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Abstract

`íisspecification in time-series regressions can have important effecta on least-
squares estimates, test statistics and forecasts. [n this paper we analyze these
effects (especially the eíiects on forecasts) for finite samples in one of the leading
cases where the process that generates the data is ARMA(1,1), but the model used
for estimation is AR(1).

assumptions about the initial conditions are important too, especially when
one of the roots of the characteristic polynomial is near the unit circle. Hence,
special attention is given to the near-unit root case.

KEY WORDS: ARMA model; misspecification; forecaeting; unit root; initial con-
ditions.
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1 Introduction
Since all models are misspecified, it is important to investigate the effects of misspeci-
fication on estimation, testing, and forecasting. In a time-series regression context the
true model which generates the observations could be an ARV1A(pt,ql) process while
the model used for estimation is ARMA(pz, qz). In this paper we analyze the effects of
misspecification in one of the leading cases where the true process is ARMA(1,1),

ye - Qye-i f o(ee t 9Ei-1),

while the model used for estímation is AR(1),

yi - Qy~-~ f oEi.

We shall consider the case where ~3 - 0(AR(1) versus MA(1)) and the case where ~3 ~ 0
(AR(1) versus ARMA(1,1)), in particular the case where Q is close to 1(the unit root).

A great deal of attention has gone towards the problem of testing for the presence
of a unit root in time series regression. See Dickey and Fuller (1979, 1981), Evans and
Savin (1981, 1984), Said and Dickey (1984, 1985), and Phillips (1987). Here we are not
only interested in the behaviour of the t-ratio for Q under misspecification, but also in
the (least-squares) estimator for ~3 and o~ and in the forecast error.

The estimators, test statistics and forecasts are sensitive to the specification of the
initial observation yo and we shall see that this is particularly so when Q is close to one.
This sensitive dependence on initial conditions (known as the "butterfíy effect" in chaos
theory) was first found by Hoque, :~fagnus and Pesaran (1988) and ~fagnus and Pesaran
(1988, 1989), and its exact nature was analyzed by Magnus and Rothenberg (1988).

The plan of the paper is as follows. In section 2 we present the model, discuss the
choices for the initial observation, and prove the existence of moments of the least-squares
estimators for 3 and of the forecast error. In section 3 we analyze the situation when
the true process is ~IA(1), but the model used for estimation is AR(1). In sections ~k
and 5 we present our theoretical and exact finite sample results when the true process
is .~R:~tA(1,1) and, again, the estimating model is AR(1), first for the fixed start-up
model, then for the stationary model. Section 6 offers some conclusions.
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2 The model
Let {y,} be a stochastic process generated in discrete time by

y~ -~ya-i f a(e, f 6e~-i) (t - 1,2,...) (2.1)

where {~, El, . ..} is a sequence of i.i.d. N(0, 1) random variables. Regarding the initial
observation we assume that

yo - aEO f árt (2.2)

whece rt is standard normal and independent of ~, Et, .... This specification of ya allows
for a number of cases of which we shall discuss only the two most important: the fixed
start-up case and the stationary case.

The fixed start-up case is defined by

6 - 0. (2.3)

The name "fixed start-up~ is explained by the fact that, if (2.1) also holds for t- 0 and
if f-I - 0, then y-~ - 0. Under (2.3) we may solve the difference equation (2.1) as

~-i
ye~o - (A f e) ~ ~i~-i-lEi f ei (t - 1, 2, . . .). (2.4)

~-o

In the slationary case we require that

so that the sequence {ya,y~,...} is a strictly stationary ARb1A(1,1) process and

e-i1-3R y~-(3te)~~vt(dte) 1-~~ ~ ~~-i-lE~ f 1 -;32 E~
~-0

(2.5)

(t - 1,2,...). (2.6)

In both the fixed start-up and the stationary case we see that {yt} is white noise when
3 f B - 0, that is, when there is a common factor.
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If the true AR~1A(1,1) model is misspecified as AR(1), then the least-squares esti-
mator of 3 is

Q-~i
yaye-t

- Q t o~i ya-tue
~ s~e ye-t ~e ys-t

(2.7)

where the summations are from 1 to T and ut - ei f Bet-t. This is clearly a ratio of two
quadratic forms in y -(ya, yt, .-., yT)', that is, ~3 - y'Ay~y'By, where

'4 - z

0 1 0-.. 0 0
1 0 1~-. 0 0
0 1 0.-- 0 0

0 0 0--. 0 1
0 0 0... 1 0

1 0 0--. 0 0
0 1 0..- 0 0
0 0 1--- 0 0

B - (2.8)

0 0 0--- 1 0
0 0 0--- 0 0

The s-periods-ahead forecast in the misspecified model is defined by yT}, -~3'yT. The
forecast error is therefore

,
yT}a - yT}i -(Q~ - Q,)yT - O ~ Q~-~uT}i-

~-1
(2.9)

We shall be primarily concerned with the distribution of (i and the forecast error in
the misspecified model, although we shall also study the behaviour of the least-squares
estimator of a~ and the t-ratio for Q. We first settle the question of the existence of the
moments of ~3 and the forecast error.

