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Abstract

In this paper we discuss properties of N -person axiomatic bargaining problems

< S; d >, where the Pareto frontier of S can be described by a strictly concave

and twice di�erentiable function. These type of problems are characteristic for the

empirical policy coordination literature. In that literature the Pareto frontier of the

bargaining problem coincides with the set of solutions a social planner �nds, who

maximizes a convex combination of N individual utility functions which are strictly

concave and twice di�erentiable. We present an algorithm which determines the

Nash bargaining solution much faster than the usual approach, in which one uses

the standard optimization tools in order to maximize, straight away, the product

of the players' bene�ts in relation to the gains of the disagreement point. Next,

we show that it is possible to determine a subset of the Pareto frontier in which

the Nash bargaining and Kalai-Smorodinsky solution will always fall. Furthermore,

we consider e�ects of changes in the disagreement point d, for a �xed set S. If di
increases, while for each j 6= i; dj remains constant, than the corresponding Kalai-

Smorodinsky solution has the property that player i is the only one who gains. This

property is, however, not generally met for the Nash bargaining solution.

1This research was sponsored by the Economics Research Foundation, which is part of the Netherlands

Organization for Scienti�c Research (NWO).
2The authors would like to thank Eric van Damme, Anne van den Nouweland, Hans Peters and Matthias

Raith for many valuable comments.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/7008993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

1 Introduction

An N -person bargaining problem can be represented by a pair < S; d >, where S � IRN is

called the feasible set and d the disagreement point or threatpoint. In this paper we consider

a particular class of N -person bargaining problems, i.e., problems where the Pareto frontier

of S can be described by a strictly concave and twice di�erentiable function. Among other

areas, this class of problems is extensively studied in the policy coordination literature (see

e.g. Ghosh and Masson [2], Hughes Hallett [3, 4], McKibbin and Sachs [6], Oudiz and Sachs

[9], Petit [12], Raith [13, 14] and de Zeeuw [20]). In the sequel we will use this stream of

literature as a starting point. The class of problems studied in this literature is, however,

a subclass of the problems studied in the main stream game theory literature. The main

stream game literature considers, generally, problems where S � IRN is a convex set, i.e.,

the Pareto frontier of S is concave (see, .e.g., Osborne and Rubinstein [10], Peters [11] and

Thomson [19]). In the policy coordination literature it is usually assumed that each player
maximizes his individual utility (or welfare, payo�), where the utility of each player is
represented by a strictly concave and twice di�erentiable function. In that case the Pareto
frontier can be found using a maximization problem where a social planner maximizes a

convex combination of these N utility functions (see, e.g., Takayama [17]). From this also
follows that each point on the Pareto frontier is uniquely characterised by a suitable choice
of nonnegative weights, say �i � 0, i = 1; :::; N , which are assigned to the individual utility
(or welfare) functions when maximizing this convex combination. Without loss of general-
ity one can furthermore assume that

PN
i=1 �i = 1. Consequently an outcome on the Pareto

frontier of an N -person bargaining problem can be characterised by N � 1 nonnegative
weights. Now, it is common practice in the empirical policy coordination literature to
choose some points on the Pareto frontier which can be viewed as acceptable cooperative
game outcomes. Since in most (real) policy coordination problems the utility functions
of the players are not symmetric, the `social outcome', which assigns to each player equal

weight, is not very representative. It is argued by various authors (see e.g., Ghosh and
Masson [2], Petit [12], Raith [13, 14] or de Zeeuw [20]) that the Nash bargaining solution
is a more acceptable outcome. In empirical studies of Hughes Hallett [3, 4], Petit [12] and
de Zeeuw [20], Nash bargaining outcomes are compared with other axiomatic cooperative

approaches, such as the Kalai-Smorodinsky solution [5]. In all the empirical (two player)

examples not much di�erences are found between the corresponding weights of the two
most popular cooperative outcomes, the Nash bargaining and the Kalai-Smorodinsky solu-

tion. For instance, in de Zeeuw [20] both solutions have the same weights, Petit [12] �nds
weights wich are almost the same ,0.80 and 0.78, and Hughes Hallett [3] reports weights

of 0.67 and 0.68. As a result, the authors found also not much di�erences between the

utility function values and corresponding strategy responses of each individual player in
both outcomes. To �nd more variability in the strategy space Hughes Hallett [4] compares
the Nash bargaining solution with some other `arbitrarily chosen weights' outcomes.

Since, till now, the two most `favourite' axiomatic cooperative outcomes in the policy co-
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ordination literature are the Nash bargaining and the Kalai-Smorodinsky outcome, we will

restrict ourselves to these two outcomes. Both solutions have been de�ned for the N -player

case, where the Nash bargaining solution can be calculated by maximizing a product of

the player's bene�ts in relation to the gains of the disagreement point and the Kalai-

Smorodinsky point can be found by determining the intersection point of the line through

the disagreement point and the `ideal point' with the Pareto frontier (see Thomson [19],

Nash [8] and Kalai and Smorodinsky [5]).

In the introduction of section two we will formulate the policy coordination problem. Then

we will derive for the Nash bargaining solution a unique relationship between the threat-

point, the weights and the utilities the players receive in the Nash bargaining solution.

Using this relationship we will present an algorithm for calculating the Nash bargaining

outcome which is faster and more reliable than the traditional approach. In the traditional

approach the researcher uses a standard optimization algorithm, such as a Gauss-Newton

or Gradient method, and maximizes a function which is described by the product of the
players' bene�t in a Pareto optimal point in relation to the gains of the disagreement point.
Since, in general, the disagreement point is known and each point on the Pareto curve can
be described by a suitable choice of the weights we have that this function depends only

on the weights �i for each player i; i = 1; :::; N . In the traditional approach, therefore, the
optimization process can be compared with the maximization of a strictly concave func-
tion in N variables. In this paper, however, we suggest an approach where we �rst derive
a unique relationship for the Nash bargaining solution and next use this relationship to
obtain a more computationally e�cient algorithm. An other advantage of this relationship
is that it enables us to present some strategic arguments for choosing the Nash bargaining

solution on the Pareto frontier in policy coordination games (see for similar arguments
Ghosh and Masson [2] and Raith [13, 14]). This under the assumption that interpersonal
utility is comparable. This approach is quite di�erent from the one used by Osborne and
Rubinstein [10], who use an explicit model of bargaining in order to describe the strategic
behaviour of the players.

In section three we present a possible explanation for the empirical results from the policy
coordination literature that the weights corresponding to the Kalai-Smorodinsky and the
Nash bargaining solution are almost similar in policy coordination problems. A combi-

nation of two arguments makes these �ndings plausible. First, a theoretical one; we will
show that it is possible to design a subset of the Pareto optimal solutions in which both

solutions always lie. And second, an empirical one; it seems to be the case that, at least in
empirical policy coordination studies, the Pareto curve is often rather at and, thus, does

not contain extreme bendings. Combining the two arguments yields, in general, that the
atter the Pareto curve the closer the two outcomes.

