table 2 reports somewhat dífferent results. Except at

sample sizt~ 1000 whrri, all three mc~thods perlurm eyually wi~ll, in smalle,r

samples Method 3 now seems to dominate the other two methods. All three

methods, however, do not work as well when the exponential model Is correctly

specífíed (Table 2) as when the log-normal model is correctly specified (Table

1). This can be explained by the fact that the log-normal model has one more

parameter than the exponential model, and hence is more difficult to reject

even when it is misspecífied.

For Tables 3, 4 and 5, the data was generated neither from the log-normal

model nor from the exponential model, but from a mixture of these two models.

Hence, the log-normal model and the exponentíal model are both incorrectly

specified. The MLE's of a and ~ converge to their pseudo-true values ao and

~. For instance, ín Table 3, a-(al,a2) converges to a-(-0.4723, 1.104)
0

and ~ converges to (i:0.9994. The bootstrap estimator ~~ approaches

0.5026. Both chi-square statistícs Qn(a) and Qn(~) increase approximately

at the rate of n. The same comments apply to Table 4 and Table 5.

In Table 3, t}~e data generating process is chosen suc}~ that both the

log-normal model and the exponential model are approximately equally close to

it. The test statistic GCMn ís expected to have a limíting standard normal

distribution N(0,1). Thís is roughly confírmed in Table 3. For example, for

n-1000, GCMn has a mean of 0.0942 and a standard error of 0.9449. The

fractíles reported in Table 3 show that the finite sample distribution of

GCHn ís slightly skewed to the right. The three procedures for model

selection perform very well. All three of them conclude that both models work

equally well in fittíng the data with a probability of around 95X, which is 1

minus the nominal size of the tes[.
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Wíth a few exceptions, Tables 4 and 5 reproduce the qualitative results

of Tables 1 and 3, respectively, although in a weaker form. When the

log-normal model is closer to the true data generatíng process (Table 4),

Method 1 slighlty dominates the other two methods. On the other hand, when

the exponential is closer to the true data generatíng process (Table 5),

Method 3 seems to dominate especially at small sample si2es. As noted

earlier, selecting the exponential model appears more dífficult than selecting

the log-normal model.

From our limited Monte Carlo study, it is difficult to say whích method

absolutely dominates the other methods. Moreover, all methods require about

the same amount of computation. Although no clear cut conclusion can be made,

our study has shown that the three methods work relatively well.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have studied the problem of selecting estimates using

chi-square type statistics and a general class of estímators. In particular,

we have proposed some convenient asymptotically standard normal tests based on

chi-square type statistics that use estimators in this general class. The

tests are designed to determine whether the estimated competing models are as

close to the true distribution against the alternative hypothesis that one

estimated model is closer, where closeness is measured according to the

discrepancy implícit in the chí-square type statistic used.

To facilitate the ímplementation of our proposed tests, we have used a

bootstrap estimate of the asymptotic varíance of the numerator of our test

statistic. We have also considered two testíng procedures that are directly

based on the bootstrap method. The three procedures are fairly simple, and

mainly require the computation of estimators and chi-square statistics.
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Several Monto Carlo experiments were conducted and showed that the three

procedures perform relatively well. It was also found that they were

comparable, and that none of them absolutely dominates the others.

Our work can be extended in several directions. One directíon is to

extend our results to econometric models. For econometríc models, only the

conditíonal distribution of the endogenous variables y given the exogenous

variables z is specified to belong to a conditional parametric probabilíty

model f(y~z;B), while the margínal distríbution of the exogenous variables is

Left unspecified. Without knowing thís marginal distributíon, one cannot

associate with a given parameter value B a joint distribution for the observed

data (yi,zi). Hence when the full sample space R- Yx2 ís partitioned

into mutually disjoint cells, the expected probability in each cell cannot be

calculated. This expected probability can, however, be consístently estimated

by substituting the empirical marginal distribution for the true marginal

distribution of z(see Andrews (1988a)). Specífically, we can consider

n
pí(B) - 1 E J lE(Y,zj) f(Y~zj;B)dy(Y) for í-1,2,...,M,

n j-1 Y i

where v(y) i s some o-finite measure on Y. Given these "expected" cell

frequencies, chi-square type statistics can be cor~structed in principle using

estimators in the general class considered in thís paper. Then the asymptotic

standard normality of the resulting test statistics for model selection wíll

líkely follow as ín section 3.

