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Abstract

The paper studies the most simple version of the Spence job market sig-
naling model in which there are jitst 2 types of workers while education is not
productivity increasing. To eliminate the multiplicity of equilibria, the general
equilibritun selection theory of John Harsanyi and Reinhard Selten is applied.
It is shown that this theory selects Wilson's EZ-equilibrium as the solution.
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1. INTRODUCTION

Recently, signaling games have been extensively studied by economic the-
orists and game theorists. In such games, there is an informed party who sends
a message to which one or several tminformed players react; the payoffa of the
partici~iauts depcud on the privatc information of the informed party, the sig-
nal that this player sends and the responses that the uninformed players take.
Many models of economies with informational asymmetries contain a sígnal-
ing game as an essential ingredient. For a(very) partial overview of this huge
literature, see Van Damme [1987, Sect. 10.4].

A signaling game typically admits a great multiplicity of equilibria. This

is caused by the fact that the signal space is usually larger than the type space
of the informed player so that there exist unused signals. The Nash equilibrium
concept does not tie down the uninformed agents' beliefs and actions at such
unrcacLrd infor,uHtion tiots, aud this arbitr:uiucss of non-equilibrium reeponses
iii t.iirn allows inany outcouies to be su,tained in eyuilibrium. As a consequence,

the class of signaling games has provided fertile playing ground for game theo-
rists working on equilibrium refinements. Indeed many refinements of the Nash
concept have been defined initially only for such games although in most cases

the concepts can be extended to general extensive form games. Again, see Van
Damme [1987, Sect. 10.5] for a partial survey.

To reduce the multiplicity of equilibria in signaling games arising in eco-

nomic contexts, variations on the theme of iterative elimination of dominated

strategies have been most popular. Some of such (sometimes ad hoc) pro-
cedures cau be justificd by refc.ring to the general notion of stabla~ equilibria
introduced in I~ohlberg and Mertens [1986]. Indeed, various authors claim ad-

ditional virtue for the result they obtain by stating that the outcome obtained

is the only one satisfying the Kohlberg~Mertens stability criterion. However,

the latter stability notion has its shaze of counterintuitive examples (see, for

instance, Van Da.mme [1988]), and even the seemingly unobjectionable notion

of iterative elimination of ordinary weakly dominated strategies is not without

pitfalls ~s Binmore [1987) has argued. As a consequence, the present suthors
are not convinced that the theory that is currently accepted by the majority of

researchers in the field will survive in the long run; there is scopc for alternative

theories.
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Our aim in this paper is to illustrate such an alternative theory, viz. the
equilibritun selection theory of John Harsanyi and Reinhard Selten [1988](the
HS theory), by means of applying it to a simple signaling game arising in an
economic context. Specifically, we will study the most basic version of the job
mazket signaling model introduced in the seminal work of Spence [1973,1974].
We take this well-known model rather than an abstract signaling game for
didactical reasons. Since many economic signaling models have a mathematical
structure similar to Spence's model, arguments similas to the ones we will use
will come up in their analyses and the reader can get a good idea for how the
HS theory works by reading the present paper. In the literature, the reader
can already find several applications of the HS theory, however, all of these
are to games that admit miiltiple strict equilibria, and in these stability a la
Kohlberg~Mertens is not very powerful. (Recall that Kohlberg and Mertens
do not claim that their theory is a selection theory, cf. Fn. 2 of their paper.)
To our knowledge, the present paper is the first to apply the HS theory to a
game in which the multiplicity of equilibria is caused solely by the existence of
unreached information sets, i.e. by the perfection problem.

There is no doubt that there are fundamental differences between the
HS (general) theory and alternative (partial) theories such as I{ohlberg~Mer-
tens stability. We urge the reader to read the postscript of Harsanyi and Selten
[1985] in which some of these are described. Perhaps the most profound differ-
ence is that HS work with the standard form of the game (this is basically the
agent normal form), whereas stability is a normal form concept. Accordingly,

HS reject ideas of 'forward induction' since they conflict with their 'subgame
and truncation consistency'. Since in our game no player has 2 strategic moves
along thc same pathl] , this difference is not relevant for our model, however.
(Also, cf. Mcrtcns [1~J88]).

On the other hand, there are common elements in the various theories:
HS iteratively eliminate inferior strategies of the perturbed standard form,
I{ohlberg~Mertens stability allows iterative elimination of dominated strate-
gies in the normal form, and dominated strategies are inferior. Apart from the
difference in game form, the main difference here is in the order of operations:
HS perturb first and thereafter eliminate, whereas Kohlberg~Mertens follow the

~ The iníormed player moves twice, but the second move (the choice of employer)
is not really strategic, subgame perfectness determines this choice uniquely.
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opposite order. A simple example in Appendix A illustrates that the order in
which the operations are carried out may make a difference in general. How-

cver, in this papcr we show that this is not so in the preseut case, i.e. if the

unperturbed Spence game is dominance solvable (which holds if the proportion

of low quality workers is relatively high), the Harsanyi~ Selten solution is the
equilibrium that remains after all dominated strategies have been iteratively
eliminated, i.e. the Pareto best separating equilibrium. Actually, the proof of
this proposition constitutes the heart of the present paper, hence, the param-

eter constellation that is trivially to solve according to conventional methods
poses the greatest difficulty for the HS theory. The case where the proportion

of low ability workers is small (so that the game is not dominance solvable) is

relatively easy to solve by means of the HS theory. In this case, we show that

only the Pareto best pooling equilibrium spans a primitive formation, therefore,
the HS theory determines this equilibrium as the solution. To summarize, in
our simple model, the solution obtained by the HS theory coincides with the

EZ-equilibrium notion proposed by Wilson [1977]. It should be stressed that to

obtain this result we do not make use of Pareto comparisons. Although such
comparisons play a role in the HS theory, in our analysis we will never be in the

position that the HS theory allows us to make such a comparison. Finally it

should be remarked that it remains to be investigated for which class of games
the Wilson and HS solutions coincide.

Thc remainder of the paper is organised as follows. In Sect. 2 we introduce

the model a.nd derive the Nash equilibria of the unperturbed game. (The model

is chosen so that every Nash equilibrium is sequential). The HS theory cannot
be applied to this game directly, rather one has to apply the theory to a se-

quence of uniformly perturbed games and then let the perturbances go to zero.

In the Sects. 3 and 4 it is investigated which equilibria of the original game

are uniformly perfect, i.e. which equilibria can be approximated by equilibria

of such uniformly perturbed games. HS consider as the initial set of solution

candidates of a perturbed game the so called primitive equilibria, i.e. those

equilibi;a that span primitive formations. A formation is a subset of strategy

combinations that is closecí under taking best replies. A primitive formation is

a minimal nne, this concept generalizPS the notion of a strict equilibritun point.

In Sect. 5 we investigate the formation structure of the uniformly perturbed

games. Wc show that, if thc proportion of able workers is sufficiently high, only

the Pareto best pooling equilibriuin spans a primitive formation, hence, this
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eqttilibrimn is the HS solution if there are many able workers. If there are only
few high ablc workers, then there arc multiple primitive formations, in partic-
ular, the Pareto best pooling eciuilibritun as well as all separating equilibria in
which the able worker does not invest too much in education span primitive
formations. In this case, the HS solution is determined by applying the risk
dominance criterion (in which use is made of the tracing procedure). In Sect.
6 it is shown that the Pareto best separating equilibrium risk dominates all
other equilibria, hence, this equilibrium is the solution if there are few high
able workers. Sect. 7 offers a brief conclusion.

2. MODEL AND EQUILIBRIA

Let Y be a finite set (of possible education choices) and let W be the finite
set of possible wages that firms can offer. The entire paper is devoted to the
analysis of the signaling game I'(Y, T~V, a) described by the following rules:

(2.1) A chance move determines the type f of player 1(the worker); with
probability a the type is 1, with probability 1- a the type is 0; only
player 1 gets to hear his type.

(2.2) Player 1 chcxises ~ E Y.

(2.3) Two firms (the players 2 and 3) observe the y E Y chosen and they then
simultaneously offer wages w2, to3 E W.

(2.4) The worker observes the wages offered and chooses a firm.

(2.5) The payoff (von Neumann-Morgenstern utility) is 0 for a firm that does
not attract the worker, it is t- w for a firm that pays the wage w to a
worker of type t, and it is w- y(resp, w- y~2) for a worker of type 0
(rctip. type ]) that receives the wage cn after having choseu the education
lc~~.c.l y.

Severa.l comments are in order concerning the above specification

(i) The main difference between our game and the basic model of Spence
(1973 ~ is that in our case the least able worker is not productive. This
assumption simplifies the analysis somewhat since it ensures that every
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Nash equilibrium is a sequential equilibrium. With minor modifications

our arguments also apply to Spence's specification, however.

(ii) To reduce the number of parameters, we have normalised the education

cost such that these are twice as high for the type 0 worker as for the type

1 worker. Given our other assumptions, this normalisation is without loss

of ge,nerality; the readcr may verify that the HS theory yields the Wilson

EZ-equilibiium as long as the lr.ast able worker has higher education cost.