As argued by many authors in the empirical policy coordination literature, one is not so

much interested in a certain outcome on the Pareto frontier, but more interested in the

properties of these outcomes. One of these properties is how Pareto e�cient solutions qual-

itatively react to small changes of the Pareto curve or the disagreement point. In the policy
coordination literature where empirical models are involved this issue is studied by varying
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the modelparameters. This kind of sensitivity analysis will generally shift the whole Pareto

frontier and the question now arises how the Nash bargaining and the Kalai-Smorodinsky

outcome react to this parameter change (see Raith [14]). This aspect is interesting since the

previous arguments show already that both outcomes often coincide, if we now furthermore

could prove that both outcomes react qualitatively in the same manner when applying sen-

sitivity analysis then given our previous computational arguments one could argue that in

practice it would be su�cient to calculate only one of the two bargaining outcomes. It is

clear that a theoretical analysis of this subject is di�cult, since a good description for the

class of the empirical models used in practice is not available, and therefore computing

the e�ect of certain parameter changes is not possible. What we will do in section four of

this paper is that we study the response for the Nash bargaining and Kalai-Smorodinsky

solution to certain changes in the disagreement point d, for a �xed Pareto frontier (or,

equivalently, a �xed set S). It seems that this type of analyses is closest to the problem

sketched above and which is still possible to analyse in a theoretical context. For this

analyses, we will follow Thomson [18], who considers this problem from an axiomatic game
theoretical point of view. He considers two types of axioms. First, the d-monotonicity
axiom. This axiom states, for a �xed set S, that if di increases, while for each j 6= i; dj
remains constant then player's i's payo� should increase. Thomson [18] shows that this
axiom holds for both solutions if S is a convex subset of IRN . Secondly, he considers the
strong d-monotonicity axiom, which states that not only player's i's payo� should increase,
but also the payo�'s of the other players should decrease. Thomson [18] shows that for
the Nash bargaining solution and for the Kalai-Smorodinsky solution this axiom does not

generally hold. However, for our special class of bargaining problems, where the Pareto
frontier is strictly concave and twice di�erentiable, we show that this axiom does hold for
the Kalai-Smorodinsky solution but not, generally, for the Nash bargaining solution. This
�nding may, in particular cases, be an argument in favour for the Kalai-Smorodinsky solu-
tion since it is clear that in practice, if one is involved in sensitivity analysis with respect

to the disagreement point, the strong d-monotonicity property is a useful one.
Another context where these monotonicity properties are relevant are situations in which
each player has some control over the position of the disagreement point (see Thomson
[18]).

2 Problem formulation

In general, a bargaining problem of N -players can be described as < S; d >, where S � IRN

is compact and convex, d 2 S, and there exists J 2 S such that Ji > di for i = 1; :::; N

(see, e.g., Osborne and Rubinstein [10]). S is often called the \feasible set" of utilities.
Each element in S represents a tuple (J1; :::; JN) where Ji represents the utility (or welfare,

payo�) of player i; i = 1; :::; N . d is called the \disagreement point" or \threatpoint".
In this paper we will describe a special case of the bargaining problem which is characteristic

for the policy coordination literature. In this literature S is not only a convex set but
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furthermore it is assumed that the Pareto frontier of S can be described by a strictly

concave and twice di�erentiable function. Formally, the utility (welfare, payo�) for each

player i; i = 1; :::; N is assumed to be described by a strictly concave and twice di�erentiable

function Ji in u 2 U , where U is denoted as the strategy space. Furthermore, we assume

that U is a convex and compact set and that each u = (u1; :::; uN) 2 U contains the

strategies of each individual player i; ui. Now each player wants to maximize utility, i.e.,

this problem can for each player i be described as:

max
u2U

Ji(u); i = 1; :::; N: (1)

Since each player i has only partly control over u, through ui, it is clear that in order

to solve the maximization problem each player is dependent on the strategy choices of

the other player. Now we represent S in the utility space, the J1; :::; JN plane, by those

outcomes for which each player is individually better out than the utility he would receive

in the disagreement point. Thus

S = fJ(u) j u 2 U; J(u) = (J1(u); J2(u); :::; JN(u)); J(u) � d; g:

Remark, �rst that since Ji; i = 1; :::; N are strictly concave functions, S is a convex set in
IRN . And second, since all outcomes in S for each player are better (or at least not worse)
than the disagreement point, bargaining on outcomes in S is of interest to all players. The
advantage of the above characterisation in (1) is that the set of Pareto optimal solutions
can be presented formally. First, let UP be the set of Pareto optimal strategies then this

strategy set can be described as: (see, e.g., Takayama [17]).

UP = fu� 2 U j u� = argmax
u2U

NX
i=1

�iJi(u); �i � 0;
NX
i=1

�i = 1g (2)

In the sequel we assume that UP lies in the interior of U . This assumption guarantees
that u� is uniquely determined as a function of the parameters �1; :::; �N�1, i.e. u� =

u(�1; :::; �N�1), and that u� is a continuously di�erentiable function in (�1; :::; �N�1) (see
Douven and Engwerda [1]). Furthermore, from this characterization we can derive the
following property:

Theorem 2.1 Suppose Ji(u) is strictly concave and twice di�erentiable in u 2 U . Let

�i > 0 and the corresponding solution in (2) be u�. Let J�
i = Ji(u

�), for i = 1; :::; N;. Then

the following holds:

@J�
i

@Jj
= �

�j

�i
; (3)

for i = 1; :::; N; i 6= j.

Proof. See appendix A.
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The set of interesting Pareto optimal solutions, P � S, can be characterized as:

P = fJ(u�) j u� 2 UP ; J(u�) � dg

P is called the bargaining set (see, e.g., Petit [12]). Remark, that P represent only those

outcomes for which all players are better of than in the disagreement point. Thus, in

general, P represents only a subset of the Pareto optimal outcomes. Because of the

strict concavity and the twice di�erentiability assumption of Ji(u) in u 2 U we have

that P represents a hyperplane in the J1; :::; JN-plane for which it is possible to write

Ji = '(J1; :::; Ji�1; Ji+1; :::; JN), for every i = 1; :::; N (see also proof theorem 2.1). Starting

from this problem formulation we will study in section three the Nash bargaining solution,

which we denote by NB, and in section four and �ve we compare this solution with the

Kalai-Smorodinsky solution, which we denote by KS.

3 The Nash bargaining solution

Nash [7] proposed four axiom's on a bargaining solution of the bargaining problem <

S; d > which are: (i) Invariance to equivalent utility representations, (ii) Symmetry, (iii)
Independence of irrelevant alternatives, and (iv) Pareto e�ciency. For a broad discussion
about these axiom's see, e.g., Osborne and Rubinstein [10], Peters [11] or Thomson [19].

Nash [7] proved that these four axiom's determine a unique outcome in the utility space
which can also be found by considering the following problem:

JNB = arg max
J2P

NY
i=1

(Ji � di) (4)

According to the previous section we have that JNB is determined by exactly one strategy,
say uNB, for which JNB = JNB(uNB) and that there is also exactly one �, which we will
denote by �NB, for which (2) yields uNB. In the following subsection we will derive a
relationship between d, �NB and JNB which characterise the NB solution in the N -player

case. In the next subsection we will use this relationship for deriving an algorithm which

computes the NB outcome faster and more reliable than the traditional approach, which
is implementing (4) straight away. Furthermore, we will discuss in subsection three also
some strategic arguments, which make sense in the policy coordination literature.

