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B~I
An axiomatic foundation of revealed preference theory is obtained by formulating

conditions on the mapping from the space of choice functions into the space of preference

relations. Dual conditions are applied on the inverse or dual mapping. The composition of

both maps is shown to be an extension of the choice function. Next, we derive both the

unique preference relation and the unique decision rule endogenously determined by the

extended choice function. The decision rule turns out to select weakly undominated

alternatives. A slightly stronger assumption on the choice function results in the well

known revelation theorems, which aze based upon choosing best alternatives.
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1 Introduction

In economic theory agents are supposed to act "rational". This usually means that an
agent applies the decision rule of choosing a best alternative from the set of available

alternatives. In order to obtain a solution for this protocol, given a fmite set of altema-

tives, it is sufficient to assume that the agent has ordered the alternatives wealdy, i.e. his

preference relation is transitive and complete on the set of alternatives. If the set of

available alternatives may be any subset of the set of altematives, then the conditions of

completeness and transitivity on the preference relation are necessary. It follows that the
usual concept of rationality of an agent is practically equivalent to the assumption the
agent chooses a best alternative among the feasible alternatives according to his prefer-

ence relation, which should be a weak order defined on the whole set of alternatives. We

call this pair consisting of a decision rule and a preference relation, the standard decision

model.

In revealed preference theory, one assumes that the agent acts according to the standard
decision rule, mentioned above. The basic idea of Samuelson (1938) was to recapture and
specify the weak preference ordering of an agent from his choice behaviour, and to derive
sufficient conditions on choice behaviour that make this revelation possible. This choice
behaviour consists of choices made by the agent in various choice situations. Choice
behaviour is represented by a mapping, called the choice function, from a collection of

subsets of a set of alternatives into the collection of subsets of alternatives. A subset of

available alternatives in a set of alternatives is called a choice situation. An actually

chosen subset in a choice situation is called a choice. Richter (1971) has given a necess-

ary and sufficient condition, called congruency of a choice function, to reveal an adequate
preference relation. Wakker (1989) has presented some variations on this theme. The

main result is that if choice behaviour of a rational agent satisfies the congruency
condition, his choice in any choice situation can be predicted by means of the standard

decision rule, i.e., choosing a best alternative according to the revealed preference

relation. The standard decision model thus extends the choice function.
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However, why should the decision rule of choosing a best alternative be privileged and

assumed to be applied a priori? Many other decision rules are being applied in real life by

rational agents, such as choosing an alternative that minimizes conflicts (represented by

choosing an alternative that maximizes the difference between the in-degree and the out-

degree of the preference graph). The answer is twofold. A very practical argument is that

the standard decision model is a very plausible one, as will be shown in this paper. The

decision rule of choosing a best alternative is a natural behavioral rule when the agent is

able to order the alternatives transitively and completely. Secondly, if one wanu to reveal

the decision rule associated with a choice function, one needs a mapping to describe and

to extend the choice function without, of course, using any decision rule.

In this paper we wonder what 'reasonable' extensions of observable choice behaviour are

possible, when we don't restrict ourselves to the standard decision model. As in the

standazd model, we require that the decision rule of an agent depends on a preference

relation on the set of alternatives, but we do not require the preference reladon to be a

weak order, neither the decision rule to be choosing a best altemative. Consequently, the

set of best elements may be empty, and an agent may have to apply other rules than

choosing a best element. Such a rule may be: choosing maximal elemenu (in case that the

preference relation is not complete). An agent may also minimize conflicts, or eliminate

successively worst elements (in case of a tournament). These aze frequently used rules in
daily life. It may be noticed that all these rules yield outcomes that are best alternatives in

case the preference relation is a weak order. This shows again that the decision rule of

choosing a best element is a natural rule in the context of a weak order. Moreover,

whenever these other rules are applied, agents must have preferences that are not weak

orderings!

What can be said about extension and representation of choice behaviour in a more

general decision environment? An answer to this question requires a more fundamental

approach, that leads to the very basic assumptions of the theory of revealed preference.

Firstly, we introduce a mapping from the set of choice functions into the set of preference

relations, and its inverse or dual map. Since the choice function can be represented by its

gnph, it is describeá as a relation on the collecdon of subsets of alternatives. A revel-

ation mechanism transmutes relations, viz. it maps a relation on the collection of subsets

of alternatives into a relation on the set of alternatives. We call this mapping a transmuta-
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tion. Without restrictions on this transmutation, all sorts of choice behaviour is allowed,

and the revealed preference relations will be ambiguous. If everything is possible, nothing

is in fact revealed. We will have to impose axioms on revelation mechanisms. These

conditions impose restrictions on choice behaviour, or at least filter the information

received from observing choice behaviour. Too few conditions cause indeterminacy of

decision models, too many conditions result in an empty set. Since any choice is

ambiguous, the reader may be inclined to try another set of axioms. Our choice is rather

standard, as judged by our results!

We introduce four axioms on the relation betwcen preferences and choice behaviour, that

allow us to represent an agent's choice behaviour by a decision model. The main axiom

that we impose on this transmutation is, that it can be studied in an analytic way, i.e., we

can split up the transmutation problem into smaller, 'atomic' problems that are easier to

solve, and then aggregate these solutions to solve the original problem. The other thret

axioms are quite natural and simplify the analysis.

The analytic principle is commonly used in science. Consider, e.g., an analytic function,

or the use of continuity of a function in mathematics, the use of valid consequences in

logic, or the definition of a molecule in physics (the smallest part of a matter that contains

all properties of that matter), or the condition of independence of irrelevant alternatives ín

social choice theory (the welfare function is pairwise composed). Therefore, it seems to

be a reasonable condition on the transmutation from a methodological point of view.

This analytic property of a transmutation implies that we can confine ourselves to the

study of elements in the space of choice functions, instead of studying sets of interdepen-

dent elements in that space. The atomic transmutation problems are based on singletons in

the domain, the space of the graphs of choice functions, consisting of one single pair of

sets of the set of alternatives. The analysis implies that a structure can be transmuted as a

whole, if and only if, it can be transmuted by each of its composing parts separately.

Stated differently, in case of a transmutation, results derived from local information can

always be extended globally.

Intuitively, the analytic principle presupposes that the 'atomic' problems are embedded in

a structure which allows for aggregation of this local information to global infor-
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mationlresults. Let us illustrate this intuition by the same examples given above. In order

to define continuity, some topology on the function spaces is needed. Usually, this

topology is based on the lineaz ordering of the real numbers in case of the real line as

function space. In case of valid consequences in propositional logic, it is assumed that

truth-values of atomic propositions, from which every proposition can be build, are

independent of each other. The definition of molecules in physics presupposes a homoge-

neous structure of matter until its smallest part. The condition of irrelevant alternatives

together with Pazeto optimality imply, within a structure of preferences, that a social

welfare function depends ultimately on the preferences of one individual.

Following this intuition it becomes cleaz that the analytic principle enforces in our model

some kind of structure. This structure appears after imposing three other conditions.