(iii) Competition between the firms is modeled as a Bertrand game between
two firms. It may be checked that the same results would be obtained
with n firms, n 1 2. Of course, if there is just one firm the solution is
completely different (the firm offers a wage of zero and the workers do
not invest in education).

(iv) Since the HS theory aplies only to finite games, we are forced to work

with finite sets Y and W, hence, we discretize the continuous specifica-

tion of Spence. Throughout, we will assume that this discretization is

sufficiently fine, and at the end we will Ict the cíiameter of the grid go to

zero.

Let g~ 0 denote the smallest money unit, all wages have to be quoted in
integer multiples of g, hence

(2.6) W-{kg; k-0,1,2,...,lf}.

To simplify the analysis somewhat, it will be assumed that

(2.7) YCW and 0,~,1,2EY,

an assumption that is, however, not essential for our results to hold (Details
are available from the authors upon request). To avoid some further technical
uninteresting difficulties, let us assume that the grid of W is finer than that of
Y, specifically

(2.8) if y, y' E Y and y~ J, then ~y - y'~ ~ 4g .

Finally, we introduce the following convenient notation:

(2.~J) If T E R, thcn T- - m.nx{Tn E W~~e G x} .



Next, let us start analysing the game I'(Y, W, ~). Note that this game
admits several (trivial) subgames in stage (2.4): Subgame perfection requires
that at this stage the worker chooses the firm offering the highest wage, and

symmetry implies that the worker should randomize evenly over the firma in
case they offer the same wage. Hence, it is natural to analyse the truncated

game obtained by constraining the worker to behave in this way in stage (2.4).

The HS theory allows this procedure to be followed. 2~ Therefore, from now on,
attention will be restricted to the truncated game. This game will be denoted

G(Y, W, a)

Denote by sr(y) the probability with which the type f worker takes the edu-
cation choice y. Hence, (so, si ) is a behavioral stra.tegy of player 1 in G(Y, W, ~).

Let s(y) be the probability that education level y is chosen

(2.10) s(y) - ~si(y) f ( 1 - ~)so(y),

and let E~( y) be the expected productivity if y is chosen with positive probability.
By Bayes' rule

(2.11) 1~(y) - ~si (U)~s(y) if s(y) ~ 0.

Assume s(y) ~ 0. In any Nash equilihriutn of G(Y, W, a), firms, in response

to y, play a Bertrand equilibrium of thc game in which it is known that the

surplus (i.e. the worker's productivity) is p(y). The following Lemma specifies

the equilibria of this game.

Lenuna 2.1. The garne in which two firms compete for a surplus p by means
of wage offers w; E W has the following equilibria:

(a) If p E W, both firms either offer p, or p-, or p--.

(b) If }r ~ W, both finns either offer p-, or p-- or they randomize between
;.~- and ~~-- choosing u- with probability (q - u f u-)~g, where g is as
in (2.G) (i.e. g - p- - p--).

2 Actually, the HS theory rcquires to first perturb the game before one starts
replacing subgames (which are cells in the perturbed game) by their solutions.
'I'o simplify the exposition, we have interchanged the operations of pcrturbing and
decomposition, what, for the case at hand, does not influence the fina) result.
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Proof. A straigl:tforward argument establishes that, if ~~ W, only p- and
FL-- CFLII be in the support of an equilibrium. By investigating the 2x2 game
in which each firm chooses between p- and p--, conclusion b) follows easily
from (2.6). If p E W, the equilibrium support now possibly also includes p and
conclusion a) follows easily by investigating the 3x3 game in which each firm
chooses between {r, p- and p--.

~

Remark 2.2. Note that in case (a) of Lemma 2.1, the equilibrium in which
both firms offer {~ is not perfect if ~ 1 0(bidding p is dominated by bidding
p- ), while the other two equilibria are perfect (even uniformly perfect) if p-- ~
0. At a certain stage of the solution process, the HS theory eliminates the
equilibrilun ~a-- since it is not prilnitive (when my opponent offers ~--, I am
indifferent between ~a-- and W-, also see Sect. 5). The equilibrium (p-,~-),
being strict is definitely primitive. Consequently, in case (a), we will restrict
attention to this equilibrium right from the beginning. (Also note that p--
cannot occur in equilibrilun if there are more than two firms). In case (b) all
three equilibria are (Imiformly) perfect. The mixed equilibrium is not primitive.
To simplify the statements of results to follow somewhat, and without biasing
the fina.l result, we will restrict attention to the equilibrium (p-,~F-) also in
this case.

Let s-(sa, sI ) be an equilibrium strategy of player 1 in G(Y, W, ~) and
write }'(s) -{y; s(y) ~ 0}. The above lemma and remark, with p-}~(y) as
in (2.11) determines the equilibrium response of the firms at y. Assume y, y' E
Y(s) with y G y'. F~~om optimizing behavior of the worker, one may conclude
that p(y) G p(y'). Since it cannot be the case that both types of worker
are indifferent between y and y' we must have ~F(y) - 0 or ~a(y') - 1, hence,
in any equilibrium at most three education choices can occur with positive
probability. The Nash concept does not specify the equilibrium responses of

firms at education levels y E Y~Y(s). To generate the set of all equilibrium
,;ac,;:nr.: ::.c n::.y l::a ~r; y) - 0 at sucl! y, ~i::cc t.hiti is the lx~st possible thrcat
of the firu,s to avoid that. y will bc cl:oseu. Usiug t1Fis obscrvation it is not

diffiatlt. to prove that the set of Nash equilibritun paths of G(Y', W, a) is as
describc~d in the following Proposition.

Proposition 2.3. (s, t o) with s-(so, st ) and w- ( wzi w~) with w; : Y(s) -a

YV is a Nas1r equílihrium path of G(Y, W, a) if and only if
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(2.12) if s~(y) ) 0, then ~ ~
E~gmlax w(y) - y~(t -}- 1)

and w(y) - y~(t ~- 1) ~ 0

(2.13) w(y) - w~(y) - ~'2íy) -~(y)- for all y E Y(s)

In the following sections, emphasis will be on those equilibria in which
player 1 dces not randomize. (The other equilibria are not primitive, hence,
the HS theory eliminates them, see Sect.ó). These equilibria fall into two classes:

(a.) pooling equilibria, in which the two types of worker take the same ed-
ucation choice, hence Y(s) -{y} for some y E Y. Then p(y) - a and
w(y) - a-.Therefore, (2.12) shows that y E Y can occur in a pooling
equilibrium if and only if j C a.

(b) separating equilibria, in which the education choice yo of type 0 is differ-
ent from the choice yl of type 1. Proposition (2.3) shows that the pair
(yo, yl ) ca.n occur in a separating equilibrium if and only if yo - 0 and

(2.14) 1--y1cOG1--y1~2

Hence, we have

Corollary 2.3. For any y E Y with y c a, there exists a pooling equilib-
ríum of G(Y, W, ~) in which both players choose y. There exists a separating
equilibritun in whicli type t chooses yi if and only if yo - 0 and 1 C yl G 2.

3. THE UNIFORMLY PERTURBED GAME

G(Y, LV, ~) is a game in extensive form. The HS theory is based on a
gaine form that is intermediate between the extensive form and the normal
form, the so called standard form. In our case, the standard form coincides
with the agent normal form (Selten [1975]) since no player moves twice along
the same path. The agent normal form has 2~Y~ ~- 2 active players, viz. the
2 types of player 1, a.nd for each y E Y and each firm i an agent iy that is
responsible for the firm's wage offer at y. This agent normal form will again
be denotcd by C.(Y,W,a). Note that, if (s,w) is a pure strategy combination
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(s -(so,sl ) with si(yc) - 1 for some yc E Y, w-( w~, to3) with w; : Y--. W),

then the payoffs to a.gent t (the type t worker, t- 0, 1) are

(3.1) Ht(.y.t~~) - m~ceT;-i,s to~(yc) -TJc~(t i- 1),

whilc thc payoffs tu agcnt iy are

0 if s(y) - 0 or w;(y) G wi(y)
(3.2) H;v(s, w) - !r(y) - u'~(y) if s(y) 1 0 and w~(y) 1 T"i(y)

(p.(y) - w;(y))~2 if s(y) ~ 0 and w;(y) - wi(y)

To ensure perfectness of the final solution, the HS theory should not be

directly applied to G(Y, W, ~), but rather to a sequence of uniformly perturbed

games GF(Y,W,a) with e~ 0, e small, e tending to zero. The latter games

differ from the original one in that each agent cannot completely control his

actíons. Spccifically in G~(Y',W,~), if agent t intends to choose yc, then he will

by mistake also choose each y E Y, y~ yc with a probability e and he will

actually pla.y the completely mixed strategy s~ given by

(3.3) si(y) -~
e if y~ ye
1-(~Y~-1)e ify-yc,

More generally, if the type t worker intends to choose the mixed strategy st

then he will actually play the completely mixed strategy si given by

(3.4) sl(y) - ~~(y)(1- IYIE) f E

(Of course, e should be chosen so small that ~Y~e G 1). Similarly, if agent

iy intends to choose w;(y), he will actually also choose all different wages

with the same positive probability e. Formally, the uniformly perturbed game

Gf(Y, LV, a) has the same agents as players, these have the same strategies

available ( which are now interpreted as intended choices), but the payoff func-

tion H` is slightly different from that in ( 3.1) -(3.2) and takes into account

the above describr.d mistake technology. If e ïs small, the payot[s H` of those

a.geuts moving on the ecíuilihritun path a.rc cluse to the payoffs as described by

