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Eigenvalues and the Diameter of Graphs

EDWIN R. VAN DAM WILLEM H. HAEMERS

AbstraCt. Using eigenvalue intcdacing end Chebyshev polpnomisls we find upper bounda for the diameter
o( rcgular and bipariite biregular gr,iphs in terrns of their eigenvalues. This improvee results of Chung and
Delortne and Solé. The same method gives upper bounds for the number of vettices at a given minimum
distance from e given venex set. These results have some applications to the covenng radius of ertnr-
correcting codcs.

1. Introduction

It is an old result that the diameter of a connected graph is smaller than the number of different
eigzm~alues of its adjacency matrix ( cf. [3]). More recently, Chung [2] and Delorme and Solé [4]
derived bounds for the diameter of regular graphs in terms of the actual value of ( some of) the
eigenvalues. In this paper we shall derive a tool which we can use to derive upper bounds for the
diameter of regular (multi)graphs. The tool leaves us some freedom to choose different
polynomials. The bounds then depend on the values of the polynomial evaluated at the
eigenvalues. By suitable choices of the polynomial we find all bounds mentioned above. But wecan do better by using Chebyshev polynomials. Our method also gives bounds for the number of
vertices at a given minimum distance from a given vertex set, and we also improve the bounds of
Delorme and Solé fur the diameter of bipartite biregular graphs. We should mention that Mohar
(8] found diameter bounds in terms of the Laplacian eigerrvalues of the graph. Though our method
also applies to the Laplacian matrix of a(possibly nonregular) graph (see Section 2.5), Mohar's
results don't saem to tit in our framework. However, our bound seems to be better ( see Section
4.? for examples). Finally, we apply our bounds to Ramanujan graphs, and to the coset graphs oflinear codes to obtain an uppar bound tor the covering radius of a Iinear code.

Throughout the paper, G will he an undirectad graph with n vertices, adjacency matrix A anddiameter d(G). We allow G to be a multigraph, that is, G may have multiple edges and loops (aloop counts for one edge in the degree). The eigenvalues (of the adjacency matrix) of G aredenoted by ~, ?~, ?... ?~,. Similarly we denote the eigenvalues ot an mxm matrix M by
~;(l~ ?~:(.~ ?.. . ?~„(M), if the spectrum nf a1 ic reaL ( All the matrices we use have réalspeetrum.) The polynomials we usa have real cuefticients.

2. Regular Graphs

2.1. The Tool

THEORE~1 2.1. Let G he connected and regular of dcgree k. Let m be a nonnegative integer andlet X and Y be sets of sizes x and y, respectively, such that the distance ben~~een any vertex of X
and any vertex of Y is at least m t 1. !f p is n po!}v7omia! of degree m such that p(k) - l, then
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xy 5 max p'(~; ) .
(n -x)(n -y) ~. ~

Proof. If we take {1, 2,..., n} for our vettex set, and (without loss of generality) X-{1,..., x},
Y- {n - y f 1,..., n}, then p(A),~ - 0 for all i- 1,..., x, and j- n- y t 1,..., n. Now
consider the matrix

M-
O p(A)

p(A) : O ~

Note that M is symmetric, has row and column sums equal to 1, and its spectrum is
{ f p(~,) ~ i- 1, 2,..., n}. Let M be partitioned symmetrically in the following way.

O : O Ol

M -

x
n -x
n-y

y

Let B be the matrix of average row sums in the bloeks of this partition, then

0 0 1 0

B -
0 0 I - ~~ ~

n-x n-x

x 1-x 0 0
n-y n-y

0 1 0 0

and the eigenvalues of B are ~~(B) -- ~~(B) - 1, ~,(B) --~(B) Y- ~~-,u~-~,
eigenvalues of B interlace those of M (cf. [5]), we have that

~.(B) ~~,(~ ~ max I P(~; ) I, so x~~ 5 max p'(~; ).,. ~ (n -x)(n -}~) ;. ~

. Since the

0

2.2. The Diameter

The tirst application of Theorem 2.1 is to prove that the diameter of G is smaller than the
number of different eigenvalues of G. Let G have r ditferent eigenvalues
k-~, ~ u, 1... ~~,. Now let p be the polynomial of degree r- 1, given by

z-u;
P(z) - ~ k-~ ,
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then p(k) - 1 and p(fc,) - 0 for i~ 1. So if X is a set of x vertices and Y is a set of y vertices,
such that the distance between X and Y is at least r, then

xy
(n -x)(n -y) 5 ~ '

so x- 0 or y - 0. This implies that any two vertices have distance smaller than r, so d(G) ~ r.
If we take m- d(G) - l, then there are (at least) two vertices which have distance m t 1.