These conditions aze called: neutrality, conservativeness and soundness. These embryonic

restrictions on the smallest units give enough structure to be magnified by the analytic

principle, and to become conditions on choice behaviour and on preferences. Ultimately,

it follows endogenously that only relatíons which allow for straightforward optimiTation

result from such a transmutation. These relations are not cyclic, for example. Further-

more, the converse of this transmutation, which is obtained by duality theory, incor-

porates as the decision rule: choosing undominated alternatives. Consequently, many

other types of decision rules aze ruled out by this analytic principle.

These results are obtained by the following steps. Firstly we prove that there is a unique

transmutation that satisfies the four axioms mentioned above. Next, we compose this

transmutation with its dual, and show that this composition generates a complete extension

of choice behaviour. Unfortunately, this composition dces not determine the extension in

a unique way. Several options aze open. Four of these aze discussed. Theorems 3.11 -

3.14 provide us with necessazy and sufficient conditions for each of these four options.

Finally, we show that standazd results of revealed preference theory are obtained, when

conditions such as WARP and SARP are imposed on the transmutation. Our approach has

therefore created a fundamental structure in which this theory is firmly based, explained,

and slightly generalized. It also allows for a more systematic reseuch into undiscovered

azeas, that undoubtedly contain more realistic decision models.
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2 Characterization of transmutations

Let A be a set of altematives. The set of subsets of A is denoted by ~(A). A choice

situation B is an element of (9(A). The set of choice situations that has been presented to

an agent and from which his choice is known, is indicated by the set ~ C Q'(A). The

choice behaviour of an agent in any choice situation B E~ is represented by the so

called choice function C: ~` -~ d~(A), which satisfies the wndition that C(B) C B, for all

B E~. Furthermore, if an arbitrary function F: ~-~ d'(A) satisfies this condition, viz.

that F(B) is contained in B, for any B E~, then F can be interpreted as the choice of an

agent at the choice situations in ~. This choice may be the empty set, a set with a single

alternative, or a set with more, equivalent, alternatives.

This choice function is studied by means of a decision model that consists of a preference

relation and a dezision rule. A decision rule is defined as a mapping D: tp(A)xd'(AxA) i

d'(A), that assigns to a subset B of A, and to a relation R on A, a subset D(B,R) of B. A

decision rule of an agent is, for example: choosing the best elements in B according to the

preference relation R. We say that an agent decides according to a decision model,

consisting of decision rule D and preference relation R, if in all choice situations B E

~(A), the choice of that agent at B, C(B), is equal to D(B,R). This definition rationalizes

the agent's behaviour: it says that an agent behaves rationally, if there is a decision rule

and a preference relation R, such that for all B E~(A), the agent's choice at B equals

D(B,R). It may be noticed that such a rational behaviour is an inevitable assumption for a

social science, although it is not a trivial assumption in real life.

Our aim is to determine a unique extension C: ~(A) -~ 4'(A) of a given choice function

C: `~ y d'(A), such that C~(B) C B, for all B E[p(A). This extension is derived from the

choices in ~, and from the assumption that the agent decides according to a decision

model, i.e., for all B C d'(A), C(B) - D(B,R). It may be noticed that neither the

preference relation, nor the decision rule is assumed to be known. So, in order to find an



eztension ~ of C, we have to determine both the preference relation R on A, and the

decision rule D from the choice function C: 3-~ ~(A).

For that purpose we design two revelation mechanisms. The fust reveals preference

relations, given choice behaviour. It is a mapping from a set of relations that represent

choice behaviour, into a set of preference relations. The second revelation mechanism

reveals decision rules given a preference relation. It is a mapping from the set of

preference relations into the set of relations representing choice functions. Both mappings

are called tra~smutations.
To formalize this idea, we consider the (converse)' graph of a choice function C:~~

~(A), i.e. the set {(X,Y) E~(A)x(9(A) ` Y E~ and X- C(Y) }. This graph is a

relation on ~(A) and is denoted by 9i~. A relation on A will be denoted by R, and a

relation on the power set of A by script ~t. Preference revelation mechanisms determine

relations on A from relations on ~(A). A revelation mechanism is therefore a specifica-

tion of a mapping ~ from the set of relations on ~(A) to the set of relations on A. Since

this mapping transmutes relations from one space into another, we have called it a trans-

mutation. Decision rules, on the other hand, aze assumed to determine a choice function

in d~(A), given a relation on A. When we consider the graph of a choice function, the

decision rule transmutes a relation on A into a relation on ~(A). A transmutation I' from

~(AzA) to ~(~(A)x~(A)) can thus be used to reveal a decision rule. Both transmutations

are more or less suitable revelation mechanisms.

Additional restrictions on these transmutations yield a unique suitable preference relation,

as well as a unique suitable decision rule. Since the restrictions needed to determine

decision rules aze more complicated, these are discussed in the next section. Here, we

impose four axioms on both transmutations. The fust imposes an analytic property that

will prove to be of fundamental importance.

' The ordering of a pair of alternatives in a preference relation is traditionally such
that an alternative is given the first position, if it is at least preferred to the alternative in
the second position. This implies that the preference relation is equal to the converse of
the graph of the preference correspondence, which assigns at least preferred elements to
any element. In order to adapt to this established custom, when referring to the graph of a
choice function, we mean in this paper the converse of that graph.
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Aziom 2.1

The transmutations 0 and I' satisfy the analytic principle, i.e.,

for all ~Jt', StZ in d'(~(A)x~(A)):

~(:J~' u J'2) - 0(J`') n ~(~2),

and for all R', R' in 4'(AxA):

I'(R' U R2) - I'(R') fl I'(R~. O

The analytic principle requires that we are able to deduce information from a set, if and

only if, we can deduce this information from subsets that cover the set. In that case we

can split and solve our transmutation problem into subproblems without losing infor-

mation. Hence, a global result can be derived from local findings. The analytic principle

is, in our opinion, one of the fundamental principles used in science to solve problems.

As we have mentioned in the introduction, it is also used in behavioral and social sciences

implicitly, or under various names. One has to be aware, however, of the extent of its

significance in these fields. For that reason the axiomatization performed here seems to us

appropriate and timely enterprise.

From the analytic property of the transmutation 0, it follows that for all relations 92 on

d'(A), 0(9t) - fl {0({(X,Y)}) ~(X,Y) E 92}. Therefore, G(9t) can be analyzed by

studying the transmutants ~({(X,Y)}) for each element (X,Y) E~J2 separately. Since we

deal with a very general model, and impose no further structure on A, the only relations

we have at our disposition are the "is element ofand the "is subset of" relations.

Therefore, whether a pair (x,y) in AxA is, or is not an element of ~({(X,Y)}), depends

only on the "basic" membership relations: x E X, x E Y, x~ X, x~ Y, y E X, y E Y,

y~X, and y~Y. Similarly, for all relations R on A, I'(R) - fl {I'({(x,y)}) ~(x,y) E

R}. Whether a pair (X,Y) in Q'(A)x~(A) is, or is not in I'({(x,y)}) depends only on the

same "basic" membership relations.

