8414 -mic Research 19913

53

No. 9153

BAYESIAN INFERENCE IN TIME SERIES

$$
R 46
$$

by Mark F.J. Steel $5 / 8.99$

October 1991

ISSN 0924-7815

BAYESIAN INFERENCE IN TIME SERIES

Mark F.J. Steel*
Tilburg University
Tilburg, The Netherlands

September 1991

[^0]
BAYESIAN INFERENCE IN TIME SERIES

Whenever decisions under uncertainty have to be made, a statistical paradigm becomes an essential tool for extracting information from observed data and using this to improve our knowledge about the world (inference), thus eventually guiding us in our decision problem. The Bayesian paradigm is certainly not as heavily used as its frequentist or "classical" counterpart in the realm of econometrics, yet it seems ideally suited to address several questions of great interest to applied researchers in this field. It provides us with a formal way of incorporating the prior information we so often possess before actually seeing the data, it fits perfectly with sequential learning and decision theory, and directly leads to exact small sample results. In addition, it naturally gives rise to predictive densities, where all nuisance parameters are integrated out: the latter is exactly what we need for forecasting.

Let us briefly consider an example. A very simple model for the transactions demand for money m_{t}, observed at time t, is the following:

$$
\begin{equation*}
m_{t}=\alpha_{0}+\alpha_{1} i_{t}+\alpha_{2} p_{t}+\alpha_{3} r_{t}+\varepsilon_{t} \tag{1}
\end{equation*}
$$

where all variables are in logarithms and i_{t}, p_{t} and r_{t} respectively denote real income, price and interest rate; ε_{t} is just an unobserved error term. Before seeing any data, a lot of prior information on the coefficients in (1) will typically exist: α_{1} and α_{2} will be believed to be positive and the interest elasticity α_{3} will often be constrained to $(-1,0)$. Furthermore, values of α_{2} around one are deemed likely if one believes in the absence of money illusion, and both α_{1} and α_{2} close to one reflects a prior belief in a constant velocity of circulation. These beliefs will then have to be formalized in a prior distribution on the coefficients.

For the main features of both paradigms, let me refer the reader to an excellent survey by Poirier (1988). Suffice it to say here that the basic underlying probability interpretation for a Bayesian is a subjective one, referring to a personal degree of belief. The fundamental rules of probability calculus are then used to examine how prior beliefs are transformed to posterior beliefs by the data information. The researcher learns from observing the world, and the only restriction on her subjective beliefs is consistency with the axioms of probability. Having obtained some actual data on ($m_{t}, i_{t}, p_{t}, r_{t}$) she will be able to monitor how each new data point revises her beliefs sequentially.
These posterior distributions can be used to integrate out the coefficients when she is interested in forecasting future values of money demand through (1). As she does not know the α 's, it seems natural to average out over them, using her knowledge of that moment, rather than conditioning on particular values. She can also test e.g. the hypothesis of no money illusion ($\alpha_{2}=1$). One way is to use highest posterior density intervals: "Does the shortest interval which covers, say, 95% of the posterior probability mass for α_{2} include the value one?" Given a proper prior on α_{2} (i.e. one that integrates to one) she can also use a posterior odds test, which is directly interpretable in terms of the posterior probability of the hypothesis.

Clearly, in reporting such results it will often be good practice to conduct a sensitivity analysis with a range of different prior distributions, which will typically contain a "noninformative" or "reference" prior distribution as well. Finally, the mapping from prior to posterior uncertainty can only depend on the likelihood yielded by the data actually observed: observations that might have occurred, but did not, carry no weight whatsoever. This so-called likelihood principle is crucial for appreciating the differences between both paradigms.

Within the vast literature on models for time series data, we select two broad groups of models that seem of particular relevance for applications in macroeconomics and finance: univariate ARMA models and structural econometric models. The symbol p is used generically to denote density functions, whether proper or not.