Let X and Y be sinoletons consisting of two such vertices, and let p be given by p(z) -( k 1 w.
Now apply Theorem 2.1, then we find that l)

n' 1 5 f Á I T, so d(G) 5 lo'(nl 1) . I, where ~- max ~~~ ~.
1 lo~(~~ ,.~

This bound ( which is only applicable to nonhipart1ite graphs) was found by Chung [2J. Similarly

we tind the bound of Delorme and Solé [4] by taking p(z) - z` t for arbitrary ( real) t.
k~r (k,T

But we ean do better. Theorem 2.l allows us to use any polynomial p of degree m such that
p(k) - 1. To get the sharpest bound possible in this way, however, we must choose p such that
the right hand side of the inequality in Theurem 2.1 is minimized. An obvious approach is to
minimize over all polynomials p of the form

P(z) - f k-a, T~ a E R.

This gives the following bound.

THt:oRt:n~ ?.2. Let G be connected and regu(ar ojdeyree k ( not complete), then

d(G) 5 log(n - I) t 1.
'k-~.-~

lo; ~ n " 1
a.-A J

Proof. Like in the previous exampla, take m- d(G) - I and let X and Y be singletons at distance
d(G). Forp we take

,-!(~,t~„) T ;(J~.-~„)
p(z) - ~~ , then wz tind that 1 5 -

k- ~(~,t~~) n-I k-~(~,t~~)

Since G is not complete, ~, ~~~, and the bound follows.

For m- l this is the best possible, but in general we can still do better by looking at a
"relaxation" of our problem. This is the problem of minimizing max { p'(x) ~ a„ S x 5~}
over all polynomials p of degree m such that p(k) - l. Thz solution of this problem can be given
in terms of Chebyshev polynomials (cf. [9, Th. 2.1, Ex. 2.5.1?]). We have to take
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T 2z-a,-~
a.-~ "

C'(z) - , where T(x) - '(.rt x~ - 1)" t ~(x- x~ - 1)~
T ( 2k-~

"~"
1Il a,-~

is the m-th Chebyshev polynomial. We shall use the following properties of this polynomial:

(i) max ~ T (x) ~- l,
iE[-I.Ij

(ii) ~. ( 2k-Q-a 1 k-a i k-Q

T l a-a 1-~ k-a - k-R r 1 k-a - k-(3
- k-a ~ k-S l m .

(iii) T(x) is an even, respectively odd pulynomial, if m is aven, respectivaly odd.

TttEOtten~ 2.3. Let G be connected and regufar of degree k(not complete), then

d(G) G log2(n-1) t 1.

l~á
k -~" t k -~,

k-~" - k-~,

Proof. Take the sug;ested polynomial ~(z), then we tind that

('k-~,-1` l k-~" t k-~, mn-1 z T I - " " 1 ~ ' "
l ~'-~ k-1` - k-~

from whi~h the bound follows. ( Aoain, m- d(G) - 1 and x- y- 1.)

2.3. The tiumber of Distant Vertices

Now let X be a set of vertices ot size x in the graph G. We shall derive a bound on the number
y of vertices, which have distan~e at least d from X.

THEOREnt 2.4. Let G be connected and regular of degree k(not complete). Let X 6e an arbitrary
set of vertices of size x, and }~ the number oj vertices at distance at least d from X, where d is a
positive integer, thcn

v~ n

1} x I k-~" t k-~,
l-~d

4(n-x) I k-~"- k-~

Prooj. Again, we take the polynomial ~(z), with m- d- 1. Furthermore we let Y be the set of
vertices at distance at least d from X. Now Theorzm 2.1 implies that
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(n-x)(n-y) ~ T 2k-~,-M1 ~~ k-~ f k-~
xY ~, - ~~ ~ ` k -M1~ - k -7~

i~.
and the bound fullows. p

2.4. An Extreme Case

Let G be connected and regular with r different eigenvalues k-{c, 1~~... ) p,. We
have already proven that d(G) 5 r- l. In case of equality we are able to determine the
polynumial which minimizes our upper bound. Then we take p such that p(~j) - (-1)'c,
j- 2,..., r, where c is chosen such that p(k) - l. That this p is really the best polynomial of
degree r- 2 we can choose, can be seen in the folluwing way. Suppose there is a polynomial g
ot degree r- 2 such that g(k) - l, and ~g(p;)~ c c, for all i- 2, 3,..., r. Let h be given by
h- p - g, then h(k) - 0, and h(~;) - c- g(~i) ~ 0 for even i, and h(~,) - - c- g(lc;) e 0
for odd i x 1. This implies that h has at least r- 1 roots, which is a contradiction.