Proposition 1 (existence)

(a) the s-th moment of (3 ezists ij and only if 1 G s C T- I;

(b) the ezpected value of the s-periods-ahead forecast error (the forecast bias) ezists if
andonlyiflGsGT-1;

(c) the mean-square error of the s-periods-ahead Jorecast error (the MSFE) ezists if
and only if 1 G s C[(T - 1)~2].

Since Q is a ratio of two quadratic forms, we can use Theorem 6 of Vtagnus (1986)
to calculate E(i', when it exists. Regarding the forecast error, it is easy to show (using
symmetry arguments) that the forecast bias, if it exists, is zero. (See ylalinvaud (19 ï0, p.
5~4), Fuller and Hasza (1980), Dufour (1984, 1985), Hoque, :~Iagnus and Pesaran (1988).)



4

The mean-square forecast error, that is the variance of the forecast error, depends on
expectations like E{(u'Clu~u'Czu)'(u'C3u)}. Such quantities can be calculated using
'Theorem 5 of ~íagnus (1989).'

3 AR(1) versus MA(1)

Suppose first that the process which generates the data is MA(1). We don't know this,
however, and specify the model mistakenly as AR(1). In this section we shall investigate
some consequences of this type of misspecification.

Since the true value of ~3 is zero, we have y~ - oui (t 1 0), where u-(uo, ul, ..., uT)'
is normally distributed with mean zeco. Let V-(v;~) be the (Ti.l) x(T~ 1) covariance
matrix of u. Then, in the stationary case, v;; - 1 f B~, v;,;}1 - v;tl,; - B and v;~ - 0 if
~i - j ~? 2; in the fixed start-up case the elements of V are the same as in the stationary
rase except that vlt - 1. The least-squares estimator of 3 in the misspecified ~R(1)
mode) is

~ - u'Au~u'Bu, (3.1)

where A and B are given in (2.8). If we let

ai - T-`~~(u'Au - tr AV) and xz - T-'~~(u'Bu - tr BV), (3.2)

and use the fact that tr AV~T - 6 and tr BV~T - 1 f B~ f O(T-' ), then

T-'u'Au - B f T-'~'x, (3.3)

and

T-`u'Bu - 1 f 9~ } T-t~~.ts f OD(T-`). (3.~)

Hence, letting r- B~(1 i.9~), we obtain the following large sample approximation for ~3:

3- r f T-~~~yl
t B~~ } Co(T-~) (3.S)

This representation of ~i ímmediately implies that plim Q - r as T y oo. In fact we can
say a little bit more.

~ We used the Numerical Algorithms Groups ( 1984) (the so-called YAG) subroutine DOIAJíF for the
univariate numericalintegrations in this paper. This subroutine also gives an estimate of the absotute
error in the integration. In all resulta reported the absolute error was less than 10-s.



5

Proposition 2~1t J3 - 0 - that is, ij the data genernting process is ,1~fA(I) - we have,
for lnrge T,

(aI !3 - r f T-'~~WZ f O,(T-`),

(6~ :~1SFE - J(1 f B~)(1 - r~) t O(T-'~') if s- 1,
o~ l(1 -~ t7~)(1 ~ r~') -~ O(T'l~z) if s? 2,

whene r - B~(1 f 8~), ~z - r~ -h (1 - 2r~)z, and z~ N(0,1).

To investigate the effects of this type of misspecification on Q, we have calculated,
for various values of B and T, its exact mean 71 - E(i, standard deviation yz -

~E(Á - EQ)~~ ~~~, skewness 73 - E(p - E~3)3(~, and kurtosis 7~ - E(~ - E~i)'I7z - 3.
he results, given in Table 1, show that the greater the amount of miaspecification, the

larger are the mean of Q and its skewness, but the smaller is the standard deviation.
(These calculations, and the ones teported in Table 2, are for the fixed start-up case
where uo -~; the results for the case where {u~} is strictly stationary are very similar.)
The results also show that the distribution of Q in the misspecified model is rather well
determined by its asymptotic approximation, except that the true mean of Q is smaller
than the approximation suggests and that the true finite distribution is skewed towards
the left. ( If B C 0, then the odd moments of ~3 have the opposite sign, so that the
distribution of p is then skewed towards the right).

