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Abstract

The paper studies the most simple version of the Spence job market sig-
naling model in which there are just 2 types of workers while education is not
productivity increasing. To eliminate the multiplicity of equilibria, the general
equilibrium selection theory of John Harsanyi and Reinhard Selten is applied.
It is shown that this theory selects Wilson’s E;-equilibrium as the solution.



1. INTRODUCTION

Recently, signaling games have been extensively studied by economic the-
orists and game theorists. In such games, there is an informed party who sends
a message to which one or several uninformed players react; the payoffs of the
participants depend on the private information of the informed party, the sig-
nal that this player sends and the responses that the uninformed players take.
Many models of economies with informational asymmetries contain a signal-
ing game as an essential ingredient. For a (very) partial overview of this huge
literature, see Van Damme [1987, Sect. 10.4].

A signaling game typically admits a great multiplicity of equilibria. This
is caused by the fact that the signal space is usually larger than the type space
of the informed player so that there exist unused signals. The Nash equilibrium
concept does not tie down the uninformed agents’ beliefs and actions at such
unreached information sets, and this arbitrariness of non-equilibrium responses
in turn allows many outcomes to be sustained in equilibrium. As a consequence,
the class of signaling games has provided fertile playing ground for game theo-
rists working on equilibrium refinements. Indeed many refinements of the Nash
concept have been defined initially only for such games although in most cases
the concepts can be extended to general extensive form games. Again, see Van
Damme [1987, Sect. 10.5] for a partial survey.

To reduce the multiplicity of equilibria in signaling games arising in eco-
nomic contexts, variations on the theme of iterative elimination of dominated
strategies have been most popular. Some of such (sometimes ad hoc) pro-
cedures can be justified by refering to the general notion of stable equilibria
introduced in Kohlberg and Mertens [1986]. Indeed, various authors claim ad-
ditional virtue for the result they obtain by stating that the outcome obtained
is the only one satisfying the Kohlberg/Mertens stability criterion. However,
the latter stability notion has its share of counterintuitive examples (see, for
instance, Van Damme [1988]), and even the seemingly unobjectionable notion
of iterative elimination of ordinary weakly dominated strategies is not without
pitfalls as Binmore [1987] has argued. As a consequence, the present authors
are not convinced that the theory that is currently accepted by the majority of
researchers in the field will survive in the long run; there is scope for alternative
theories.



Our aim in this paper is to illustrate such an alternative theory, viz. the
equilibrium selection theory of John Harsanyi and Reinhard Selten [1988](the
HS theory), by means of applying it to a simple signaling game arising in an
economic context. Specifically, we will study the most basic version of the job
market signaling model introduced in the seminal work of Spence [1973,1974].
We take this well-known model rather than an abstract signaling game for
didactical reasons. Since many economic signaling models have a mathematical
structure similar to Spence’s model, arguments similar to the ones we will use
will come up in their analyses and the reader can get a good idea for how the
HS theory works by reading the present paper. In the literature, the reader
can already find several applications of the HS theory, however, all of these
are to games that admit multiple strict equilibria, and in these stability a la
Kohlberg/Mertens is not very powerful. (Recall that Kohlberg and Mertens
do not claim that their theory is a selection theory, cf. Fn. 2 of their paper.)
To our knowledge, the present paper is the first to apply the HS theory to a
game in which the multiplicity of equilibria is caused solely by the existence of
unreached information sets, i.e. by the perfection problem.

There is no doubt that there are fundamental differences between the
HS (general) theory and alternative (partial) theories such as Kohlberg/Mer-
tens stability. We urge the reader to read the postscript of Harsanyi and Selten
[1988] in which some of these are described. Perhaps the most profound differ-
ence is that HS work with the standard form of the game (this is basically the
agent normal form), whereas stability is a normal form concept. Accordingly,
HS reject ideas of 'forward induction’ since they conflict with their ’subgame
and truncation consistency’. Since in our game no player has 2 strategic moves
along the same path!) | this difference is not relevant for our model, however.
(Also, cf. Mertens [1988]).

On the other hand, there are common elements in the various theories:
HS iteratively eliminate inferior strategies of the perturbed standard form,
Kohlberg/Mertens stability allows iterative elimination of dominated strate-
gies in the normal form, and dominated strategies are inferior. Apart from the
difference in game form, the main difference here is in the order of operations:
HS perturb first and thereafter eliminate, whereas Kohlberg/Mertens follow the

1 The informed player moves twice, but the second move (the choice of employer)
is not really strategic, subgame perfectness determines this choice uniquely.



opposite order. A simple example in Appendix A illustrates that the order in
which the operations are carried out may make a difference in general. How-
ever, in this paper we show that this is not so in the present case, i.e. if the
unperturbed Spence game is dominance solvable (which holds if the proportion
of low quality workers is relatively high), the Harsanyi/ Selten solution is the
equilibrium that remains after all dominated strategies have been iteratively
eliminated, i.e. the Pareto best separating equilibrium. Actually, the proof of
this proposition constitutes the heart of the present paper, hence, the param-
eter constellation that is trivially to solve according to conventional methods
poses the greatest difficulty for the HS theory. The case where the proportion
of low ability workers is small (so that the game is not dominance solvable) is
relatively easy to solve by means of the HS theory. In this case, we show that
only the Pareto best pooling equilibrium spans a primitive formation, therefore,
the HS theory determines this equilibrium as the solution. To summarize, in
our simple model, the solution obtained by the HS theory coincides with the
E;-equilibrium notion proposed by Wilson [1977]. It should be stressed that to
obtain this result we do not make use of Pareto comparisons. Although such
comparisons play a role in the HS theory, in our analysis we will never be in the
position that the HS theory allows us to make such a comparison. Finally it
should be remarked that it remains to be investigated for which class of games
the Wilson and HS solutions coincide.

The remainder of the paper is organised as follows. In Sect. 2 we introduce
the model and derive the Nash equilibria of the unperturbed game. (The model
is chosen so that every Nash equilibrium is sequential). The HS theory cannot
be applied to this game directly, rather one has to apply the theory to a se-
quence of uniformly perturbed games and then let the perturbances go to zero.
In the Sects. 3 and 4 it is investigated which equilibria of the original game
are uniformly perfect, i.e. which equilibria can be approximated by equilibria
of such uniformly perturbed games. HS consider as the initial set of solution
candidates of a perturbed game the so called primitive equilibria, i.e. those
equilibria that span primitive formations. A formation is a subset of strategy
combinations that is closed under taking best replies. A primitive formation is
a minimal one, this concept generalizes the notion of a strict equilibrium point.
In Sect. 5 we investigate the formation structure of the uniformly perturbed
games. We show that, if the proportion of able workers is sufficiently high, only
the Pareto best pooling equilibrium spans a primitive formation, hence, this



equilibrium is the HS solution if there are many able workers. If there are only
few high able workers, then there are multiple primitive formations, in partic-
ular, the Pareto best pooling equilibrium as well as all separating equilibria in
which the able worker does not invest too much in education span primitive
formations. In this case, the HS solution is determined by applying the risk
dominance criterion (in which use is made of the tracing procedure). In Sect.
6 it is shown that the Pareto best separating equilibrium risk dominates all
other equilibria, hence, this equilibrium is the solution if there are few high
able workers. Sect. 7 offers a brief conclusion.

2. MODEL AND EQUILIBRIA

Let Y be a finite set (of possible education choices) and let W be the finite
set of possible wages that firms can offer. The entire paper is devoted to the
analysis of the signaling game I'(Y, W, A) described by the following rules:

(2.1) A chance move determines the type t of player 1 (the worker); with
probability A the type is 1, with probability 1 — A the type is 0; only
player 1 gets to hear his type.

(2.2) Player 1 chooses y € Y.

(2.3) Two firms (the players 2 and 3) observe the y € Y chosen and they then
simultaneously offer wages w, w3 € W.

(2.4) The worker observes the wages offered and chooses a firm.

(2.5) The payoff (von Neumann-Morgenstern utility) is 0 for a firm that does
not attract the worker, it is ¢t — w for a firm that pays the wage w to a
worker of type ¢, and it is w — y (resp. w — y/2) for a worker of type 0
(resp. type 1) that receives the wage w after having chosen the education
level y.

Several comments are in order concerning the above specification

(i) The main difference between our game and the basic model of Spence
[1973 ] is that in our case the least able worker is not productive. This
assumption simplifies the analysis somewhat since it ensures that every



Nash equilibrium is a sequential equilibrium. With minor modifications
our arguments also apply to Spence’s specification, however.