THEOREM 2.5. Let G be a connected regular graph of degree k, ~t~ith r difjerent eigenvalues
k - ~, ~ ~, ~ ... ~ ~,. lf d(G~ - r - 1. then

n Z 1'~ 11
k-~,

1-7 isJ.l I I'~~-Fiil

Proof. As suggested, we have to take

P(z) - ~ (-1)'c ,`~-; (z). where `~.1(z) - ~ z - F~i , j
1-- iKJ.; ~j"Í~~

and where c is such that p(k) - 1. Since the degree uf p is r- 2, it follows from Theorem 2.1
that 1 ~ c. Since p(k) - l we have that

n-l

1 - ~(-1)' ~ k-p' - ~ 11 k-p;
C 1'- ~aj.l ~1-~i I'- i,ej.l I i~J-~iI

from whi~h the result fulluws.

2.5. L.aplacian Eigemalues

p

If I' is not a regular graph, it can be transfurmed into a regular graph G by adding a suitable
numher of loops to every vertex. If k is the maximum degree in I', we add k- degree(v) loops to
every vertex v, so that G is regular of degree k. M11oreover, there is a relation between the
eigenvalues of the Laplacian matrix Q of I' and the eigenvalues of the adjacency matrix A of G.
The Laplacian matrix Q ot P is detined hy Q- diag(degree(v)) - A(I'), where A(I') is the
adjacency matrix of I'. Now it follows that Q- kl - A, so if B, ~ B. 5... 5 B„ are the
Laplacian eigenvalues of I', then 8; - k- J~;, i- 1, 2,..., n. Since the distance between two
vertices is tha same in I' and G, we can get bounds in terms of the Laplacian eigenvalues of I'.
For example, Theorem 2.3 now says that



6

d(r) ~ log2(n-1) t I .

YB~ 'Vo-lo;

3. Bipartite Biregular Graphs

A bipartite graph G is a graph that alliiws a partition of the vertex set into two parts V, and V.
such that all edges are between V, and V,. (Nute that this implies that there are no loops.) It is
well known that if ~ is an eigenvalue of G, then -~ is also an eigenvalue of G with the same
multiplicity. A bipartite graph G is biregular if every vertex in V, is adjacent to k, vertices and
every vertex in V, is adjacent to k. vertices, for some k, and F~. Note that

a, - k,k. , and ~; -- a~. ,~ for all i- 1, 2,..., n.

Delorme and Solé [4] found a bound for the diameter of bipartite biregular graphs. Iust like
them we shall distin;uish hetween the distance of vertices in the same part, and the distance of
vertices in different parts. However, the maximum distance between two vertices in the same part,
and the maximum distanee between two vertices in different parts differ only one.

3.1. The Tool

From the next two theorems, whieh will be proven in a similar way as Theorem 2.1 (actually,
one will be deduced from it), it is easy tu derive the bounds of Delorme and Solé. However, we
can improve them.

TttEORetw 3. l. Let G be connected and bipartire biregular, ~rith n, vertices ( V,) ofdegree k„ and
n, i~errices (V,) of degree k,. Lct m be odd, and X, a subset of V, of size x„ and Y a subset of V,
of si~e ~,. such rhat the distmtce ben~een am verte.r in X, and am vertex in Y is at least m f 2.
L.et p 6e an odd polinomia! of dci;ree m, such that p(~,) - 1, then

'- - ~ max p'(a ) .
(n,-x,)(n,-~~J ,:~.~

Proof. Let p(A) be partitioned symmetrically as fulluws.

(O O : O

P(A) -

V on - V oz

Let B be the matrix of average row sums in the blocks of this partition, then



B -

~ B K O -1

Q Q K-- I Y~ 1 I

-K ~ --K O O
,-h ' .-..

, where K -
~

.
S

The ei;envalues of B are f 1, f,~ , and since they interlace those of p(A), we haver ~~. -.,~

~.(B) 5~,(P(A)) 5 max ~ P(~, ) ~, and. . ,.~.n

~~(B) ~~~(P(A)) - max ~ p(~ ) ~ - max {], max ~ p(~; ) I},
~ iMl.n

and the result follows. G

THEOREM 3.2. Let G be connected and bipanite biregular, with n, vertices (V,) of degree k„ and
n, vertices (V,) of degree k,. Let m be even, j- 1 or 2, anJ X; n subset of V; of size x~, and Y a
subset of V. of size y;, such thnt the distance benreen any vertex in X~ and any vertex in Y is at
least m t 2. Let p be an even polynomial of degree m, such that pO`,) - 1, then

x~}~~ ~ max p'(~, ) .
(n;-x )(n~-y~) ,,.~.n

Pronf. Since p is an even polynomial of de;rez m, there is a polynomial q of degree ml2 such that
p(z) - r~(z'j. Now wa consider the matrix A', which has row and column sums equal to k,k., and
eigenvalues ~,~, i- 1, 2...., n. Furthermore, we ean write A~ as