Additionally, we assume that only these membership relations are relevant, and not the

names of the element or of the sets that are involved in these relations. Formally this

leads to:
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Aziom 2.2

The transmutations ~ and I' are neutral, i.e., for all x,y,a,b E A and all X,Y,V,W E

~(A),
ifxEXpaEV, xEYaaEW, yEXabEV, and yEYabEW,

then (x,y) E ~({(X,Y)}) sa (a,b) E G({(V,W)}), and

(X,Y) E I'({(x,y)}) a(V,W) E I'({(a,b)}). O

Neutrality guarantees that if the membership relations of x with X, z with Y, y with X,

and y with Y, are similar to the membership relations of respectively a with V, a with W,

b with V, and b with W, then ( x,y) is revealed by 0 at {(X,Y)}, if and only if (a,b) is

revealed by ~ at {(V,W)}. Also, if (X,Y) is revealed by I' at {(z,y)}, if and only if

(V,W) is revealed by I' at {(a,b)}. If these membership relations aze similaz, then similar

variables involved in these relations play a similaz role. Therefore, they only differ with

respect to their names.

The following axiom says that if a pair (x,y) is not revealed by O at {(X,Y)}, there

should ezist a comparison between all the membership relations of z and y and of X and

Y. So, not revealing must be done on firm grounds. For instance, if x~ X, z~ Y, which

is the case if X- 0 and Y- {y}, then the membership relations are incomparable.

Neither membership relation can be compazed, if {x,y} C X fl Y. In those cases, aziom

2.3 requires that ( x,y) is revealed: (x,y) E 0({(X,Y)}). It may be noticed that these

incomparabilities occur precisely when x~ X U Y, or y~ XU Y, or x~ X and y~X, or

z~ Y and y~ Y, or {z,y} ~1 X- 0, or {x,y} r1 Y- 0, or {z,y} C X f1 Y. A similar

reasoning holds for I'.

Axiom 2.3

The transmutations ~ and I' are conservative, i.e., for all x,y E A and for all X,Y

E d?(A),
if at least one of the following five conditions is satisfied:

z ~ XUY, y ~ XUY,

{x,y} fl X- fó, {z,y} fl Y- Ql

{x,y} C X f1 Y,

then (z,y) E ~({(X,Y)}) and (X,Y) E I'({(x,y)}). 0
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The last axiom guarantees that the reveladon mechanism is sound, or consistent with

natural preference assumptions. I.et x,yEA and consider ({x},{z,y}). This pair can be

interpreted as follows: z is chosen among the elements x and y. It is therefore natural to

assume that z is preferred to y. I-Ience, it is natural to expect that (x,y) is revealed by O

at {({z},{x,y})}, and (y,x) is not revealed, even rejected, by 0 at {({x},{x,y})}. Consider

({z},{y}). Since this pair can be interpreted as x is preferred to y, it is natural to ezpect

that (x,y) is revealed by ~ at {({x},{y})} and (y,x) is rejected by ~ at {({x},{y})}. A

similar reasoning holds for I'.

Axiom 2.4

The transmutations ~ and I' are sound, i.e., for all x,y E A:

(z,y) E 0({({x},{y})}), (y,x) ~ 0({({x},{y})}),
(x,y) E 0({({x},{x,y})}), (y,x) ~ G({({z},{x,y})}),
({x},{y}) E I'({(x,y)}), ({y},{x}) ~ I'({(z,y)}),
({x},{x,y}) E I'({(z,y)}), ({z,y},{x}) ~ I'({(x,y)}), 0

The following example may be illustrative. Let A-{a, b, c}. The choice function C is

represented by the relation ~ on the collection of subsets of A. This set d'(4'(A)zd~(A))

contains 82 elements, and cP(AxA) contains 3~ elements. An element may represent a

choice in a choice situation, but not all elements are feasible for a choice function. An

element in ~i assigns a relation on A. Consider {({a}, {a,b})}. Then ~({({a}, {a,b})}) is

constructed as follows: conservativeness implies that (a,a), (b,b), (c,c), (a,c), (b,c), (c,a),

(c,b) are elements of G({({a}, {a,b})}). Soundness implies that (a,b) is an element, and

and (b,a) is not an element of ~({({a}, {a,b})}). Consider {({a,b}, {a,b,c})}. Then

~({({a,b}, {a,b,c})}) is constructed as follows: conservativeness implies that (a,a), (b,b),

(c,c), (a,b), (b,a) are elements of G({({a}, {a,b})}). Soundness and neutrality imply that

(a,c) and (b,c) are elements, and (c,a) and (c,b) are not elements of 0({({a,b}, {a,b,c})}).

The analytic principle allows us to take the union of {({a}, {a,b}j} and {({a,b}, {a,b,c})},

to which union 0 assigns the linear order {(a,a), (b,b), (c,c), (a,b), (a,c), (b,c)} on A.

This is equal to the intersection of the relations mentioned above.

For all z,y E A and all X,Y C A, let the truth functional B(x,y,X,Y) be defined as:

[z E Y-X ~ y~ X] n[y E X-Y ~ x~ Y].

Firstly we will show that for all z,y E A and all X,Y C A:
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(x,Y) E O({(X,Y)}) a 6(x,Y,X,Y).

Take x,y E A and X,Y C A. By axioms 2.2 and 2.4, it follows that

[(x E Y-X n y E Xn Y) v(x E Y-X n y E X-Y) v

(y E X-Y n x E XnY) v(y E X-Y n x E Y-X)] ~(x,y) ~ ti({(X,Y)}).

Hence, by contraposition it follows:

(x,y) E 0({(X,Y)}) ~ B(x,y,X,Y).

It is straightforward to prove that B(x,y,X,Y) is equivalent to:

z~ Y v y~ X V[x E(XnY) n y E(XnY)].

The latter is equivalent to:
x~ X U Y v [x ~ Y n y~ Y] v[x E(X-Y) n y E(Y-X)] v[x E(X-Y) n

yE(XnY)] v y~ XUY v[x~X n y~XJ v[xE(XnY) n yE(Y-X)] v

[x E(X n Y) n yE(X n Y)].

From axiom 2.2, 2.3, and 2.4, it follows that each of these disjunctions implies (x,y) E

A({(X,Y)}).

Therefore, B(x,y,X,Y) ~ (x,y) E 0({(X,Y)}).

So, B(x,y,X,Y) a(x,y) E 0({(X,Y)}).

Similarly one can show that for all x,y E A and all X,Y C A:

e(x,y,x,Y) .~ (x,Y) E r({(x,y)}).
Since both ~ and r obey the the analytic principle, we have shown:

Theorem 2.5 For all REQ'(AxA) and all 9tE~(~(A)x~(A)), it follows:

0(92) - {(x,y)EAxA ~ V(X,Y)E9t, [8(x,y,X,Y)] },

r(R) - {(X,Y)E(4(A)x~(A) i v(x,y)ER, [B(x,y,X,Y)] }. O

Next we introduce the dual map of a transmutation. We use the definition of a dual map

given by, e.g., Evers and van Maaren (1984).