3.1 A relationship between d; �NB and JNB

In this section we will derive a relationship between d, �NB and JNB of the NB solution

in the N -player case. For the two player case this relationship is already shown by Nash
[8]. This relationship states that �NB

1 (JNB
1 � d1) = (1 � �1)

NB(JNB
2 � d2). In the N -

player case this proof yields some additional problems since in that case it is no longer
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possible to represent � by one single element as is usual in the two-player, where � =

(�1; 1 � �1) depends just on �1. However, for the N -dimensional case we can derive a

similar relationship.

Formally, consider a bargaining problem < S; d > as described in the previous section.

Suppose u = (u1; :::; un), where ui is the strategy of player i 2 1; ::; N, and � = (�1; :::; �N).

Then the Pareto optimal solutions P can be derived by solving for each � the maximization

problem (2) and the unique NB solution can be found by maximizing (4). This yields the

following theorem.

Theorem 3.1 The following relationship holds between the utilities JNB
1 ; :::; JNB

N of the

players, the threatpoint d = (d1; :::; dN) and the weight �NB = (�NB
1 ; :::; �NB

N ) of the NB

solution:

�NB
i =

Q
i6=j(J

NB
i � di)PN

i=1

Q
i6=j(J

NB
i � di)

(5)

for i = 1; :::; N .

Proof. See Appendix B.

Remark that � > 0 and that the relationship in theorem 3.1 implies that:

�NB
1 (JNB

1 � d1) = �NB
2 (JNB

2 � d2) = � � � = �NB
N (JNB

N � dN ); (6)

To get a better understanding of this result we illustrate in �gure 1 the proof geometrically

for the two-player case (see, e.g., Nash [8], Peters [11] or de Zeeuw [20]). The NB solution
on the Pareto curve is the solution for which the angle of the line through d = (d1; d2) and
(JNB

1 ; JNB
2 ) on the Pareto curve and the J1-axis exactly equals the negative angle of the

tangent of the Pareto curve in the point (JNB
1 ; JNB

2 ) and the J1-axis. Both angles are in
the �gure denoted by �. The derivative of the �rst line is given by (JNB

2 � d2)=(J
NB
1 � d1).

Now from the �gure we see that tan� = (JNB
2 � d2)=(J

NB
1 � d1). The derivative of the

tangent on the Pareto-curve �J1 + (1� �)J2 in the NB point is, according to theorem 2.1

given by �NB=(1 � �NB). Now from the angle of this slope with the J1-axis follows that

tan� = (1��NB)=�NB. Combining the two outcomes yields that (1��NB)(JNB
2 � d2) =

�NB(JNB
1 � d1).

3.2 Numerical calculation

A major advantage of the relationship speci�ed in (5) is that numerical calculation in real

problems becomes much easier. Before explaining and comparing our algorithm with the

traditional approach we will �rst give a brief description of the traditional approach. Since
each point on the Pareto frontier is uniquely determined by a set of (�1; :::; �N�1) we have
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Figure 1: A property of the NB solution (NB) in the two-player case.

that in practice the maximization algorithm contains the following steps:

(i) Start with an initial �0 =(�01; :::; �
0
N) 2 IRN , with �0i � 0, i = 1; :::; N and

PN
i=1 �

0
i = 1.

A good guess is often �0 = (1=N; :::; 1=N).
(ii) Compute (2) which yields a Pareto optimal strategy, say u� = u(�0).
(iii) Check if J(u�) 2 P , if not, use this result for making a new guess for an initial value
�0. Continue this procedure till J(u(�0)) 2 P .

(iv) Check whether for this J(u�), (4) holds.
(v) Calculate a new �1 according to a certain decision rule and compute (ii)-(v).
This algorithm description is typical for problems of �nding maximum points of a con-
strained multivariable function by iterative methods. Most of these algorithms are already
implemented in existing computer packages and the type of problems are in the numerical
literature generally referred to as constraint non-linear optimization. Since, in many cases,

the Pareto frontier can be very at, the solution of this kind of problem is not straightfor-

ward, even if we have a convex surface.
However, the existence of relationship (5) leaves us with a non-linear equations problem

which facilitates the following approach:
(i)-(iii) as described above.

(iv) Check whether for this J(u�), (5) holds.

(v) as described above.
These type of algorithms are in the numerical literature referred to as non-linear equations
problems. There are many solution methods for these kind of problems, such as a Gauss-

Newton algorithm or a line-search algorithm (see e.g. Stoer and Bulirsch [16]).
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Remark that in a N -player case the outcome in the second algorithm in (iv) already gives

an indication which �i; i = 1; :::; N should be adjusted to a lower value and which one to

a higher value.

The main point, however, is that for large problems the second nonlinear equations prob-

lems in practice use less computertime than the �rst constraint maximization problems.

This is a well-known fact in the numerical optimization literature. The advantages are

clear. Firstly, we do not have to check if the Nash-product really is maximized and sec-

ondly step (iv) of the second algorithm will automatically take care of the fact that the

�'s satisfy the constraints �i � 0 and
PN

i=1 �i = 1.

3.3 Interpretation of the Nash bargaining solution

In this section we present an interpretation of the NB solution which typically �ts in the

policy coordination literature. In order to make comparisons among the utilities of the
players possible we replace in this section Nash's assumption of independence of equivalent

utility scaling by the assumption that interpersonal utility is comparable. For a possible
interpretation of the NB solution in a more general context we refer to Rubinstein, Safra
and Thomson [15]. In the policy coordination literature Ghosh and Masson [2] and Raith
[14, 13] describe a possible interpretation of the NB solution in the two player case. Since
interpersonal utility is comparable, it is possible to interpret the relationship �NB

1 (JNB
1 �

d1) = �NB
2 (JNB

2 �d2), as that the player who gains more from playing cooperatively is more
willing to accept a smaller welfare weight than the player who gains less. Alternatively, the
player who gains less may demand a higher welfare weight by threatening not to coordinate,
knowing that the potential loss from no agreement is larger for the other player. Using
this interpretation we can construct a more general interpretation of the NB solution. For

instance in the two player case we assume that each player faces the maximization problem:

max
u

Ji(u)� di for player i = 1; 2:

Now all Pareto e�cient strategies of this two-player maximization problem can be found

by maximizing for every (�1; �2) the convex combination:

max
u

�1(J1(u)� d1) + �2(J2(u)� d2) (7)

Now both players simultanously determine � in the following way:
They agree that the more gain a player receives the less weight he will get in the maximiza-

tion problem. They formalize this agreement by giving player 1 a weight of (J2 � d2) and

player 2 a weight of (J1 � d1), If we substitute these weights in the maximization problem
(7), we get:

max
u

(J2(u)� d2)(J1(u)� d1) + (J1(u)� d1)(J2(u)� d2)

which gives us back the original NB problem, which is charactarised by maximizing the

Nash-product (4).
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This idea can easily be extended to the N -player case. In that case the weight �i of player

i = 1; :::; N , is determined by the product: (J1� d1) � � � (Ji�1� di�1)(Ji+1� di+1) � � � (JN �

dN ). So, the weight a player gets in the minimization problem which determines the Pareto

optimal strategies is characterised by the product of the gains of the other players.

4 A comparison: the Nash bargaining and the Kalai-

Smorodinsky solution

Choosing a certain outcome on the Pareto frontier has almost always some arbitrariness.

Many objections have been raised against Nash's independent of irrelevant alternatives

axiom. To understand this axiom we have to consider a bargaining problem < S; d >.