Univariate ARMA Models

Ever since the seminal work of Box and Jenkins (1970) the class of autoregressive movingaverage ($\Lambda R M \wedge$) processes has been popular to describe the variation of macroeconomic time series like GNP or stock prices. If y_{t} denotes the observed value (often in logs) for a scalar variable at time t, the ARMA (p, q) sampling model can be defined as

$$
\begin{equation*}
y_{t}=\sum_{i=1}^{p} \varphi_{i} y_{t-i}+\varepsilon_{t}+\sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} \tag{2}
\end{equation*}
$$

for $t=1, \ldots T$ and where the ε_{t} 's are independent random shocks all drawn from the same Normal distribution with mean zero and variance σ^{2}. Stationarity of (2) implies e.g. that the influence of initial observations $y_{(0)}=\left(y_{1-p}, \ldots, y_{0}\right)^{\prime}$ dies out as t becomes large, and restricts the parameter space of $\varphi=\left(\varphi_{1}, \ldots, \varphi_{p}\right)^{\prime}$. Invertibility lends an infinite order autoregressive (i.e. p infinite and $q=0$) representation to (2) and puts conditions on the parameter space of $\theta=\left(\theta_{1}, \ldots, \theta_{q}\right)^{\prime}$. The latter conditions ensure a unique parameterization of (2) in terms of $\left(\varphi, \theta, \sigma^{2}\right) \equiv\left(\zeta, \sigma^{2}\right)$, given $(p, q) \equiv \mu$. Geweke (1988) investigates various other forms of nonlinear restrictions in modelling real GDP series for various countries with $p=3$ and $q=0$, and adding a constant to (2). Like in many other models (e.g. ARCH models as treated in Geweke 1989) these constraints cast serious doubt on the applicability of classical methods, yet pose no conceptual problem whatsoever in a Bayesian analysis using Monte Carlo integration (see e.g. Kloek and van Dijk 1978).
Defining $y \equiv\left(y_{1}, \ldots, y_{T}\right)^{\prime}$, the likelihood from (2), $p\left(y \mid \zeta, \sigma^{2}, \mu\right)$, is combined with the prior $p\left(\zeta, \sigma^{2}, \mu\right)$, which will typically impose invertibility and often stationarity as well. Let us now sketch an illustrative Bayesian analysis, which will be conducted conditionally upon $y_{(0)}$ (without explicitly indicating this to save on notation). A so-called natural conjugate prior for σ^{2} is chosen, which retains its convenient form after updating by the sample, so that it can be integrated out analytically from the posterior, given the other parameters. The rest of the analysis requires numerical integration, as explained in detail in Monahan (1983). The resulting joint density $p(y, \zeta, \mu)$ can be factorized into
the predictive $p(y)$ and the posterior $p(\zeta, \mu \mid y)$ which is well-defined if $p(y)$ evaluated at the observed sample is finite. Post-sample prediction can then be conducted for, say, $\tilde{y}=\left(y_{T+1}, \ldots, y_{T+s}\right)^{\prime}$ on the basis of

$$
\begin{equation*}
p(\tilde{y} \mid y)=\int p(\tilde{y} \mid y, \zeta, \mu) p(\zeta, \mu \mid y) d \zeta d \mu \tag{3}
\end{equation*}
$$

where $p(\tilde{y} \mid y, \zeta, \mu)$ takes a convenient multivariate Student t form. Note that (3) no longer involves any parameters and is perfectly suited to forecasting, often the ultimate aim of ARMA models. The order of the process μ can be formally treated as a parameter in the space of pairs of positive integers (as in Monahan 1983) with elements $\mu_{i}(i=$ $1, \ldots, K)$ and if we wish to select one particular value for μ, we can consider the posterior odds ratio $(i, j=1, \ldots, K)$:

$$
\begin{equation*}
\frac{p\left(\mu_{i} \mid y\right)}{p\left(\mu_{j} \mid y\right)}=\frac{p\left(\mu_{i}\right)}{p\left(\mu_{j}\right)} \cdot \frac{p\left(y \mid \mu_{i}\right)}{p\left(y \mid \mu_{j}\right)} \tag{4}
\end{equation*}
$$

the product of the prior odds $p\left(\mu_{i}\right) / p\left(\mu_{j}\right)$ and the Bayes factor, which is the ratio of predictive density values given the respective orders and which completely summarizes the relevant evidence in the data. However, if our interest is in forecasting or in certain (nonlinear) transformations of the parameters that have a direct economic interpretation, e.g. related to secular and cyclical behaviour, it is not required to pretest using (4), since we can just mix over the uncertain order as in (3). Our uncertainty about μ is then formally taken into account, resulting in a weighted average over different orders.