Definition 2.6

The dual transmutation of 0, is a mapping 0' :~(AxA) -~ tP(~(A)x(Q(A)) defined by:

0'(R) :- U{~t ~ R C 0(92) }. []
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The following lemma shows that 0' is obtained from ~ by interchanging the role of

elements and sets in the definition of ~. This duality operation is analogous to the

interchange of points and lines in projective geometry, generating dual definitions and

theorems.

L.emma 2.7

For all ~Jt C~(A)x~(A) and all R C AxA,

p'(R) -{(X,Y) E Q'(A)x~(A) ( v(x,y) E R[ B(x,y,X,Y)]}.

Moreover,
n'-r. O

Pr.s~f:
Let (X,Y) E (P(A)xcP(A).
(X,Y) E ~'(R), a there is a 9? C d'(A)xd'(A) such that (X,Y) E 92 and R C

~(~t)
a there is a~t C 4'(A)xQ'(A) such that (X,Y) E 9t and for all

(V,W)E9t, R C ~({(V,W)})

rs R C ~({(X,Y)})
a for all (x,y) E R, B(x,y,X,Y).

Since r(R) -{(X,Y) E 4'(A)x~(A) ~ v(x,y) E R[ 9(z,y,X,Y)]},

it follows that ~' - r. O

From duality theory we know that 0'GD'~(~J2) - 0'0(J2) ~~3t, so ~'~ is a closure

operation on 92. This mapping ~'0 serves as a good candidate for the extension of the

choice funetion C. It provides complete information: repeated application of ~'0 has the

same effect as applying the identity operation.2

' In an earlier paper, Ruys and Storcken (1986) have defined another duality ~'p :
d'(AxA) ~ d?(~(AxA)x~(AxA)), which is the space of preference relations on
preferences, or "friends". This enables revelation of an agent's preferences through the
choice of friends. The conditions of neutrality, conservativeness and soundness may also
be applied with a similar result.
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Moreover, it follows that every extension ~ of a choice function C that is determined by

analytic, neutral, conservative and sound transmutations, is described by ~'O. Herewith,

our first goal is attained.

Next we show that a similar result can be obtained when we start with the preference

relation instead of the choice function. When we apply the decision rule revealing 0~ on

a relation R, and then apply the preference revealing 0, the original relation R is again

obtained. So, the application of 0~' neither introduces new pairs in AxA, nor deletes

pairs in AzA. Again there is no loss of information, and the revelation mechanisms are

consistent with respect to the agent's preferences on A. This is expressed by the following

theorem.

Theorem 2.8 L,et R C AxA. Then G~'(R) - R. O

p~; By duality theory we have R C~'(R). L.et (x,y) E AxA. Suppose ( x,y) ~ R. It

is sufficient to prove that (x,y) ~ O~'(R).

Now ({y},{z}) ~ ~'(R), if and only if there are (a,b) E R such that

b E({y}-{x}) and a E{x}, or such that a E({x}-{y}) and b E{y}. This is equivalent

~ (x,Y) E R.

Hence, ({y},{x}) E 0'(R). But then (x,y) ~ 00'(R). L]

Let x,yEA and C:~ ~~(A) a choice function with graph ~J2~. Then the following

propositions are equivalent:

' (x,Y) E 0(~,
- for all Y E~: 6(x,y,C(Y),Y),

. for all Y E~` : x E Y-C(Y) ~ y~ C(Y),

. there is no Y E~`, such that x E Y, x~ C(Y), and y E C(Y).

There are several ways to define preference relations on A revealed from C(see e.g. Sen

(1971)).

Definition 2.9

The localty revealed preference relarion is defined by:

R~ :- {(x,y) E AxA i there is a Y E~, such that x E C(Y) and y E Y}.
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The locally r~eveakd strict preference relatio~ is defined by:

P~ :- {(z,y) E AxA ~ there is a Y E~, such that z E C(Y) and y E Y-C(Y)}. (]

The locally revealed preference relation Rc is fre~uently used to define a revealed

preference relation. For instance, the asymmetric part of this relation is often defined as

the revealed preference relation. See also Weddepohl (1970).

Let R be a relation on A. Consider the following monadic operations.

Complementation, denoted by c, is defined by: cR - AxA-R.

Conversion, denoted by v, is defined by: vR -{(y,x) i(z,y) E R}.

Let cv be the composition of c and v. Now the following corrolary can easily be checked.

Corrolary 2.10 ~(92~ - cvPc. (]

Let ti' be characterized as a transmutation from (Q(4'(A)xd~(A)) to Q'(AxA), which

satisfies the azioms 2.1, 2.2, 2.4, and 2.3a, where axiom 2.3a says:

if z~XUY, or if y~XUY, or if {z,y}r1X - P1, or if {z,y}f1Y - fá, then (z,y) E

~'({(X,Y)}), and if {z,y} C Xf1Y, then (x,y) ~ 0'({(X,Y)}). So, ~' is slightly less

conservative. Then it is straightforward to prove that 0'(9i~ - cvR~, where R~ is the

locally revealed preference relation.

Next, let us consider transmutations 0" which satisfy axiom 2.1, 2.2, and 2.3b, where

aziom 2.3b says: if z~ X U Y, or if y~ X U Y, or if {x,y} r1 X- Ql , or if {x,y} f1 Y-

Q1, then (x,y) E 0"({(X,Y)}). There aze 32 different transmutations possible, which all

can be described by 3 basic transmutations and two monadic operations. In an earlier

version of this paper, we have elaborated and analysed all these combinations, without

deriving results that aze essentially different from those presented in this version.

Therefore, one can accept the axioms 2.3 (instead of axiom 2.3a or 2.3b) and 2.4 without

loss of generality.

' Wakker (1989) prefers this definition, because it dces not require to fmd out the
choices from all Y E B, as is required by the other definition.
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Since the monadic operation cv is an order morphism, i.e., it transforms n,lations without

loss of order information (see Storcken, 1989), our transmutation ~ corresponds with a

well known concept. It may be noticed that cv is an operation which is its own inverse.

So, cvP~ and P~ uniquely correspond with each other. If we have P~, then we also know

cvP~, and vice versa. The axioms introduced above characterize cvP~, and therefore also

the locally revealed strict preference relation P~.

3 Revelation of decision rules

The previous section provides a set of four axioms, characterizing transmutations, i.e.,

transformations of relations on A into relations on 4'(A) and vice versa. We have seen

that ~ can be interpreted as a preference revelation mechanism, because it assigns to any

choice function with graph 9t a relation ~(9t) on A. Such an interpretation is not so

simple in case of revelation mechanisms for decision rules. Although 0' assigns to any

relation R on A a relation G'(R) on 4'(A), this relation is not necessarily a graph of a

function. Take, e.g., (0,X), or (X,X), which both belong to the range of O"(R). Because

~' does not assign necessarily to every relation on A a graph of a function, we have to

make further specifications. Four specifications will be discussed here. Consequently four

decision rules will emerge, viz. choosing best elements, choosing dominant elements,

choosing strongly dominant elements, and choosing maximal elements.