Now, if for some reason, the players only have at their disposal a subset of alternatives in S,
in which the bargaining outcome of < S; d > is included, then this axioma tells us that the
players still agree on the same outcome as in the original bargaining problem. For the two
player case an alternative solution is proposed by Kalai and Smorodinsky [5]. They replace
Nash's axiom of independence of irrelevant alternatives by an axiom of monotonicity. This

axiom requires that if we consider two bargaining problems < S; d > and < T; d >, with
S � T , and if the maximum utility a player can obtain in < S; d > and < T; d > are the
same then the utility each player receives in < T; d > should be at least as high as in the
solution of < S; d >. An important feature between both solution is that the KS solution
responds much more satisfactorily to expansions and contractions of the feasible set (see
Thomson [19]). The KS solution has mainly been studied for the two-player case, in which it

has a greater number of appealing properties than for the N -player case (see Thomson [19]).
In practice, the KS solution is computed as follows. Consider a threatpoint d = (d1; :::; dN).
Compute now N strategies vi 2 UP ; i = 1; :::; N with the resulting property that for each
vi the outcome in S is such that Jj(vi) = dj ; j = 1; :::; N , and i 6= j. Remark that these N
points are exactly the edge-points of P . These N outcomes determine the so called \ideal

point", which can be written as J I = (J1(v1); :::; JN(vN)). Now the intersection point
between the Pareto curve and the line which connects J I and d yields the KS solution.

Remark that to compute the KS outcome one has to solve N + 1- non-linear (constraint)

equations problems. In practice the computer time involved for computing each of these
N + 1 non-linear equations problems is about equal to the computer time involved for

computing the second algorithm for calculating the Nash bargaining solution, as proposed
in the previous section. Therefore, for large problems it takes much more time to compute

the KS solution than the NB solution.

As noted in the introduction the empirical policy coordination literature suggests that both

outcomes yield very similar results. These empirical �ndings have, of course, everything
to do with the formulation of the considered bargaining problems. In this section we will

prove that it is possible to determine a subset of P that contains both; the NB and the KS
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Figure 2: The Nash bargaining solution (NB) and the Kalai-Smorodinsky solution (KS)
lie on that part of the Pareto curve which intersects the right upper rectangle.

solution. Before showing this aspect for the general N -player case, we �rst take a look at
the two-player case. In �gure 2 we draw the utility axis J1; J2 and the curved line which
represents P . As can be seen the whole bargaining problem can, in the J1; J2-plane, be

imbedded in a rectangle with angles (d1; d2), (d1; J
I
2 ), (J

I
1 ; d2) and (J I

1 ; J
I
2 ). This rectangle

can be divided in four smaller rectangles of similar shape in exactly one way. Now, as
illustrated in the example in the �gure, it will always be the case that the NB solution and
the KS solution fall in the upper right rectangle with angles 1

2
(J I + d), (1

2
(J I

1 + d1); J
I
2 ),

(J I
1 ;

1
2
(J I

2 + d2)) and J I . In the following theorem we proof such a property for the general
case: the N -person bargaining problem.

Theorem 4.1 Let d = (d1; :::; dN) be the disagreement point and J I = (J I
1 ; :::; J

I
N) be the

ideal point. Consider now the N-dimensional cube, say C, with the 2N angular points:

f(x1; :::; xN) j xi 2 fdi; J
I
i g; i = 1; :::; Ng:

Let ri = di +
N�1
N

(J I
i � di), for i = 1; :::; N . Now consider the following sets of angular

points:

aii = f(x1; :::; xN) j fxi = di _ xi = J I
i g ^ xk = dk; k = 1; :::; N; k 6= ig;

aij = f(x1; :::; xN) j fxi = di _ xi = J I
i g ^ xj = rj ^ xk = dk; k = 1; :::; N; j 6= k 6= ig;

ai =
N[
j=1

aij;
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for i; j = 1; :::; N; i 6= j. Let Ai be the convex polytope of the set ai. Then both, the NB

and the KS solution, will always lie in the truncated cube:

Cnf
N[
i=1

Aig

Proof. see Appendix C.

First, observe that if the Pareto frontier is relatively at then the Pareto frontier is closer

to the r = (r1; :::; rN) point (e.g. in the two-player case r = 1

2
(d + J I)). This implies

also that the subset of Pareto optimal outcomes which lie in the truncated cube is small.

Secondly, observe that since the KS solution lies on the main diagonal of the truncated

cube C we have, in the case of a at Pareto frontier, that the KS solution will always

lie somewhere in the `centre' of the subset which lies in the truncated cube. Combining

both arguments yields that the KS and NB solution will not diverge too much. As the
�gure in the two-player case already suggests, the atter the Pareto curve, the smaller is
the intersection of P with the right upper rectangle and thus the closer are the NB and
the KS solution 1. This aspect seems to be particularly important in the empirical policy
coordination literature, since the empirical research in this �eld suggests that the Pareto

curve does not show extreme bendings. For readers who are interested in more examples
of �gures of Pareto curves in which the KS- and NB-solution are drawn we refer to Hughes
Hallett [3], Petit2 [12] and de Zeeuw [20].

5 Strong d-monotonicity properties

Another relevant question, if we are concerned about the choice between the NB and the
KS outcome, are the qualitative properties of both solutions. As stated in the introduction,
in this section we will study the problem how both outcomes, NB and KS change when
the disagreement point changes for a �xed set S. There is some research in this �eld
undertaken by Thomson [18] for the more general case where the set S is convex. If, for

a �xed set S, the threatpoint d for one particular player, i, increases while for each other

player j; j 6=i; dj remains constant, then both solutions recommend an increase in player
i's welfare. This property is called d-monotonicity (Thomson [18]). However, Thomson

[18] investigates also a stronger requirement, called strong d-monotonicity. This axiom
states that if the threatpoint d for one particular player, i, increases while for each other

player j; j 6=i; dj remains constant, not only the welfare for player i increases, but also all

other players' welfares decrease. Remark, that this property of strong d-monotonicity is
always satis�ed in two-player bargaining games, since the increase of one player's welfare

1We refer to Appendix C for a graphic representation of truncated cube in the three-player case.
2Remark, that theorem 4.1 implies that the position of the NB-solution and the KS-solution as drawn

in �gure 9.2 cannot be correct.
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is always at the costs of the other player's welfare. Less clear are these properties however

in the general case: the N -dimensional bargaining game. Thomson [18] shows that in the

N -player case (N >3), the stronger requirement that player i is the only one to gain is

not generally met. For the 3-player case Thomson [18] gives for both solutions, NB and

KS, an example were di increases for player i which leads also to an increase in welfare

for a player j; j 6=i, i.e., the general requirement of strong d-monotonicity does not hold for

both solutions. For the sequel it is important to remark that both counterexamples were

constructed for a bargaining game < S; d > where S � IR3 was a convex set in which the

surface of S could not be represented by a strictly concave function. Since we are looking

here at a smaller class of problems we immediately conclude from Thomson's result that

in this case d-monotonicity holds for both outcomes. However, strong d-monotonicity is

less clear. In the following theorem we show that the requirement of strong d-monotonicity

holds for the Kalai Smorodinsky solution but not, always, for the NB solution.