A second extension i s to use random cells iristead of fixed cells. Much

flexibility will be gained. See, e.g., Andrews (1988b) for various examples.

Moreover, with appropriate random cells, the asymptotic distribution of the

goodness-of-fit statístics may become índependent of the true parameter B 0
under correct speciflcation of the parametric model. See, e.g., Roy (1y~6)
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and Watson (1959). Recent work on goodness-of-fit statistics that are

asymptotically distributed under correct specification has, however, shown

that the asymptotic distribution of such statistics will not change with

random cells as long as the random cell boundaries converge in probability to

a set of fixed boundaries. See Chibisov (1971), Moore and Spruill (1975) and

Andrews (1988a). In view of this latter result, it is expected that our test

statístics will remaín asymptotícally normally distributed with the same

asymptotic variance w2 under similar conditions.



Appendix

Derivatíon of w2: We first state vithout proofs two easy lemmas that can

also be found in Vuong and Wang (1990).

Lemma 1: Given A3-A4, the weíghting matríx Mn - M(f,Bn) satisfies

Mn - Mo t ~ Ln t op(l~~n)~
n

Ln -~ 2Mo fn(fi hi) t E aMo Jn(Bni- Boi).
í-1 3hi i-1 3Bi

where Mo - M(h,Bo), 8Mo~8hi and 8Mo~88i are evaluated at (h,Bo).

I.emma 2: Under A1-A4,

I Qn(gn) - ~nb'ób t b'Lnb f 2b'MoD1Un - b'MoD2Bfn(9n- 90) f op(1)-
fn

,where b -(... ~i ~oi,...)', P - p(U ) lor sumc 0 ~ H,0 0 0
~poi

D1- diag(..., ~i,...),
~pot

DZ- diag(...~ h~-~ ~~~...) - D1(D1 t IM)~
poi Jpoi

B- diag(..., 1 ,...) apo, and 8po~8B' is evaluated
,~hi 38'

Un - ~n(..., fi hi ~..)' - 1 E[e(Xi)-9H~~
~ fn i-1

e(Xi) - [lEl(Xi)I.Ih1.....lEM(Xi)~.IhM~' .

at B ,
0
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Both Lemma 1 and Lemma 2 are símply Taylor expansíons of Mn at (h,Bo) and

(~(Bn)~fn at Bo, respectively. Lemma 2 ís also a more detaíled expansion

of Theorem 5.3 of Moore (1984). However, Moore inadvertently ignored the term

b'Lnb, and the condition Mn ---~ M~ ín probability under H seems too weak

for his stated result.

To obtain the asymptotic variance of [Qn(Bn)-Qn(yn)~~Jn, we define

the following 1xM row vectors

Cif - bif t 2bf2'[foDlf ' G2f -(b2f - bfMfoD2fBf)Rof '

bif -(..., bf BMfo bf, ...). b2f -(..., bf BMfo bf, ...).
8hi 8Bi

a MxM matrix Wf EH[e(Xi)-9H~~íXi~Bo)' - EHeíXi)~(Xi:Bo)',

and the other matrices have been defined earlier with a subscript f indicatíng

that the matrices are now attached to the model FB. Similar vectors and

matrices are defined for the model Gy with the subscript f replaced by g.

Using Lemma 1 and Lemma 2, we can easíly obtain

Lemma 3: Given A1-A4,

(i) for model FB,

Jn Qn(Bn) - fnQ(Bo) t Clf jn i~l[e(Xi)- 9H] t G2f fn i~l~f(Xi~Bo)
t op(1).

(ií) for model G7,
n 1 n

Jn Qn(7n) - ~nQ(7o) t Gi Jn iElle(xi)- 9HI t G2 J E~D CXi:Bo) t opíl).
g- g ni-lg

Note that these results hold under the general H assumed in Sectíon 2.

From this lemma it follows that
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llQn(Bn)-Qn(7n)1 ' ~nIQ(Bo)-Q(7o)) t(~lf-~1 '~2f'-~2 ) 1 X~n P g fn i-1
g i o

From the multívariate central limít theorem and assumption A4, we can now

i~ediately obtain the asymptotic dístribution of lQn(Bn)-Qn(7n)~~Jn under

the null hypothesls of equivalence f1e. Define0

~fg - (~lf-~1g,~2f.-~2g) . Wfg - ~lif(Xi:eo)~6g(Xi;Yo)' .

