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BAYESIAN INFERENCE IN TIME SERIES
Whenever decisions under uncertainty have to be made, a statistical paradigm becomes
an essential tool for extracting information from observed data and using this to improve
our knowledge about the world (inference), thus eventually guiding us in our decision
problem. 'Che Bayesian paradigm is certainly not as heavily used as its frequentist
or "classical" counterpart in the realm of econometrics, yet it seems ideally suited to
address several questions of great interest to applied researchers in this field. It provides
us with a formal way of incorporating the prior information we so often possess before
actually seeing the data, it fits perfectly with sequential learning and decision theory,
and directly leads to exact small sample results. In addition, it naturally gives rise
to predictive densities, where all nuisance parameters are integrated out: the latter is
exactly what we nced for forecasting.

Let us briefty consider an example. A very simple model for the transactions demand
for money mr, observed at time t, is the following:

mr - ao t aiic f azpt f a3ri -f es, (1)

where all variables are in logarithms and i~, pi and ri respectively denote real income,
price and interest rate; Ei is just an unobserved error term. Before seeing any data,
a lot of prior information on the coefficients in (1) will typically exist: ar and aZ will
be believed to be positive and the interest elasticity a3 will often be constrained to
(-1,0). Furthermore, values of a2 around one are deemed likely if one believes in the
absence of rnoney illusion, and both ar and a~ close to one reftects a prior belief in a
constaot velocity of circulation. These beliefs will then have to be formalized in a prior
distribution on the coefficíents.

For t.he main features of both paradigms, let me refer the reader to an excellent survey
by Poirier (19238). Suffice it to say here that the basic underlying probability interpre-
tation for a Bayesian is a subjective one, referring to a personal degree of belief. The
fundamental rulE~s of probability calculus are then used to examine how prior beliefs are
transformed to posterior beliefs by the data information. The researcher learns from
observing the world, and the only restriction on her subjective beliefs is consistency with
the axioms of probability. Having obtained some actual data on (mr, ic, pc, rc) she will
be able to monitor how each new data point revises her beliefs sequentially.
These posterior distributions can be used to integrate out the coefficients when she is
interested in forecasting future values of money demand through (]). As she does not
know the a's, it seems natural to average out over them, using her knowledge of that
moment, rather than conditioning on particular values. She can also test e.g. the hy-
pothesis of no money illusion (aZ - 1). One way is to use highest posterior density
intervals: "Does the shortest interval which covers, say, 95Q1o of the posterior probability
mass for aZ include the value one?" Given a proper prior on a2 (i.e. one that integrates
to one) she can also use a posterior odds test, which is directly interpretable in terms of
the posterior probability of the hypothesis.



Clearly, in reporting such results it will often be good practice to conduct a sensitiv-
ity analysis with a range of different prior distributions, which will t.ypically contain a
nnoninformative" or "reference" prior distribution as well. Finally, the mapping from
prior to posterior uncertainty can only depend on the likelihood yielded by the data
actually observed: observations that rnight have occurred, but did not, carry no weight
whatsoever. T}ris so-called likelihood principle is crucial for appreciating the differences
between both paradigms.

Within the vast literature on models for time series data, we select two broad groups
of models that seem of particular relevance for applications in macroeconomics and fi-
nance: univariate ARMA models and structural econometric models. The symbol p is
used generically to denote density functions, whether proper or not.

Univariate ARMA Models

Ever since the seminal work of Box and Jenkins (1970) the class of autoregressive moving-
avc,r~rgo (ARMA) procr.tises ha.v hmn popular Lu drscribc Lhe variation of macroc~ronomic
time serics like CNI' ur stock prices. If yc deuotes the observed value (often iu logs) for
a scalar variable at tirne t, the AItMA (p,q) sampling model can be defined as

V 9
yc -~ 4zsyc-~ i- Er -t` ~ BiEC-i (2)