H, however, for agents i.y t.hat cannot be rea.ched intcntionally there is a cíis-

continuity. Narncly, sII1CP both types of player 1 choose y with probability e in

the perturbed game, such agents play a Bertrand game with surplus ~. It will

be convenient to assume that actually firms never make mistakes. The reader
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may verify that this assumption does not influence our results, it just simplifies
notation. In this case, the perturbed game payoff to agent áy is given by

(3.5)
h,(y) - ur;(y) if w;(y) ~ wi(y)

Hiy(s, w) - ~h;(y) - w~(y)~ ~2 if w.(y) - wi(y)
0 if w,(y) G w~(y)

where the expected productivity at y is given by

(3.6) rf asi (y)
F s(y) -

~y1(y) f (1 - ~)só(y)

with si(y) as in (3.4).
If firms do not make mistakes, the workers' payoffs are (up to a positive

afime transformation, depending on the worker's own mistakes) exactly as in
(3.1). Since affine transformations leave the solution invariant, we will conse-
quently analyse the game in which the types of the worker have pure strategy
set Y, the agents of the firms have strategy set W and in which the payoffs
are as in (3.1), (3.5). This game wil] be denoted Gf(Y, W, a). Note that the

perturbed game G~(Y, W, a) is an ordinary agent normal form game of which
we will analyse the Nash equilibria. There is no need to consider a more re-
fined solution concept: All "trembles" have already been incorporated into the
payoffs.

After having uniformly perturbed the game, the next step, in applying the
HS theory consists in checking whether the game is decomposable, i.e. whether
there exist (generalized) subgames, so called cells. (See the diagram on p. 127 of
Harsanyi and Selten [19SS~). It may be thought that, for each y E Y, the agents
{2y, 3y} constitute a cell. Indeed these agents do not directly compete with an
agent iy' with y' ~ y. However, they directly interact with both types of the
worker and, hence, through the worker they indirectly compete also with agent
iy'. T~i pnt it diff~~rcnt.ly, tL~~ game dcxs uot contnin anY (Proper) subcclls,
it is indecomposable. Thcrefore, we move to the next stage of the solution
procedure, the elimination of inferior choices from the game."

3 It will turn out that this step is actually redundant in the case at hand, i.e. the
reader may move directly to Sect. 5 if he prefers. Since one of our aims is to
illustrate the various aspects of the HS theory, we thought it best to indude the
discussion on inferior strategies.
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4. ELIMINATION OF INFERIOR STRATEGIES

A strategy is inferior if its stability set, i.e. the region of opponents' strat-
egy combinations where this strategy is a best reply, is a strict subset of an-
other strategy's stability set. It can be verified that in our model, the inferior
strategies are exactly those that are weakly dominated. Clearly, such strate-
gies exist in our model: For a.ny agent iy offering a wage greater than or equal

1 is weakly dominated. Furthermore, for the type t worker, choosing y with
y~(t ~ 1) ~ maxW is dominated by choosing 0. HS require that one eliminates
all suclr choices, and that one continues this process until there are no inferior
choices left. (Along the way, one should also check whether the reduced game
obtained contains cells, but this will never be the case in our model, see also
Fii. 3). The following Proposition describes the irreducible game that results
after all inferior strategies have been successively eliminated.

Proposition 4.1. If F is sufiiciently small, then by iterative elimina.tion of
infcrior strategics, the ganic GE(Y, W, ~) reduces to the game G~ (Y, W, a) in
which the following strategies are left for the various agents:
For type 0: Yó -{y E Y; y G 1}

For type 1: Yi~ -{y E}'; y G 3- maT(2~, 1)}
For agcnt iy with y G 1 : T~V~y -{~u E i~V; tn G 1}
For agerrt iy wíf.h 1 C y G 3- ma:r(2a, 1) : W~y -{w E W; w E[~-,1)}
For agent iy with y 1 3- max(2a, 1) : W;y -{~-}

Proof. Clearly w E W with w~ 1 is inferior for any agent iy. Once

these inferior strategies have been eliminated, choosing y~ 1 becomes inferior

for type 0 (it is dominated by choosing y- 0) and y ? 2 becomes inferior

for type 1. We claim that in the resulting reduced game an agent iy with

y G 1 does no longer have any inferior actions. Namely, w;(y) - 0 is the
unique best response against w~(y) - 0 if sa(y) - 1 and si(y) - 0(hence

Et;(y) C g), so that offering zero is not inferior (Here we need that e is small).

Furthr,rmorc, if Tu G 1--, tlicn ~u is the unique best response of agent iy against

wi(y) - t~ if Er;(y) .~ 1(i.e. so(y) - 0 and si(y) - 1). Therefore, such

wages also aze not inferior. Finally, since both firms offering w- 1- at y is a

strict equilibrium if fi;(y) ~ 1-, also w- 1- is not inferior, which establishes

the cla.im. Next, turn to an agent iy with y~ 1. Since the type 0 worker

cannot choose y voluntarily, we either have s(y) - 0, hence !r;(y) - a, or the

type 1 worker chooses y voluntarily, in which case p;(y) : 1. Consequently,
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at y the firms play a Bertrand game for a surplus of a or of 1. The standard
Bertrand argument implies that, starting with w - 0, all wages with w G a
will be iteratively eliminated. On the other hand, the same argument that was
used for the case y C 1 establishes that wa.ges strictly between a~- and 1 cannot
be eliminated. The reduction of the firms' strategy sets obtained in this way
dces not introduce new inferior strategies for the type 0 worker. Namely, if
this worker expects that y' G 1 will result in the wage 1- while all other y G 1
yield wage 0, then the unique best response is to choose y', so that y` cannot
be inferior. If a~ 2 the reduction leads to new inferior strategies for the type
1 worker, however. Namely, by choosing y- 1, he receives an income of at
least ~- - 2 so that any eduction choice y 1 3- 2a becomes inferior. Finally,
if y is inferior for bot.h t.he type 0 and the type 1 worker, then firms at y play
a Bertrand game for surplus a a.nd we alrcady argued above that in this case
only ~- is not (iteratively) inferior. Hence, we have shown that GE(Y, W, a) can
be reduced to at least GÉ (Y, IV, a) as specified in the Lemma. Since the latter
game is irreducible, the proof is complete.

~

The following Figure displays the result of Proposition 4.1. Along the
horizontal y-axis, we indicate the noninferior actions of the worker. For each
value of y, the shaded area displays the noninferior responses of the firms. The
Figure is drawn for the case a~ 2.
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` J~~~

noninferior type 0

2

3-2a

~ ~

noniuferior type 1

Figure 1. The reduced perturbed game G; (Y, W, a).

By compating Proposition 4.1 with Proposition 2.2 it is seen that, at least

if a 1 Z, some equilibria of the origiiial game are eliminated by considering

the reduced perturbed game. Specifically, separating equilibria in which type 1

invests very much in education as well as some equilibria involving randomiza-

tion are no longer available in GÉ(Y,W, a). All in all, however, this step of the

HS solution procedure is not very successfidl in cutting down on the number of

equilibrium outcomes.

It is also instructive to compare Proposition 4.1 witli the result that would

have been obtained by iterative elimination of dominated strategies in the un-

perturbed game G(}', I-V, a). In the latter, after wages w 1 1 have been elimi-

natecl, choosing y~ 1 Uecomes dominated for type 0, but not for type 1, hence,

whenever such y is chosen, firms play a Bertrand game with surplus 1 so that

all wage offcrs cxccpt 1- arc dominated. Hcuce, hy chc~osing J- 1, the tYpe

1 worker guarautees a utility of (s~hout) z. In particular, choosing ~~ 1 is

now dominated for this type. We sce that the reduced game associated with

the unperturbed game is strictly smaller than C.;(Y, W, a). The dífference ia

especially dramatic if a G Z. Proposition 2.2 shows that in this case there is

(essentially) only one equilibrium of the unperturbed game that remains in the
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reduced unperturbed game, viz. the separa.ting equilibritun with y~ - 1. Hence,
if ~ G 2, the unperturbed game is dominance solvable 41 , and indeed, the con-
ventional analysis generates the efficient separating equilibritun (yo - 0, y~ - 1)
as the outcome when a G 2. The reduced perturbed game, however, dces not
force ageuts iy with y E(1,2) to offer the wage of 1 since they may still think
that they are reached by mistake. As a consequence, Gf (1', W, a) still admits
many equilibria even if a G 2, and the HS theory dces not immediately yield
efficient sepapration as the solution. Still we will show that, the risk dominance
criterion of HS forces efficient separation as the solution in this case.