Eu - IM - qHqH with qH - (.~l..~h2.. .. „~t~)' ,

I ~u ~f uB I

W12 Wf ~of Wfg

~ Wg Wfg Vog ~

t.et "2 - ~f W12Cf we then have 1 4n(Bn) w Qn(ryn) -D-~ N(U.~2)
B B' fn ~
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TABLE 1. Data Generating Process - Log-Normal(-0.3466,0.8326).

Qn(o)-
Qn(R)-
GCMn

Model Selec-
tion Based
On GCMn

Non-bías-corr-
ected Percent-
ile Method

Bias-correct-
ed Percentile
Method

L00
-.3361(.0817)
.8251(.0559)
1.0093(.1016)
.3495(.2018)
1.730(1.880)
11.79(3.000)
-3.707(1.864)
Incorrect
Indecisíve
Correct

Incorrect
Indecísive
Correct
Incorrect
Indecisive
Correct

250
-.3461(.0543)
.6303(.0393)
.9995(.0655)
.3349(.1050)
1.740(1.430)
27.32(4.510)
-5.420(2.073)

o.ox
18.OX
82.OX

O.OX
3.OX
97.OX

O.OOX
31.OX
69.OX
O.OOX
42.SX
57.SX

O.OX
6.SX
93.5X
O.OX
B.SX
91.SX

500
-.3471(.0380)
.8338(.0251)
1.0019(.0437)
.3149(.0774)
1.740(1.660)
53.29(6.750)
-7.871(2.416)

O.OX
O.OX
100.OX

O.OX
0.5X
99.5X

O.OX
O.OX
100.OX

TABLE 2. Data Generating Process - Exponential(1.0)

al

a2

~
~~
Qn(~)-
Qn(6)-
GCMn

Modul Solec-
tion Based
On GCMn

Non-bias-corr-
ected Percent-
ile Method

100
-.5830(.1382)
1.261(.1270)
.9955(.0976)
.5614(.1176)
7.150(4.910)
2.040(1.740)

.9171(.8843)
Incorrcct
Indecísive
Correct

Incorrect
Indecisive
Correct

250
-.5769(.0753)
1.270(.0854)
.9966(.0600)
.5240(.0686)
15.94(7.960)
'1.190(2.040)

1.6652(.9863)
o.ox
85.SX
14.SX

o.oX
58.5X
41.5X

O.OOX
89.OX
11.OX

Bías-correc- Incorrect O.SOX
ted Percent- Indecisive 68.OX
ile Method Correct 31.SX

O.OX
58.OX
42.OX
O.OX
SO.OX
SO.OX

500
-.5790(.0591)
1.285(.0588)
1.0026(.0440)
.5140(.0408)
30.45(11.24)
2.150(1.990)

2.4648(.9820)
O.OX
30.5z
69.SX

O.OX
31.SX
68.SX
O.OX
24.SX
75.SX

1000
-.3495(.0236)
.8341(.0203)
.9984(.0309)
.3076(.050)
1.790(1.750)
105.15(9.060)
-11.028(2.708)

O.OX
O.OX
100.OX

O.OX
O.OX
100.OX
O.OX
O.OX
100.OX

1000
-.5750(,0414)
L 278(.0406)
1.0010(.0321)
.5070(.0275)
60.26(16.15)
2.240(2.010)

3.622(1.003)
o.oX
~.UX
95.OX

O.OX
6.SX
93.5X
O.OX
S.OX
95.OX



TABLE 3. Data Gen. Process-.5357~Exp(1.0)t.4643~1og-normal(-0.347,0.833)

GCM n

ol

a2

~-
~~

-r-
Qn(a)-
Qn(9)-
GCMn

100
-.4726(.1107)
1.097(.1125)
.9994(.1027)
.5016(.0760)
4.650(3.650)
3.770(2.770)
.1109(1.044)

2.SX fra~tílo
S.OX fracr.ile
95.OX fractile
97.SX fractile

Model Selec-
tion Based
On GCMn

Non-bias-corr-
ected Percent-
ile Method

Favor log-n
Equivalent
Favor exp

Favor log-n
Equivalent
Favor exp

250
-.4743(.0710)
1.102(.0778)
.9954(.0640)
.5040(.0512)
8.270(5.460)
7.380(4.180)
.0737(1.039)