(ii) To reduce the number of parameters, we have normalised the education
cost such that these are twice as high for the type 0 worker as for the type
1 worker. Given our other assumptions, this normalisation is without loss
of generality; the reader may verify that the HS theory yields the Wilson
E;-equilibrium as long as the least able worker has higher education cost.

(iii) Competition between the firms is modeled as a Bertrand game between
two firms. It may be checked that the same results would be obtained
with n firms, n > 2. Of course, if there is just one firm the solution is
completely different (the firm offers a wage of zero and the workers do
not invest in education).

(iv) Since the HS theory aplies only to finite games, we are forced to work
with finite sets Y and W, hence, we discretize the continuous specifica-
tion of Spence. Throughout, we will assume that this discretization is
sufficiently fine, and at the end we will let the diameter of the grid go to
zero.

Let g > 0 denote the smallest money unit, all wages have to be quoted in
integer multiples of g, hence

(2.6) W = {kg; £=0,1,2,...,K}.
To simplify the analysis somewhat, it will be assumed that
(2:7) YCcWand 0,)\,1,2€Y,

an assumption that is, however, not essential for our results to hold (Details
are available from the authors upon request). To avoid some further technical
uninteresting difficulties, let us assume that the grid of W is finer than that of
Y, specifically

(2-8) if y,y’€Y and y#y', then |y—1y'|>4g.

Finally, we introduce the following convenient notation:

(2.9) If z€R,then 77 =maz{we Wlw<z}.



Next, let us start analysing the game I'(Y,W,)). Note that this game
admits several (trivial) subgames in stage (2.4): Subgame perfection requires
that at this stage the worker chooses the firm offering the highest wage, and
symmetry implies that the worker should randomize evenly over the firms in
case they offer the same wage. Hence, it is natural to analyse the truncated
game obtained by constraining the worker to behave in this way in stage (2.4).
The HS theory allows this procedure to be followed. 2 Therefore, from now on,
attention will be restricted to the truncated game. This game will be denoted
G(Y,W,))

Denote by s,(y) the probability with which the type t worker takes the edu-
cation choice y. Hence, (s, 1) is a behavioral strategy of player 1 in G(Y, W, ).
Let s(y) be the probability that education level y is chosen

(2.10) s(y) = As1(y) + (1 — N)so(y),

and let p(y) be the expected productivity if y is chosen with positive probability.
By Bayes’ rule

(2.11) wy) =rsi(y)/s(y) if s(y) >0.

Assume s(y) > 0. In any Nash equilibrium of G(Y, W, ), firms, in response
to y, play a Bertrand equilibrium of the game in which it is known that the
surplus (i.e. the worker’s productivity) is u(y). The following Lemma specifies
the equilibria of this game.

Lemma 2.1. The game in which two firms compete for a surplus u by means
of wage offers w; € W has the following equilibria:

(a) If p € W, both firms either offer p, or =, or p=~

(b) If p ¢ W, both firms either offer p~, or =~ or they randomize between
p~ and p~~ choosing u~ with probability (¢ — p+ u~)/g, where g is as
in (2.6) (ie. g=p~ —p~").

2 Actually, the HS theory requires to first perturb the game before one starts
replacing subgames (which are cells in the perturbed game) by their solutions.
To simplify the exposition, we have interchanged the operations of perturbing and
decomposition, what, for the case at hand, does not influence the final result.



Proof. A straightforward argument establishes that, if u ¢ W, only u~ and
p~ " can be in the support of an equilibrium. By investigating the 2x2 game
in which each firm chooses between = and p~~, conclusion b) follows easily
from (2.6). If 4 € W, the equilibrium support now possibly also includes z and
conclusion a) follows easily by investigating the 3x3 game in which each firm
chooses between u,u~ and p~~.

O

Remark 2.2. Note that in case (a) of Lemma 2.1, the equilibrium in which
both firms offer u is not perfect if 4 > 0 (bidding g is dominated by bidding
-
0. At a certain stage of the solution process, the HS theory eliminates the

#~ ), while the other two equilibria are perfect (even uniformly perfect) if u

equilibrium x~~ since it is not primitive (when my opponent offers ==, I am
indifferent between p~~ and p~, also see Sect. 5). The equilibrium (u=, x7),
being strict is definitely primitive. Consequently, in case (a), we will restrict
attention to this equilibrium right from the beginning. (Also note that pu~~
cannot occur in equilibrium if there are more than two firms). In case (b) all
three equilibria are (uniformly) perfect. The mixed equilibrium is not primitive.
To simplify the statements of results to follow somewhat, and without biasing
the final result, we will restrict attention to the equilibrium (u~, ™) also in
this case.

Let s = (so0,31) be an equilibrium strategy of player 1 in G(Y,W, ) and
write Y(s) = {y; s(y) > 0}. The above lemma and remark, with g = u(y) as
in (2.11) determines the equilibrium response of the firms at y. Assume y,y’ €
Y(s) with y < y'. From optimizing behavior of the worker, one may conclude
that pu(y) < p(y'). Since it cannot be the case that both types of worker
are indifferent between y and y' we must have u(y) = 0 or u(y') = 1, hence,
in any equilibrium at most three education choices can occur with positive
probability. The Nash concept does not specify the equilibrium responses of
firms at education levels y € Y/Y(s). To generate the set of all equilibrium
outcomes we may put w;(y) = 0 at such y, since this is the best possible threat
of the firms to avoid that y will be chosen. Using this observation it is not
difficult to prove that the set of Nash equilibrium paths of G(Y,W,)) is as
described in the following Proposition.

Proposition 2.3. (s,w) with s = (3¢, 8;) andw = (w2, w;) withw, : Y (s) —
W is a Nash equilibrium path of G(Y, W, ) if and only if



(2.12) i se(y) >0, then{yeugr}x’l(a:)( w(y) —y/(t+1)
and w(y)—y/(t+1)20
(2.13) w(y) = wi(y) = wa(y) = u(y)™ for all y € Y(s)

In the following sections, emphasis will be on those equilibria in which
player 1 does not randomize. (The other equilibria are not primitive, hence,
the HS theory eliminates them, see Sect.6). These equilibria fall into two classes:

(a) pooling equilibria, in which the two types of worker take the same ed-
ucation choice, hence Y'(s) = {y} for some ¥ € Y. Then u(y) = A and
w(y) = A~.Therefore, (2.12) shows that § € ¥ can occur in a pooling
equilibrium if and only if § < A.

(b) separating equilibria, in which the education choice yq, of type 0 is differ-
ent from the choice y, of type 1. Proposition (2.3) shows that the pair
(y0,¥1) can occur in a separating equilibrium if and only if yo = 0 and

(2.14) 1"T—y <0<17 -y /2

Hence, we have

Corollary 2.3. For any § € Y with § < A, there exists a pooling equilib-
rium of G(Y,W, A) in which both players choose . There exists a separating
equilibrium in which type t chooses y; if and only if yg =0 and 1 < y; < 2.

3. THE UNIFORMLY PERTURBED GAME

G(Y,W,}) is a game in extensive form. The HS theory is based on a
game form that is intermediate between the extensive form and the normal
form, the so called standard form. In our case, the standard form coincides
with the agent normal form (Selten [1975]) since no player moves twice along
the same path. The agent normal form has 2|Y| + 2 active players, viz. the
2 types of player 1, and for each y € Y and each firm i an agent iy that is
responsible for the firm’s wage offer at y. This agent normal form will again
be denoted by G(Y, W, \). Note that, if (s,w) is a pure strategy combination
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(s = (so0,81) with s,(y;) = 1 for some y; € Y, w = (wq,w3) with w; : ¥ = W),
then the payoffs to agent ¢ (the type t worker, t = 0,1) are

(3.1) Hy(s,10) = mazicy 2 wilye) = yo/(t + 1),

while the payoffs to agent iy are

0 if s(y) =0 or wi(y) < wj(y)
(3.2) Hyy(s,w) = ¢ p(y) —wi(y) if s(y) > 0 and w;(y) > w;(y)
(#(y) —wi())/2 if s(y) > 0 and wi(y) = w;(y)