5. UNIFORMLY PERFECT EQUILIBRIA

As argued before, the nniltiplicity of equilibria in our model is caused
solely by the imperfectness problem, i.e. by the fact that there necessarily exist
unreached information sets at which the firrns' beliefs are undetertnined. At
such education choices, firms may threaten to offer a wage of zero which in turn
implies that the worker will indeed not take surh a choice. The fina.l consequence
is that there exist equilibria with unattractive payoffs for the worker.

The HS theory solves the game via its uniformly perturbed game to avoid
the imperfectness problem. The natural question to ask is how successfull this
step of the solution procedure is to reduce the number of equilibria. At first
glance it appears as if this step is very successfull, it seems that the uniformly
perturbed game admits just a single equilibritrm. Namely, assume that the
equilibritun payoff of the type 0 worker would be strictly less than a-. Motivated
by Proposition 2.3, it seems natural to assume that there exists y sufFiciently

4 One could also perform this elimination in the extensive form. Since y~ 1
is dominated for type 0, one eliminates the branch in which type 0 chooses
such y. The resulting extensive game then has a subgame at each y~ 1 and
subgame perfectness forces the firms to offer the wage 1-. This argument might
suggesi thai in the perturired gan~e, for each y~ : therc is a cc!! consisting of
the agents 1, 2y and 3y. If this would hold, it would follow immediately that
efficicnt separation is the Harsanyi~Sclten solution if ~ G z. However, it is not
the case tha.t the ageuts 1, 2y and 3y form a cell. Even though the cell condition
(see Ilarsanyi and Selten [1~88, p.95 ] is satisfied for the agents 2y and 3y, it is
violated for the type 1 worker. Ilis payoff depends in an essential way on how
firms react at othcr values of y. The reduced perturbed game does not contain
any cells, it is itself indecomposable.



16

close to zero that is not intentionally chosen by either type of worker. According
to (3.5) and (3.G) firms will offer the wage ~- at such y, but then the type 0
workcr profit.s by rlrvia.tin~ to y. Tho apparc,ut t-ontr:4dict.ion shows that thc
typr~ O wurkrr sb~uclcl lurvr, nn ~~rt~rilibriuur payu(f of at. Ic~Fwt a-. Now inr;pec,tion
nf Propositiuii 2.3 show, that. the nnperturbed game has only one equilibrium
that satisfies this condition, viz. the pooling equilibrium in which both types of
workers choose j- 0. It seems that only the Pareto best pooling equilibrium
can be an equilibrium of the uniformly perturbed game, and that using uniform
perturbations completely solves the selection problem.

The fallacy in the above argument is that there may not exist y close to
zero with s(y) - 0. Even though it is true that in the unperturbed game at most
3 education levels can occur with positive probability in an equilibrium, this
structural property no longer holds in the pcrturbed game. In most equilibria
of the latter game, the type 0 worker is forced to randomize intentionally over
many education levels including levels close to zero. Once, the type 0 worker
chooses y intentionally, firms will not have unbiased beliefs at y and they may
offer wages strictly below a. In particular, the wa.ge may be so low that the type
0 worker becomes indifferent between choosing ~ and taking any equilibrium
education level, and in this case there is no reason why he should not inten-
tionally choose y. To put it differently, the Pareto best pooling equilibrium of
G(}'',W, a) is the only equilibrium that can be approximated by pure equilibria
of GE(Y', W,~). For later reference we list this result as Proposition 5.1.

Proposition 5.1. Onl,v tbr~ ponliuK eq:cilibrium outroruc in which bof.h types
of the worker clo not invest in education can be appmximated by pure equilibria
of uniforrnl,y perturbed games.

An equilibrium outcome of the unperturbed game G(Y, W, a) is said to be
uniformly perfect if, for e~ 0, there exists a.n equilibrium (s`, w` ) of GÉ (Y, W, ~)
that produces this outcome in the limit as e tends to zero. Hence, Proposition

5.1 may be paraphrased as "the pooling equilibrium outcome at ~- 0 is uni-

formly perfect". In the remainder of this section we hrst derive a condiiion
that is uc~c~rssary for au eqnilihrinm rnitcome to be uniformly pcrírct (Corol-
lary 5.3), tbcre,afkcr wc show (Proposition 5.~) that this conditiuii is aufficicnt
as well. The overall conclusion (Proposition 5.7) will be that relatively many
equilibrium outcomes of the original game are uniformly perfect.

The next Lemma states a lower bound on the wage that firms may offer



in an cquilibritun of the uniforcnly perturlx~cl game, as well as a derived lower
bound on the utility of the type 1 worker.

Lemma 5.2. If (s, w) is an eyuilibium of G~ (Y', W, ~) and if uc is the eyui-
librium payoff of the type t worker, then

(5.1) if y~ a- - uo , then w(y) ~ a- ,

(5.2) u~ ? (a- f uo)~2 .

Proof. Assume y? a- - uo but w(y) G a-. Then w(y) - y G uo, hence, the
t.ype 0 worker cannot choose y voluntarily. Therefore, s(y) - 0 and t.t`,(y) J a.
The Bertrand competition (Lemma 2.1), however, then forces firms to offer a
wage of at least ~-, hence w(y) ~ a-. The contradiction proves (5.1). To

prove ( 5.2), assume ( ~vithout loss of generality) that ~- - ua E Y. By choosing,
y- a--uo, the type 1 worker guarantees a wage of a-, hence, he can guarantee
a payoff a- -(a- - uo)~2. This establishes (5.2).

0
As a direct consequence of Lemma 5.2, we have

Corollary 5.3. If (s, w) is a unifoimly perfect eyuilibrium of G(Y, W, a) with

uc being the eyuilibrium payoff of the type t worker, then

(5.3) it~ 1 (a- f 2io)~2 .

If (s, w) is a separating equilibriuin with sl (y~ )- 1, then uo - 0 and ul -
1- - y~ ~2, hence the above Corollary implies that y~ C 2- - a. Consequently
we have -

Corollary 5.4. If (s, tv) is a uniformly perfect separating eyuílibrium and

s, (y, )- 1. tlicn pl~ G 2- a.

It is easily checked that Corollary 5.3 does not allow us to eliminate any
poolin}; cqitilibriiiut (iu this c~t.tic, (5.3) is al~vays satisficcl with equ.ility), hencc,

let us turn to equilibria in which the worker randomizes. First, consider the

case wherc only the type 1 worker randomizes, say betwecn y and y~ with

y G yl. Then type 0 chooses y for sure, and uo - w(y) - y, ul - w(y) - y~2.
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Fnrthcrniore, in(~) C a- siucc ~i~( j) C a. Onc may conclndc that (5.3} is
always violated. Next, ASSl1I11C that tylx 0 randomizes, say hetwcen y~ and y.
Then y~ - 0 Anci type 1 also chooses j with positive probability. Furthermore,
uo - 0 and u~ - j~2, hence, we must Lave j) a-. Therefore, j~ a in view
of (2.8). We have shown:

Corollary 5.5. Equilibria in wGicL only the typc 1 worAer randornizes are not
unifonnly pcrfer.t. EquiliLria in wLich the type 0 worAer randomizes between
yi - ~ and j~ 0 imiformly perfect only if j~ a, hence u~ ~~~2.

The following Figure graphically displays the results obtainedthus far.

wn

1

a

0 Jt
.V~.
pooling

1 2-a
~ ,

~,.---------
separating

Figure 2. Uuiformly Perfect Equilibrium Outcomes.

We now come to the main result of this section, which states that condition
(5.3) is also snf~icieut for an equilihrium ontcome to be unifornily perfect. We
will givi. thc fonnA) tiro~,f unly for scl~:u-.~tint; cquilib~ia. Thc rcn.clcr may easily
adjust thc proof tu cover thc uther classes of c~luiliU~ia not excludecl by Corollary
5.3
Proposition 5.6. A sepat~~ting equilibrium outcornc (yo,y~) with yo - 0
and y~ C 2- a is unifonnly perfect.

Proof. The proof is liy construction. Take e small and define the strategies
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(s, w) by means of

i(a-ll-9)
li-a)(I-IYIF)(a~ts)

(5.4) so(y) - ~
1 - ~ so(y)

if OGyGa
if y ? a
if y-0

y~o

(5.5) si(y) - ~ 0
1

if y~y~
if y-y1

0 if y-0

(5.6) w~(y) - y if 0 G y G a
~- if y 1 a, y~ yi
1- if y - y~

Note that so(y) -1 0 for all y~ 0 as e-~ 0, so that so is a well-defined strategy
if e is small. This strategy has been chosen so that

(5.7) ~;(y) - y t g for 0 G y G a

(Direct veiification using (3.4) and (3.6) is easy). Fhrthermore, if e is small,
then p;(0) G g, so that (Lcmma 2.1), firms' agents indecd bid equilibrium wages

for y G~. If y 1 ~ and y~ y~, thc.n fi;(y) - a, while fa;(yl) ~ 1- if e is small
so that firms bid optimally also for these education choices. If wages are as
in (5.6), the type 0 worker has the interval [0, a) as optimal education choices,
while the optimal choice of the type 1 worker is y~ since yl G 2- a. Hence, for e
small, (s, w) is an equilibrium of G~ (Y, W, a). Since (s, w) in the limit produces
the separating outcome ( yo, y~ ), this outcome is uniformly perfect.