M~ . D } n~

O : M, } n,

Note that the spzctrum of A' is the union of the spectra of M, and M., and both M, and M, have
one eigenvalue k,k,. By applying Theorem 2.1 to thz graph on V with adjacency matrix M;, and
the polynomial q, we prove the theorem, since the distance in this new graph ( which is one of the
so-called halved ( multi)~raphs) is half of tha uriginal distance (in C). O

3.2. The Diameter

In the following, we denote by d~(Cí) the maximum distance between any vertex in V, and any
vertex in V, for i, j- 1 or 2.

THEOREna 3.3. Let G be connected and bipanite birebular, ~rith n, vertices ( V,) of degree k„ and
n. rertices (V.) of degree k,, then
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; log 4(n, -1)(n, - 1)
d„(G) ~ ' t 2 .

lo;l A t A:-1 1l ~ A:

Prooj. Let m- d„(G) - 2, so m is odd, and let X„ Y, be singletons consisting of vertices, which
have maximum distanee. Let p be given by

T (~)

T (~~

so p is also odd. Now we apply Theorem 3.1 and tind that

(n;-1)(n,-l) ~ T~,I~1 ~ ~ I ~.. ~-I r
from which the bound follows. p

In a similar way the next theorem can be derived from Theorem 3.2.

Ttteortent 3.4. Let G be connected and hipartire hiregidar, ~t.irh n, vertices (V,) of degree k„ and
n, vertices (V.) qf degree k:. Let j- 1 or 2, then

Ing2(n~-l)a,(c) ~ . 2

loglAt A-1 1lti ~

C
If G is bipartite and regular (so k- k, - k,), we can combine i'heorems 3.3 and 3.4 to obtain the
following.

CoRO~t.ARV 3.5. L.et G be connected, bipartite anJregular of degree k, then

d(G) ~ 10;(n-2) , ~ .
10 t ~ó~~-~~- ~

The proof of Theorem 3.2 shows a way tbr a suhtle improvement of Theorem 3.4 if the graph G
has no eigenvalue eyual to zero.

THEOREnt 3.6. Let G be connected and bipartite biregular, ti~-ith n, vertices (V,) of degree k„ and
n, vertices (V,) of degree k.. Let j- 1 or 2, then



9

. 2 log 2 (n~ - I )d;(c) ~
Áj -a; . Áj -i~,

log
~~ -~; - ~~ -~;

Proof. Our polynomial p is now given by

t 2,

~z' - ~; - ~;T~, '
-. ~' - ~?

n(~l - '
T~ (2~;-~;;~jl

- Il ~,; - a;
where m - d~~(G) - ? Now Theorem 3.2 implies that

where t

n - I z TT ~ 2 ~; - a; -~; ~ ~ ~ ~; - ~; t a; - ~;
' ~; - ~; ~~-~; - 1~~-~~

from which the bound follows. ~

4. Ramanujan Graphs and Other Examples

4.1 Ramanujan Graphs

Let G be regular of degree k, and let ~ be the maximum of the absolute values of the
eigenvalues of G, unequal to f k. The graphs G for which

~52k-1

are called Ramanujan graphs. If we apply our bounds for the diameter to these graphs, we get

d(~ ~ 21u~2(n-I) } I
lo;(k- 1)

for nonbipartite Ramanujan graphs and

d(~ c ?lo'(n-?) t 2
lo;(k- ])

for bipaRite Ramanujan graphs, which is (a minor improvement of) the bound of Lubotzky,
Phillips and Sarnak (6]. This means that these graphs have a small diameter, since the upper
bound is approximately twice the lower bound

lo;~(n-I)`-' t 1)R
lo;(k-1) ,

which holds for every regular graph of degree k. (We get this lower bound by observing that the
number of points at a given distance d from a;iven point is at most k(k - i)a-'.)
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4.2 Other Exampies

. In the following table we give some examples of spectra of graphs and compute the various
upper bounds for the diameter, to get some idea of how good they can be.