Theorem 5.1 Let < S; d > be a N-person bargaining game (N � 3), where the Pareto

frontier of S can be represented by a strictly concave and twice di�erentiable function.

Then the KS solution satis�es the requirement of strong d-monotonicity, whereas the NB

solution does not.

Proof. See appendix D.

6 Conclusions

In this paper we look at N -person axiomatic bargaining games for which the Pareto frontier
of the feasible set can be described by a strictly concave and twice di�erentiable function.

For this special class of games we have derived a relationship for the Nash bargaining solu-
tion. This relationship describes the Nash bargaining outcome in relation to the threatpoint
and the corresponding weights, which follow from maximizing a convex combination of in-
dividual utility (or welfare) functions. With this relationship, the computation of the Nash

bargaining solution becomes far more easier than the traditional approach, which is maxi-

mizing the Nash-product straightforward. Since the Nash bargaining solution is commonly

used in the policy coordination literature, there is some research in this literature for the

strategic reasoning of this solution. If we assume that interpersonal utility is comparable
then a possible interpretation might be that the player who gains more by playing coopera-

tively is more willing to accept a smaller welfare weight. On the other hand, the player who
gains less may demand a higher welfare weight by threatening not to coordinate, knowing

that the potential loss from no agreement is larger for the other player(s).
The two `most favourite' solutions used in the the policy coordination literature are the

Nash bargaining and the Kalai-Smorodinsky solution. In this paper we prove for the

N -player case that it is possible to derive a subset of the bargaining set, in which both
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outcomes fall. Combining this result with the empirical results in the policy coordination

literature where usually the bargaining set does not show extreme bendings, we have that

in practice both solutions mostly lie `fairly close'. Given the fact that using our algorithm

for calculating the Nash bargaining solution is computationally much more e�cient than

calculating the Kalai-Smorodinsky solution these �ndings suggests that in policy coordi-

nation problems it su�ces to calculate the Nash bargaining solution.

In the last section we consider strong d-monotonicity properties, for the N -player case,

of both solutions. We investigate how both solutions respond to certain changes in the

disagreement point d. If di increases, while dj; j 6= i, remains constant, then the Kalai-

Smorodinsky solution recommends an increase of the gains of player i and a decrease in gain

for all the other players. This result is opposite to the result which is found for a more gen-

eral class of games where the feasible set is a convex set. In that class of bargaining games

the strong d-monotonicity requirement is not generally met for the Kalai-Smorodinsky

solution. Finally we showed that in our class of games, the strong d-monotonicity re-

quirement is, however, not generally met for the Nash bargaining solution. From a policy
coordination point of view this suggest that the Kalai-Smorodinsky solution makes more
sense. Unfortunately, however, as we noted before the computation of this solution takes

more time.
So, our �nal conclusions for the policy coordination literature are therefore as follows. If
the computation of the Nash bargaining and Kalai-Smorodinsky solution are fairly easy to
compute, we propose to use the Kalai-Smorodinsky solution as a representative bargain-
ing outcome, since for this solution the property of strong d-monotonicity holds. On the

other hand, if the computer-time involved for computing a bargaining outcome is a major
problem we suggest to calculate the Nash bargaining outcome since this outcome can, on
average, be calculated N +1 times quicker than the Kalai-Smorodinsky solution (where N
represents the number of players). Furthermore, since in the policy coordination literature
the weights corresponding to the Nash bargaining and Kalai-Smorodinsky solution are al-

most the same, the strategic interpretation we derived for the Nash bargaining solution
can also be used for the Kalai-Smorodinsky solution.
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A Appendix

Consider N strictly concave and twice di�erentiable functions Ji(u); i = 1; :::; N , for u 2 U .

Now the Pareto curve is determined by a set �i > 0; i = 1; :::; N , and the following problem:

max
u2U

�1J1(u) + � � � + �1J1(u): (8)

Without loss of generality we assume in the sequel that �i > 0; i = 1; :::; N and
PN

i=1 �i = 1.

Now every element, say (��1; :::; �
�
N), determines a unique strategy u� and a unique point

J� = J(u�) on the Pareto curve. Thus

� :=

0
BB@

�1
...

�N�1

1
CCA!

0
BB@

J�
1 (�)
...

J�
N(�)

1
CCA

Thus we can write: 8>><
>>:

x1 = J�
1 (�)

...

xN = J�
N(�)

; or

8>><
>>:

x1 � J�
1 (�) = 0
...

xN � J�
N(�) = 0

The next step is to write xN as a function of x1; :::; xN�1. Therefore, we use the previous
�rst N � 1 equations and write implicitly � = '(x1; :::; xN�1). Using, now the implicit

function theorem, we have that: '0 = �J �1
� where

J� =

0
BBB@
� @J1

@�1
� � � � @J1

@�N�1

...
...

�
@JN�1

@�1
� � � �

@JN�1

@�N�1

1
CCCA :

Thus,

xN = J�
N('(x1; :::; xN�1))

= J�
N('1(x1; :::; xN�1); :::; 'N�1(x1; :::; xN�1)):

Using the chain rule we have that:

@xN

@xi
=

@JN

@'1

@'1

@xi
+ � � �+

@JN

@'N�1

@'N�1

@xi

Now, since u� is a solution of (8) we have that (envelop theorem):

�1
@J1

@�i
+ � � �+ �N

@JN

@�i
= 0;



16

for i = 1; :::; N � 1: Therefore,

@xN

@xi
= �

1

�N
(
N�1X
i=1

�i
@Ji

@�1
)
@'1

@xi
� � � � �

1

�N
(
N�1X
i=1

�i
@Ji

@�N�1

)
@'N�1

@xi

= �
1

�N
(�1; :::; �N�1)

0
BBB@
� @J1

@�1
� � � � @J1

@�N�1

...
...

� @J1
@�1

� � � �
@JN�1

@�N�1

1
CCCA
0
BB@
�

@'1
@xi
...

�
@'N�1

@xi

1
CCA

= �
1

�N
(�1; :::; �N�1)

0
BBBBBBB@

0
...

1
...

0

1
CCCCCCCA
 ithplace

= �
�i

�N

which yields the proof.

B Appendix

Since we assumed that Ji; i = 1; :::; N are strictly concave and twice di�erentiable and that
UP lies in the interior of U we have that for each � a strategy is uniquely determined by
the following �rst order conditions:

�1J11 + �2J21 + � � �+ �NJN1 = 0;

�1J12 + �2J22 + � � �+ �NJN2 = 0; (9)
...