The ~ISFE too is quite well approximated by its limiting value. We see from Table
2 that the true MSFE is always larger than its approximation. Also, the greater the
amount of misspecification, the greater is the iV1SFE. It is important to distinguish
carefully between the cases s- 1 and s~ 2. The different behaviour of the MSFE in
these two cases is due to the fact that uT and uTt, are correlated when s- 1 but not
when s 1 2. Table 2 shows that the effects of misspecifying the model as AR(1) when
the true model is :~IA(1) are most serious when s- 2. The further ahead we forecast,
the less damaging is the effect of the misspecification. ( This type of result was also found
in Hoque, Magnus and Pesaran (1988) and Magnus and Pesaran (1989).) But the least
serious effect of misspecifying the model occurs when s- 1, unless B- 0!

4 AR(1) versus ARMA(1,1): the fixed start-up
case

Let us now assume that the process which generates the data is ARMA(1,1), but that
the model used for estimation is AR(1), that is, in estimating the model we mistakenly
set B equal to zero. In this section we report results for the fixed start-up case where the
initial conditions are given by (2.3). In the next section we discuss the stationary case.
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We begin our analysis by investigating the behaviour of four least-squares statistics
when the true value of R equals one. These four statistics are the least-squares estimator
of ;3 defined in (2.7), the least-squares estimator of a~,

1 0~ ( ~
a~ - T - 1 ~(yi - Rye-t)~ - T - 1 ~ ui - T -~) ~ yé-i, (4.1)

r e r

the t-ratio for ,Q,

f l i~s
ta -(Q-Q) I~yé i~d~ J - o E~ye-t]uiLLL ~ ( ~ 11~ ,

and the s-periods-ahead forecast error defined in (2.9).
It is important to distinguiah betwcen B- -1 and B ~-1, because of the role played

by (1 ~ B~)~(1 f B)~, which denotes the ratio of var(u~) and lim var (T-11~ ~ u~); see
~

Phillips (1987, Theorem 3.1). The latter limit vanishes when B--1.
When B~-1 we have the following result.

Proposition 3 !n the fixed start-up case defined by (2.1) -(2.3J, lhe distributions of
the least-squares statistics nt R- 1 and B~-1 have the Inrge sample approximations

(ai T(r!-Q) - ( W(1)~ -7~)~(2Q) f ~a(T-'l~)~

s
(b) (T - 1)~z - ~(ue - u)' f On(T'o),

~

(c) ta - (W(1)Z -72)I(2ryQ'1~) f Ov(T-'~Z),

(dI (yT}s - yT}~),o' - -(uT}t f ... ~ uT}s)

}~W(1) ~W(1)~ -7~~ ~(2Q) f ~v(T-'),

u~here
! i

ry7 -(1 f B~)~(1 ~ B)~, u- T-~ ~u~, Q- I W(r)~dr,, Jo

and LV(r) is a standard IViener process on the space of real-valued continuous funetions
on (0, 1].



Parts (a) and (c) of Proposition 3 are special cases of Phillipe (1987, Theorem 3.1),
while parts (b) and (d) generalize Magnus and Rothenberg (1988, Proposition 3). We see
from (a) that ~3 continues to be consistent when ,Q - 1 under this type of misspecification
and that ,Q is an increasing function of B E(-1,1~. Also, from (b), it appears that ó~
overestimates o~, since

Eó' - a~(1 t B') t O(T-').

The situation is very different when B--1. Then, at Q- 1, we have a common
factor, so that yi - oci for all t~ 0.

Proposition 4!n the fized start-up case defined by (2.1) -(2.3), the distributions of
the least-squares statistics at ~- 1 and B--1 have the large sample approzimations

(al Q - I3 - - 1-~ o,(T-'t'),

~6) (T -1)á, - xZ(T -1) t on(~),

(c) T-`t2t~ - -1 ~- OD(T-`t~),

~d~ (,yTt~ - yT}s),Q - w(~r 1) ~ oy(T-~,~).

The estimator Q is now inconsistent for A- 1, since plim ~i - 0. Also, the null
hypothesis Ho : p- 1 will be rejected for large T because tp will approach -oo. The
least-squares estimator of o~ is asymptotically unbiased and the MSFE~o~ equals one
plus an error of order T'', which is smaller the Jurtherahead we forecast.

Concentrating on Q and the MSFE we find the following limiting behaviour for
T ~ oo.