The assumption of stationarity that was tacitly imposed through prior restrictions on (2) has, however, been the focus of much recent debate in macroeconomics. Adding an intercept and a deterministic trend to (2), the empirical classical results of Nelson and Plosser (1982) on fourteen US time series suggest the presence of a unit root, in which case only the first differences are stationary (difference-stationarity). In this view the stochastic shocks ε_{t} have a persistent effect, in contrast to the transitory effect implicit in the trend-stationary hypothesis. A popular parameterization for such models is (usually with $q=0$)

$$
\begin{equation*}
y_{t}=\alpha+\delta t+\rho y_{t-1}+\sum_{i=1}^{p-1} \Psi_{i} \Delta y_{t-i}+\varepsilon_{t}+\sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} \tag{5}
\end{equation*}
$$

where $\rho=\sum_{i=1}^{p} \varphi_{i}, \Psi_{i}=-\sum_{j=i+1}^{p} \varphi_{j}$ and $\Delta y_{t-i}=y_{t-i}-y_{t-i-1}$, the first difference. Although other parameterizations have been suggested (see e.g. DeJong and Whiteman 1991) we shall use (5) for expository purposes. The unit root hypothesis then has the simple form $H_{o}: \rho=1$ and the model is trend-stationary for $|\rho|<1$. Whereas sampling properties of (5) display a discontinuity at a unit root, Bayesian procedures, which follow the likelihood principle and condition on the observed sample only, are not fundamentally affected by the presence of a unit root (see Sims 1988). Accordingly, Bayesian studies, such as DeJong and Whiteman (1991) and Koop (1991) find evidence of trend-stationarity in the Nelson-Plosser series. An animated debate over the choice of a standard "reference" prior distribution was sparked by Phillips (1991) who advocates
the use of Jeffreys' [1939] (1961) principles to represent prior ignorance about the parameters. Unfortunately, such an "objective" prior suffers from major defects in these dynamic models: it violates the likelihood principle and is data-based in that it depends on the sample size T, leading to different results if we observe the sample in, say, two parts. Also, the prior odds implicit in this improper prior distribution very strongly favour non-stationary behaviour $(|\rho| \geq 1)$ as opposed to stationarity. Even so, results for the Nelson-Plosser series are not dramatically different from those obtained under a uniform prior on ρ, thus still casting doubt over the "stylized fact" of a ubiquitous unit root. Another qualification arises from including structural breaks in (5). Using classical methods, Perron (1989) favours trend-stationarity with the only persistent shocks appearing exogenously as the 1929 crash and the 1973 oil price shock.

Structural Econometric Models

If economic theory regarding the behaviour of a certain variable over time exists, we may use this in relating this variable not just to its own past, but to past and present values of other variables as well, treating the latter as "given". These explanatory variables should then be exogenous in the sense of Engle et al. (1983). Often the parameters in such models will be of some interest in themselves, if they directly relate to competing economic theories or if they quantify some stable relationship between economic variables. In such models, therefore, posterior analysis is relatively more important than in pure ARMA models. Forecasting is also of interest, though, especially in the form of policy predictions, where different values of the exogenous variables, corresponding e.g. to different government strategies, are fed into these models.

Although models that are nonlinear in the parameters can, in principle, be accommodated, let us focus on the simple dynamic linear regression model:

$$
\begin{equation*}
y=X \beta+\varepsilon \tag{6}
\end{equation*}
$$

where $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{T}\right)^{\prime}$ and usually the same Normality assumption is made as in (2). The $T \times k$ matrix X groups past observations of the variable y as well as present and past observations of other variables, and β is an unknown vector of coefficients. As the functional form of the likelihood does not depend on whether X includes lagges y 's or not, the posterior analysis of $\left(\beta, \sigma^{2}\right)$ is not at all affected by the dynamic character of (6). Only predicting further than one period ahead becomes more complicated, as shown in Chow (1973). In particular, given a natural-conjugate Normal-inverted gamma prior $p\left(\beta, \sigma^{2}\right)$ or a diffuse reference prior, the posterior densities have analytically known properties. Independent Student-inverted gamma priors, which are often a more natural choice, will result in posteriors that have the poly-t density form (Drèze 1977) and can readily be analysed with the algorithms in Richard and Tompa (1980). Finally, other prior densities, reflecting e.g. sign restrictions on the coefficients, will require numerical integration, usually with Monte Carlo techniques (see e.g. Geweke 1986).
In the structural context of (6), the error term ε is now often interpreted as a "derived"
quantity, namely everything in y not explained by linear regression on (the stochastic) X, rather than as shocks driving the system in (2).
If the ε_{t} are independent over time, the Normality assumption is crucial for the above results. However, if we allow for dependence within the vector ε, we obtain exactly the same results for $p(\beta \mid y)$ and $p(y)$ as under Normality with any member of the multivariate elliptical class, provided we adopt the "usual" noninformative prior on σ^{2} (Osiewalski and Steel 1990). This gives us robustness e.g. with respect to heavy tailed multivariate Student distributions, but also with respect to the truncated Pearson II family.