�1J1N + �2J2N + � � �+ �NJNN = 0;

where Jij = @Ji=@ui. Solving these equations yields u
�(�). Using the simplifying notation:

~Jij = Jj1u1i + Jj2u2i + � � � + JjNuNi

for i; j 2 1; :::N, with uij = @ui=@�j and rearranging (9) we see that:

�1 ~J1i + �2 ~J2i + � � �+ �N ~JNi = 0 (10)

for i 2 1; :::N. This is an important relationship which holds for all Pareto optimal
solutions. Next we consider the �rst order conditions from maximizing the Nash-product
(4). They are (with the simplifying notation si = Ji � di):

~J1is2s3 � � � sN + ~J2is1s3 � � � sN + � � �+ ~JNis1s2 � � � sN�1 = 0 (11)
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for i = 1; :::; N . Now comparing the two systems of N equations (10) and (11) we see that:

c�1 = s2s3 � � � sN

c�2 = s1s3 � � � sN
...

c�N = s1s2 � � � sN�1;

where c is some constant, satis�es both systems of equations. Taking now into consideration

that
PN

i=1 �i = 1 we see that

�i =

Q
i6=j siPN

i=1

Q
i6=j si

(12)

satis�es both systems of equations. The Pareto strategy wich belongs to this � maximizes

(2) and maximizes (4). Since the Nash bargaining solution determines a unique outcome

J 2 P (see Nash [7]) and the fact that every strategy u 2 UP is uniquely determined by
an � 2 [0; 1] we have that � is uniquely determined by this relationship. 2

C Appendix

In the �rst subsection we will �rst illustrate the proof for the 3-player case. The same
arguments we use in the 3-player case will be used in the next subsection for the N -player
case. An advantage of presenting the proof in this way is that the reader gets a better

understanding of the proof and in particular of the truncated cube Cnf[Ni=1Aig.

C.1 The 3-player case

Without loss of generality, we take for the disagreement point d, the origin. Thus, assume
d =(0,0,0). Then cube C is determined by the convex polytoop with 23 angular points

f(x1; x2; x3) j xi 2 f0; J
I
i g; i = 1; 2; 3g;

and the three convex polytopes Ai, are described by the set of angular points ai; i = 1; 2; 3:

a1 = f(0; 0;
2

3
J I
3 ); (0;

2

3
J I
2 ; 0); (0; 0; 0); (J

I
1 ; 0;

2

3
J I
3 ); (J

I
1 ;
2

3
J I
2 ; 0); (J

I
1 ; 0; 0)g;

a2 = f(0; 0;
2

3
J I
3 ); (

2

3
J I
1 ; 0; 0); (0; 0; 0); (0; J

I
2 ;
2

3
J I
3 ); (

2

3
J I
1 ; J

I
2 ; 0); (0; J

I
2 ; 0)g;

a3 = f(
2

3
J I
1 ; 0; 0); (0;

2

3
J I
2 ; 0); (0; 0; 0); (

2

3
J I
1 ; 0; J

I
3 ); (0;

2

3
J I
2 ; J

I
3 ); (0; 0; J

I
3 )g:
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First, consider the Kalai-Smorodinsky solution. Remark that each convex polytope Ai

contains 1

3
J I as an edge point. Furthermore, observe that the line through the origin and

the ideal point �J I lies in the interior of each convex polytope Ai for 0 < �< 1

3
and outside

each Ai for
1

3
< ��1. Next, consider the convex polytoop D, determined by the angular

points:

f(J I
1 ; 0; 0); (0; J

I
2 ; 0); (0; 0; J

I
3 )g

Now, it is easy to show, that the intersection of the line �J I and D occurs for � = 1

3
. Since,

the set of Pareto optimal solutions is concave and the fact that the edges of P lie in D, we

have that the KS-solution is given by �J I , for some 1

3
< ��1. Combining the two results,

we have in particular that the KS-solution lies inside cube C, but outside A = [3i=1Ai.

Secondly, consider the Nash bargaining solution. This solution is determined by maximiz-

ing the Nash-product J1J2J3, with J 2 S. Since, P is strictly concave we can write each

Ji; i = 1; 2; 3; as a function of the other two components. First we consider the case where

J3 is written as a function of J1; J2, thus J3 = '(J1; J2). Now, consider the function:

f(J1; J2) = J1J2'(J1; J2)

with Ji 2 [0; J I
i ] for i = 1; 2. Note that the domain of ' is a convex set which can be

parametrized using spherical coordinates. See Figure 3. That is, every (J1; J2) 2 H can

J2

J1

6

-

$
�
�
�
�
��

s!

r1

H

Figure 3: The domain of ' in the 3-player case.

be written as
J1 = r!1; J2 = r!2;

where ! = (!1; !2) is an element of the unit sphere 
 = f(J1; J2) j J
2
1 + J2

2 = 1g. Using
this transformation, f reduces to

f(r; !) = r2!1!2'(r; !)

Now, for a �xed ! 2 
 we look for the r 2 H that maximizes the Nash-product J1J2J3.

Assume that for this �xed ! the maximal possible r is r1. So, assume r 2 [0; r1]. Then we
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can derive f 0r:

f 0r(r; !) = f2r'(r; !) + r2'0
r(r; !)g!1!2:

Now, we are interested in points where f 0r(r; !) = 0 for r > 0. Since, ! is �xed the problem

is equivalent with:

g(r) := 2'(r; !) + r'0
r(r; !) = 0:

Now, �rst observe that since ' is strictly concave we have that

g0r(r) = 3'0
r(r; !) + r'00

rr(r; !) < 0:

Now, since gr is monotone descending with g(0) > 0 and g(r1) < 0 we have that g(r)

obtains a unique maximum between [0; r1]. Using now the mean value theorem we have

that for a � 2 [2
3
r1; r1]:

g(
2

3
r1) = 2'(

2

3
r1; !) +

2

3
r1'

0
r(
2

3
r1; !)

= 2'(
2

3
r1; !)� 2'(r1; !) +

2

3
r1'

0
r(
2

3
r1; !)

= �
2

3
r1f'

0
r(�; !)� '0

r(
2

3
r1; !)g > 0:

This implies that g(r) has a zero in the interval [2
3
r1; r1].

Now, observe that this result can be obtained for every ! 2 
. Since P is strictly concave
we have that (r; !) covers at least the area of the convex surface determined by the angular

points f(0; 0); (J I
1 ; 0); (0; J

I
2 )g. Thus we have that the maximummust be obtained for values

(r; !) which lie outside the convex polytope determined by f(0; 0); (2
3
J I
1 ; 0); (0;

2

3
J I
2 )g. Thus,

this implies that there are no values of (r; !; '(r; !)) 2 A3, with A3 is the convex polytope
determined by the set of angular points:

a3 = f(
2

3
J I
1 ; 0; 0); (0;

2

3
J I
2 ; 0); (0; 0; 0); (

2

3
J I
1 ; 0; J

I
3 ); (0;

2

3
J I
2 ; J

I
3 ); (0; 0; J

I
3 )g;

which maximize the Nash-product.

This proof can be repeated for the case where J2 is a function of J1; J3 which yields that

there are no solutions possible inside A2. In a similar way we get A1. Thus the values

(JNB
1 ; JNB

2 ; JNB
3 ) which are determined by maximizing the Nash-product must lie inside

cube C, but outside [3i=1Ai.

To illustrate the truncated cube in the 3-player case we give in Figure 4 a representation
of this cube. The solid lines indicate cube C. The dotted lines inside the cube represent

the convex polytopes A1; A2 and A3. The three dashed lines inside the cube are the

intersection lines of two of the three polytopes A1; A2 or A3. Those three lines determine

the point 1

3
J I. The truncated cube Cn [3i=1 Ai can now be determined by cutting the
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Figure 4: A 3-dimensional representation of cube C, and the polytopes A1; A2 and A3.
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Figure 5: The truncated cube in the 3-player case.
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convex polytopes A1; A2 and A3 from the cube C. This is done in Figure 5. In Figure

5 the truncated cube is determined by the solid- and dashed lines. The dotted lines

represent the original cube. We see that the point 1

3
J I is a spearpoint of the truncated

cube. Furthermore, we have that the truncated cube touches the polytope D, determined

by the set f(J I
1 ; 0; 0); (0; J

I
2 ; 0); (0; 0; J

I
3 )g, in

1
3
J I . Now, since the Pareto curve has to fall

to the right of this polytope D, we have that if the Pareto curve is relatively at then the

intersection of the Pareto curve and the truncated cube lies in the neighborhood of 1

3
J I .

Thus in that case the KS-solution and NB-solution will always lie `fairly close'.