We proceed as foliows in this section. First, for each of these four decision rules, the

specific construction based on 0'~(9t) is formalized, where 9t is the graph of a choice

function C. Then necessary and sufficient conditions for each of these four decision rules

to be an extension of C are introduced. And finally, necessary and sufficient conditions

for each of these decision rules to assign non-empty sets to the subsets of A are formu-

lated.

Before we start with giving the characteruations, some interesting preliminary results

have to be derived.
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Definition 3.1

Let X, Y C A. For a given relation R on A, we say that X weakly dnminates Y at R, if

there is not a pair (x,y) E XxY such that (y,x) E R. ~

So X weakly dominates Y at R, if and only if, X x Y C cvR.

Lemma 3.2

Let X, Y C A, such that X C Y. For all R C A x A:

(X, Y) E ~'(R), if and only if, X weakly dominates Y-X at R. O

Proof:

(7{, Y) E 0'(R)
a V(x,y) E R [9(x,y,X,Y)j
a v(x,y)ER [xEY-X ~ y~X]
a ~3(x,y)EXxY-X [(y,x)ER]
ei X weakly dominates Y-X at R. 0

It follows that the transmutation 0{ extends C at least to the trivial choices (PJ,Y) and

(Y,Y).

Definition 3.3

Let R be a relation on a set X. A pair (x,y) of elements in X is said to be connected by

R, if X contains a finite sequence of elements zo,z,,...,zt, such that zo - x and zt - y,

and for all iE {1,...,k}, (zt,, zJ E R.

The relation R is said to be strongly connected, if for all (x,y) E XzX, (x,y) is connected

by R. The relation R is said to be weakly connected, if for all (x,y) E XxX, (x,y) is con-

nected by (R U vR). O

For X,Y C A such that X~ PJ and Y-X~ PJ, and for R on A, X weakly dominates Y-X

at R, if and only if, for all x E X and y E Y-X, ( y,x) is not connected by R ~ Y.

Here R ~ Y denotes the restriction of R to Y, formally, R ~ Y:- R fl (YxY).

The following theorem characterizes the existence of a non-trivial subset X of the set

YCA, such that ( X,Y) is revealed by ~' at a relation R.
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I.emma 3.4

Let R be a relation on A and Y C A. There exists a nonempty X strictly contained in Y,

such that (X,Y) E ~'(R), if and only if, R ~ Y is not strongly connected. O

PI~~
Only if: let (X,Y) E O'(R), for some nonempty X strictly contained in Y C A. By

theorem 3.2, X weakly dominates Y-X. Hence, for all x E X and all yE Y-X, (x,y) is not

connected by R ~ Y. So, R ~ Y is not strongly connected.

If: let R ~ Y be not strongly connected, and S:-{(x,y) E YxY ~(x,y) is connected by

R ~ Y}. Clearly, S is transiáve and not equal to YxY, because R ~ Y is not strongly con-

nected. Let X:-{x E Y ~ vy E Y[(y,x)E S~(x,y) E SJ}. Since S is tr3nsitive and not

equal to YxY, X~ Y and X~ 0. Let yE Y-X and z E X. It is sufficient to prove that

(y,x) ~ S. Suppose that (y,x) E S, then, by defuution, (z,y) E S. Let z E Y such that

(z,y)E S. Then, by the transitivity of S, (z,x) E S. Hence, (x,z) E S. Again by the

transitivity of S, (y,z)E S. Hence, for all z E Y: (z,y) E S implies (y,z) E S. Therefore,

yE X. This contradicts our assumption that yE Y-X. So (y,x) ~ S. O

It follows that 0~~(~ extends C to non-trivial choices on Y C A, if ~(~ ~ Y is not

strongly connected. Next, the following transitivity property of the transmutation is

derived.

Lemma 3.5

I.et R be a relation on A, and let X C Y C Z C A. If (X,Y) E 0'(R) and (Y,Z) E

~'(R), then (X,Z) E 0'(R). O

proof:

Suppose that (X,Y), (Y,Z) E ~'(R). Then ( i) X weakly dominates Y-X at R, and (ii) Y

weakly dominates Z-Y at R. L.et y E Z-X and xE X. If y E Y-X, then by (i), (y,z) ~ R. If

y~ Y-X, then y E Z-Y, and from ( ii) follows (y,x) ~ R. Hence, X weakly dominates X-Z

at R. Theorem 3.2 provides the final step. 0

Let R be a relation on A, and C a choice function on ~ C Q'(A). A choice function t~:

~(A) -~ cP(A) will be determined from the relation ~'(R) on ~(A). If R- 0(~, then

~ will be determined such that ~ is an extension of C. Furthermore, ~ C ~'(R).

Therefore, ~' entails all the information by which C is determined. Since ~ can be seen
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as a decision rule, ~' reveals the decision rules. It will be shown that the choice

rationality behind these revealed decision rules is choosing dominant elements, a variant

of choosing best elements. Contrary to the usual approach in revealed preference theory,

this choice radonality is determined endogeneously. However, our result confirms the

intuition of the profession: the revealed choice rationality is a vaziant of choosing a best

element.

In order to demonstrate that G' is a variant of choosing a best element, we refer to

theorem 3.2. That theorem says that (X,Y) E 0'(R), if and only if each element in X is

either preferred to, or incomparable with any element in Y-X at R. Let tR denote the

transitive closure of the relation R:

tR :-{(z,y) E AxA ~(x,y) aze connected by R}.

Let X C Y C A, and R C A x A. Then:

(X,Y) E o'(R) p (X,Y) E o'(RIY)
a (X,Y) E Ort(t(R ~ v)).

Denote the set of inaximal elements in Y at R by:

Maz(Y,R) - {zEY ~ vyEY [(y,x)ER ~ (x,y)ER]}.

So, x is a maximal element in Y, iff there is not a yE Y such that ( y,x) E R and (x,y) ~ R.

Denote the upper level set of x E A at R by:

Up(z,R) - {yEA ~ (y,x) E R}.

Lemma 3.6

L.et R be a relation on A, and let X C Y C A. Then:

(i) (X,Y) E ~'(R) a vx E X[iJp(x,t(R ~ Y)) C X]

(ii) (X,Y) E ti'(R) ~ X- 0, or X f1 Max(Y,t(R ~ Y)) ~ rd

(iii) (X,Y) E ~'(R) ~ X-O, or X fl Max(Y,tR) ~ 0. t]

Proof:

(i)(~) If vz E X: [Up(x,t(R ~,.)) C X], then vx EX, vyE Y-X: [(y,z) ~ R].

Hence, (X,Y) E 0'(R).