If we feel that the vector ε for one variable modelled through (6) is correlated with the error vector of another such variable, because e.g. both sets of errors are influenced by common (world-wide) events not captured by the information set (again denoted by X), we can use the so-called seemingly unrelated regression equations (SURE) model introduced by Zellner (1962):

$$
\begin{equation*}
Y=X B+E \tag{7}
\end{equation*}
$$

where now Y and E are $T \times n$ matrices with columns corresponding to y and ε in (6) and B is a $k \times n$ matrix of unknown coefficients. E is assumed to follow a matricvariate generalization of a Normal distribution (see e.g. Drèze and Richard 1983:586).
Often, (linear) prior restrictions are imposed on B since not all variables in Y require the same regressors; e.g. if Y groups wages in different countries, we may want to include only country-specific X variables. Such restrictions will, in general, preclude a naturalconjugate prior and Richard and Steel (1988) advocate Monte Carlo analysis on the covariance matrix of the columns in E. Using recursive properties, Steel (1991b) finds analytical expressions for posterior moments of the unrestricted elements in B in some cases outside the natural-conjugate framework. However, in general cases of practical interest or if we want full posterior densities, Monte Carlo procedures seem inevitable.

The model in (6) only allows for one endogenous variable, e.g. money demanded (m_{t}) on which, say, interest rate $\left(r_{t}\right)$ and price $\left(p_{t}\right)$ have a contemporaneous effect. However, if the implicitly underlying process of interest rate and price carries any information relating to the money demand equation, these variables can no longer be treated as exogenous, and have to be modelled jointly with money. A simultaneous equation model (SEM) for $y_{t}=\left(m_{t}, p_{t}, r_{t}\right)^{\prime}$ then results, written as

$$
\begin{equation*}
Y \Gamma=X B+E, \tag{8}
\end{equation*}
$$

with Γ a square nonsingular $n \times n$ matrix of coefficients, again subject to restrictions. Clearly, the SURE system in (7) is a special case of (8) with $\Gamma=I_{n}$, the identity matrix. A limited information analysis of the SEM is conducted in Drèze (1976) and in Zellner et al. (1988), whereas Bauwens (1984) and Steel (1991a) use Monte Carlo procedures to perform a Bayesian analysis under full information. An insightful survey is provided in Drèze and Richard (1983).

Epilogue

More often than not, a Bayesian analysis of an empirically interesting time series model will require some form of numerical integration.
However, the spectacular increase in computing power combined with substantial progress in the implementation of numerical procedures, such as Monte Carlo importance sampling (as in e.g. Geweke 1989) and the recently introduced Gibbs sampling methods (see e.g. Gelfand and Smith 1990), will make the Bayesian framework more and more accessible to applied rescarchers in economics. I hope many of them will be prepared to explore the advantages these new and exciting possibilities hold. The Bayesian paradigm was never meant for the "chosen few", it is of far too much practical value for that!

Mark F.J. Steel

Bibliography

Bauwens, L. 1984. Bayesian Full Information Analysis of Simultaneous Equation Models Using Integration by Monte Carlo. Berlin: Springer

Box, G.E.P. and Jenkins, G.M. 1970. Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day.

Chow, G.C. 1973. Multiperiod predictions from stochastic difference equations by Bayesian methods. Econometrica 41:109-18.

DeJong, D.N. and Whiteman, C.H. 1991. Trends and random walks in macroeconomic time series: A reconsideration based on the likelihood principle. Journal of Monetary Economics forthcoming.

Drèze, J.H. 1976. Bayesian limited information analysis of the simultaneous equation model. Econometrica 44:1045-75.