~-r ~-r
for t- 1,...T and where the Ec's are independent random shocks all drawn from the
same Normal distribution with mean zero and variance aT. Stationarity of (2) implies
e.g. that the influence of initial observations y~o) -(yl-y, ..., yo)' dies out as t becomes
large, and restricts the parameter space of yz -(yzl, ..., e,zp)'. Invertibility lends an
infinite order autoregressive (i.e. p infinite and q- 0) representation to (2) and puts
conditions on the parameter space of 0- (Or,... , ~a)'. The latter conditions ensure a
unique parameterization of (2) in terms of (y~,B,vZ) -(~,aZ), given (p,q) - p. Geweke
(1988) investigates various other forms of nonlinear restrictions in modelling real GDP
series for various countries with p- 3 and q- 0, and adding a constant to (2). Like in
many other models (e.g. ARCH models as treated in Geweke 1989) these constraints cast
serious doubt on the applicability of classical methods, yet pose no conceptual problem
what.sucvc~r in a Baycsian ana.lysís using Monte Carlo intcgration (see e.g. Kloek and
van Dijk 1978).
Defining y-(Jr,... , yT)', the likelihood from (2), p(y ~ ~, 02, p), is combined with the
prior p(~, 02, p), which will typically impose invertibility and often stationarity as well.
Let us now sketch a,n illustrative Bayesian analysis, which will be conducted conditionally

c~Pc~~~ J(u) (w'itliout explicitly indicating this to save on notation). A so-called natural
conjngate prior for oZ is chosen, which retains its convenient form after updating by
the sample, so that it can be integrated out analytically from the posterior, given the

other parameters. The rest of the analysis reyuires numerical integration, as explained
in detail in Monahan (1983). The resulting joint density p(y, ~, p) can be factorized into
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the predictive p(y) and the posterior p(~, }r ~ y) which is well-defined if p(y) evaluated
at the observed sample is finite. Pust-sample prediction can then be conducted for, say,

Y-(yTtr,...,yTts)' on the basis of

p(y I y) - f p(Y I y, ~, l~)P(~, ~ I y)dCdr~, (3)

where p(y ~ y, ~, te) takes a convenient multivariate Student t form. Note that (3) no

longer involves any parameters and is perfectly suited to forecasting, often the ultimate

aim of ARMA models. The order of the process p can be formally treated as a parameter

in the space of pairs of positive integers (as in Monahan 1983) with elements p; (i -

1, ..., K) and if we wish to select one particular value for tt, we can consider the posterior

odds ratio (i, j- 1, ..., IO:

p(W I y) - p(l~~) , p(y I Ir~) (4)

p(Pi ~ y) P(Ir~) P(y ~ Wi)~

the product of the prior odds p(Ei;)~p(p~) and the Bayes factor, which is the ratio of

predictive density values giveu the respective orders and which completely summarizes

the relevant evidence in the data. However, if our interest is in forecasting or in certain

(nonlinear) transformations of the parameters that have a direct economic interpretation,

e.g. related to secular and cyclical behaviour, it is not required to pretest using (4), since

we can just mi:z over the uncertain order as in (3). Our uncertainty about p is then
formally taken into account, resulting in a weighted average over different orders.

The assumption of stationarity that was tacitly imposed through prior restrictions on

(2) has, however, been the focus of much recent debate in macroeconomics. Adding an

intercept and a deterministic trend to (2), the empirical classical results of Nelson and

Plosser (1982) on fourteen US time series suggest the presence of a unit root, in which

case only the first differences are stationary (difference-stationarity). In this view the

stochastic shocks Ec have a persistent effect, in contrast to the transitory effect implicit in

the trend-statiunary hypothesis. A popular parameterization for such models is (usually

with y - 0)

y-r 9
ye -~ f Ót f Pyc-r f~~~Dyc-; f Ee f~ 9iEr-i, (5)

~-r r-r

where~ p -~y-~ c,~„ cl'; --~j-;~i y~~ and ~y,-, - y~-; - y,-;-r, the first difference.

Although othcr parametcrizations have. been suggested ( see e.g. DeJong and White-

mau 1991 ) wo shall use ( ~i) fur c~xpository purpus~~s. "I'he uniL root hypothesis then has

thc simplc fornr llo : p- l:u,d the inudcl is Lrend-statiuuary fur ~ p ~ G l. Whcrcas

sampling properties of (5) display a discontinuity at a unit root, Bayesian procedures,

which [ollow t}re likelihood principle and condition on the observed sample only, are

not fundamentally affected by the presence of a unit root ( see Sims 1988). Accordingly,

Bayesian studies, such as DeJong and Whiteman (1991) and Koop ( 1991) find evidence

of trend-stationarity in the Nelson-Plosser series. An animated debate over the choice of

a standard "reference" prior distribution was sparked by Phillips ( 1991) who advocates



the use of Jeffreys' (1939~ (1961) principles to represent prior ignorance about the pa-
rameters. Unfortunately, such an "objective~ prior suffers from major defects in these
dynamic models: it violates the likelihood principle and is data-based in that it depends
on the sample size T, leading to different results if we observe the sample in, say, two
parts. Also, the prior odds implicit in this improper prior distribution very strongly
favour non-stationary behaviour (~ p ~~ 1) as opposed to stationarity. Even so, results
for the Nelson-Plosser series are not dramatically different from those obtained under a
uniform prior on p, thus still casting doubt over the "stylized fact" of a ubiquitous unit
root. Another qualification arises from including sttuctural breaks in (5). Using clas-
sical methods, Perron (1989) favours trend-stationarity with the only persistent shocka
appearing exogenously as the 1929 crash and the 1973 oil price shock.