Proposition 5!n the fired start-up case defined 6y (2.1J -(2.3J we have, letting r-
B~(1 f B2) and ~3 1 0,

r(1 - i3~) -(al) plim 3-~? f - a if Q~ 1,
r-~ 1 t 2f3r
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(a2) plim 3- r 1 if 6~-1,
l 0 if 8 - -1,a-,

T-oo

~iSFE (1 f B~)(1 t 2~3r) zs - , t,tr
(bl) r-ró o~ - 1- j3~ ~1 f a 2Q - a , if l3 ~ 1,

(b2) :m uaFE -
1-F Q~1 f(1 2 Ql~. - ZQ~-, r-(12 Q)l.til

ifQ ~ 1,
T-oo l J L J J

(63) lim
MSFE -( 1 -~ B~)(s f 2r(s - 1)) if B~-1,

e-, ~Y
T-oo

~iSFE(6-I) lim lim - 1.
T-oo e-t p~

8--1

It is clear that the order in which limits are taken can be important. The notation
indicates when this is the case. A double limit such as in (a2) indicates that the order
is not important.

The intecesting area of the parameter space when T-. oo is the corner near !3 - 1
and B--1. The lack of uniformity in convergence is illustrated by the following limits:

lim lim r? - 0,
T-oo s-,

B~-1

~iSFElim lim - 1,
T-~o e-i Qs

8--1

lim lim ~? - 0, lim lim
MSFE - 1

3-1 e--, 3-1 e--i Q~
T-x T-oo

lim lim Q- 1, lim lim
'~ISFE - 2

B~-1 e-, By-1 0-~ O~
T-.oo T~oo

Let us now investigate in some detail the properties of the s-periods-ahead forecast
error for finite samples, thereby extending the results of Hoque, Magnus and Pesaran
(1988) to the misspecified model. We know that the forecast error remains unbiased
under misspecification and that the variance of the s-periods-ahead forecast error (the
~fSFE) has the mirror-image property

~ISFE(Q, B) - ~iSFE(-p, -B)

as noted e.g. by Cryer, Nankervis and Savin (1989). [n Table 3 we present the exact
~ISFE~a~ for various values of 3, B, s and T, and in Figures 1 and 2 we graph the
~1SFE~a~ for T- 19 and s- 1 and 2.
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Several conclusions emerge from studying these exact results. For all T and all s the
`ISFE~o2 is minimalon the common factor line (3fB - 0 and maximal when ~3 - B- t 1.
Hence the precision of the forecast is high not when the amount of misspecification (IBI)
is small, but when the departure from the common factor line (IQ f BI) is small. When
T- oo, for example, we have

MSFE
a~

and

-1 when QfB-O

~fSFE~-1 t Q~ f... t p~(~-1)
0

when B - 0.

As noted before, the behaviour of MSFE~o~ is particularly interesting when (~3, t7) is
near (1,-1) or (-1,1), due to the lack of uniformity in convergence. (The MSFE~o~ is 1.0
or 2.0 when (Q, 9,T) -(-1,1, oo), depending on the order in which the limits are taken,
see the discussion above and Proposition 5.) One consequence of thia noa-uniformity in
convergence is a certain lack of monotonicity. For example, when Q- 1.0, s- 1, and
T- 19, the MSFE~o~ attains its maximum at B - 1.0 and its minimum at B- -1.0, but
it also attains a local minimum at B- 0.0 and a local maximum at B- -0.6 (see Figure
1). Another consequence is that when T increases the MSFE~a~ may also increase. This
happens when (i and B have opposite signs, IQI is close to 1.0 and IBI c IQI- The intuition
behind this is as follows: Let Q--1.0 and 9 close to but not equal to one. ~Vhen T
is small, ~1SFE~o~ will behave as if (Q, B) -(-1,1), that is, as if there were a common
factor, and hence it will be close to 1.0. But when T is large, ~1SFE~o~ will behave like
a unit root process and it will be close to 2.0.

When ~3 and 9 have opposite signs (or Q- 0) and IQI C IBI, then it is not generally true
that the further ahead we forecast (the larger s is) the less precise our forecast becomes.
( Vote that this is true not only for small T, but even when T - oo; see Proposition
5(bl).) This somewhat counterintuitíve finding was also reported by Hoque, :~tagnus
and Pesaran (1988) and Magnus and Pesaran (1989) for Q close to zero in a correctly
specified AR(1) model.

5 AR(1) versus ARMA(1,1): the stationary case

Assume again - as in the ptevious section - that the process which generates the data
is ~1R~fA(1,1), but the model used for estimation is AR(1). In contrast to the previous
section, however, we assume that the initial condition is given by (2.5), so that the data
generating process is strictly stationary.