To ensure perfectness of the final solution, the HS theory should not be
directly applied to G(Y, W, )), but rather to a sequence of uniformly perturbed
games G(Y,W, ) with € > 0, € small, € tending to zero. The latter games
differ from the original one in that each agent cannot completely control his
actions. Specifically in G(Y, W, \), if agent ¢ intends to choose y, then he will
by mistake also choose each y € Y, y # y: with a probability ¢ and he will
actually play the completely mixed strategy s§ given by

€ == € if ) # Yt
- i ={5_qv1-ne tyZp,
More generally, if the type t worker intends to choose the mixed strategy s,
then he will actually play the completely mixed strategy s§ given by

(3.4) si() =s(y)A = [Y]e) +¢

(Of course, € should be chosen so small that |[Y|e < 1). Similarly, if agent
iy intends to choose w;(y), he will actually also choose all different wages
with the same positive probability e. Formally, the uniformly perturbed game
G(Y,W,)) has the same agents as players, these have the same strategies
available (which are now interpreted as intended choices), but the payoff func-
tion H€ is slightly different from that in (3.1) — (3.2) and takes into account
the above described mistake technology. If € is small, the payoffs H® of those
agents moving on the equilibriun path are close to the payoffs as described by
H, however, for agents iy that cannot be rcached intentionally there is a dis-
continuity. Namely, since both types of player 1 choose y with probability e in
the perturbed game, such agents play a Bertrand game with surplus A. It will
be convenient to assume that actually firms never make mistakes. The reader
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may verify that this assumption does not influence our results, it just simplifies
notation. In this case, the perturbed game payoff to agent iy is given by

Hs(y) — wi(y) if wi(y) > w;(y)
(3.5) Hf(s,w) =< (p5(y) —wi(y)) /2 if wi(y) = w;(y)
0 if wi(y) < wj(y)

where the expected productivity at y is given by

Asi(y)
1)+ (1 = N)s§(v)

(3.6) ) =12

with s{(y) as in (3.4).

If firms do not make mistakes, the workers’ payoffs are (up to a positive
affine transformation, depending on the worker’s own mistakes) exactly as in
(3.1). Since affine transformations leave the solution invariant, we will conse-
quently analyse the game in which the types of the worker have pure strategy
set Y, the agents of the firms have strategy set W and in which the payoffs
are as in (3.1),(3.5). This game will be denoted G(Y,W,)). Note that the
perturbed game G (Y, W, ) is an ordinary agent normal form game of which
we will analyse the Nash equilibria. There is no need to consider a more re-
fined solution concept: All “trembles” have already been incorporated into the
payoffs.

After having uniformly perturbed the game, the next step, in applying the
HS theory consists in checking whether the game is decomposable, i.e. whether
there exist (generalized) subgames, so called cells. (See the diagram on p. 127 of
Harsanyi and Selten [1988]). It may be thought that, for each y € Y, the agents
{2y, 3y} constitute a cell. Indeed these agents do not directly compete with an
agent iy’ with y' # y. However, they directly interact with both types of the
worker and, hence, through the worker they indirectly compete also with agent
iy'. To put it diffcrently, the game does not contain any (proper) subcells,
it is indecomposable. Therefore, we move to the next stage of the solution

procedure, the elimination of inferior choices from the game.*

3 It will turn out that this step is actually redundant in the case at hand, i.e. the
reader may move directly to Sect. 5 if he prefers. Since one of our aims is to
illustrate the various aspects of the HS theory, we thought it best to include the
discussion on inferior strategies.
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4. ELIMINATION OF INFERIOR STRATEGIES

A strategy is inferior if its stability set, i.e. the region of opponents’ strat-
egy combinations where this strategy is a best reply, is a strict subset of an-
other strategy’s stability set. It can be verified that in our model, the inferior
strategies are exactly those that are weakly dominated. Clearly, such strate-
gies exist in our model: For any agent iy offering a wage greater than or equal
1 is weakly dominated. Furthermore, for the type ¢ worker, choosing y with
y/(t+1) > maaW is dominated by choosing 0. HS require that one eliminates
all such choices, and that one continues this process until there are no inferior
choices left. (Along the way, one should also check whether the reduced game
obtained contains cells, but this will never be the case in our model, see also
Fn. 3). The following Proposition describes the irreducible game that results
after all inferior strategies have been successively eliminated.

Proposition 4.1. If € is sufficiently small, then by iterative elimination of
inferior strategies, the game G-,(Y, W, A) reduces to the game C:':(Y, W,) in
which the following strategies are left for the various agents:

For type 0 : Yry={yel; y<1}

For type 1 : Yy ={y€Y; y<3—maz(2)1)}

For agent 1y withy <1 : Wi, ={weW; w<1}

For agent iy with1 <y < 3 —maz(2),1) : W] ={we W we[r7,1)}

For agent 1y withy > 3 —max(2),1): W[ = {\"}

Proof. Clearly w € W with w > 1 is inferior for any agent iy. Once
these inferior strategies have been eliminated, choosing y > 1 becomes inferior
for type 0 (it is dominated by choosing y = 0 ) and y > 2 becomes inferior
for type 1. We claim that in the resulting reduced game an agent iy with
y < 1 does no longer have any inferior actions. Namely, w;(y) = 0 is the
unique best response against wj(y) =0 if so(y) =1 and s;(y) = 0 (hence
1S(y) < g), so that offering zero is not inferior (Here we need that € is small).
Furthermore, if w0 < 177, then w is the unique best response of agent iy against
wj(y) = w if p{(y) = 1 (i.e. so(y) = 0 and s;(y) = 1). Therefore, such
wages also are not inferior. Finally, since both firms offering w = 1" at y is a
strict equilibrium if p&(y) > 17, also w = 17 is not inferior, which establishes
the claim. Next, turn to an agent iy with y > 1. Since the type 0 worker
cannot choose y voluntarily, we either have s(y) = 0, hence u$(y) = A, or the
type 1 worker chooses y voluntarily, in which case u$(y) ~ 1. Consequently,
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at y the firms play a Bertrand game for a surplus of ) or of 1. The standard
Bertrand argument implies that, starting with w = 0, all wages with w < A
will be iteratively eliminated. On the other hand, the same argument that was
used for the case y < 1 establishes that wages strictly between A~ and 1 cannot
be eliminated. The reduction of the firms’ strategy sets obtained in this way
does not introduce new inferior strategies for the type 0 worker. Namely, if
this worker expects that y* < 1 will result in the wage 1~ while all other y < 1
yield wage 0, then the unique best response is to choose y*, so that y* cannot
be inferior. If A > 1 the reduction leads to new inferior strategies for the type
1 worker, however. Namely, by choosing y = 1, he receives an income of at
least A\ — 1 so that any eduction choice y > 3 — 2\ becomes inferior. Finally,
if y is inferior for both the type 0 and the type 1 worker, then firms at y play
a Bertrand game for surplus A and we alrcady argued above that in this case
only A" is not (iteratively) inferior. Hence, we have shown that é((Y, W, ) can
be reduced to at least GT(Y, W, A) as specified in the Lemma. Since the latter
game is irreducible, the proof is complete.
|
The following Figure displays the result of Proposition 4.1. Along the
horizontal y-axis, we indicate the noninferior actions of the worker. For each
value of y, the shaded area displays the noninferior responses of the firms. The
Figure is drawn for the case A > %
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Figure 1. The reduced perturbed game Gi(Y, W, )).

By comparing Proposition 4.1 with Proposition 2.2 it is seen that, at least
if A > %, some equilibria of the original game are eliminated by considering
the reduced perturbed game. Specifically, separating equilibria in which type 1
invests very much in education as well as some equilibria involving randomiza-
tion are no longer available in é:(Y, W, ). All in all, however, this step of the
HS solution procedure is not very successfull in cutting down on the number of
equilibrium outcomes.

It is also instructive to compare Proposition 4.1 with the result that would
have been obtained by iterative elimination of dominated strategies in the un-
perturbed game G(Y, W, )). In the latter, after wages w > 1 have been elimi-
nated, choosing y > 1 becomes dominated for type 0, but not for type 1, hence,
whenever such y is chosen, firms play a Bertrand game with surplus 1 so that
all wage offers except 17 are dominated. Hence, by choosing y = 1, the type
1 worker guarantees a utility of (about) % In particular, choosing y > 1 is
now dominated for this type. We sce that the reduced game associated with
the unperturbed game is strictly smaller than GI(Y,W,)). The difference is
especially dramatic if A < 3. Proposition 2.2 shows that in this case there is
(essentially) only one equilibrium of the unperturbed game that remains in the
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reduced unperturbed game, viz. the separating equilibrium with y; = 1. Hence,
if A< %, the unperturbed game is dominance solvable *) | and indeed, the con-
ventional analysis generates the efficient separating equilibrium (yo = 0,y; = 1)
as the outcome when \ < % The reduced perturbed game, however, does not
force agents iy with y € (1,2) to offer the wage of 1 since they may still think
that they are reached by mistake. As a consequence, é:(Y, W, A) still admits

3, and the HS theory does not immediately yield

many equilibria even if A <
efficient sepapration as the solution. Still we will show that, the risk dominance

criterion of HS forces efficient separation as the solution in this case.