~
The proof that other outcomes that are not eliminated by Corollary 5.3 are

uniformly perfect proceeds símilarly. The basic insight is that, if p G~- - uo,

then y-~i~(y )-u~~ for some vo( y) and the typc 0 worker may choose y voluntarily

in ordc~r to j::r;tify tlie w~~g~~ offc~r ,n( J) nf firnis at y. itirthermon~, a.4 long as
the typc 0 workcr is indiffcrent, the typo 1 workcr will uot havc y as an optimal

choice. Hence, condition ( 5.3) is sufficient for uniform perfectness, and we may
state

Proposition 5.7. The uniformly perfect equilibrium outcomes ofG(Y,W, a)
are
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(i) a11 pooling equilibiium outcomes

(ii) the separat.ing outcomes wif.ó y~ G 2- a, hence, u~ ~ a~2

(iii) the equilibrium outcomes in which type 0 randomizes between y~ - 0
aaid y with y~ a, hence u~ 1 a~2.

Note that all three classes of equilibria described in the above Proposition
satisfy ul ~~~2. This condition is necessary for uniform perfectness ~ cf.
Corollary ( 5.3)~, but it is not sufficient: There exist equilibria in which only
the type 1 worker randomizes that satisfy this condition and these are not
uniformly perfect ( Corollary 5.5).

6. FORMATIONS AND PRIMITIVE EQUILIBRIUM OUTCOMES

Given that strict equilibria (i.e. pure equilibria in which each player looses
by deviating) are (at least at the intuitive level) more stable than non-strict
ones, it frequently is more natural to select a strict equilibrium. (Harsanyi
and Selten [19SS, Sect.5.2]). Of course, strict equilibria do not always exist

so that HS were led to search for a principle that generalizes (weakens) the

idea of strictness as a selection criterion and that still helps to avoid those
eyuilibria that. are cspecia,lly uustable. HS have come i~p with the concept of
primitive fonnatiuns. A formation of a gaane specifies for each agent a subset
of his strategy set such that any best reply (in the original game) against any
correlated strategy combina.tion with support contained in the restricted game
is again in the restricted strategy set. Primitive formations are sets that are
minimal with respect to tliis property. HS (Lemma 5.2.1) have shown that

primitive forinations exist, and it is also true that any formation contains an
equilibrium of the original game. If (s, w) is an equilibrium of GÉ (Y, W, a),

then we will write F`(s,w) for the primitive formation in GÉ(Y,W,~) that

contains (s, w). We will say that (s, w) spans F`(s, w). Noie that F'(s, u~) -

{(s, w)} whenever (s, w) is a strict equilibrium. Hence, primitive formations
are the smallest. substruct.nres with simílar properties as strict equilibria. The
HS thcory favors thc selcction of equilibria which span primitive formatioiis

to rct~~in as much a9 possiblc of the stability properties of strict equilibria.

Specifica.lly, HS consider a5 the natural solution candídates (the first candidate



zi

set) the set of all solutioikti to primitive formations. (See the flowchart on p.222
of Harsanyi and Selten [19SS]). In this section, we determine the minimal
formations of G~ (3', Il ; a) and their solutions. We will proceed by constructing
for eacli equilihriucn (s, w) the minima.l formation spanuccí by it, azid then check
whether there exists an alternative equilibrium (s', w' ) with

(6.1) F`(s',w') ~ F`(s,w)

An equilibrium (s, w) belongs to a primitive formation if and only if no (s', w')
satisfying (5.1) can be found. Such an equilibrium (s, w) will be called a prim-
itive equilibrium. (This definition differs slightly from the HS definition, the
results in this section however show that the equilibria that are primitive accord-
ing to our definition are exactly the initial candidates in the HS sense.). Finally,
an equilibrium outcome of the unperturbed game will be called primitive if it
can be obtained as a limit ofprimitive equilibrium outcomes of perturbed games
as the perturbations vanish.

We have already seen in Sect.4 that the efficient pooling equilibrium out-
come of the unpcrturbecl ga.me ca.n be approximatecí by pure equilibrium out-
comes of the e-iinifotnily pcrturbecl gauie. Namely, if e is small, the atrategy
combination

(fi.~) so(B) - si(B) - 1, w~(J) - a- for all ~ E Y,

is an equilibrium of GÉ (Y, i~V, a) which produces this outcome in the limit.sl
Note that the equilibrium (6.2) is strict, hence, primitive. Consequently, the
pooling equilibritmr outcome at y- 0 is prinutive as well.

Proposition 6.1. The equilibrium outcome in which the workers are pooled

at j- 0 is prirnitive.

ful.
To verify which other outcomes are primitive, the following Lemma is help-

Lemma 6.2. Let (s, xo) he an eryi~ilibrium of G, (Y, W, ~) and write F;v(s, w)

for tLe stlatcgy space of ager,t iy in tt~e fcr,:ation F`(s,w). Far e small, we

have

(6.3) if ~- 0 or s(~) - 0, the.n a- E F;y(s,w) .

5 The reader may recall from Lemma 2.1 that the Bertrand ga.me for a surplus of
~, has equilibria that differ from (~-,a-). However, these are not primitive,
hence, at last we can justify Remark 2.'L.
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Proof. If s(y) - 0 and workers play according to s, then firms play a Bertrand
game for surphLS a at y. Remark 2.2 and the fa.ct that each formation contains

an equilibrium implies that a- E F~`N(s, w). Next, consider y- 0. The state-
ment of (6.3) is clrarly fulfilled for thc equilibrium from (6.2). If (s,w) is art
alternative equilibritmi, then thc argumcnt fmm the prcaf of Proposition 5.6
implies that therc cxists an altcrna.tíve best reply s' of the worker with s'(0) - 0.
Since s' is a best reply s' E F`(s, w) and F`(s, w) C F`(s', w). The conclusion
now follows from the first part of the proof.

0

The Lemma immediately implies that equilibrium outcomes of the unper-

turbed gst.me with ut G a- ca.nnot be primitive. Namely, if ( s, w) is an equili-

brium of C,~ ( }', W, ~) witlt ul G a-, then both types of the worker have the

education choice 0 as the best response whenever firms offer w(y) for y~ 0 and
offer a- for y- 0.~ The Lemma implies that this strategy of the firms belongs
to F`(s, w)). But if workers pla.y this stratcgy, firms should offer w- a- for
all y and F`(s,tn) contains the equilibriimi (G.2), hence ( s,w) is not primitive.

Corollary 6.3. In an,V primitive equiJibritun outcorne, the payoff to the type
1 worker is at least a-.

Corollary 6.4. Equilibrium outcomes in which the workers ase pooled at

j 1 0 are not prirnit.ic~e.

Next we show that the mixed equilibrium outcomes that were not yet
elimina.tcd in Sect.5 are not primitive.

Proposition 6.5. Eqnilibrium outcomes in which the type 0 worker rando-
mizes between 0 and j are not prirnitive.

Proof. Let (s, w) be an equilibrium of GÉ (}', W, ~) that produces in the limit

an outcome as described in the Proposition. Then so(y) 1 0 and st(y) 1 0.

Hence, the fortnation F`(s, ro) also contains the strategy in which both workers

choose j for sure. The firtns' best response against this strategy is to offer ~-

for each education choice, a.nd, if firms behave in this way, the workers should

choose y- 0. Hence, F`(s, w) contains the equilibrium from (6.2) so that (s, w)

is not primit.ive.

0

Figurc 3 gra.phically illnstratcs the results obtained thus far.
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Figure 3. Priniitive Equilihrinm Ontcoiues (a C 2).

Finally, let ua turn to separating equilibrirmi outcomes. For the outcome
to he prinvtive it is necessaiy tliat choosing ~- 0 is not an alternative best
response for the typc 1 workcr wheuevcr firms offer the wage a- at y- 0,

hence, ~i C 2(I - a). (cf. Corollary G.3). bi the neat proposition we show that

this condition is not only necessary but that it is also sufficient for a separating

outcome to be primitive.

Proposition C~.(i. A.ticl~nr:rtiug rqnililuirnn ciiilcome is priuiitivc ifwul only
if y~ C 3(1 - ~ ).

Proof. It suffices to show that. the conclition is sufFicient. The proof is

constructivc. Lct (~o, yi ) bc a separating cquililirinm outcomc with ~o - 0 and

y~ C 2(1 - a) and let the equilibrium (s,u~) of C.É(Y,~V,a) that produces this
outcome in the limit Ue constructed as iu the proof of Proposition 5.6. It is
easily seen that , for e small, F`(s, u~) contains the following restricted strategy

sets

(G.4) ln - {J E ~~; J C ~} 3~i - {J~}
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{wE W;raG a-} ifyGa,
(6.5) W;y - {1-} - if y - y~,

{ a- } otherwise.