Dramatic consequences follow from the different assumption about the initial obser-
vation, as was recently emphasized by 1~fagnus and Rothenberg (1988). We shall analyze
the stationary case in the same way as the fixed start-up case. The following result is the
counterpart to Proposition 3 and generalizes Proposition 1 of 4fagnus and Rothenberg
(1988 ).
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Proposition 8!n the stationary case defined by (2.1J -(2.2J and (2.5), the distributions
oj the (east-squares statistics as ,3 y 1, B~-1 and T is fixed are

T'~'(Q - Q) T'~~u
(a) (1 - ti~~)il~ ~(B f 1)p ~ ao- CauchY,

(b) (T - 1)ó~ y ~(ue - u)',
e

(c) tp y T(T - 1) u
~(ue - u)s,

(d) (yTt. - yT}~),0 y -(T~TtI
f... ~ UTt.) f 3fa ~!V(~, (1 f B ~)tv~),

where
T ~

u- T-i ~ u~, r- 8((1 f B~), ao - 1-
~-1

~~-sf 7, f-2rls-l~s(s7, 1)-7, z 1 .

1 2r
T 2r ~ 1'

Proposition 6 shows that the results of ~Iagnus and Rothenberg (1988, Proposition
1) remain essentially true in a misspecified model.

In contrast to the fixed start-up case, ~3 converges in probability to one as ~3 tends to
one (for fixed T). The least-squares estimator for o~ will overestimate o~. In fact, we
have, as Q tends to one,

Eó' - 0'(1 f B') f 0(T-`)

and
20'var (à~) - 7, - 1(1 i- 4B~ f B') f O(T-~).

The t-ratio f,s tends to a random variable which is symmetrically distributed about zero;
it is exactly Student(T-1) distributed if and only if B- 0. In both the fixed start-up
case and the stationary case we have, when Q-y 1 and B~-1,

yyTta á Tt. ~-(uTti f... f uTta) f ~~T
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but in the fixed start-up case

RT - w~ 1) ~~`~ )~ - 7~) t Oo(T.-'~s )

while in the stationary case

RT - T-l~s ~ ue ,,, t`7 ~0. (1 .4- B~)~1 ~- 2r)] f Op(T-l~s~.
e

Again the situation is somewhat different when B--1.0.

Proposition 7!n the stationary case defined by (2.1) -(2.2) and (2.5), the distribu-
lions oj lhe least-squares statistics as ~3 -. 1 and B--1 have the same large sample
approximations as in Proposition ~.

Corresponding to Proposition 5 we find the following limiting values for ~i and the
~fFSE when T y oo.

Proposition 8!n the stationary case defined by (2.1J -(2.2) and (2.5J, vie have the
same results as in Proposition 5 ezcept that

~iSFE
(b~) lim lim lim - 1

T~~ p-i e--i o~
:~[SFE

lim lim lim - 2.
T-~ e--i a-i v~

The lack of uniformity in convergence when T is large, p is close to 1 and B is close to
-1 has slightly different consequences in the stationary case than in the fixed start-up
cae. We have, in contrast to the fixed start-up case,

lim lim lim ~3 - 0, lim lim lim
MSFE - 1

T-ao J-t By-t Tyoo p~1 B~-l p~

lim lim limi3 - 1, lim lim lim
~fSFE - 2

r-~s--i e-i T-~ e-..-i p-i az
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6 Conclusions
In this paper we have studied the situation where the data generating process is
AR~fA(1,1),

Yi - QYe-i f a(Et f BE~-1),

but where the model used for estimation is AR(1), that is, the investigator mistakenly
sets B - 0. The effects of misspecifyiag the model in this way are particularly strong
when ( ~3, B) is far from the common factor line Q f B - 0(hence not when ~B~ is small).
In forecasting, the effects of misspecification are qualitatively different when s- 1(one
period ahead) or s 1 2( two or more periods ahead).

When Q is close to one, the least-squares statistics are very sensitive to the speci-
fication of the initial observation (as in the correctly specified model, see :~Iagnus and
Rothenberg ( 1988)) and also to 6 being close to - 1 or not. For example, when (3 ~ 1
the least-squares estimator (3 remaias consistent unless B--1. There is an irregularity
at (~i, B) -(1, -1) whích has a different effect in the fixed start-up case than in the
stationary case.
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Mathematical Appendix

PROOF OF PROPOSITION 1: The (T f 1) x( T f 1) matrix B defined in (2.8) has rank
T. Hence there exists a vector q, namely q - (0, 0, .. ., 0, 1)', such that Bq - 0. Then,

q'Aq - 0, Aq ~ 0, q'q ~ 0,

and by Theorems 1(ii), 2(iii) and 3(iv) of Magnus (1989), respectively, we find that E,D'
exists iff s G T, EQ'yT exists iff s c T, and E~~'yT exists iff 2s G T. The results then
follow easily.