Drèze, J.H. 1977. Bayesian regression analysis using poly-t densities. Journal of Econometrics 6:329-54.

Drèze, J.H. and Richard, J.F. 1983. Bayesian analysis of simultaneous equation systems. In Handbook of Econometrics, Vol. I, ed. Z. Griliches and M.D. Intriligator, Amsterdam: North-Holland.

Engle, R.F., Hendry, D.F. and Richard, J.F. 1983. Exogeneity. Econometrica 51:277304.

Gelfand, A.E. and Smith, A.F.M. 1990. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85:398-409.

Geweke, J. 1986. Exact inference in the inequality constrained Normal linear regression model. Journal of Applied Econometrics 1:127-41.

Geweke, J. 1988. The secular and cyclical behaviour of real GDP in 19 OECD countries, 1957-1983. Journal of Business and Economic Statistics 6:479-86.

Geweke, J. 1989. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57:1317-39.

Jeffreys, H. 1939. Theory of Probability. Oxford: University Press; 3rd edn., Oxford: Clarendon Press, 1961.

Kloek, T. and van Dijk, H.K. 1978. Bayesian estimates of equation system parameters: An application of integration by Monte Carlo. Econometrica 46:1-19.

Koop, G. 1991. "Objective" Bayesian unit root tests. Journal of Applied Econometrics forthcoming.

Monahan, J.F. 1983. Fully Bayesian analysis of ARMA time series models. Journal of Eronometrics 21:307-31.

Nelson, C. and Plosser, C. 1982. Trends and random walks in macroeconomic time series. Journal of Monetary Economics 10:139-62.

Osiewalski, J. and Steel, M.F.J. 1990. Robust. Bayesian inference in elliptical regression models. Discussion Paper 9032, Center for Economic Research, Tilburg University, Tilburg.

Perron, P. 1989. The great crash, the oil price shock, and the unit root hypothesis. Econometrica 57:1361-401.

Phillips, P.C.B. 1991. To criticize the critics: An objective Bayesian analysis of stochastic trends. Journal of Applied Econometrics forthcoming (with discussion).

Poirier, D.J. 1988. Frequentist and subjectivist perspectives on the problems of model building in economics. Journal of Economic Perspectives 2:121-44.

Richard, J.F. and Steel, M.F.J. 1988. Bayesian analysis of systems of seemingly unrelated regression equations using a recursive extended natural conjugate prior density. Journal of Econometrics 38:7-37.

Richard, J.F. and Tompa, H. 1980. On the evaluation of poly-t density functions. Journal of Econornetrics 12:335-51.

Sims, C. 1988. Bayesian skepticism on unit root econometrics. Journal of Economic Dynamics and Control 12:463-74.

Steel, M.F.J. 1991a. A Bayesian analysis of simultaneous equation models by combining recursive analytical and numerical approaches. Journal of Econometrics 48:83-117.

Steel, M.F.J. 1991b. Posterior analysis of restricted seemingly unrelated regression equation models: A recursive analytical approach. Econometric Reviews forthcoming.

Zellner, A. 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association 57:348-68.

Zellner, A., Bauwens, L. and van Dijk, H.K. 1988. Bayesian specification analysis and estimation of simultaneous equation models using Monte Carlo methods. Journal of Econometrics 38:39-72.

Bayesian Inference in Time Series

Technical terms for inclusion in the Glossary:
ARCH models
difference-stationary models exogeneity*
elliptical densities (multivariate)*
full information analysis
Gibbs sampling
invertibility (in ARMA models)
likelihood principle
limited information analysis
money illusion
Monte Carlo integration*
natural-conjugate prior*
poly- t densities*
posterior odds
reference or noninformative prior
stationarity (in ARMA models)
trend-stationary models

* own definition included.

Bayesian Inference in Time Series

Definitions for the Glossary.

Exogeneity: While modelling some variable(s) y we often wish to condition on other variables, say z, and treat these as if they are given, without explicitly modelling them. However, we should be careful not to lose any relevant information embedded in the marginal process of z. Different types of exogeneity conditions essentially validate different uses of the conditional model for y given z : weak exogeneity allows inference on the parameters of interest, say φ, strong exogeneity sustains conditional forecasting given future values for z as well, and super exogeneity validates conditional inference on φ under interventions that affect the process of z.