(~) Let zo,z,,...,z,~ be a finite sequence, such that zo - x and zt - yEX, and for all

iE{1,...,k}, (zt,, za E R~Y.
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It is sufficicnt to prove that x E X. Since X weakly dominates Y-X at R, and zk., E Y, it

follows from (zt.,,z~ E R, that zt.,E X. Similazly, zt.2E X, zk.j, E X,...,zoE X.

(ii) and ( iii) Note that Up(z, t(R ~ Y) fl Max(Y,t(R ~„)) ~ 0, in all x E Y. t]

From lemma 3.6 it follows that extensions of a choice function that is determined by

analytic, neutral, conservative and sound transmutations, aze characterized by a type of

decision rule that corresponds with maximizing behaviour. Lemma 3.6 resolves two

important issues:
(1) A fundament for revealed preference theory as it stands today, is provided by the

four azioms of section 2.

(2) The choice functions for which the axiom system is not appropriate, can be

specified.

Using this fundament, we are yet not able to determine decision rules for all choice

functions. Fortunately, we can derive from lemma 3.6 those choice functions that cannot

be determined by a decision rule in the axiom system. Let ~ be an eztension of the

choice function C on ~, such that the graph of ~ is contained in ~'0(~Jt~. When we

also impose on C a minimality condition, viz., for all nonempty Z C~(Y), (Z, C(Y)) E

~'O(~Jt~ implies (C(Y), Z) E ~'~(~, then ~(Y) C Max(Y, t(R ~,.). This follows

from (Max(Y, t(R ~,.)) l1 X, Y) E ~'(R), for all (X, Y) E 0'(R), and all RC Ax A. So,

if one demands for the highest possible resolution, i.e. if one wants to minimize the

cardinality of the choices C(Y) under ~, then the extension C derived from the transmuta-

tion ~w is reproduced by choosing maximal elements with respect to the transitive closure

of the revealed preference relation t,(~.

Let C be a choice function on ~. The graph ~t~ of C is a subset of 0'0(~. As we have

noticed, ~'G(~3t~ is generally not the graph of a function. We will specify some

additional conditions on 0'0(92~, that are necessary and sufficient for characterizing four

different choice functions on ~. These functions aze defined as follows.

Definition 3.7 Choice functions

For all Y C A, define the following functions in Q'(A).

C"~(Y) :- U{X E d'(Y) ~(X,Y) E 0'0(~ and for all nonempty Z, and Z C X,

(Z,X) ~ ~'0(~}.
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C~(Y) :s fl {XEQ'(Y) ~ X is nonempty, and (X,Y) E t1'~(~}.

C~(Y) :- U{XE Q'(Y) ~(X,Y) E O'0(~ and for all nonempty Z,,

and all Zz such that Z, C ZZ C X,

(Z„Z~ E 0'0(St~ implies (Zt-Z,,Z~ E Gw0(9~}.

C~"(Y) :- rl {Y-(B-D) E 4'(Y) ~ D is nonempty, D C B C Y, and

(D,B) E t,'t1(~t~}.

We finally need the following concepts.

Definition 3.8 Decision rules

Let R be a relation on A, and Y C A. Four types of decision rules are defined as

follows:
The maximal decision rule nt R assigns the set of maximal elements for R in Y:

D~(Y,R) :- Max(Y,R) :-{x E Y( VyE Y[(y,x)E R~(z,y) E R]};

the best decision rule at R is:

D~"(Y,R) :- Best(Y,R) :-{z E Y ~ vy E Y[(x,y) E R]};

the dominant decision rule nt R is:

D~(Y,R) :- Dom(Y,R) :- Max(Y, t(R ~ r);

the strongly dominant decision rule at R is:

D~(Y,R) :- SDom(Y,R) :- Best(Y, t(R ~,.). (]

The following theorem shows that the four types of choice functions defined above, are

generated by the corresponding types of decision rules, when in addition the preference

relation used in these decision rules is revealed from the choice function by ti(~.

Theorem 3.9 Let C:~ y(P(A) be a choice function, with graph ~2~. Let Y C A. Then:

1. C~(Y) - D~(Y, 0(~32`)),

2. C~(Y) - D~(Y, G(~3t~),

3. C~(Y) - D~`(Y, s,(92~), and

4. C~`(Y) - D~`(Y, 0(~).

p~; I.et x E Y.

1. x E C~(Y)

a there is an X C Y, with xE X, (X,Y) E 0'0(~, and



21
for all nonempty ZCX: (Z,X) ~ ~'0(~

.r (by lemma 3.2 and 3.4) there is an X C Y, such that zEX,

X weakly dominates Y-X in 0(~, and ~(~ ~ x is strongly connected

a there is an X C Y, such that x E X, (Y-7~ x X fl 0(~t~ -(d, and

X XX C t(0(~t~ ~ Y)
a x E Max(Y, t(~(~ ~ Y)) - Dom(Y, 0(~).

2. x E C~(Y)
F. for all nonempty X C Y, (X,Y) E 0'G(~ implies z E X

a (by lemma 3.6) for all nonempty X C Y, and all yE X,

and for all yE X, Up(y, t(0(J2~ ~ Y)) C X implies z E X

a for all yE X z E Up(y, t(0(~ ~ Y))

a x E Best(Y, t(0(~t~ ~ Y)) - SDom(Y, 0(~).

3. z E C~(Y)
a there is an X C Y, with z E X, such that (X, Y)E 0'0(~, and

for all nonempty Z, and Z2 with Z, C Z, C X: (Z,,Z~ ~ 0~~(~

implies (7~-Z,,7~) E ~wG(9t~
a there is an X C Y, such that x E X, ((Y-X) xX) f1 ~(Si~ - P1,

and for all a,b E X: (a,b) E 0(92~ implies (b,a) E ~(~
a x E Max(Y, d,(~).

4. x E C~`(Y)
a there is no nonempty B, C B2 C Y, such that x E B~-B, and (B,,B7) E

o'o(~i~
a there is no nonempty B C Y, such that z~ B and (B,B U{z}) E 0'0(~

p for all nonempty BCY, x~B implies (B,BU{x}) ~ ~'~(~

p for all yEX-{x}, ({y},{x,y}) ~ o~o(~
a for all yEX-{x}, (x,y) E 0(~

a z E Best(Y,~(~). 0

The following four theorems characterize each of these four choice functions, in case that

they extend the observable choice function C and that the preference relation in the

corresponding decision rule is determined by 0(92ry.

Let C be a choice function on ~. Recall that C is determined by a decision model, if

there exists a decision rule D and a preference relation R on A, such that for all YE ~:
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C(Y) - D(Y,R). C is said to be determined by R under a dominant decision rule, if for

all YE~, C(Y) equals Dm`(Y,R). So we have:

C~ is an extension of C, if and only if,

for all Y E~, C(Y) - C~(Y) - D~(Y,0(~), if and only if,

C is determined by G(92~ in Y under a dominant decision rule.