5tructural Econometric Models

If economic theory regarding the behaviour of a certain variable over time exists, we may
use this in relating this variable not just to its own past, but to past and present values
oC other variables as well, treating the latter as "given". These explanatory variables
should then be exogenons in the sense of F.ngle et nl. (1983). Often the parameters in
su~~li inode,ls will be uf surn~~ interest in thoins~~lvrs, if thcy direc-tly rclate to competing
economic Lheories or if thcy quantify some stable relationship Letwcen economic vari-
ables. ln such models, therefore, posterior analysis is relatively more icnportant than in
pure ARMA models. Forecasting is also of interest, though, especially in the form of
policy predictions, where different values of the exogenous variables, corresponding e.g.
to difCerent government strategies, are fed into these models.

Although models that are nonlinear in the parameters can, in principle, be accommo-
dated, let us focus on the simple dynamic linear regression model:

y-XI3t~ (6)

where e- (Er,...,eT)' and usually the same Normality assumption is made as in (2).

The T x k matrix X groups past observations of the variable y as well as present and
past observations of other variables, and (3 is an unknown vector of coefficients. As
the functional form of the likelihood does not depend on whether X includes lagges y's

or not, the posterior analysis of (~i,o~) is not at all affected by the dynamic character

of (6). Only predicting further than one period ahead becomes more complicated, as

shown in Chow (1973). In particular, given a natural-conjugate Normal-inverted gamma

prior p(Q, 02) or a diffuse reference prior, the posterior densities have analytically known

properties. Independent Student-inverted gamma priors, which are oíten a more natural
choic:e, will result in posteriors t}rat have the poly-t density form (Drèze 1977) and can

re~adily be analysed wit.h the algorithrns in Richard and Tompa (1980). Finally, other
prior densitics, rellectiug i~.g. sigu restrictions ou the coefficieuts, will require nurnerical
integration, usually with Monte Carlo techniques (see e.g. Ceweke 1986).

In the structutal context of (6), the error term e is now often interpreted as a"derived"
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quantity, namely everything in y not explained by linear regression on (the stochastic)
X, rather than as shocks driving the system in (2).
If the et are independent over time, the Normality assumption is crucial for the above
results. However, if we allow for dependence within the vector e, we obtain exactly
the same results for p(~3 ~ y) and p(y) as under Normality with any member of the
multivariate elliptical class, provided we adopt the "usual" noninformative prior on oZ
(Osiewalski and Steel 1990). This gives us robustness e.g. with respect to heavy tailed
multivariate 5tudent distributions, but also with respect to the truncated Pearson II
family.

If we feel that the vector e for one variable modelled through (6) is correlated with the
error voctor of anol.her such variable, because e.g. both sets of errors are infiuenced
by cornmon (world-wide) events not captured by the information set (again denoted by
.K), we can use the so-callecí seemingly unrdated regression equations (SURE) model
introduccd by Zrllner (1962):

Y'-.XBfE (7)

where now Y and E are T x n matrices with columns corresponding to y and E in (6)
and B is a k x n matrix of unknown coefficients. E is assumed to follow a matricvariate
generalization of a Normal distribution (see e.g. Drèze and Richard 1983:586).
Often, (linear) prior restrictions are imposed on B since not all variables in Y require the
same regressors; e.g. if Y' groups wages in different countries, we may want to include
only country-specific X variables. Such restrictions will, in general, preclude a natural-
conjugate prior and Richard and Steel (1985) advocate Monte Carlo analysis on the
covariance matrix of the colunms in E. Using recursive properties, Steel (1991b) finds
analytical expressions for posterior moments of the unrestricted elements in B in some
cases outside the natural-conjugate framework. However, in general cases of practical
interest or if we want full posterior densities, Monte Carlo procedures seem inevitable.

The model in (6) only allows for one endogenous variable, e.g. money demanded (mc)
on which, say, interest rate (rt) and price (pc) have a contemporaneous effect. However,

if the implicitly underlying process of interest rate and price carries any information
relating to the money demand equation, these variables can no longer be treated as

cxogeuons, and have to be modelled jointly with money. A simult.aneous equation model

(SI~M) for yc -(rnc,pc,r~)' then results, written as

YL'-XB-~E, (8)

with !' a square nonsingular n x n matrix of coefficients, again subject to restrictions.