5. UNIFORMLY PERFECT EQUILIBRIA

As argued before, the multiplicity of equilibria in our model is caused
solely by the imperfectness problem, i.e. by the fact that there necessarily exist
unreached information sets at which the firms’ beliefs are undetermined. At
such education choices, firms may threaten to offer a wage of zero which in turn
implies that the worker will indeed not take such a choice. The final consequence
is that there exist equilibria with unattractive payoffs for the worker.

The HS theory solves the game via its uniformly perturbed game to avoid
the imperfectness problem. The natural question to ask is how successfull this
step of the solution procedure is to reduce the number of equilibria. At first
glance it appears as if this step is very successfull, it seems that the uniformly
perturbed game admits just a single equilibrium. Namely, assume that the
equilibrium payoff of the type 0 worker would be strictly less than A\~. Motivated
by Proposition 2.3, it seems natural to assume that there exists y sufficiently

* One could also perform this elimination in the extensive form. Since gy = i
is dominated for type 0, one eliminates the branch in which type 0 chooses
such y. The resulting extensive game then has a subgame at each y > 1 and
subgame perfectness forces the firms to offer the wage 1~. This argument might
suggest that in the periurbed game, for each y¥ > 1 there is a cell consisting of
the agents 1,2y and 3y. If this would hold, it would follow immediately that
efficient separation is the Harsanyi/Selten solution if A < % However, it is not
the case that the agents 1,2y and 3y form a cell. Even though the cell condition
(see Harsanyi and Selten [1988, p.95 ] is satisfied for the agents 2y and 3y, it is
violated for the type 1 worker: His payoff depends in an essential way on how
firms react at other values of y. The reduced perturbed game does not contain
any cells, it is itself indecomposable.
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close to zero that is not intentionally chosen by either type of worker. According
to (3.5) and (3.6) firms will offer the wage A~ at such y, but then the type 0
worker profits by deviating to y. The apparent contradiction shows that the
type 0 worker should have an equilibrium payoff of at least A™. Now inspection
of Proposition 2.3 shows that the unperturbed game has only one equilibrium
that satisfies this condition, viz. the pooling equilibrium in which both types of
workers choose 7 = 0. It seems that only the Pareto best pooling equilibrium
can be an equilibrium of the uniformly perturbed game, and that using uniform
perturbations completely solves the selection problem.

The fallacy in the above argument is that there may not exist y close to
zero with s(y) = 0. Even though it is true that in the unperturbed game at most
3 education levels can occur with positive probability in an equilibrium, this
structural property no longer holds in the perturbed game. In most equilibria
of the latter game, the type 0 worker is forced to randomize intentionally over
many education levels including levels close to zero. Once, the type 0 worker
chooses y intentionally, firms will not have unbiased beliefs at y and they may
offer wages strictly below A. In particular, the wage may be so low that the type
0 worker becomes indifferent between choosing y and taking any equilibrium
education level, and in this case there is no reason why he should not inten-
tionally choose y. To put it differently, the Pareto best pooling equilibrium of
G(Y,W, ) is the only equilibrium that can be approximated by pure equilibria
of C((Y, W, X). For later reference we list this result as Proposition 5.1.

Proposition 5.1.  Only the pooling equilibrium outcome in which both types
of the worker do not invest in education can be approximated by pure equilibria
of uniformly perturbed games.

An equilibrium outcome of the unperturbed game G(Y, W, )) is said to be
uniformly perfect if, for € > 0, there exists an equilibrium (s, w®) of GT(Y, W, )
that produces this outcome in the limit as e tends to zero. Hence, Proposition
5.1 may be paraphrased as "the pooling equilibrium outcome at y = 0 is uni-
formly perfect”. In the remainder of this section we first derive a condition
that is necessary for an equilibrium outcome to be uniformly perfect (Corol-
lary 5.3), thereafter we show (Proposition 5.6) that this condition is sufficient
as well. The overall conclusion (Proposition 5.7) will be that relatively many
equilibrium outcomes of the original game are uniformly perfect.

The next Lemma states a lower bound on the wage that firms may offer
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in an cquilibrium of the uniformly perturbed game, as well as a derived lower
bound on the utility of the type 1 worker.

Lemma 5.2. If (s,w) is an equilibium of GT(Y,W, \) and if u, is the equi-
librium payoff of the type t worker, then

(5.1) if y>A" —up, then w(y)>A",

(52) uy > (/\_ + uo)/2 .

Proof. Assumey > A~ —ug but w(y) < A~. Then w(y) —y < uo, hence, the
type 0 worker cannot choose y voluntarily. Therefore, s(y) = 0 and p§(y) > A.
The Bertrand competition (Lemma 2.1), however, then forces firms to offer a
wage of at least A~, hence w(y) > A~. The contradiction proves (5.1). To
prove (5.2), assume (without loss of generality) that A~ —uy € Y. By choosing,
= AT —uy, the type 1 worker guarantees a wage of A, hence, he can guarantee

a payoff A= — (A~ — ug)/2. This establishes (5.2).
O

As a direct consequence of Lemma 5.2, we have

Corollary 5.3. If(s,w) is a uniformly perfect equilibrium of G(Y, W, \) with
u, being the equilibrium payoff of the type t worker, then

(53) u, 2 (/\_ + 1l0)/2 .

If (s,w) is a separating equilibrium with s;(y;) = 1, then vy = 0 and u; =
17 — y1/2, hence the above Corollary implies that y; < 2~ — A. Consequently
we have

Corollary 5.4. If (s,w) is a uniformly perfect separating equilibrium and
si(va) =1, theny; <2 — A

It is easily checked that Corollary 5.3 does not allow us to eliminate any
pooling equilibrivun (in this case, (5.3) is always satisfied with equality), hence,
let us turn to equilibria in which the worker randomizes. First, consider the
case where only the type 1 worker randomizes, say between § and y; with
y < y1. Then type 0 chooses § for sure, and ug = w(y) — ¥, u; = w(y) — /2.
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Furthermore, w(y) < A~ since pé(7) < A. One may conclude that (5.3) is
always violated. Next, assume that type 0 randomizes, say between y, and 7.
Then y; = 0 and type 1 also chooses § with positive probability. Furthermore,
ug = 0 and u; = §/2, hence, we must have j > A~. Therefore, § > A in view

of (2.8). We have shown:

Corollary 5.5.  Equilibria in which only the type 1 worker randomizes are not
uniformly perfect. Equilibria in which the type 0 worker randomizes between
y1 =0 and § > 0 uniformly perfect only if § > A, hence u; > A/2.

The following Figure graphically displays the results obtained

thus far.
W
1
A
b @
0 A 1 2-A
— - S J
pooling separating

Figure 2. Uniformly Perfect Equilibrium Outcomes.

We now come to the main result of this section, which states that condition
(5.3) is also sufficient for an equilibrium outcome to be uniformly perfect. We
will give the formal proof only for separating equilibria. The reader may easily
adjust the proof to cover the other classes of equilibria not excluded by Corollary
53 .

Proposition 5.6. A separating equilibrium outcome (yo,y1) with yo = 0
and y; < 2 — A is uniformly perfect.

Proof. The proof is by construction. Take € small and define the strategies
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(s, w) by means of

— A=y=g) 3
(()1"\)(1-|Y|¢)(y+y) l: 0<y<A
y#0
(5.5) s1(y) = { 1 i yem
: — Yy if 0< y< B ¥
(5.6) wiy) =1\ i y2 ANy #un
1_ lf y = y]

Note that so(y) — 0 for all y # 0 as € — 0, so that sq is a well-defined strategy
if € is small. This strategy has been chosen so that

(5.7) py)=y+g for0<y<2A

(Direct verification using (3.4) and (3.6) is easy). Furthermore, if € is small,
then u(0) < g, so that (Lemma 2.1), firms’ agents indeed bid equilibrium wages
for y < A. If y > X and y # yi, then p&(y) = A, while pS(y1) > 17 if € is small
so that firms bid optimally also for these education choices. If wages are as
in (5.6), the type 0 worker has the interval [0, A) as optimal education choices,
while the optimal choice of the type 1 worker is y; since y; < 2— A. Hence, for €
small, (s,w) is an equilibrium of G7(Y, W, A). Since (s,w) in the limit produces
the separating outcome (yo, y1), this outcome is uniformly perfect.