C.2 The N -player case

The proof for the N -player case is similar to the three player case. First, consider the

Kalai-Smorodinsky solution. This solution is determined by the intersection between the

line through the origin and the ideal point, �J I , and the convex polytope described by N
angular points:

f(J I
1 ; 0; :::; 0); :::; (0; :::; 0; J

I
N)g

Now, the intersection occurs for � = 1

N
and, again observe that the KS-solution can now

be written as �J I with 1
N
< ��1. Observe, furthermore, that the KS-solution lies outside

A = [Ni=1Ai.

Secondly, consider the Nash bargaining solution. Write JN = '(J1; :::; JN�1). Now con-

sider:

f(J1; :::; JN�1) = J1 � � �JN�1'(J1; :::; JN�1):

Transform the problem using spherical-coordinates. Let ! = (!1; :::; !N�1). This yields:

Ji = r!i;

for i = 1; :::; N � 1. De�ne prod:=!1� � �!N�1, then we can rewrite f :

f(r; !) = rN�1'(r; !)prod:

Now, �x !. Then

f 0r(r; !) = f(N � 1)rN�2'(r; !) + rN�1'0
r(r; !)gprod:

Now, we are interested in points for which f 0r = 0, for r > 0. Again de�ne g:

g(r) := (N � 1)'(r; !) + r'0
r(r; !)

Observe now that g(r) is monotone descending with g(0) > 0 and that g(r1) < 0. Thus
g(r) has a maximum between [0; r1]. Follow now the derivation of the proof in the 3-player

case and remark that the maximum should be attained for r 2 [N�1
N

r1; r1]. After this
observation the remaining part of the proof is straightforward.
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D Appendix

In this appendix we derive in the �rst subsection the strong d-monotonicity result for the

KS-solution for the 3-player case. The argumentation of the proof for the N -player is the

same. This will be done in the next subsection. In the third subsection we consider the

NB-solution. We consider only the 3-player case and give a condition for which strong

d-monotonicity holds in the 3-player case.

D.1 The KS-solution: 3-player case

First we consider the 3-player case for the KS-solution. Since, P can be represented by

a strictly concave and di�erentiable function can write for every pair (J1; J2; J3) 2 P ,

J3 = '(J1; J2). The KS-solution can now be determined by the equations:

0
B@ d1

d2
d3

1
CA+ �

0
B@ d1 � J I

1

d2 � J I
2

d3 � J I
3

1
CA =

0
B@ JKS

1

JKS
2

'(JKS
1 ; JKS

2 )

1
CA ; (13)

where the ideal point J I = (J I
1 ; J

I
2 ; J

I
3 ) is determined by:

d3 = '(J I
1 ; d2); or � d3 + '(J I

1 ; d2) = 0;

d3 = '(d1; J
I
2 ); or � d3 + '(d1; J

I
2 ) = 0;

J I
3 = '(d1; d2):

This implies that J I
1 and J

I
2 are implicitly determined by a function of (d1; d2; d3). Suppose

now that  
J I
1

J I
2

!
=

 
~f1(d1; d2; d3)
~f2(d1; d2; d3)

!
= ~f(d1; d2; d3);

then the implicit function theorem states that

@(J I
1 ; J

I
2 )

@(d1; d2; d3)
=

@ ~f

@(d1; d2; d3)
=

0
B@ 0 �

'0
2

'01

1

'01

�
'0

1

'02
0 1

'02

1
CA (14)

Remark that, here and in the sequel, we will use the notation '0
i to denote the partial

derivative of ' to the i'th component. From (13) follows now that:

d3 + �(d3 � J I
3 ) = '(JKS

1 ; JKS
2 ) or � =

JKS
3 � d3

d3 � J I
3

:
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Therefore, JKS
1 ; JKS

2 are implicitly determined by:

8>><
>>:

JKS
1 � d1 �

JKS
3

�d3

d3�J
I
3

(d1 � J I
1 ) = 0

JKS
2 � d2 �

JKS
3

�d3

d3�J
I
3

(d2 � J I
2 ) = 0

or, substituting

8>><
>>:

g1 = JKS
1 � d1 +

d3�'(J
KS
1

;JKS
2

)

d3�'(d1;d2)
(d1 � ~f1(d1; d1; d3)) = 0

g2 = JKS
2 � d2 +

d3�'(J
KS
1

;JKS
2

)

d3�'(d1;d2)
(d2 � ~f2(d1; d1; d3)) = 0

(15)

Thus g = (g1; g2) determines implicitly (JKS
1 ; JKS

2 ) as a function of (d1; d2; d3). Now let

Jg =

 
@(g1; g2)

@(JKS
1 ; JKS

2 )
;

@(g1; g2)

@(d1; d2; d3)

!
:

We will now explicitly derive Jg, but in order to save space we, �rst, introduce the following

notation:

Ii =
di � J I

i

d3 � J I
3

; Ki =
di � JKS

i

d3 � J I
3

for i = 1; 2; 3. Then, computing the derivatives from (15) yields

@g

@(JKS
1 ; JKS

2 )
=

0
@ 1� I1'

0
1 � I1'

0
2

�I2'
0
1 1 � I2'

0
2

1
A ; (16)

and

@g

@(d1; d2; d3)
=

0
B@ K3 � 1 + '0

1I1K3 K3'
0
2(I1 +

1

'01
) I1(1�K3)�

1

'01
K3

K3'
0
1(I2 +

1

'02
) K3 � 1 + '0

2I2K3 I2(1�K3)�
1

'02
K3

1
CA :

Now, since the matrix in (16) is always non-singular, the implicit function theorem states
that

@(JKS
1 ; JKS

2 )

@(d1; d2; d3)
= �f

@g

@(JKS
1 ; JKS

2 )
g�1f

@g

@(d1; d2; d3)
g (17)

where the inverse of the matrix in (16):

f
@g

@(JKS
1 ; JKS

2 )
g�1 =

1

1� fI1'0
1 + I2'0

2g

 
1� I2'

0
2 I1'

0
2

I2'
0
1 1 � I1'

0
1

!
:
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Now we are able to derive explicitly the elements of the matrix in (17). Now, we �rst

compute the upper-left element:

@JKS
1

@d1
= �

K3 � 1 + 2I1K3'
0
1 + 2I1I2'

0
2 � I2K3'

0
2

1� fI1'0
1 + I2'0

2g
:

Now, remark that K3�1 < 0 and Ki < 0; Ii < 0 for i = 1; 2; 3; and that, since ' is concave,

'0
i < 0, for i = 1; 2. This implies that

@JKS
1

@d1
> 0. This result is in line with the result of

Thomson, i.e., the Kalai Smorodinsky solution satis�es d-monotonicity. Now, after some

extensive calculation we can derive:

@JKS
1

@d2
= �

'0
2

'0
1

:
K3 � I1I3'

0
1 + 2I1K3'

0
1 � I2K3'

0
2

1 � fI1'0
1 + I2'0

2g
:

@JKS
1

@d3
=

1

'0
1

:
K3 � I1I3'

0
1 + 2I1K3'

0
1 � I2K3'

0
2

1� fI1'0
1 + I2'0

2g
:

Remark now, that since the sign of �'02
'0

1

and 1

'0
1

are both negative we have that the sign

of both
@JKS

1

@d2
and

@JKS
1

@d3
must be the same. Since, the problem is symmetric in fJ1; J2; J3g

and symmetric in fd1; d2; d3g we have that the sign of every
@JKS

i

@dj
for i; j = 1; 2; 3; i 6= j

must be the same. Now, observe that if this sign would be positive, each player would

gain by a small positive perturbation of d1; this is, due to the Pareto optimality condition,
impossible. Thus, we can now construct the sign-matrix for the derivative:

@(JKS
1 ; JKS

2 ; JKS
3 )

@(d1; d2; d3)
=

0
B@

+ � �

� + �

� � +

1
CA :

This observation indicates that player 2 and 3 do not gain if we give a small positive
perturbation to d1, i.e., the Kalai Smorodinsky solution satis�es strong d-monotonicity.

D.2 The KS-solution: N -player case

The derivation of the proof of strong d-monotonicity in the N -player case is in its essence

the same. First, write for every J1; :::; JN 2 P; JN = '(J1; :::; JN�1). Follow now the
previous proof, and remark that

(@J1; :::; JN�1)

@(d1; :::; dN)
=

0
BBBBBBBBBBB@

0 �
'0

2

'0
1

� � � �
'0N�1

'0
1

1

'0
1

�
'0

1

'0
2

0 � � � �
'0N�1

'0
2

1

'0
2

...
...

. . .
...

...

�
'0

1

'0N�1

� � � � � � 0 1

'0
2

1
CCCCCCCCCCCA
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Now, observe that

@g

@(JKS
1 ; :::; JKS

N�1)
= I �

0
BB@

I1
...

IN�1

1
CCA
�
'0

1; � � � ; '
0
N�1

�
;

where I is the identity matrix. Due to this special form it is possible to calculate the

inverse of this matrix explicitly:

f
@g

@(JKS
1 ; :::; JKS

N�1)
g�1 = I +

0
BB@

I1
...

IN�1

1
CCA�'0

1; � � � ; '
0
N�1

�
;

1� ('0
1; � � � ; '

0
N�1)

0
BB@

I1
...

IN�1

1
CCA

(18)

After some extensive calculation it is possible to derive @g

@d
. For the proof, however, we are

just interested in the second and third column of this matrix. These are given by

@g

@(d2; d3)
=

0
BBBBBBBB@

KN'
0
2(I1 +

1

'01
) KN'

0
3(I1 +

1

'01
)

KN � IN + '0
2I2KN KN'

0
3(I2 +

1

'02
)

KN'
0
2(I3 +

1

'03
) KN � IN + '0

3I3KN

...
...

KN'
0
2(IN�1 +

1
'0N�1

) KN'
0
3(IN�1 +

1
'0N�1

)

1
CCCCCCCCA

We can calculate and compare
@JKS

1

@d2
and

@JKS
1

@d3
. Remark, that we only need the �rst row of

the matrix in (18) for deriving these expressions. This yields that

'0
3

@JKS
1

@d2
= '0

2

@JKS
1

@d3
:

This observation implies that signs of both terms,
@JKS

1

@d2
and

@JKS
1

@d3
, are the same. Now, we

use the symmetry argument to derive that all terms
@JKS

i

@dj
; j 6= i; i; j = 1; :::; N must have

the same sign. Since we are looking after Pareto optimal outcomes, it is impossible that

the signs are all positive; thus we, �nally, have that

@JKS
i

@di
> 0; and

@JKS
i

@dj
< 0;

for i = 1; :::; N; and j 6= i, which yields that the Kalai Smorodinsky satis�es strong d-

monotonicity in the N -player case.



26

D.3 The Nash bargaining solution

Consider the 3-player case. Since P is concave, there is a function ' such that (J1; J2; J3) =

(J1; J2; '(J1; J2)) 2 P . The Nash bargaining solution is determined by

max
J1;J2

(J1 � d1)(J2 � d2)('(J1; J2)� d3)

This maximization problem contains, according to Nash, exactly one global maximum.

Furthermore, it is clear that the solution of this problem, say JNB = (JNB
1 ; JNB

2 ; JNB
3 ),

lies not on the edge of P , i.e., it is an internal element of P . Thus the Nash bargaining

solution is uniquely determined by:

(JNB
2 � d2)f'(J

NB
1 ; JNB

2 ) � d3 + '0
1(J

NB
1 � d1)g = 0

(JNB
1 � d1)f'(J

NB
1 ; JNB

2 ) � d3 + '0
2(J

NB
2 � d2)g = 0:

Now, we follow the same procedure as in the proof of the Kalai Smorodinsky solution. This
yields that there is a function g for which gi(J

NB
1 ; JNB

2 ; d1; d2; d3) = 0 for i = 1; 2, with(
g1 = '(JNB

1 ; JNB
2 )� d3 + '0

1(J
NB
1 � d1) = 0

g2 = '(JNB
1 ; JNB

2 )� d3 + '0
2(J

NB
2 � d2) = 0

Thus

@g

@(JNB
1 ; JNB

2 )
=

 
2'0

1 + '00
11(J

NB
1 � d1) '0

2 + '00
12(J

NB
1 � d1)

'0
1 + '00

21(J
NB
2 � d2) 2'0

2 + '00
22(J

NB
2 � d2)

!
; (19)

and

@g

@(d1; d2; d3)
=

 
�'0

1 0 �1
0 �'0

2 �1

!
:

Now, suppose that @g

@(JNB
1

;JNB
2

)
is invertible, then its inverse is given by

f
@g

@(JNB
1 ; JNB

2 )
g�1 =

1

det

 
2'0

2 + '00
22(J

NB
2 � d2) �'

0
2 + '00

12(J
NB
1 � d1)

�'0
1 + '00

21(J
NB
2 � d2) 2'0

1 + '00
11(J

NB
1 � d1)

!
;

where det is the determinant of the matrix in (19). Now, we are ready to calculate the

behaviour of the Nash bargaining solution if we perturbate (d1; d2; d3). This is determined
by

@(JNB
1 ; JNB

2 )

@(d1; d2; d3)
= �f

@g

@(JNB
1 ; JNB

2 )
g�1f

@g

@(d1; d2; d3)
g (20)

Now, observe that
@JNB

1

@d1
> 0 and

@JNB
2

@d2
> 0 which is in line with the d-monotonicity result

of Thomson. However, observe also if

�'0
2 + '00

12(J
NB
1 � d1) > 0
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then
@JNB

1

@d2
> 0. This indicates that player two gains if we give small positive perturbation

to d2. From this result we can derive, for the 3-player case, a necessary condition for strong

d-monotonicity which is that '00
ij > 0. Furthermore, remark that for the general N -player

case, the derivation of (20) is much more complicated, since this involves computing the

inverse of @g

@(JNB
1

;:::;JNB
N�1

)
.
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