Elliptical densities (multivariate): The family of multivariate elliptical or ellipsoidal densities has constant density values over ellipsoids in n-dimensional space. If y has an n-variate continuous elliptical distribution, its density is given by

$$
p(y)=|V|^{-\frac{1}{2}} g\left[(y-m)^{\prime} V^{-1}(y-m)\right]
$$

with location vector $m \in \mathbb{R}^{n}, V$ a positive definite scale matrix of dimension $n \times n$ and where the nonnegative function $g(\cdot)$ satisfies

$$
\int_{0}^{\infty} u^{\frac{n}{2}-1} g(u) d u=\Gamma\left(\frac{n}{2}\right) \pi^{-\frac{n}{2}} .
$$

Choosing tailbehaviour by $g(\cdot)$ we can cover e.g. the Normal, the heavy-tailed Student t and Cauchy, but also the truncated Pearson type II distributions.

Monte Carlo integration: An analytical integral is approximated by a sample average of drawings from numerical distributions. Clearly, by exploiting some knowledge about the problem at hand we can achieve greater accuracy with a given amount of drawings. One way to do this is through importance sampling, where we concentrate on the most informative regions. We then draw from some importance function, which should closely approximate the function we are analysing, yet should permit relatively efficient pseudorandom drawings, which is typically not the case for the actual function itself.

Natural-conjugate prior: Within Bayesian analyses, these families of prior densities often lead to a particularly tractable analysis. Essentially, they share the functional form of the likelihood (the sampling density viewed as a function of the parameters), and combine very naturally with the sample information in exponential (e.g. Normal) families of data distributions. Generally, they can be interpreted as information emanating from a hypothetical prior sample and in exponential sampling models the posterior will be of the same (tractable) functional form as the natural-conjugate prior.

Poly-t densities: Frequently, the posterior density resulting from a Bayesian regression analysis will be in this class of multivariate densities. Their kernel (i.e. the density function without integrating constant) is a product or ratio of products of multivariate Student t kernels. Accordingly, such densities are denoted by product-form poly-t (also called multiple t) or ratio-form poly-t. Multimodality and skewness can easily be accommodated by this flexible family of densities. Although their integrating constants and moments are generally not known analytically, they can be calculated using efficient and reliable numerical algorithms.
(For previous papers please consult previous discussion papers.)

No.	Author(s)	Title
9036	J. Driffill	The Term Structure of Interest Rates: Structural Stability and Macroeconomic Policy Changes in the UK
9037	F. van der Ploeg	Budgetary Aspects of Economic and Monetary Integration in Europe
9038	A. Robson	Existence of Nash Equilibrium in Mixed Strategies for Games where Payoffs Need not Be Continuous in Pure Strategies
9039	A. Robson	An "Informationally Robust Equilibrium" for Two-Person Nonzero-Sum Games
9040	M.R. Baye, G. Tian and J. Zhou	The Existence of Pure-Strategy Nash Equilibrium in Games with Payoffs that are not Quasiconcave
9041	M. Burnovsky and I. Zang	"Costless" Indirect Regulation of Monopolies with Substantial Entry Cost
9042	P.J. Deschamps	Joint Tests for Regularity and Autocorrelation in Allocation Systems
9043	S. Chib, J. Osiewalski and M. Steel	Posterior Inference on the Degrees of Freedom Parameter in Multivariate-t Regression Models
9044	H.A. Keuzenkamp	The Probability Approach in Economic Methodology: On the Relation between Haavelmo's Legacy and the Methodology of Economics
9045	I.M. Bomze and E.E.C. van Damme	A Dynamical Characterization of Evolutionarily Stable States
9046	E. van Damme	On Dominance Solvable Games and Equilibrium Selection Theories
9047	J. Driffill	Changes in Regime and the Term Structure: A Note
9048	A.J.J. Talman	General Equilibrium Programming
9049	H.A. Keuzenkamp and F. van der Ploeg	Saving, Investment, Government Finance and the Current Account: The Dutch Experience
9050	C. Dang and A.J.J. Talman	The D_{1}-Triangulation in Simplicial Variable Dimension Algorithms on the Unit Simplex for Computing Fixed Points
9051	M. Baye, D. Kovenock and C. de Vries	The All-Pay Auction with Complete Information
9052	H. Carlsson and E. van Damme	Global Games and Equilibrium Selection