O

The proof that other outcomes that are not eliminated by Corollary 5.3 are
uniformly perfect proceeds similarly. The basic insight is that, if u < A~ — ug,
then y = w(y)—uo for some w(y) and the type 0 worker may choose y voluntarily
in order to justify the wage offer w(y) of firms at y. Furthermore, as long as
the type 0 worker is indifferent, the type 1 worker will not have y as an optimal
choice. Hence, condition (5.3) is sufficient for uniform perfectness, and we may
state

Proposition 5.7. The uniformly perfect equilibrium outcomes of G(Y, W, \)
are
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(i) all pooling equilibrium outcomes
(ii) the separating outcomes with y; < 2 — A, hence, uy > \/2

(iii) the equilibrium outcomes in which type 0 randomizes between y; = 0
and § with § > A, hence u; > \/2.

Note that all three classes of equilibria described in the above Proposition
satisfy u; > A/2. This condition is necessary for uniform perfectness ( cf.
Corollary (5.3)), but it is not sufficient: There exist equilibria in which only
the type 1 worker randomizes that satisfy this condition and these are not
uniformly perfect (Corollary 5.5).

6. FORMATIONS AND PRIMITIVE EQUILIBRIUM OUTCOMES

Given that strict equilibria (i.e. pure equilibria in which each player looses
by deviating) are (at least at the intuitive level) more stable than non-strict
ones, it frequently is more natural to select a strict equilibrium. (Harsanyi
and Selten [1988, Sect.5.2]). Of course, strict equilibria do not always exist
so that HS were led to search for a principle that generalizes (weakens) the
idea of strictness as a selection criterion and that still helps to avoid those
equilibria that are especially unstable. HS have come up with the concept of
primitive formations. A formation of a game specifies for each agent a subset
of his strategy set such that any best reply (in the original game) against any
correlated strategy combination with support contained in the restricted game
is again in the restricted strategy set. Primitive formations are sets that are
minimal with respect to this property. HS (Lemma 5.2.1) have shown that
primitive formations exist, and it is also true that any formation contains an
equilibrium of the original game. If (s,w) is an equilibrium of GT(Y,W,)),
then we will write F*(s,w) for the primitive formation in G7(Y,W,)) that
contains (s,w). We will say that (s,w) spans F*(s,w). Note that F*(s,w) =
{(s,w)} whenever (s,w) is a strict equilibrium. Hence, primitive formations
are the smallest substructures with similar properties as strict equilibria. The
HS theory favors the selection of equilibria which span primitive formations
to retain as much as possible of the stability properties of strict equilibria.
Specifically, HS consider as the natural solution candidates (the first candidate
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set) the set of all solutions to primitive formations. (See the flowchart on p.222
of Harsanyi and Selten [1988]). In this section, we determine the minimal
formations of (;':(Y, W, A) and their solutions. We will proceed by constructing
for each equilibrium (s, w) the minimal formation spanned by it, and then check
whether there exists an alternative equilibrium (s’,w') with

C
¢ Fe(s',w'
(6.1) (s, )#

An equilibrium (s, w) belongs to a primitive formation if and only if no (s',w')
satisfying (5.1) can be found. Such an equilibrium (s, w) will be called a prim-
itive equilibrium. (This definition differs slightly from the HS definition, the
results in this section however show that the equilibria that are primitive accord-
ing to our definition are exactly the initial candidates in the HS sense.). Finally,
an equilibrium outcome of the unperturbed game will be called primitive if it
can be obtained as a limit of primitive equilibrium outcomes of perturbed games

F(s,w)

as the perturbations vanish.

We have already seen in Sect.4 that the efficient pooling equilibrium out-
come of the unperturbed game can be approximated by pure equilibrium out-
comes of the e-uniformly perturbed game. Namely, if € is small, the strategy
combination

(6.2) 50(0) =381(0)=1, wi(y)=A forall yeV,

is an equilibrium of G’:(Y, W, ) which produces this outcome in the limit.?
Note that the equilibrium (6.2) is strict, hence, primitive. Consequently, the
pooling equilibrium outcome at § = 0 is primitive as well.

Proposition 6.1. The equilibrium outcome in which the workers are pooled
at §y = 0 is primitive.

To verify which other outcomes are primitive, the following Lemma is help-
ful.

Lemma 6.2. Let (s,w) be an equilibrium of GI(Y, W, A) and write Ffy(s,w)
for the strategy space of agent iy in the formation F*(s,w). For ¢ small, we

have

(6.3) if y=0o0r s(y)=0, then A~ € Fy(s,w) .

5 The reader may recall from Lemma 2.1 that the Bertrand game for a surplus of
A, has equilibria that differ from (A7, A7). However, these are not primitive,
hence, at last we can justify Remark 2.2.
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Proof. If s(y) = 0 and workers play according to s, then firms play a Bertrand
game for surplus A at y. Remark 2.2 and the fact that each formation contains
an equilibrium implies that A~ € F}, (s, w). Next, consider y = 0. The state-
ment of (6.3) is clearly fulfilled for the equilibrium from (6.2). If (s,w) is an
alternative equilibrium, then the argument from the proof of Proposition 5.6
implies that there exists an alternative best reply s’ of the worker with s’(0) = 0.
Since s’ is a best reply s' € F¢(s,w) and F¢(s,w) C F¢(s',w). The conclusion
now follows from the first part of the proof.

O

The Lemma immediately implies that equilibrium outcomes of the unper-
turbed game with u; < A~ cannot be primitive. Namely, if (s, w) is an equili-
brium of G{()", W, A) with u; < A7, then both types of the worker have the
education choice 0 as the best response whenever firms offer w(y) for y # 0 and
offer A~ for y = 0 .( The Lemma implies that this strategy of the firms belongs
to F¢(s,w)). But if workers play this strategy, firms should offer w = A~ for
all y and F*(s,w) contains the equilibrium (6.2), hence (s, w) is not primitive.

Corollary 6.3. In any primitive equilibrium outcome, the payoff to the type
1 worker is at least A\~ . ‘

Corollary 6.4. Equilibrium outcomes in which the workers are pooled at
9 > 0 are not primitive.

Next we show that the mixed equilibrium outcomes that were not yet
eliminated in Sect.5 are not primitive.

Proposition 6.5. Equilibrium outcomes in which the type 0 worker rando-
mizes between 0 and y are not primitive.

Proof.  Let (s,w) be an equilibrium of G7(Y, W, \) that produces in the limit
an outcome as described in the Proposition. Then so(§) > 0 and s;(g) > 0.
Hence, the formation F*(s,w) also contains the strategy in which both workers
choose y for sure. The firms’ best response against this strategy is to offer A~
for each education choice, and, if firms behave in this way, the workers should
choose y = 0. Hence, F(s, w) contains the equilibrium from (6.2) so that (s, w)
is not primitive.

O

Figure 3 graphically illustrates the results obtained thus far.
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Figure 3. DPrimitive Equilibrium Outcomes (A < %)

Finally, let us turn to separating equilibrium outcomes. For the outcome
to be primitive it is necessary that choosing y = 0 is not an alternative best
response for the type 1 worker whenever firms offer the wage A~ at y = 0,
hence, y; < 2(1 —A). (cf. Corollary 6.3). In the next proposition we show that
this condition is not only necessary but that it is also sufficient for a separating
outcome to be primitive.

Proposition 6.6. A separating cquilibrinm outcowme is primitive if and only
ify <2(1-A).

Proof. It suffices to show that the condition is sufficient. The proof is
constructive. Let (yg,y;) be a separating equilibrium outcome with y, = 0 and
y1 < 2(1 —A) and let the equilibrium (s, w) of GT(Y, W, ) that produces this
outcome in the limit be constructed as in the proof of Proposition 5.6. It is
easily seen that , for € small, F*(s, w) contains the following restricted strategy
sets

(6.4) o={yeY;y<A}  Yi={un)
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{we W;w< A7} ify <A,
(6.5) Wiy =8 {17} ify=uy,
{2~} otherwise.