Furthermore, one may easily verify that the collection of strategies defined by
(6.4) (6.5) ís closed under taking best replies, hence, it is a formation and,
therefore, exactly equal to F`(s, w). Since (s, w) is the unique equilibrium that
is contained in tlris formation, (s, w) is primitive.

~

Sincc y~ ~ 1 in any scparatiug cquilibriurn outcomc, wc scc from Propo-
sition G.G that no such outcome is primitive if ~~ 2. By combining this
observation with Propositiou 5.6 and the previous results from this section, we,
therefore obtain

Corollary 6.7. (i) If a~ 2 , only the outcome in which the workers are
pooled a,t j - 0 is primitive.
(ii) If a G 2, in a.drlition to the efficient pooling outcome, also the separating
equilibrium outcomes with yr G 2(1 - a) (hence u~ ~ a) ase primitive.

7. 13ISK DOMINANC;E

In the previous section, we cíetermined all primitive equilibria of
GË (}', T~V, ~). The set of all these equilibria is what HS call the first candidate

set. HS propose to refine this set by a process of elimination and substitu-
tion until fina.lly only one ca.ndidate, the solution, is left. Loosely speaking,
this process consists in eliminating all candidates that are 'dominated' by other
candidates and by replacing candidates that are equally strong by a substitute

equilibrium. In our application, we will not need the substitution procedure

we will show that there exists exactly one equilibritun in the first candidate set

that domiuates all Othel' l'qlllílbl7a 111 this set.

Attention will be confiued to the case where a G 1~2. If ~~ 1~2, and

e is sma.ll, then the perturbed game CE (Y", W, ~) has just a single primitive
equilibritun, and this induces the efficient pooling outcome, so that we have

Proposition 7.1. If ~~ 1~2, then the HS solution of the Spence signaling
game I'(Y', FV, a) is the outcome in cvhich the workers are pooled and do not

invest in educa.tion.
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Let e, e' bc equilibria of the pcrturbed gaane G;(Y, W, a), write A for the
sct uC agcnfs participa?.iug in this gamc (with gnucric clcmcnt. a) and lct ua(c)
(resp, u„(c')) bc tlie payoff to agcnt a whcn c(resp. e') is playcd. Finally,
denote by .4(e, e'), the set of all agents for which ea ~ e;, that is, who play
differently in c than in e'. HS say that e payoff dominates e' if

(7.1) ua(e) ~ ua(e') for all a E A(e, e'),

and their theory requires that one first eliminates all payoff dominated equilibria
from the initial candidate set. In our case, the only initial candidates that

could possibly be payoff dominated are those that approximate an equilibrium
in which the type 1 worker is separated at an education level y' strictly above 1.
Indeed, the type 1 worker prefers to be separated at a lower level y. However,
condition (7.1) requires that one also considers the payoffs of the agents of the
firms at y and y', and it ca.nnot be the case that all these agents unanimously
strictly prefer the, type 1 worker to choose y: If agent iy strictly prefers the

worker to choose y rather than y' , then agent iy' strictly prefers this worker
to choose j. Consequently, no initial candidate is payoff dominated in the HS
sense, and we have

Proposition 7.2. The r.riterion of payoff dominance does not reduce the
initial candidrjte set.

Proliosition 7.2 imhlics tha.t the HS theory rcquires to cotnpare equilibria
using the risk dominauce criterion. The notion of risk clomina.nce is central to

the HS thrnry; It tries to capture the idea that, in a situation where the players
are uncertain about which of two equilibria should be played, the players enter
a process of expectation formation that may finally lead to the conclusion that
one of these equilibria is less risky than the other one, and that, therefore,

they shoctlcl play t.his ]ess risky equilibrium. In the remaindcr of this section

we will show that the best separating equilibrium, (i.e. type 1 chooses 1), risk

dominates all other solution candidates, hence, that this equilibrium is the HS
solution if a c 1~2. Before proviug this main resiilt, we introduce some notation

and formally define the concept of risk dominance.

Asscttne it is common knnwledge that thc solution of the gatne will be

either c ur c' and let A(e,c') be the set of tltose agcut whose strategy in e

differs from tha.t in e'. The restricted game generated by e and e' is the game
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in which the player set is A(c, e') a.nd in which the set of strategy combinations
is the smallest formation generated by {e,e'}. Let a E A(e,e') and assume
this agent believes that his opponeuts will pla.y c with probability z and e'
wit.h prohaliilit.y 1- ~. Thon a will plsi.y his best response ha(z, e, e') against the
(c.orrc~latc~cl) .LraLe'gY c~uuiLiuatiuu zr-„ t( 1 - z)c' ,,. H~usanyi aud Selten deSnc
the bicentric prior of agent a as pn - ba(c, e') - fó b,(z, e, e') dz. This bicentric
prior may be interpreted as the mixed strategy which an outside observer (or
an opponent of a) expects a to use. ( Adopting the principle of insufficient
reason, the outsider considers the beliefs of a to be uniformly distributed on

[0,1]). Denote by p the mixed strategy combination p-(pa)aEat~,~~~. This p
represents the initial expectations of the players in this situation of common
uncerta.inty. The tracing procedure transforms these preliminary expectations
into final expectations. Forinally, the tracing procedure is a map T that converts

each mixed strategy combina,tion into an equilibriiun. Risk dominance is defined
by mea.ns of the tracing procedure. The equilibrium e is said to riek dominate
e' if for the bicentric prior p - b(e, e') generated by e and e' we have T(p) - e.
We conclude this overview of definitions by briefly describing the operator T.

In our case it turns out that t.he linear tracing procedure is well-behaved, so we

only specify this one. Let G be a game with payoff function H, and for t E[0,1]

, let Gy be a game with the same strategy sets, but in which the payoffs are

(ï.2) H~(a) - tHaÍo) f ( 1 - t)Ho(Qo~P-a)

licncc, for f- 0, uuc~ playa againtit thc biceiitric prior, for t- 1, onc plays thc

origina~l game. Let Ecp be t.he set of equilibria of Gp. (In our case) it can be

shown that Ey - {EP; t E[0,1]} contains exactly one continous path connecting

the unique equilibrium of Gy with an equilibrium of Gy - G. The tracing result

T(p) of p is the fiual endpoint of this continous path.

After this review of dcfinitions, we turn to the results. We will first show

that, for e sma.ll, the efficient separating equilibritun risk dominates any other

separating equilibrium. The intuition for this result is simple. Let e be the

scparating equilibrium in which type 1 chc~oscs y- 1 and let e' be a separating
equilibritmi in which this type cluxises y' ~ 1. The initial bclicfs of thc firms'

agents at y and y' will be that tlie type 1 worker chooses both y and y' with

a probability that is bouncíed away from zero. Since the type 0 worker only
chooses y and y' by mistake, and mistakes are rare, firms will be willing to offer



a wage an - 1- at y and at y'. Sincc y and y' garner the same wages, the type
1 worker strictly prefers to choose y as the cost incured there are lower. This
reinforces firms at y- 1 to offer w- 1-. On the other hand firms' agents at
,y' will grndually npdato thcir bcliefs, thcy bccrnne more pcssimistic and finally
thcy will ~-uncln~lc tlint y' cau only occur by mistakc. Hnnce, ultimatcly they
will offcr w- a- : 4Vc cnd up at thc rcparating equilibrium at y- 1.

Thc following Propusition iiiakes tltis argumeiit precise.

Proposition 7.3. Let e' be an eqnilibrium of C.~ (Y, W, ~) in which the type
1 worker is separated at y' 1 1. Then, if e is small, there exists an equilibrium e
in which the type 1 worker is separated at y- 1 that risk dominates e'. Hence,
efficient separating equilibria risk dominate all other separating equilibria.

Proof. Let e' be given. Modify e' such that the type 1 worker chooses
y- 1 rather tha.n y' ~ 1, and snch that. firms offer w- 1- at y rather than
at y' (where they now offer a-). The resulting strategy combination e is an
equilibrium. We will show that e risk dominates e'. Note that A(e, e') consists
of 5 a.gcuts, viz. the type 1 worker and the firms' agents at y and y'. The game
relevant for the risk dominance comparison has strategy space {y,y'} for the
type 1 worker, whereas the firms may choose from {w E W; ~- G w G 1-}
at y and y'. The payoff to the worker is as in (3.1), if agent iy overbids the
opponent with wage tn, then its payoff is

( 7.3) s~(~)(ha(?!) - w~

where Fi.;(y) is as in (3.G) ( with so(y) - 0} aaid s`(y) is the probability that y
is chosen by the worker

( 7.4 ) s`(J) - (1 - a)e f ~si(y) .

If agent iy bids lower than the opponent, its payoff is zero, if both agents at

y bid the same wage 2n, they shaa-e the qiiantity from (7.3). Payoffs at y' are

defined similarly.
We now mmpute the bicentric prior combination associated with e, e'. If

the type 1 workcr e~pects his opponcnts to play according to ze ~(1 - z)e',

then his payoff if he chooses y is equal to

zl- f (1 - z)a- - 1~2,
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while if lie chooses y' his payoff is

za- ~ (1 - z)1- - y'~2.