No.	Author(s)	Title
9053	M. Baye and D. Kovenock	How to Sell a Pickup Truck: "Beat-or-Pay" Advertisements as Facilitating Devices
9054	Th. van de Klundert	The Ultimate Consequences of the New Growth Theory; An Introduction to the Views of M. Fitzgerald Scott
9055	P. Kooreman	Nonparametric Bounds on the Regression Coefficients when an Explanatory Variable is Categorized
9056	R. Bartels and D.G. Fiebig	Integrating Direct Metering and Conditional Demand Analysis for Estimating End-Use Loads
9057	M.R. Veall and K.F. Zimmermann	Evaluating Pseudo- R^{2} 's for Binary Probit Models
9058	R. Bartels and D.G. Fiebig	More on the Grouped Heteroskedasticity Model
9059	F. van der Ploeg	Channels of International Policy Transmission
9060	H. Bester	The Role of Collateral in a Model of Debt Renegotiation
9061	F. van der Ploeg	Macroeconomic Policy Coordination during the Various Phases of Economic and Monetary Integration in Europe
9062	E. Bennett and E. van Damme	Demand Commitment Bargaining: - The Case of Apex Games
9063	S. Chib, J. Osiewalski and M. Steel	Regression Models under Competing Covariance Matrices: A Bayesian Perspective
9064	M. Verbeek and Th. Nijman	Can Cohort Data Be Treated as Genuine Panel Data?
9065	F. van der Ploeg and A. de Zeeuw	International Aspects of Pollution Control
9066	F.C. Drost and Th. E. Nijman	Temporal Aggregation of GARCH Processes
9067	Y. Dai and D. Talman	Linear Stationary Point Problems on Unbounded Polyhedra
9068	Th. Nijman and R. Beetsma	Empirical Tests of a Simple Pricing Model for Sugar Futures
9069	F. van der Ploeg	Short-Sighted Politicians and Erosion of Government Assets
9070	E. van Damme	Fair Division under Asymmetric Information
9071	J. Eichberger, H. Haller and F. Milne	Naive Bayesian Learning in 2×2 Matrix Games

No.	Author(s)	Title
9072	G. Alogoskoufis and F. van der Ploeg	Endogenous Growth and Overlapping Generations
9073	K.C. Fung	Strategic Industrial Policy for Cournot and Bertrand Oligopoly: Management-Labor Cooperation as a Possible Solution to the Market Structure Dilemma
9101	A. van Soest	Minimum Wages, Earnings and Employment
9102	A. Barten and M. McAleer	Comparing the Empirical Performance of Alternative Demand Systems
9103	A. Weber	EMS Credibility
9104	G. Alogoskoufis and F. van der Ploeg	Debts, Deficits and Growth in Interdependent Economies
9105	R.M.W.J. Beetsma	Bands and Statistical Properties of EMS Exchange Rates
9106	C.N. Teulings	The Diverging Effects of the Business Cycle on the Expected Duration of Job Search
9107	E. van Damme	Refinements of Nash Equilibrium
9108	E. van Damme	Equilibrium Selection in 2×2 Games
9109	G. Alogoskoufis and F. van der Ploeg	Money and Growth Revisited
9110	L. Samuelson	Dominated Strategies and Commom Knowledge
9111	F. van der Ploeg and Th. van de Klundert	Political Trade-off between Growth and Government Consumption
9112	Th. Nijman, F. Palm and C. Wolff	Premia in Forward Foreign Exchange as Unobserved Components
9113	H. Bester	Bargaining vs. Price Competition in a Market with Quality Uncertainty
9114	R.P. Gilles, G. Owen and R. van den Brink	Games with Permission Structures: The Conjunctive Approach
9115	F. van der Ploeg	Unanticipated Inflation and Government Finance: The Case for an Independent Common Central Bank
9116	N. Rankin	Exchange Rate Risk and Imperfect Capital Mobility in an Optimising Model
9117	E. Bomhoff	Currency Convertibility: When and How? A Contribution to the Bulgarian Debate!
9118	E. Bomhoff	Stability of Velocity in the G-7 Countries: A Kalman Filter Approach