Furthermore, one may easily verify that the collection of strategies defined by
(6.4) (6.5) is closed under taking best replies, hence, it is a formation and,
therefore, exactly equal to F¢(s,w). Since (s, w) is the unique equilibrium that
is contained in this formation, (s, w) is primitive.

O

Since y; > 1 in any separating cquilibrium outcome, we see from Propo-

sition 6.6 that no such outcome is primitive if A > % By combining this
observation with Proposition 5.6 and the previous results from this section, we,

therefore obtain

Corollary 6.7. (i) If A > 1 , only the outcome in which the workers are
pooled at y = 0 is primitive.

(i) If A < %, in addition to the efficient pooling outcome, also the separating
equilibrium outcomes with y; < 2(1 — X) (hence uy > \) are primitive.

7. RISK DOMINANCE

In the previous section, we determined all primitive equilibria of
GI(Y,W,)). The set of all these equilibria is what HS call the first candidate
set. HS propose to refine this set by a process of elimination and substitu-
tion until finally only one candidate, the solution, is left. Loosely speaking,
this process consists in eliminating all candidates that are ’dominated’ by other
candidates and by replacing candidates that are equally strong by a substitute
equilibrium. In our application, we will not need the substitution procedure
we will show that there exists exactly one equilibrium in the first candidate set
that dominates all other equilibria in this set.

Attention will be confined to the case where A < 1/2. If A > 1/2, and
e is small, then the perturbed game GI(Y,W,\) has just a single primitive
equilibrium, and this induces the efficient pooling outcome, so that we have
Proposition 7.1.  If A > 1/2, then the HS solution of the Spence signaling

game (Y, W, ) is the outcome in which the workers are pooled and do not
invest in education.
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Let e, €' be equilibria of the perturbed game é:(Y, W, ), write A for the
set of agents participating in this gamne (with generic element a) and let u,(e)
(resp. uq(e’)) be the payoff to agent @ when e (resp. €') is played. Finally,
denote by A(e,e'), the set of all agents for which e, # el, that is, who play
differently in e than in €’. HS say that e payoff dominates €' if

(7.1) uq(€) > uq(e') for all a€ A(e,¢€'),

and their theory requires that one first eliminates all payoff dominated equilibria
from the initial candidate set. In our case, the only initial candidates that
could possibly be payoff dominated are those that approximate an equilibrium
in which the type 1 worker is separated at an education level y’ strictly above 1.
Indeed, the type 1 worker prefers to be separated at a lower level y. However,
condition (7.1) requires that one also considers the payoffs of the agents of the
firms at y and y', and it cannot be the case that all these agents unanimously
strictly prefer the type 1 worker to choose y: If agent iy strictly prefers the
worker to choose y rather than y' , then agent iy’ strictly prefers this worker
to choose y'. Consequently, no initial candidate is payoff dominated in the HS
sense, and we have

Proposition 7.2. The criterion of payoff dominance does not reduce the
initial candidate set.

Proposition 7.2 implies that the HS theory requires to compare equilibria
using the risk dominance criterion. The notion of risk dominance is central to
the HS theory; It tries to capture the idea that, in a situation where the players
are uncertain about which of two equilibria should be played, the players enter
a process of expectation formation that may finally lead to the conclusion that
one of these equilibria is less risky than the other one, and that, therefore,
they should play this less risky equilibrium. In the remainder of this section
we will show that the best separating equilibrium, (i.e. type 1 chooses 1), risk
dominates all other solution candidates, hence, that this equilibrium is the HS
solution if A < 1/2. Before proving this main result, we introduce some notation
and formally define the concept of risk dominance.

Assume it is common knowledge that the solution of the game will be
either ¢ or ¢’ and let A(c,¢') be the set of those agent whose strategy in e
differs from that in ¢’. The restricted game generated by e and e’ is the game
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in which the player set is A(e, €') and in which the set of strategy combinations
is the smallest formation generated by {e,e'}. Let a € A(e,e’') and assume
this agent believes that his opponents will play e with probability z and ¢’
with probability 1 — 2. Then a will play his best response b,(z, €, €') against the
(correlated) strategy combination ze_, +(1—2z)e’_,. Harsanyi and Selten define
the bicentric prior of agent a as p, = b,(e,€') = fol ba(z,e,€e')dz. This bicentric
prior may be interpreted as the mixed strategy which an outside observer (or
an opponent of a) expects a to use. (Adopting the principle of insufficient
reason, the outsider considers the beliefs of a to be uniformly distributed on
[0,1]). Denote by p the mixed strategy combination p = (Pa)aca(e,er)- This p
represents the initial expectations of the players in this situation of common
uncertainty. The tracing procedure transforms these preliminary expectations
into final expectations. Formally, the tracing procedure is a map T that converts
each mixed strategy combination into an equilibrium. Risk dominance is defined
by means of the tracing procedure. The equilibrium e is said to risk dominate
€' if for the bicentric prior p = b(e, ¢') generated by e and e’ we have T(p) = e.
We conclude this overview of definitions by briefly describing the operator T'.
In our case it turns out that the linear tracing procedure is well-behaved, so we
only specify this one. Let G be a game with payoff function H, and for ¢ € [0,1]
, let G}, be a game with the same strategy sets, but in which the payoffs are

(7.2) Hy(0) = tHq(0) + (1 = t)Ha(0a, P-a)

henee, for t = 0, one plays against the bicentric prior, for t = 1, one plays the
original game. Let Ej be the set of equilibria of Gj,. (In our case) it can be
shown that E, = {E};t € [0,1]} contains exactly one continous path connecting
the unique equilibrium of Gg with an equilibrium of G;, = G. The tracing result
T(p) of p is the final endpoint of this continous path.

After this review of definitions, we turn to the results. We will first show
that, for € small, the efficient separating equilibrium risk dominates any other
separating equilibrium. The intuition for this result is simple. Let e be the
separating equilibrium in which type 1 chooses y = 1 and let €’ be a separating
equilibrium in which this type chooses y' > 1. The initial beliefs of the firms’
agents at y and y' will be that the type 1 worker chooses both y and y' with
a probability that is bounded away from zero. Since the type 0 worker only
chooses y and y' by mistake, and mistakes are rare, firms will be willing to offer
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a wage w = 17 at y and at y'. Since y and y' garner the same wages, the type
1 worker strictly prefers to choose y as the cost incured there are lower. This
reinforces firms at y = 1 to offer w = 17. On the other hand firms’ agents at
y" will gradually update their beliefs, they become more pessimistic and finally
they will conclude that y' can only occur by mistake. Hence, ultimately they
will offer w = A~ : We end up at the reparating equilibrium at y = 1.

The following Proposition makes this argument precise.

Proposition 7.3.  Let €' be an equilibrium of GT(Y, W, A) in which the type
1 worker is separated at y' > 1. Then, if € is small, there exists an equilibrium e
in which the type 1 worker is separated at y = 1 that risk dominates e'. Hence,
efficient separating equilibria risk dominate all other separating equilibria.

Proof. Let ¢' be given. Modify e’ such that the type 1 worker chooses
y = 1 rather than y' > 1, and such that firms offer w = 1~ at y rather than
at y' (where they now offer A7). The resulting strategy combination e is an
equilibrium. We will show that e risk dominates e’. Note that A(e,e') consists
of § agents, viz. the type 1 worker and the firms’ agents at y and y'. The game
relevant for the risk dominance comparison has strategy space {y,y'} for the
type 1 worker, whereas the firms may choose from {w € W; A\~ < w < 17}
at y and y'. The payoff to the worker is as in (3.1), if agent iy overbids the
opponent with wage w, then its payoff is

(7.3) s (y)(m5(y) — w)

where p5(y) is as in (3.6) ( with so(y) = 0) and s%(y) is the probability that y
is chosen by the worker

(7.4) s(y) = (1= Ne + As§() -

If agent iy bids lower than the opponent, its payoff is zero, if both agents at
y bid the same wage w, they share the quantity from (7.3). Payoffs at y' are
defined similarly.

We now compute the bicentric prior combination associated with e,e’. If
the type 1 worker expects his opponents to play according to ze + (1 — z)e’,
then his payoff if he chooses y is equal to

217 + (1 —2)A7 —=1/2,
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while if he chooses y' his payoff is
AT+ (1-2)17 —9'/2.
His best response is to choose y whenever
2 512 =y = 1)1 = A).
Accordingly, his bicentric prior assigns the probability
(7.5) pi(y) =1/2+(y' - 1)/4(1 = X).

to choosing y and the complementary probability to choosing y'.