H points and spectruin p difrerenl Th. 1.3 Th. '.~ Delortne Chung Mohar Th. 2.5
eigenvalues - I end Solé (41 ('J (gl

n - lo, eigemalues
3, I, - 2. (Petersen 3 - 3 3 6 4 -
8rsph, d(~ -'.)

n - ?8, eigem~alues
3,?,~2 - I, - 1, 4 5 9 8 16 8 -
- 1 - v'2. (Cozeter
gtaph, d(G) - 4.)

n - 125, eigemalues
64,4,- I,- 16. 3 3 3 3 4 6 2
(K,'. d(~ - -J

n - 5'0, eigenvalues
4'0, 4',..., I, - 4, 10 6 8 7 1' IS 9
- 4'..... - 4'.
(K~'o, dlG1 - 2.1

Note that K," is the product of n copies of the complete graph on five points, so two vertices are
adjacent if they diffzr in all coordinates. In the two axamples of such graphs, Theorem 2.5 gives a
contradiction it we assume that the diamzter is one less than the number of different eigenvatues.

5. The Covering Radius of Error-Correcting Codes

In this section we give some applications of thz diametar bounds to error-correcting codes. The
reader, who is not familiar with the basic concepts of coding theory is referred to MacWilliams
and Sloane [7].

5.1. The Hamming Graph

Let C be a code of length N over an alphahat Q of q alements. We can apply Theorem 2.1 to
the Hamming graph H(N, q) to derive an upper bound for the covering radius of C in terms of N,
q and the size of C, since the code C is nothing hut a subset of vertiees in the Hamming graph,
and tha covering radius of C is tha maximum distance of any of [he vertices [o C. However, we
only derive a useless bound. In tha nzxt section we give another approach for linear codes over
GF(q).

5.2. The Coset Graph of a Linear Code

Given a linear code we can make a graph that has diameter eyual to the covering radius of the
code. The eigenvalues of the graph can be expressed in terms of the weights of the dual code. In
this way we can derive bounds for the ~overing radius of a code, using the bounds for the
diameter of the graph (~f. [4]).
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Let C be a linear code over GF(q) of length N and dimension K. The coset graph of C is a
graph G with vertex set GF(q)"!C (the cosets of C) of size n- q"-~. The number of edges
between two cosets x t C and y f C is the number of words of weight one in x- y t C(which
is equal to the number of words of weight one in y- x f C). ]n this way we get a regular graph
of degree k- N(q - 1), possibly with loops (which occurs whenever there is a codeword of
weight one) or multiple edges (which occurs whenever there is a coset containing more than one
word of weight one, which is the case if and only if there is a codeword of weight two or there
are at least two codewords of weíght one (in the latter case we have multiple loops)). It is easily
seen that the covering radius of C is equal to the diameter of G. Furthermore it is known [1] that
the spectrum of G is (the multiset) {N(q - 1) - qw(x) ~ x E C' }.

The first observation we can make now is that the covering radius is not bigger than the
external distance, since the latter equals the number of nonzero weights in the dual code. (Note
that in case of equality, we can apply Thwrem 2.5.) Application of our bounds for the diameter
of G give the following results.

THEOREAI 5.1. Let C be a linear code over GF(q) of length N and dimension K, and covering
radius p. Le1 01 and ó' be the maximum, respectively minimum nonzero weight (distance) of the
dual code C '. Then

p ~ log2(q"-X- 1) 1 ..

el ~ f ó Iloo
l f

PrvoJ This follows immediately from Theorem 2.3, using that ~, - N(q - I) - qó' and
~~ - N(9 - I ) - 4~' . ,~

LEn~~~n 5.2. 7iie coset graph G of a linear code C orer GF(q) is bipartite ff nnd only if q- 2
and C` contains the al!-one word.

Proof. Let N be the length of the code, and 1ti, be the smallest eigenvalue of G. Suppose q- 2
and C' contains the all-one word, so s,' - N, than 7`~ -- N, from which we may conclude
that G is bipartite. Conversely, if G is hipartite, then ~~ - - N(q - 1), so there is an x E C'
such that N(q - 1) - qw(x) -- N(q - 1), whi~h can only be the case if q- 2 and w(x) - N,
so x is the all-one word. C

THEOREAI 5.3. Let C be a hinan~ (inear codc~ of icn~th ,Y and dimension K, and covering radius p,
such that C' contains the all-one wnrd. L.et ó' be~ the minimum nonzero w~eight (distance) of the
duai code C `. lhen

p ~ lo;(2.v-x-2) , 2 .

log N-b' f~

N-b ` - ó ` )

0' - S'

Proof. This follows from Curollary 3.5, usin; that )`. - N- 2ó'.
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