Similar definitions and results hold for respectively, a besr decision ruk, o strongty

dominau decision rule, and a maximal decision rule.

Next we characterize the choice function determined by ~(~ under one of the four
decision rules. The first theorem states that C is determined by t,(~t~ under a dominant

decision rule, whenever C reveals dominant choices, i.e. for all Y E~ and all nonempty

subsets Z of Y:

if (Z,Y) E A'~(~t~, then Z f1 C(Y) ~ 0, and (C(Y)-Z, Y) E ~'~(9t~.

So, if Z nonempty and Z C Y E~, and if Z dominates Y-Z, then Z is not disjoint hom

C(Y) and that part which is not in Z but in C(Y), dominates its relative complement with

respect to Y. Domination is here with respect to t,(~.

Theorem 3.10

Let C: ~-r ~(A) be a choice function. Then (i), (ii), and (iii) are equivalent.

(i) C~ is an extension of C.

(ii) C is determined by 0(92~ under a dominant decision rule.

(iii) C reveals dominant choices.

Proof:

(i) a(ii) has been shown above.

(ii) ~(iii) is shown as follows. Let a nonempty Z C Y be such that

(Z,Y) E ~'~(92~. Then it is sufficient to prove that Z f1 C(Y) ~ 0, and

(C(Y)-Z,Y) E ~'0(9t). By (ii), it follows that C(Y) - Max(Y, t(0(~~Y)). Since (Z,Y)

E 0't)(SJt~, it follows by lemma 3.6 (ii) that C(Y) f1 Z~ 0.

In order to prove that (C(Y)-Z,Y) E ~~`t1(~, let y E Y-(C(Y)-Z) and z E C(Y)-Z. It

is sufficient to prove that (y,x) ~ 0(~. Since ~3t` C ~~t1(~, it follows that (C(Y),Y)

E ~'~(9try. So, if y~ C(Y), then by lemma 3.2, (y,z) ~ 0(~. Suppose that y E

C(7~. Then y E Z f1 C(Y).
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Since C(Y) a Max(Y, t(0(9t~ ~ Y), it follows that either (x,y), (y,x) E t(~(~ ~,.), or

(x,y), (Y,x) ~ t(o(~ I,r). sinct (z ,Y) E G'0(~J2~ , ( x,y) ~ u~(~ I,r). Hence, (y,x)
~ t(~(~~Y). SO, (yrx) ~ 0(~~

(iii) ~(ii). It is sufficient to prove that C(Y) - Max(Y, t(0(9t~ ~ Y)) for some Y E~.

Let X :- Max(Y, t(t)(~t~ ~ Y)). Now obviously (X,Y) E G't)(~. So by ( iii), X r1

C(Y) ~ (ó, and (C(Y)-X,Y) E G'~(~J2~.

So, by lemma 3.2, (Y-(C(Y)-X)) x(C(Y)-X) f1 G(~ - tó. Hence, C(Y) C X.

Let x E X and Z - Up(x, t(0(92~ ~ Y)). Since x E X, Z C X and x E Z. So, for all z E Z,

Up(z, t(~(92~ ~ Y)) C Z. From lemma 3.6 it follows that (Z,Y) E ~'0(~. By (iii) Z t1

C(Y) - Pl. Since (C(Y),Y) E O'0(~t~, it follows that Z C C(Y). Hence, x E C(Y)

and X C C(Y). ~

Theorem 3.11 characterizes those choice functions C, which are determined by ~(~

under a best decision rule. It says that this is precisely the case when C reveals best

choices, i.e., for all B E~,

C(B) - ~{B-(D-C(D))~ D E~ n C(D) f1 B~ 0}.

So for all B E 3, C(B) consists of those elements in B that are not rejected in any D E

~, such that C(D) rl B~ ID. Suppose that C(B) ;t fd for all B E~. Then this

condition is equivalent to the Weak Axiom of Revealed Preference. C satisfies the Weak

Axiom of Revealed Preference, WARP, if and only if for all x,y E A and all B,D E~,

z E C(B) and y E B f1 C(D) imply x~ D- C(D).

Hence, C satisfies WARP if and only if

C(B) C n{B-(D-C(D)) ; D E~ n C(D) f1 B~ PS}.

Since r1 {B-(D-C(D)) ~ D E~ n C(D) rl B~~13} C C(B), and substituting B for D,

it follows that WARP is equivalent to best choice revelation.

Theorem 3.11

Let C: ~` -i Q'(A) be a choice function. Then ( i), (ii), and (iii) are equivalent:

(i) C""` is an extension of C.

(ii) C is determined by G(~t~ under a best decision rule.

(iii) C reveals best choices.

Proof:

(i) a (ii) is evident.
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(ii) w(iii) is shown as follows. Let B E~ and x E B.

x~ n{B-(D-C(D)) ~D E~ n C(D) n B~ 0} a

There is a D E~, with C(D) n B~ 0, such that x E D-C(D) a~

There is a D E~ and a y E C(D) n B, such that xE D-C(D) a

There is a y E B, such that (x,y) ~ 0(~ ~

x E Best (B, ~(~).
So, for all B E~, Best (B, 0(~) - n{B-(D-C(D)) iD E~ n C(D) n B~ 0},

which proves the equivalence. O

Note that C""`(Y) may be empty for some Y~~, and that it is empty if C~` eztends C,

and C(Y) - 0 for Y E 3, if in addition, C~` extends C.

Next, we show in theorem 3.12 that C~ is an extension of C, if and only if C reveals

strongly dominant choices, i.e., for all B E~:

c(B) - n{z ~ z~ r~, z c B and (z,B) E o~o(~t~}.
So, C(B) consists of those elements x, which are in every dominating subset Z with

respect to 0(~. Clearly, if C reveals strongly dominant choices, then C(B) - C~(B),

for all B E~. Since the reverse implication also holds, we have the following theorem,

its proof being obvious.

Theorem 3.12

Let C: ~` y Q'(A) be a choice function. Then (i), (ii), and (iii) are equivalent.

(i) C~ is an extension of C,

(ii) C is determined by ~(3t~ under a strongly dominant decision rule,

(iii) C reveals strongly dominant choices.

Note that if C~ is an extension of C, then C~(Y) may be empty for some Y~~, and

is empty for those YE ~ with C(Y) - QJ.

Theorem 3.13 characterizes those choice functions which are determined under a mazimal

decision rule. The characterizing property is the revelation of maximal choices. C reveals

mazimal choices, if and only if for all Y E~ and all X C Y, with (X,Y) E O~~(~:

if for all nonempty Z,, Z, C ZZ C X such that (Z„Z2) E O~t)(~ implies

(Z~-Z,,Z2) E O'~(~], then X C C(Y).
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C reveals maximal choices, if for all Y E 3 and all X C Y, such that X dominates Y-X

with respect to 0(~, X C C(Y), and in addition the following condition is satisfied: for

all Z, C Z2 C X, if Z, dominates Z2-Z„ then Zz-Z, dominates Z, with respect to

a,'0(9t~. This condition says that if Z, dominates Z2-Z,, then Z, and Z,-Z, are com-

pletely disconnected, and therefore incomparable. In that case, X consists of indifference

classes with respect to s,(~. Stated otherwise, ~(~ ~X is an equivalence relation. Such

subsets clearly contain maximal elements with respect to A(~.