Clearly, the SURF. system in (7) is a special case of (8) with I' - 1,,, the identity matrix.

A limited information analysis of the SEM is conducted in Drèze (1976) and in Zellner

et al. (1988), whereas Bauwens (1984) and Steel (1991a) use Monte Carlo procedures to

perform a Bayesian analysis under fu11 information. An insightful survey is provided in

Drèze and Richard (1983).
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Epilogue

More often than not, a Bayesian analysis of an empirically interesting time series model
will require some form of numerical integration.
However, the spectacular increase in computing power combined with substantial
progress in the implementxtion oí numerical procedures, such as Monte Carlo impor-
tance sampling (as in e.g. Geweke 1989) and thc recently introduced Gibbs sampling
methods (see e.g. Gelfand and Smith 1990), will make the Bayesian framework more and
mom xcces,iblr to applic~d resc~xrchers in econoniiis. 1 hope many of them will be pre-
pared to explorc the advantages these uew ancí exciting possibilities hold. The Bayesian
paradigm was never nreant for the "chosen few", it is of far too much practical value for
that!

Mark F.J. Steel
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Bayesian Inference in Time 5eries

Technical terms for inclusion in the Glossary:

ARCH models

difference-stationary models

cxogcncity'

elliptical densities (multivariatc)'

full information analysis

Gibbs sampling

invertibility (in ARMA models)

likelihood principle

limited information analysis

money illusion

Monte Carlo integration'

natural-conjugate prior'

poly-t densities'

posterior odds

reference or noninformative prior

stationarity (in ARMA models)

trend-stationary rnodels

' own definition included.
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Bayesian Inference in Time Series

Definitions for the Classary.

Exogeneity: While modelling some variable(s) y we often wish to condition on other

cariables, say z, and treat these as if they are given, without explicitly modelling them.

However, we should be careful not to losc any relevant information embedded in the

marginal process of z. Different types of exogeneity conditions essentially validate differ-

ent uses of the conditional model for y given z: weak exogeneity al]ows inference on the

parameters of interest, sa}' ~p, strong exogeneity sustains conditional forecasting given

future values for z as well, and super exogeneity validates conditional inference on ~p

uuder iuterventions that affect the process of z.

Elliptical densities ( muhivariateJ: The family of multivariate elliptical or ellipsoidal den-

sities has constant density values over ellipsoids in n-dimensional space. If y has an

n-variate continuous elliptical distribution, its density is given by

p(y) -I V I-' 9Í(y - m)~V-1(y - m)~

with location vector na E R", V a positive definite scale matrix of dimension n x n and

where the nonnegative function g(-) satisfies

f~,~~-'g( u)du - P(Z)~-~.

Choosing tailbehaviour by g(.) we can cover e.g. the Normal, the heavy-tailed Student

t and Cauchy, but also the truncated Pearson type II distributions.

Monle Carlo integration: An analytical integral is approximated by a sample average

of drawings from numerical distributions. Clearly, by exploiting some knowledge about

the problem at hand we can achieve greater accuracy with a given amount of drawings.

One way to do this is through importance sampling, where we concentrate on the most

informative regions. We then draw from some importance Junction, which should closely

approximate the function we are analysing, yet should permit relatively efficient pseudo-

random drawings, which is typically not the case for the actual function itself.

Natural-conjugate priar. Within Bayesian anal}'ses, these families of prior densities often

lead to a particularly tractable analysis. Essentially, they share the functional form of the

likelihood (the sampling density viewed as a function of the parameters), and combine

very naturally with the sample information in exponential (e.g. Normal) families of

data distributions. Gcnerally, they can be interpreted as information emanating from a

hyputhetical prior sample and in exponentixl sampling models the posterior will be of

the sa~ne (tractable) functional fonn as the natural-conjugate prior.
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Poly-t densities: Frequently, the posterior density resulting from a Bayesian regression
analysis will be in this class of multivariate densities. Their kernel (i.e. the density
function without integrating constant) is a product or ratio of products of multivariate
Student t kernels. Accordingly, such densities are denoted by product-jorm poly-t (also
called multiple t) or ratio-jorm poly-t. Multimodality and skewness can easily be accom-
modated by this flexible family of densities. Although their integrating constants and
moments are generally not known analytically, they can be calculated using efí'icient and
rcliable nurnerical algorithms.
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