No.	Author(s)	Title
9119	J. Osiewalski and M. Steel	Bayesian Marginal Equivalence of Elliptical Regression Models
9120	S. Bhattacharya, J. Glazer and D. Sappington	Licensing and the Sharing of Knowledge in Research Joint Ventures
9121	J.W. Friedman and L. Samuelson	An Extension of the "Folk Theorem" with Continuous Reaction Functions
9122	S. Chib, J. Osiewalski and M. Steel	A Bayesian Note on Competing Correlation Structures in the Dynamic Linear Regression Model
9123	Th. van de Klundert and L. Meijdam	Endogenous Growth and Income Distribution
9124	S. Bhattacharya	Banking Theory: The Main Ideas
9125	J. Thomas	Non-Computable Rational Expectations Equilibria
9126	J. Thomas and T. Worrall	Foreign Direct Investment and the Risk of Expropriation
9127	T. Gao, A.J.J. Talman and Z. Wang	Modification of the Kojima-Nishino-Arima Algorithm and its Computational Complexity
9128	S. Altug and R.A. Miller	Human Capital, Aggregate Shocks and Panel Data Estimation
9129	H. Keuzenkamp and A.P. Barten	Rejection without Falsification - On the History of Testing the Homogeneity Condition in the Theory of Consumer Demand
9130	G. Mailath, L. Samuelson and J. Swinkels	Extensive Form Reasoning in Normal Form Games
9131	K. Binmore and L. Samuelson	Evolutionary Stability in Repeated Games Played by Finite Automata
9132	L. Samuelson and J. Zhang	Evolutionary Stability in Asymmetric Games
9133	J. Greenberg and S. Weber	Stable Coalition Structures with Unidimensional Set of Alternatives
9134	F. de Jong and F. van der Ploeg	Seigniorage, Taxes, Government Debt and the EMS
9135	E. Bomhoff	Between Price Reform and Privatization Eastern Europe in Transition
9136	H. Bester and E. Petrakis	The Incentives for Cost Reduction in a Differentiated Industry

No.	Author(s)	Title
9137	L. Mirman, L. Samuelson and E. Schlee	Strategic Information Manipulation in Duopolies
9138	C. Dang	The D_{2}^{*}-Triangulation for Continuous Deformation Algorithms to Compute Solutions of Nonlinear Equations
9139	A. de Zeeuw	Comment on "Nash and Stackelberg Solutions in a Differential Game Model of Capitalism"
9140	B. Lockwood	Border Controls and Tax Competition in a Customs Union
9141	C. Fershtman and A. de Zeeuw	Capital Accumulation and Entry Deterrence: A Clarifying Note
9142	J.D. Angrist and G.W. Imbens	Sources of Identifying Information in Evaluation Models
9143	A.K. Bera and A. Ullah	Rao's Score Test in Econometrics
9144	B. Melenberg and A. van Soest	Parametric and Semi-Parametric Modelling of Vacation Expenditures
9145	G. Imbens and T. Lancaster	Efficient Estimation and Stratified Sampling
9146	Th. van de Klundert and S. Smulders	Reconstructing Growth Theory: A Survey
9147	J. Greenberg	On the Sensitivity of Von Neuman and Morgenstern Abstract Stable Sets: The Stable and the Individual Stable Bargaining Set
9148	S. van Wijnbergen	Trade Reform, Policy Uncertainty and the Current Account: A Non-Expected Utility Approach
9149	S. van Wijnbergen	Intertemporal Speculation, Shortages and the Political Economy of Price Reform
9150	G. Koop and M.F.J. Steel	A Decision Theoretic Analysis of the Unit Root Hypothesis Using Mixtures of Elliptical Models
9151	A.P. Barten	Consumer Allocation Models: Choice of Functional Form
9152	R.T. Baillie, T. Bollerslev and M.R. Redfearn	Bear Squeezes, Volatility Spillovers and Speculative Attacks in the Hyperinflation 1920s Foreign Exchange
9153	M.F.J. Steel	Bayesian Inference in Time Series

P.O. BOX 90153,5000 LE TILBURG. THE NETHERLANDS Bibliotheek K. U. Brabant

17000011174837

[^0]: -This paper was prepared for The New Palgrave Dictionary of Money and Finance. The author acknowledges a research fellowship of the Royal Netherlands Academy of Arts and Sciences (K.N.A.W.) Useful comments by Hugo Keuzenkamp, Peter Newman and Jacek Osiewalski have improved the presentation.