Next, turn to agents of the firms. Let agent iy have beliefs ze + (1 — 2)e’. If
this agent chooses w ¢ {A7,17}, then he will only get a worker if ¢’ is played
and in this case his expected payoff is negative. Hence, such a wage cannot be
optimal since by offering A~ the agent guarantees a nonnegative payoff. In fact,
A~ yields an expected payoft of

(7.6) (1—-2)eg/2.
On the other hand, if the agent chooses 1~ his expected payoff is
(7.7) A g2+ (1—-2)e(A=17),
where A€ and ¢¢ are defined by
A= s5(y)
with s1(y)=1.
g° =ps(y) — 17

( Note that (A€, g) — (A, g) as € = 0). Comparing (7.6) and (7.7) we see that
agent 7y should choose A~ whenever

(7.8) 22992 < (1—2)e(1-X—g/2).

Write 6 for the probability that (7.8) holds when z is uniformly distributed on
[0,1]. Note that 6 — 0 as € — 0, hence, the prior strategy of agent iy chooses
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1~ with probability close to 1 if € is small. The computations at y' are identical
to those at y, hence, we find for the prior strategies of the firms

1~ with probability 1 — é¢
(7.9) Wiy, = Wiyt =
A~ with probability é¢

Given the prior strategy combination p as in (7.5), (7.9) it is easy to com-
pute the equilibrium of G‘,’,, that is, the starting point of the tracing path. Since
the expected wage at y is the same as that at y’, the worker chooses y since
costs are lower there. Denote by u‘(y) the expected prior productivity at y(
i.e. p(y) is determined by (7.4), (7.5) and (3.6)). Then p*(y) — 1 as e — 0.
The expected payoff from offering 1™ is at least equal to

(1=-8) () -17)
whereas the expected payoff associated to any other wage is bounded above by
5 () — A7)

Consequently, only 17 is a best reply against the prior if € is small. Hence,
in any equilibrium of Gg, the firms offer w;, = 17. The same argument also
generates this conclusion at y'. Hence, Gg has a unique equilibrium, and this
is given by

(7.10) si(y) =1, wiy=wiyy =17

Now consider t > 0. If firms do not change their wage offers, there is
no reason for the worker to deviate from y, and if this worker stays at y, the
agents 2y and 3y should not change their wage offers either. What about the
firms’ agents at y'? For t small, their (subjective) payoffs from (7.2) are still
largely determined by their priors and they will find it optimal to offer w = 17.
Consequently, for ¢ small, the tracing path continues with the equilibrium from
(7.10). However, if the worker remains at y = 1, then the expected productivity
at y' decreases with increasing ¢ and the payoffs to the firms’ agents at y’ would
become negative for t close to 1 if these agents would remain at their wage
offer of 1-. Consequently, these agents will be the first to switch, and they will
switch to lower wages. This, of course , reinforces the decisions of the worker
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and of the firms’ agents at y = 1: Along the tracing path, these agents will
never switch, and the agents at y' have to adjust until finally an equilibrium
of G is reached. In the end, these agents will, therefore, offer the wage A~ and
we see that the tracing path must end up in the equilibrium e. Hence, e risk
dominates e'.

O

It is instructive to study in somewhat greater detail the adjustment process
(i.e. the tracing path) that brings players from the prior p to the equilibrium
e. As already remarked above only the agents at y' change behavior during the
process. Take e fixed and write é;, for the game as in (7.2) played by these
agents given that the type 1 worker chooses y = 1 for all ¢t. é;, resembles
a standard Bertrand game for a surplus p(t) where u(t) is decreasing with
17 < pu(0) < 1 and p(1) = A. The only difference with an ordinary Bertrand
game is that in G.'; each agent is committed to choose 1~ with probability 1 —t.
Nevertheless, the equilibria of G}, can be read off from Lemma 2.1. It is easily
seen that there exists #; > .0 such that only (17,17) is an equilibrium of é;
for t < t;. Furthermore, there exists t; > ¢, such that for ¢t € (#;,t2) the
game G; has three equilibria, viz. (17,17),(177,177) and a mixed one. If
t > ty, (177,177) is still an equilibrium, but the other two are not, and they
are replaced by two different equilibria, viz. (1-3g,1-3g) and a mixture of 1-2g
and 1-3g. Hence, a switch of behavior has to occur at or before t,. Since the
tracing path must be continuous, it cannot jump from (17,17) to (177,17 7)
at t2, consequently it must bend backwards at t;. Therefore, the initial segment
of the tracing path looks as follows. From 0 to t; it consists of the equilibrium
(17,17). At t; it bends backwards, continuing with the equilibrium in which
firms randomize between 1 — g and 1 — 2¢ (gradually increasing the probability
of 1 — 2¢ from 0 to 1), at #; it bends forward again and continues with the
equilibrium (1 — 2¢,1 — 2¢). This alternation between forward and backward
moving segments continues while simultaneously lowering the wages until finally
the path becomes stationary at (A\~,A7).

We finally come to the risk dominance comparison of the pooling equilib-

rium with the best separating equilibrium. The main result of this section states

that the separating equilibrium dominates the pooling one if A < % and € is

small. Again the intuition is simple. Consider a situation of mutual uncertainty
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concerning whether, in the unperturbed game, the separating equilibrium e or
the pooling equilibrium e’ should be played. The type 0 worker chooses y = 0
in both, hence, for him the situation is unproblematic. In fact, since the wage
at y = 1is at most 17, this type will always strictly prefer to choose y = 0. The
prior uncertainty will however lead the type 1 worker to choose both y = 0 and
y = 1 with a probability that is bounded away from zero. (Below we show that
the probability is approximately 1/2). Hence, firms at y = 1 will infer that they
face the type 1 worker and they will offer w = 1~. On the other hand, firms at
y = 0 infer that the expected productivity is below (and bounded) away from
A, hence, their wage offers will be below A as well. Given that 0 < w(y) < A for
y = 0 and that w(y) = 1 for y = 1, the type t worker prefers to choose y = ¢.
These choices reinforce firms to offer w = 1~ at y = 1. At y = 0, however, firms
gradually become convinced that they face the type 0 worker and this leads
them to gradually lower their wage offers, until they finally offer 0. Hence, we
end up at the separating equilibrium, the separating equilibrium risk dominates
the pooling one.

Formalizing the above argument is, unfortunately, rather cumbersome since
the HS theory requires working with the perturbed game. The difficulty is
caused by the fact that the separating equilibrium can only be approximated
by mixed equilibria of the perturbed game and the latter are rather complicated
(cf. Proposition 5.6). Hence, there are an enormous number of switches along
the tracing path. The difficulties are not of a conceptual nature, however,
formally one just has to go through a large number of steps similar to the ones
described in detail in the proof of Proposition 7.3. Since already in that case
the notation became cumbersome and the formal steps were not particularly
illuminating, we prefer to stick to the main ideas and make the risk dominance
comparison in the unperturbed game. It can be shown that this shortcut does
not bias the results. (The detailed argument for the perturbed gamne is available

from the authors upon request).

Proposition 7.4. If A\ < 1/2, then in the unperturbed game, the best
separating equilibrium risk dominates the best pooling equilibrium. The same
dominance relationship exists in the perturbed game GT(Y, W, A) provided that
€ is small.

Proof. The main advantage in working with the unperturbed game lies in the
reduction in the number of agents involved in the risk dominance comparison:



32

We do not have to consider the type 0 worker (he chooses 0 in both equilibria),
nor the firms’ agents at y # 0,1. Let e denote the separating equilibrium in
which the type 1 worker chooses 1 and let €' be the pooling equilibrium in which
both workers choose 0. We first compute the bicentric prior. Let players have
beliefs ze + (1 — 2)e’. If the type 1 worker chooses y = 0 his expected payoff is
(1 —z)A~, if he chooses y = 1, the cxpected payoffis ) z1~ + (1 —2)A~ —1/2.
Consequently, this worker will choose both y = 0 and y = 1 with a probability
of approximately 1/2. Next, consider the agent of a firm at y = 1. This agent
has to move only if the separating equilibrium is played, and in this case the
agent of the competing firm offers 17. Hence, the only way in which this agent
can make a profit is by also offering 1~. Therefore, the bicentric prior is to offer
1~ for sure. Finally, consider a firm’s agent at y = 0. It is easy to see that any
wage w ¢ {0,\} yields negative expected profits. If the agent offers the wage 0
the expected profit is 0, while the profit resulting from A~ is equal to

—z(1=XN)(A—g)+ (1 —2)g/2.
Consequently, the agent at 0 should offer the wage 0 if
(1= X)X —9) +9/2) > g/2.