-2.895
-1.614
1.6595
2.0570

500
-.4720(.0486)
1.106(.0597)
1.0003(.0446)
,4986(.0469)
15.18(7.370)
12.55(5.530)
.2100(1.020)

-1.932
-1,643
1.7269
2.0849

-2.11~i
-1.170
1.4666
1.9239

3.OX
94.OX
3.OX

3.OOX
96.OX
1.OOX

Bias-correc- tavor log-n 2.50X
ted Percent- Equivalent 95.SX
ile Method Favor exp 2.OOX

2.SX
95.OX
2.SX

2.OOX
94.SX
3.SOX
O.SOX
95.OX
4.SOX

1.OX
94.OX
S.OOX

3.SOX
93.OX
3.SOX
1.SOX
95.OX
3.SOX

1000
-.4723(.0328)
1.104(.0369)
.9994(.0301)
.5026(.0251)
26.04(9.780)
24.36(7.340)
.0942(.9449)

-1.811
-1.446
1.5126
2.1395
1.OX
95.SX
3.SX

1.SOX
95.OX
3.SOX
2.OOX
94.SX
3.SOX



TABLE 4. Data Cen. Process - 0.25~Exp(1.0)t0.75~1og-normal(-0.347,0.833)

al
a2

~-
~~
Qn(a)
Qn(6)
GCMn -

Model Selec-
tion Based
On GCMn
Non-bias-corr-
ected Percent-
ile Method
Bias-correc-
ted Percent-
ile Method

100
-.4016(.0937)
.9649(.1105)
1.002(.0980)
.4931(.1403)
3.130(2.590)

7.320(3.320)
-1.126(1.415)

Favor log-n
Equivalent
Favor exp

Favor log-n
Equivalent
Favor exp
Favor log-n
Equivalent
Favor exp

250
-.4126(.0586)
.9703(.0602)
.9932(.0638)
.4698(.0541)
3.960(2.740)

15.63(5.140)
-1.671(1.162)

22.OX
77.SX
O.SX

33.OX
67.OX
O.OX

20.OX
70.OX
O.OOX
20.OX
SO.OX
O.OOX

40.SX
59.SX
O.OOX
28.OX
72.OX
O.OOX

500
-.4078(.0434)
.9725(.0486)
.9986(.0427)
.4638(.0372)
6.030(4.130)

30.14(6.420)
-2.393(1.053)

65.OX
35.OX
O.OX

64.OX
36.OX
O.OOX
54.OX
46.OX
O.OOX

1000
-.4033(.0294)
.9699(.0345)
1.0005(.0289)
.4620(.0310)
9.970(5.270)

61.40(9.990)
-3.589(1.171)

94.OX
6.OX
O.OX

89.OX
11.OX
O.OOX
87.SX
12.SX
O.OOX

TABLE 5. Data Gen. Process - 0.75~Exp(1.0)t0.25~1og-normal(-0.347,0.833)

al

a2

~

Qn(a)-

Qn(~)-
GCMn

Model Selec-
tion Based
On GCMn

Non-bias-corr-
ected Percent-
ile Method

100
-.5220(.1158)
1.171(.1188)
.9917(.1015)
.5227(.1184)
5.740(4.240)
2.620(2.410)
.5482(1.003)

Favor log-n
Equivalent
Favor exp

Favor log-n
Equivalent
Favor exp

250
-.5171(.0715)
1.181(.0823)
9984(.0618)
.5108(.0548)

11.37(6.690)
3.920(2.980)
.9013(.9879)

0.20X
93.SX
4.SOX

O.OSX
86.OX
11.SX

2.OOX
93.SX
4.SOX

Bias-correc- Favor log-n 1.OOX
ted Percent- Equivalent 89.OX
ile Method Favor exp lO.OX

O.SOX
S1.OX
18.SX
O.OOX
80.OX
20.OX

S00
-.5323(.0585)
1.194(.0607)
.9894(.0466)
.4969(.0351)

22.53(8.770)
4.910(3.550)
1.5761(.9453)

O.OOX
62.SX
37.SX

O.OOX
75.OX
25.OX
O.OOX
66.OX
34.OX

1000
-.5215(.0375)
1.193(.0399)
.9982(.0309)
50'23(.0235)

41.73(12.60)
8.510(4.860)
2.0816(.9309)

O.OX
43.OX
57.OX

O.OOX
39.SX
60.SX
O.OOX
37.OX
63.OX
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