His best response is to choose y whenever

~ ~ 1~2 - (U~ - 1)~4(1 - a).

Accordingly, his bicentric prior assigns the probability

(7.5) Pi(y) - 1~~ f (y~ - 1)~4(1 - ~).

to choosing y and the complementary probability to choosing y'.
Next, turn to agents of the firms. Let agent iy have beliefs ze ~(1 - z)e'. If

this agent chooses iu ~{a-,1-}, then he will only get a worker if e' is played
and in this case his cxpected payoff is negative. Hence, such a wage cannot be
optimal sincc by offc:riug a- the t4gca~t guaraaitecs a nonuegative payoff. In fact,
a- yields a.n expccted payoff of

(7.6) (1 - Z) E 1f~2 .

On the other hand, if the agent chooses 1- his expected payoff is

(i.7) z~` 9`~2-~(1 -z) e (~- 1-) ,

where ~` and g` are defined by

~~ - s`(TJ)

1 with si(y) - 1 .

9` - h~(y) - 1-

~ Note that (a`,g`) -~ (a,g) as e-. 0~. Comparing (7.6) and (7.7) we see that
agent iy should choose ~- whenever

(7.8) za` g`~2 e (1 - z) e (1 - ~ - 9~~) -

~~'rite D` Cor the prohability that (7.S) holds wh~~u z is uniformly distributed on

[0,1]. Note that b` ~ 0 as e--~ 0, hence, thc prior strategy of agent iy chooses
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1- with probability close to 1 if e is small. The computations at y' are identical
to those at y, hence, we find for the prior strategies of the firms

( 1- with probability 1- á`
(7.9) w;y - w~y' -

11 a- with probability á`

Given the prior strategy combination p as in (7.5), (7.9) it is easy to com-

pute the ecluilibrium of GP, that is, the starting point of the tracing path. Since
the expected wage at y is the same as that at y', the worker chooses y since
costs are lower there. Denote by p`(y) the expected prior productivity at y~

i.e. p`(y) is determined by (7.4), (7.5) and (3.6)~. Then {~`(y) -~ 1 as e~ 0.
The expected payoff from offering 1- is at least eqtlal to

(1 - á`)~{r`(y) - 1-~

whereas tl)e expected payoff associated to any other wage is bounded above by

á`~l~`(J) - ~-~

Consequently, only 1- is a best reply against the prior if e is small. Hence,

in any equilibrium of Gp, the firms offer w;y - 1-. The same argument also

generates this conclusion at y'. Hence, Gp has a unique equilibrium, and this

is given by

(7.10) s1Íy) - 1, l~;y - w~y~ - 1-

Now consider t~ 0. If firms cío not change their wage offers, there is

no reason for the worker to deviate from y, and if this worker stays at y, the

a.gents 2y and 3y should not cha.nge their wa.ge offers either. What about the

firms' agcnts at y'? For t small, their (subjective) payoffs from (7.2) aze still

largely detcrmined by their priors a.nd they will find it optimal to offer w- 1-.

Conscqncutly, for t slnall, tI1C tI'aClllg ~)flt.h COntdnlle8 Wlth the equilibrium from

(7.10). Howevc~r, if the worker relna.InN aE y- 1, then the expected productivity

at y' dcclv~ases with incre:wvillg t ancl the payoffs to the firms' agents at y' would

become negat.ive for t close to 1 if these agcnts would remain at their wage

offer of 1-. Consequently, these agents will be the first to switch, and they will

switch to lower wages. This, of course , reinforces the decisions of the worker
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and of the firms' agents at y- 1: Along the tracing path, these agents wil]
never switch, and the xgents at y' have to adjust until finally an equilibrium
of G is rca.ched. Li thn end, these agents will, t.herefore, offer the wage 1- and
we see that the tracing path must end up in the equilibriurn e. Hence, e risk
dominates e'.

0

It is instructive to study in somewhat greater detail the adjustment process
(i.e. the tracing path) tha.t brings pla.yers from the prior p to the equilibrium
e. As a.lready remarked above only the agents at y' change behavior during the
process. Take e fixed and write GP for the game as in (7.2) played by these
agents given that the type 1 worker chooses y- 1 for all t. Gp resembles
a standard Bertra.nd gaane for a surphtis p(t) where p(t) is decreasing with
1- C fr(0) C 1 and ~a(1) -~. The only difference with an ordinazy Bertrand
game is that in Gy each agent is committed to choose 1- with probability 1-t.
Nevcrthclcss, the equilibria of Gcy can be read off from Lemma 2.1. It is easily
seen that there exists t~ 1.0 such that only (1-, 1-) is an equilibrium of GP
for t C t~. Furtltermore, there exists t2 ~ t~ such that for t E (tr,t2) the
game GP has three equilibria, viz. (1-,1-), (1--,1--) and a mixed one. If

t 1 t2, (1--, 1--) is still an equilibriurn, but the other two are not, and they

are replaced by two different equilibria, viz. (1-3g,1-3g) and a mixture of 1-2g

and 1-3g. Hence, a switch of behavior has to occur at or before tz. Since the
tracing path must be continuous, it cannot jump from (1-, 1-) to (1--, 1--)
a.t t2i consequently it must bend hackwards at tz. Therefore, the initial segment

of the tracing path looks as follows. From 0 to t2 it consists of the equilibrium
(1-,1-). At tl it bends backwarcls, continuing with the equilibriuin in which

firms rancíomize betwcen 1- ~ aud 1- 2g (gr:ldually increasing the probability

of 1-?~ from 0 to 1), at t~ it bcuds forward again arrd continues with the

equilibrium (1 - 2g, 1- 2g). This alternation between forward and backward

moving segments continues while simulta.neously lowering the wages until finally

the path becomes stationary at (a-,~-).

Wc finally corne to the risk domina.nce comparison of the pooling equilib-

rium with the best separating equilibrium. The main result of this section states
t.hat the separating equilibrirun dorninates the pooling one if a G Z and e is

small. Again the intuitiou is simple. Consider a situation of mutual unccrtainty
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concerning whether, in the unperturbcd game, the separating equilibrium e or
the pooling eqnilibrium e' should be played. The type 0 worker chooses y- 0
in both, houce, for him thc situation is unproblematic. In fact, since the wage

at y- 1 is at tnost 1-, this type will always strictly prefer to choose y- 0. The
prior uncertainty will however lead the type 1 worker to choose both y- 0 and
y- 1 with a probability that is bounded away from zero. (Below we show that
the probability is a.pproximately 1~2). Hence, firms at y- 1 will infer that they

face the type 1 worker and they will offer w- 1-. On the other hand, firms at
y- 0 infer that the expected productivity is below (and bounded) away from
a, hence, their wage offers will be below a as well. Given that 0 c w(y) G a for
y- 0 and that w(y) - 1 for y- 1, the type t worker prefers to choose y- t.
These choices reinforce firms to offer w- 1- at y- 1. At y- 0, however, firms
gradually become convinced that they face the type 0 worker and this leads
them to gradually lower their wage offers, until they finally offer 0. Hence, we

end up at the separating equilibrium, the sepa.rating equilibrium risk dominates
the pooling one.

Formalizirrg the above argurnent is, unfortunately, rather cumbersome since
the HS thcory rcquires working witlr the pcrturbed game. The difl'iculty is
caused by the fact that the separating eyuilibrium can only be approximated

by mixed equilibria of the perturbed game and the latter are rather complicated

(cf. Proposition 5.6). Hence, there are an enormous number of switches along

the tracing path. The difficulties are not of a conceptual nature, however,

formally one just has to go through a large number of steps similar to the ones

described in detail in the proof of Proposition 7.3. Since already in that case

the notation became cumbersome and the formal steps were not particularly
illumiuating, we prcfcr to st.ick to the main icleas and ma.ke the risk dominaaice
crnnpa.risnn in thc~ unpcrturhecl gaxne. It. can be shown that this shortcut dces

uot bia.ti t.h~, n,snlt,. ('I'lic dc~t.ailod argumc~ut ïor t.Lc lx~rtunc~,d gii.inc is iivail:~blc
from the a.utlrors ttpon recptest).

Proposition 7.4. If a C 1~2, thcn in the unperturbed game, the best

separating equilibrium risk dominntes the best pooling equilibrium. The same

dominance relationship exists in the perturbed game G~ ( Y, W, a) provided that

e is small.

Proof. The main advantage in working with the unperturbed game lies in the

reduction in the nurnber of agents involved in the risk dominance compasison:
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We do not have to consider the type 0 worker ( he chooses 0 in both equilibria),

nor the firms' agents at y~ 0,1. Let e denote the separating equilibrium in

which the type 1 worker chooses 1 and ]et e' be the pooling equilibrium in which

both workers choose 0. ~Ve first compute the bicentric prior. Let players have

beliefs ze -~ (1 - z)ec. If the type 1 worker chooses y - 0 his expected payoff is

(1 - z)a-, if he chooses y- 1, the expected payoff is et zl' -f (1 - z)1- - 1~2.
Consequently, this worker will choose both y - 0 and y- 1 with a probability

of approximately 1~2. Next, consider the agent of a firm at y- 1. This agent

has to move only if the separating equilibrium is played, and in this case the

agent of the competing firm offers 1-. Hence, the only way in which this agent

can make a profit is Uy also offering 1-. Therefore, the bicentric prior is to offer

1- for sure. Finally, consider a firm's agent at y- 0. It is easy to see that any

wage w~{0, a} yields negative expected profits. If the agent offers the wage 0

the expected profit is 0, while the profit resulting from ~- is equal to

-z(1 - a)(a - 9) -}- ( 1 - z)9~2.