PROOF oF PROPOStTION 2: From (3.2) and ( 3.5) we obtain

Q- r i-T-1~zwTZT i. Ov(T-~),

where

l~z(var (u'Cu))l~z u'Cu - Eu'Cu
~ -T- 1 i-Bz 'zT - (var(u'Cu))llz,

and C - .4 - rB. Since wT y w and zT ~ N(0, 1) as T-. oo, (a) follows. To prove (b)
we write, using (2.9),

rr,.-rrt.
0

and (b) follows.

- (~' - d~)(yTlo) - ~ ~ ~-~uTt, - F~~uT - ttTti
q ~-1

- BQ~ET-1 ~ Y~ET - BETti-I - ETts

- Br'ET-1 f raET - BE7't,-l - ETf, ~ Ov(T -1 ),

PROOF oF PROPOS[T[oN 3: When Q- 1 and B~- 1, it follows from Phillips (1987,
Theorem 3.1) and ~fagnus and Rothenberg ( 1988, Proposition 3) that

T-1 ~ Yr-lur~o -(1 f B)z ~4V(1)z - yz~ ~2 f Ov(T-l~z)

and

T-z ~ yé-l~oz -( 1 t B)zQ t Op(T-l~z).

Then using (2.7), (4.1), (4.2) and (2.9), the proposition follows.

PROOF oF PROPOSITION 4: The proof presented here is valid for all values of 3 and B
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for which Q} B- 0, and hence in particular for Q- 1 and B--1. This is the common
factor case and we have yt~o - Et (t 1 0). Letting

we find

and

d - T'~'~ E`-'E`,s
~ Et-1

T-~ ~yt-iuela - (T-~ ~Eé-r)(-Q f T-r~~d)

i s s t s
T- yt-i~o -T- Ee-i.

Hence, using (2.7),(4.1),(4.2) and (2.9),

Q - T-'~'d,

( T - 1)ó~ y~ [~`
~Z - ~(Et - E)~ } (Tt,~E)~ - a (T-r [~ Et-1)r

T-`~ZtA - ( d'~a~)-t~Z(T-' ~ E~-t)`~~(-Q f T-'~2d),

,s(yTta - yT}a),Q - -ET}i f T' d'ET,

and the results follow.

PROOF OF PROPOSITION 5: To prove (al) and ( a2) we assume first that ~3 ~ 1 and
8 ~ -1. Then

plim T-' ~yt-lut~o - B- r(1 t B~)

and

plim T-' ~Yit~oZ - 1~- B~ f 2~38 - ( 1 t B~)(1 -~ 23r)
1 - Q~ 1 - Q~

so that plim Q- a. It is easy to see that this result also holds when p- 1, B~
-1 and when ;3 ~ 1,B -- 1. When Q- 1 and B --1, then yt~o - Et and ,3 -
~ EtEt-I I Lr E~-1 -' O.

To prove ( bl) -(b-1) we assume first that Q~ 1. Then,
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T ,

(YTt, - yzt,)~o - ll3' - ti3') ~QT-iui - ~ p'-~uTti

and, since p-. a, some simple calculations show that

IVISFE (1 f 9~)(1 ~ 2(ir) z, - .-i ,ti
r'~ o~ - 1 - Q~ (1 f a 2Q a ) if Q ié 1,

and, in particular,

Ti ~ ~1S~FE -
1 f p I1 ~ f 1 2 Qls, - 2p~-, r-(12 Q)l,t~l

if Q~ 1,9 --1.

When (i - 1 we obtain, using Proposition 3(d) and 4(d), respectively,

MSFE -((1 f B~)(s t 2r(s - 1)) if (3 - 1,B ~-1,
lim

Sl
r~~ o~ 1 if ~3-1,8--1.

To complete the proof we need to show that the order in which the double limit in (62)
and (b3) is taken is of no consequence. This follows by letting B~ -1 and ~3 y 1,
respectively,in (bl).

PROOF OF PROPOS[TION 6: As ~3 --, 1 we have, using (2.6),

1-;3~y,~o-~(Bfl)q

and hence

1-~~ ~ yi-lu~~o -{ (B f 1)q ~ ui and (1 - Q~) ~ yi l~o~ -, T(B t 1)Zn2.