Theorem 3.13

Let C: ~~ d'(A) be a choice function. Then ( i), (ii), and (iii) are equivalent.

(i) C~ is an extension of C,

(ii) C is determined by 0(~~ under a maximal decision rule,

(iii) C reveals maximal choices.

P~L
(i) e~ (ii): Obvious.
(i) a(iii): C(Y) - U{XCY ~(X,Y) E 0'0(92~, and, for all nonempty

Z,CZzCX~ (Zi~~) E 0'~(~) ~(~'Z~~Zi) E ~'~(~t~},

if and only if C reveals maximal choices. O

Note that if C~ is an extension of C, then C~(Y) may be empty for some Y~~, and

that it is empty if C(Y) - P1 for a Y E~. In these cases the asymmetric part of s,(~

is not acyclic.

Theorem 3.14 gives conditions that characterize the determination of C by s,(~ under a

strongly dominant decision rule, with C~(Y) ~ ró for all Y E 4'(A). It will be shown

that C also has to be consistent, i.e.,

vx,y E A, vX,Y E~(A), (x E C(Y) fl X n y E C(X) f1(Y-C(Y)) ~ x E

C(3C)].

The WARP implies concistency, but the reverse is not true, as one can easily verify.

From theorem 3.14 it is clear that if C is consistent, then C is determined by G(~ under

a strongly dominant decision rule, if and only if C is determined by 0(~3t~ under a

dominant decision rule.
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Theorem 3.14
Let C: ~ ~ d'(A) be a choice function. Then ( i), (ii), (iii) and (iv) are equivalent, where

(i) C is consistent and determined by t)(92~ under a strongly dominant decision rule;

(ii) C is consistent and determined by G(9t~ under a dominant decision rule;

(iii) there is a complete relation R on A which determines C under a strongly dominant

decision rule;

(iv) C~ extends C such that for all Y E d'(A)-{QI}, C~(Y) ~ PJ.

Pi~fi
It may be noticed that:
(a) C is consistent a P~ is asymmetric

a cvP~ - A(9t~ is complete.

(b) If R is a complete relation on A, then, for all Y E d'(A) -{0},

SDom(Y, R) - Dom(Y, R) ~ Q1.

(c) ~(~ is complete, if and only if

v nonempty Y C A, [SDom(Y, 0(~) ~ QJ].

(i) a(iv) Follows from thearem 3.11, (a) and (c).

(ii) a (i) Follows from ( a) and (b).

(i) ~ (iii) Follows from (a).
(iii) ~(i) Let (x,y) ~ 0(~. Then there is a Y E~, such that x E Y-C(Y) and y

E C(Y). From ( iii) it follows that y E C(Y) - Best(Y, t(R~Y)) and x~ Best(Y,

t(R ~ Y)). Hence, (x,y) ~ t(R ~ Y) and (x,y) ~ R. So, R C G(~.

Since R is complete, ~(92~ is complete. Hence by (a), C is consistent.

Let Y E~ and nonempty Z C Y, such that (Z,Y) E 0~0(9?~. By theorem 3.10, it is

sufficient to prove that C(Y) C Z. Since (Z,Y) E G'0(St~, (Y-Z)xZ I1 L)(~ is

empty. So (Y-Z) x Z fl R- P1 and (Y-Z) x Z r1 t(R ~ Y) - ló .

By (iii), C(Y) - Best(Y, t(R~,.)), and R is complete.

So C(Y) - Best(Y, t(R ~ Y)) C Z. O

Theorem 3.15 characterizes those choice functions C, which are determined by 0(~

under a maximal decision rule, such that C~`(Y) ~ Pl, for all nonempty Y C A.

Besides, the revelation of maximal choices by C, the Strong .lxiom of Revealed Prefer-

ence (SARP) is needed as a characterizing condition. C satisfies SARP, if and only if the

asymmetric part of P~, say aP~, is acyclic.
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Theorem 3.15

Let C: 3~ d'(A) be a choice function. Then (i) and (ii) are aquivalent, where

(i) C~ extends C, such that for all nonempty Y C A, C~(Y) ~ fó.

(ii) C reveals maximal choices and satisfies SARP.

Proof:

It may be noticed that aP~ - as,(~J2~. Since acyclicity of the asymmetric part of a relation

R, aR, is a necessary and sufficient condition to guarantee that for all nonempty Y C A,

Max(Y, R) is nonempty, the equivalence follows straightforward from theorem 3.12. ~

We close this section with a characterization of a choice function C, that is extendable by

C~` such that for all nonempty Y C A, C~`(Y) is nonempty. The characterizing

properties are WARP and SARP.

Theorem 3.16

Let C: ~3 y(9(A) be a choice function. Then ( i) and (ii) are equivalent, where

(i) C""` extends C, such that for all nonempty Y C A, C~`(Y) ~ fd.

(ii) C satisfies WARP and SARP, and for all nonempty Y E~, C(Y) ~ PJ.

PI.~f:
It will be noticed that

(a) ~(~t`) - aP~.

(b) If for all nonempty Y E~, C(Y) is nonempty, then C reveals best choices if and

only if it satisfies WARP.

(c) I.et R be a relation on A. For all Y E cP(A)-{QJ}, Best(Y, R) is nonempty, if and

only if R is complete and aR is acyclic.

(i) ~(ii) Follows from theorem 3.11, (a), (b) and (c).

(ii) ~(i) From (b) it follows, with reference to theorem 3.11, that C~` extends C.

By SARP and (a), it follows that a~(~ is acyclic. WARP implies consis-

tency. So, ~(~ is complete and (c) completes the proof. C]



28

4 Conclusions

We have designed an axiomatic foundation for revealed preference theory, that provides

necessary and sufficient conditions for both preference relations and decision rules to be

revealed. The fundamental axiom 2.1, called the analytic principle, yields the property

that local information can be extended globally. The resulting decision rules have

therefore a global character.

An important conclusion is that many decision rules used in daily life are contradictory to

the analytic principle, inasmuch as these decision rules depend on local information. The

axioms are restricting transmutations, which aze mappings form the set of graphs of

choice functions into the set of preference relations on a set of alternatives, and conver-

sely. We think that further research resulting in other types of transmutations is quite

important.

Axiom 2.4, called soundness of a transmutation, implies in the axiomatic context of this

paper that the decision tule assigns undominated alternatives. This is slightly wealcer than

assigning best alternatives.

The axioms introduced characterize the well lcnown revealed strict preference relation P'~.

Other revealed preference relations, such as R~, can also be described by a system of

transmutations introduced here. They require only relative small changes in axiom 2.3,

called conservative transmutations. Further research is needed to give precise answers.
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