Conscqnc~ntly, tho agent af. 0 shoiild offer the wage 0 if

~((1 - ~)(~ - 9) f 9~2) ~ 9~2.

Let b be defined by

(7.11) g~2
ó-(1 - a)(~ - 9) f 9~2

,

then the bicentric prior of an agent at 0 chooses a- with probability ê and

0 with pmbability 1- b. Since g can be chosen arbitrarily small, the initial

expectatiou of t.he worker is, therefore, that the expected wage at 0 is close to

0. Consequently, for g small, the best response of the type 1 worker is to choose

y- 1 for sure and this reinforces the firms to offer w- 1- at y- 1. We claim

that in any equilibrium a.long the path followed by the tracing procedure, the

worker chooses y- 1. Namely, this property can only fail to hold if the firms at

y- 0 offer a sufficicntly high wage (at Icast equa.l to 1~2) and this will never be

the case since the expected productivity at 0 will always be below a and a G Z.

-" "fhc, poolingequlibriuni of the uupertnrbed gauie does not specify a uniyue wage

at y- 1, wc fix this wage at ~-, that is, at the limit of the wages of approxi-
mating equilihrix of the perturbcd gamcs.
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In fact along the tracing path the wage offer at y- 0 will never be above a~2
since this is the highest expected productivity at y- 0. The exact tracing path
can be determined by using an a.rgument as the one that follows the proof of
Proposition 7.3: For tra.cing para.metcr f, the agents at y- 0 play a Bertrand
game for a surplus of (approximately) (1 - t)a~2 modified to the extend that
each agent is committed to play his prior as in ( 7.11) with probability 1- t.
The unique equilibrium of this game for t - 0 is (g, g). As t increases, firms
initially switch to higher wages ( since for f small the expected surplus is large),
however, for larger t, wages fall aga.in since the surplus decreases. ( Again the
tracing path contains many backwards running segments). As t tends to 1 the
surplus, hence, the wages tend to zero; along the way the wages never exceed
the maximal surplus of a~2. Consequently, the agents at 0 finally switch to the
wage corresponding to the separating equilibrium. Since the other agents are
already at this equilibrium from the beginning, the tracing path leads to the

separating equilibriiun. Hence, the separating equilibrium risk dominates the

pooling one.

8. CONCLUSION

By coinbining the Propositions 7.1, 7.3 and 7.4, we obtain the main result

of this paper.

Corollary 8.1. The Harsanyi~Selten solution of the Spence signaling game
P(Y, W a) is

(i) the equilibrium outcome in which the workers are pooled a.t y - 0 ifa G 2,

(ii) the separating eqnilibri~un outcome in which the type t worker chooses
y-tif~1 2 .

Even though we used the assumptions ( 2.6) -(2.10) to derive this result, it

can be checked that at least for a~ 1~2, the statement of Corollary 8.1 remains
correct if these assumptions are not satisfied. Hence, the result is independent of
the discretization chosen. It is, therefore, justified to make a limiting argument

and to talk about the HS solution of the continuum game. Hence, g- 0 and Y

and W are continua, as in the usual specification of the Spence model found in

the literature. Dcnote this game by I'(a). The ( limit as g--~ 0 of the) solution
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found in Corollary 8.1 is known in the literature as the Wilson E~-equilibrium
(Wilson [1977]). It is that sequential equilibrium of 1'(a) that is best from the

viewpoint of the type 1 worker. Hence, we have

Corollary 8.2. For a~ 2 , the HS solutíon of the 2-type Spence signal-

ing game I'(a) is the Wilson EZ-equilibrium of I'(~), i.e. it is that sequential

equilibrium that is best for the type 1 worker.

Given the ad hoc nature of Wilson's solution concept, it is to be expected

that a coincidence as in Corollary 8.2 will not hold in general. However, the

authors conjecture that for a broa.d class of signaling games that have similaz

structura.l properties as the game studied in this paper, the HS solution coincides

with the solution proposed in Miyazaki [1977]. (The important properties are

monotonicity and the single crossing condition, see Cho and Sobel [1977], it

is conjectured that the number of types does not play a role). A detailed

investigation into this issue will be ca.rried out in a future paper.

The simple structure of our game enable, a sensitivity analysis with reapect

to several assumptions ma.de by Harsanyi and Selten that is difficult to cazry out

in general. We will not go into detail, but restrict ourselves to one issue. Some

people have argued that the uniformity assumption made in the construction

of the prior to start the tracing procedure is ad hoc. Consequently, one may

ask how robiist the results from Sect. 7 are with respect to this prior. The

reader can easily convince himself that the outcome is very robust. Robustness

especially holds for Proposition 7.4 : The sepazating outcome will result for

a G Z as long as the prior ex~ectations of the players assign positive probability

to this outcome (i.e. as long as the density of z is strictly positive on [0,1]).

The theory of Harsnnyi and Selten has both evolutionary and eductive

aspects. (See Binmore [1987] for a general discussion of these notions). The

preference for primitive equilibria is most easily justified by taking an evolu-

tionary perspective, the tracing procedure most certainly is eductive in nature.

It is interesting to note that the HS theory ranks evolutionary considerations

prior to eductive ones. This ordering of steps indeed has consequences for

the final outcome since the separating cquilbrium outcome with yl - 1 riak

dominates any other equilibrium outcome for all values of a. (cf the proofs

of the Propositions 7.3 , 7.4 ) Hence, if the solution would be based on risk
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dominance considerations alone, the solution would always involve separation.

Consequcnt.ly, thc solution that was initially proposed by Spence and that is
defended and used in most of t.he subsequent literature can also be justified on

the basis of risk dominance.

Finally, let us mention that recently related work has been done by Michael

Mitzkewitz (Mitzkewitz [1959 ]). He computes the HS solution for signaling
games in the following class: There a.re 2 players, player 1 has 2 possible types,

and he can send 2 possible messages, to which player 2 can react in 2 different

wages. Mitzkewitz dces not assume the single crossing property, hence, he is

forced to use an approach that differs from ours.
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APPENDIX A: DOMINANCE SOLVABILITY AND THE
HS SOLUTION

Consider the 2-person normal form game

10
10

0
10

0
0

10 6 0
0 6 6

0 6 1
0 0 1

Table 1: G

which admits three Nash equilibria, viz. A-(A~,A2), B-(B~,BZ) and

C - (C,,CZ).
We have that A~ (resp. AZ) is dominated by B~ (resp. BZ), while in

the reduced game B~ (resp. B2) is dominated by Ci (resp. C2). Hence, the

(unperturbed) game is dominance solvable, with solution C. (This is the unique

stable equilibritun of the game). HS, however, do not analyse the unperturbed

game, but rather a sequence of uniformly perturbed games. In the e-uniformly
perturbed game G(e) of G each player, when he intends to choose the pure
strategy X;, will actually choose the completely mixed strategy (1 - 2E)X; -{-

fY; {- eZ;( X; ~ Y; ~ Z;). Neglecting terms of order e2, the payoff matrix of

G(e) is given by
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lO - 3OE 22E lOE

10 - 30E 10 - 24E 27E

10 - 24E 6- HE 16E

22E 6- HE 6- 17E

27E 6 - 17E 1 f 2E

11E 17E 1 f 2E

Table 2: G(E)

In G(E), we have that A~ (resp. Az) is dominated by B~ (resp. BZ). The

reduced game in which these inferi~r strategies have been eliminated has 2 strict

equilibria, viz. B atid C. (There is a third equilibrium in mixed strategies but

this is not primitive). Hence, the initial candidate set is {B, C}. Since B payoff

dominates C, the HS solution of G(E) is B. Consequently, B is the HS solution

of G. Hence, perturbing first may make a difference since it can transfer non-

strict equilibria into strict ones.

This example may lead the reader to think that the discrepancy between

dominance solvability and the HS theory is caused by the fact that the latter

makes use of Pareto comparisons. (Indeed, inG(E), the equilibrium C risk dom-

inates B). A second example may however show that this is not the case. The

game from Table 3 is dominance solvable, with solution D-(D1,D2). The

E-perturbed game has A; and B; as inferior strategies, while C-(C1,C2) and

D-(D~, DZ) are strict equilibria. Now C not only payoff dominates D, but it

also risk dominates D, so that, even if one does not accept payoff dominance as

a selection crite.rion, one still is lead to C as the solution as long as one accepts

the other eleuicnts r7f the HS theory.
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10 0 0 0
10 10 6 0

lo c o 0
o s s o

s s 2 0
0 0 2 2

0 0 2 1
0 0 0 1

Table 3
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