The exact distributions of the least-squares statistics as (j ~ 1 then follow exactly as in
the proof of bfagnus and Rothenberg (1988, Proposition 1).

PROOF OF PROPOSITION 7: Setting B- -1 in (2.6), we obtain

y:Ia-Ea-R~ 1-Q',

where

F3~ V 1- N- e-t

L t-~-'E 'R`- lfï~n} 1fQ Q ~
i-o
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so that

yi~o -~ e~ as ~i y 1

for all t 1 0. The results then follow as in the proof of Proposition 4.

Pxooe oF PROPOS~T[ox 8: Similar to proof of Proposition 5.
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Table 1

Exact moments of (3 when Q- 0: fixed start-up case

B

7i

T 0.0 0.2 0.4 0.6 0.8 1.0
14 0.0000 0.1718 0.3159 0.4157 0.4699 0.4879
24 0.0000 0.1793 0.3267 0.4252 0.4762 0.4915
00 0.0000 0.1923 0.3448 0.4412 0.4878 0.5000

14 0.9465 0.9114 0.8318 0.7590 0.7211 0.7118
T~ryz 24 0.9644 0.9227 0.8317 0.7540 0.7159 0.7067

00 1.0000 0.9458 0.8366 O.ï534 0.7160 0.7071

-r3

7a

14 0.0000 -0.2027 -0.3376 -0.3898 -0.4012 -0.4022
24 0.0000 -0.1801 -0.2947 -0.3412 -0.3570 -0.3611
00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

14 -0.2560 -0.1604 0.0233 0.1378 0.1826 0.1994
24 -0.1916 -0.1187 0.0058 0.0703 0.0931 0.1001
00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2

Exact ,ti(SFEw~ when ~3 - 0: fixed start-up case

B
s T 0.0 0.2 0.4 0.6 0.8 1.0
1 14 1.0759 1.0792 1.1043 1.1852 1.3533 1.6254
1 24 1.0425 1.0448 1.0672 1.1443 1.3059 L5676
1 00 1.0000 1.0015 1.0221 1.0953 1.2-498 1..i000

2 14 1.0163 1.0705 1.2358 1.5119 1.8831 2.3267
2 24 1.0051 1.0541 1.2056 1.4615 1.8072 2.2239
2 00 1.0000 1.0414 1.1764 1.4115 1.ï329 2.1250

3 14 1.0057 1.0522 1.1956 1.4406 1.7795 2.1938
3 24 1.0010 1.0435 1.1747 1.3990 1.7109 2.0981
3 00 1.0000 1.0401 1.1620 1.3700 1.6621 2.0313

4 14 1.0029 1.0466 1.1810 1.4118 1.ï357 2.13ï1
4 24 1.0003 1.0411 1.1656 1.3772 1.6739 2.0482
4 00 1.0000 1.0400 1.1602 1.3620 1.6453 2.0078



Teble 3: Execc MSFE~o2: fuced scart-up ca~e'