Let é be defined by

_ g/2
(7.11) =T -nrez

then the bicentric prior of an agent at 0 chooses A~ with probability § and
0 with probability 1 — §. Since ¢g can be chosen arbitrarily small, the initial
expectation of the worker is, therefore, that the expected wage at 0 is close to
0. Consequently, for g small, the best response of the type 1 worker is to choose
y = 1 for sure and this reinforces the firms to offer w =17 at y = 1. We claim
that in any equilibrium along the path followed by the tracing procedure, the
worker chooses y = 1. Namely, this property can only fail to hold if the firms at
y = 0 offer a sufficiently high wage (at least equal to 1/2) and this will never be
the case since the expected productivity at 0 will always be below A and A < 3.

% The pooling equlibrium of the unperturbed game does not specify a unique wage
at y = 1, we fix this wage at A, that is, at the limit of the wages of approxi-
mating equilibria of the perturbed games.
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In fact along the tracing path the wage offer at y = 0 will never be above /2
since this is the highest expected productivity at y = 0. The exact tracing path
can be determined by using an argument as the one that follows the proof of
Proposition 7.3: For tracing parameter ¢, the agents at y = 0 play a Bertrand
game for a surplus of (approximately) (1 — ¢)A/2 modified to the extend that
each agent is committed to play his prior as in (7.11) with probability 1 — t.
The unique equilibrium of this game for t = 0 is (g,g). As t increases, firms
initially switch to higher wages (since for t small the expected surplus is large),
however, for larger t, wages fall again since the surplus decreases. (Again the
tracing path contains many backwards running segments). As ¢ tends to 1 the
surplus, hence, the wages tend to zero; along the way the wages never exceed
the maximal surplus of A/2. Consequently, the agents at 0 finally switch to the
wage corresponding to the separating equilibrium. Since the other agents are
already at this equilibrium from the beginning, the tracing path leads to the
separating equilibrium. Hence, the separating equilibrium risk dominates the
pooling one.

O

8. CONCLUSION

By combining the Propositions 7.1, 7.3 and 7.4, we obtain the main result
of this paper.

Corollary 8.1. The Harsanyi/Selten solution of the Spence signaling game
T(Y,W)) is
(i)  the equilibrium outcome in which the workers are pooled at y = 0 if A < %,

(ii) the separating equilibrium outcome in which the type t worker chooses
y=2tif A > % ;

Even though we used the assumptions (2.6) - (2.10) to derive this result, it
can be checked that at least for A # 1/2, the statement of Corollary 8.1 remains
correct if these assumptions are not satisfied. Hence, the result is independent of
the discretization chosen. It is, therefore, justified to make a limiting argument
and to talk about the HS solution of the continuum game. Hence, g =0 and Y
and W are continua, as in the usual specification of the Spence model found in
the literature. Denote this game by I'(A). The (limit as g — 0 of the) solution
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found in Corollary 8.1 is known in the literature as the Wilson E;-equilibrium
(Wilson [1977]). It is that sequential equilibrium of I'(A) that is best from the
viewpoint of the type 1 worker. Hence, we have

Corollary 8.2. For \ # %, the HS solution of the 2-type Spence signal-
ing game I'()\) is the Wilson E;-equilibrium of T'()), i.e. it is that sequential
equilibrium that is best for the type 1 worker.

Given the ad hoc nature of Wilson’s solution concept, it is to be expected
that a coincidence as in Corollary 8.2 will not hold in general. However, the
authors conjecture that for a broad class of signaling games that have similar
structural properties as the game studied in this paper, the HS solution coincides
with the solution proposed in Miyazaki [1977]. (The important properties are
monotonicity and the single crossing condition, see Cho and Sobel [1977], it
is conjectured that the number of types does not play a role). A detailed
investigation into this issue will be carried out in a future paper.

The simple structure of our game enables a sensitivity analysis with respect
to several assumptions made by Harsanyi and Selten that is difficult to carry out
in general. We will not go into detail, but restrict ourselves to one issue. Some
people have argued that the uniformity assumption made in the construction
of the prior to start the tracing procedure is ad hoc. Consequently, one may
ask how robust the results from Sect. 7 are with respect to this prior. The
reader can easily convince himself that the outcome is very robust. Robustness
especially holds for Proposition 7.4 : The separating outcome will result for
A< % as long as the prior expectations of the players assign positive probability
to this outcome (i.e. as long as the density of z is strictly positive on [0,1]).

The theory of Harsanyi and Selten has both evolutionary and eductive
aspects. (See Binmore [1987] for a general discussion of these notions). The
preference for primitive equilibria is most easily justified by taking an evolu-
tionary perspective, the tracing procedure most certainly is eductive in nature.
It is interesting to note that the HS theory ranks evolutionary considerations
prior to eductive ones. This ordering of steps indeed has consequences for
the final outcome since the separating equilbrium outcome with y; = 1 risk
dominates any other equilibrium outcome for all values of A. (cf the proofs
of the Propositions 7.3 , 7.4 ) Hence, if the solution would be based on risk
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dominance considerations alone, the solution would always involve separation.
Consequently, the solution that was initially proposed by Spence and that is
defended and used in most of the subsequent literature can also be justified on
the basis of risk dominance.

Finally, let us mention that recently related work has been done by Michael
Mitzkewitz (Mitzkewitz [1989 ]). He computes the HS solution for signaling
games in the following class: There are 2 players, player 1 has 2 possible types,
and he can send 2 possible messages, to which player 2 can react in 2 different
wages. Mitzkewitz does not assume the single crossing property, hence, he is
forced to use an approach that differs from ours.
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APPENDIX A: DOMINANCE SOLVABILITY AND THE
HS SOLUTION
Consider the 2-person normal form game

10 0 0
10 10 0
10 6 0
0 6 6
0 6 1
0 0 1
Table 1: G

which admits three Nash equilibria, viz. A = (A4;,4;), B = (B,;,B;) and
C =(Cy,C?).

We have that A; (resp. A;) is dominated by B; (resp. B;), while in
the reduced game B; (resp. Bj) is dominated by C; (resp. C). Hence, the
(unperturbed) game is dominance solvable, with solution C. (This is the unique
stable equilibrium of the game). HS, however, do not analyse the unperturbed
game, but rather a sequence of uniformly perturbed games. In the e-uniformly
perturbed game G(¢) of G each player, when he intends to choose the pure
strategy X;, will actually choose the completely mixed strategy (1 — 2¢)X; +
eY; + €Zi(X; # Yi # Z;). Neglecting terms of order €2, the payoff matrix of
G(e) is given by
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10 — 30¢ 22¢ 10e
10 — 30e 10 — 24e 27e
10 — 24¢ 6 — 8¢ 16¢
22¢ 6 — 8¢ 6 —17¢
27e 6 — 17¢ 1+ 2¢
11e 17¢ 1+ 2¢

Table 2: G(e)

In G(€), we have that A, (resp. A;) is dominated by B; (resp. B;). The
reduced game in which these inferior strategies have been eliminated has 2 strict
equilibria, viz. B and C. (There is a third equilibrium in mixed strategies but
this is not primitive). Hence, the initial candidate set is {B,C}. Since B payoff
dominates C, the HS solution of G(e) is B. Consequently, B is the HS solution
of G. Hence, perturbing first may make a difference since it can transfer non-
strict equilibria into strict ones.

This example may lead the reader to think that the discrepancy between
dominance solvability and the HS theory is caused by the fact that the latter
makes use of Pareto comparisons. (Indeed, inG(¢), the equilibrium C risk dom-

“inates B). A second example may however show that this is not the case. The
game from Table 3 is dominance solvable, with solution D = (D;,D;). The
e-perturbed game has A; and B; as inferior strategies, while C = (Cj, C2) and
D = (D, D;) are strict equilibria. Now C not only payoff dominates D, but it
also risk dominates D, so that, even if one does not accept payoff dominance as
a selection criterion, one still is lead to C as the solution as long as one accepts
the other elements of the HS theory.
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