-1 -2 ,-J .-4
-1{ -74 - oo -14 - 2{ - - -l1 - 2{ noo cl{ -24 -

1.0 1.0 . JJ1 2.1l16 .0000 tl.1250 . 092 6.0000 16.1J61 12.9199 30.000 2.61{2 19.91G1 1{.0000
1.0 0.9 2.1307 3.9742 1.tl100 7.JJ07 l.4041 S.{200 14.5J91 11.636! 9.OJ00 24.i479 37.9026 17.6{00
I.0 0.0 1.Si31 1.{323 1.J000 3.256{ {.013! J.9200 10.2tl17 i.J100 6.{i00 17.J1!{ 12.71JJ 9.0100
1.0 0.0 1.1{9{ 1.0l49 1.0000 2.3375 2-J17E 2.0000 {.2il0 3.6973 J.0000 6.{76J 5.24{T {.0000
0.9 1.0 2.2233 2.0!{S 1.9500 a.sele 0.075T S.{24E l2.OJ3{ 9.6JJ9 S.JJIi 16.1J6J 13.413E ]0.7050
0.9 0.9 Z.OIJ7 l.sset 1.7tlS1 0.7063 5.{661 {.9002 10.tl{I4 tl.i72! 7.50{9 1l.J73{ 12.12{{ D.E67E
0.9 0.6 1.S13J 1.{222 1.J]20 {.{17T ].93J{ J.3140 7.6271 i.J120 5.3760 11.10{0 l.3517 0.3896
0.9 0.0 1.1150 1.0368 1.0000 2.1512 1.9l26 1.l100 J.1293 ].7T41 2.{6i1 {.1000 J.1570 2.9975
O.E 1.0 1.9T66 1.i90{ 1.3000 {.61tl6 {.2727 J.9T60 6.01l7 S.J2E0 {.EJ62 e.eTT{ s.Tee2 S.I]I1
0.6 0.9 1.791! 1.7124 1.CJ06 {.163E J.65TE 3.3916 S.{190 a.sose {.3661 6.1i17 5.19l2 1.6JI5
O.i 0.0 1.J70{ I.Jl1J 3.2492 2.9l09 2.T76J 2.S9T9 ].79J0 3.{OTI J.1214 {.2335 J.6303 J.299J
0.6 0.0 1.06J7 1.0{S] 1.0000 1.{T2T 1.{192 1.JE00 1.6161 1.3{S9 1.{tl96 1.6T24 1.56{6 I.SJ63
0.0 1.0 1.625{ 1.3676 1.5000 2.J26T 2.22J9 2.1250 2.19Ji 2.0981 2.OJ3J 2.1J71 2.Oai2 2.00T!
0.0 O.D 1.{759 3.{2J6 I.JE23 2.0970 2.00T5 1.9206 1.97l3 1.6937 l.tlJT{ 3-927i 1.l316 1.618tl
0.0 0.6 1.1lSZ 1.14{J 1.095J 1.5119 1.{615 1.{115 1.4{00 I.J990 1.J700 1.411! 1.JTT2 I.J670
0.0 0.0 1.0759 1.0425 I.0000 1.0103 1.0031 7.0000 I.OOS7 1.0010 1.0000 1.0029 1.OOOJ 1.0000
-O.E 1.0 3.J911 1.2320 1.2000 I.J21{ 1.290tl 1.2l10 1.238J 1.2{93 1.2{6E 1.2E22 1.2329 1.2302
-0.6 0.9 1.1lSS 1.1{74 1.0999 1-1979 1.1730 1.1SIJ 1.1{7J 1.1{0{ 1.139E 1.119! 1.142! 1.1107
-0.6 O.tl 1.0739 1.0{23 1.0000 1.016J I.0051 1.0000 1.OOS7 1.0010 1.0000 1.0029 1.OOOJ 1.0000
.0.6 0.0 1.OiJT I.Oa32 1.0000 1.{T27 1.4192 1.J600 1.61i1 1.5139 1.{tl96 1.672a 1.Si{0 1.SJAJ
-O.D 1.0 1.12E3 1.094J 1.0300 1.0760 1.062{ 1.0529 1.0363 1.0531 1.0526 1.OSS9 1.OSJ2 1.OS2E
.0.9 0.9 1.0T50 1.0423 1.0000 1.Oi67 1.OOS! 1.0000 1.005T . 1.0010 1.0000 1.0029 1.OOOJ 1.0000
-0.9 0.6 1-lASJ 1.1{{0 1.1157 1.2{13 1.2{JO l.Z4Jl 1.J213 1.72J7 1.JSJ9 1.JTJ1 1.J7a{ 1.416J
-0.9 0.0 1.1130 l.oaai 1.0000 2.151] 1.9626 1.i100 3.1793 ].77{i 2.{!61 {.3000 J.{S70 2.9973
-1.0 1.0 1.OTSY 1.0{23 ~'~~~ 1.016J 1.0031 ~~~~~ 1.OOS7 1.0010 ~~~~ 1.0029 1.0003 ~~~~~
-1.0 0-9 1-U97 1.16{{ 1.6100 L1163 1.1T9E 1.3200 1.1{Zi 1.2190 1.AJ00 Llsee 1.2{ST 1-E{00
-l.0 O.E 1.30E9 1 Jli7 l.JE00 I 62T{ i eece I.~Z00 1.96?6 2.0717 1.6~00 2.290J 2.{391 1.!{00
-1.0 0.0 1.149{ I Utl{9 1 0000 : SS75 ...~:'6 : GG~O l.1836 3 6975 3.OO~iO G.t7EJ 5.2{4T {.0000

' Thí IISFÉ ~Y~~ p~-1, 9 ~ 1~nd T~oo ua ba .~ihsr 1.0 or 2-0, d4p~ndin~ o~ t~~ ordu ~a ~licL 4miu u~ t~kaa; w~ Prop. 5.
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Fig. 1 MSFE~aZ of LS forecast for T~19 and s-1:
Fixed start-up case

7.4
6.1
4.9
3.6
2.3
1.0
-1

Fig. 2 MSFE~o2 of LS forecast for T~19 and s~2:
Fixed start-up case
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