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Parametric and semi-parametric ~oodelling of vacation expenditures

Bertrand Melenberg and Arthur van SoestN

Tilburg University, Dept. of Econometrics, P.O. Box 90153.
5000 LE Tilburg, The Netherlands

Abstract

We anaLyse several Zimited dependent variable modets expZaining the budget

share that Dutch famitfes spend on vacations. To take account of the

substantiaZ number of zero shares in our cross-sectíon data, taro types of

models are used. The first ts the single-equation censored regressfon model,

of which the Tobit modet is a specfaL case. We estimate and test severaZ

parametrfc and semi-parametríc extensíons of the Tobft modeZ. Although the

parametric modeZs appear to be misspeciffed, estimated income elasticities

o~ vacatfon expendítures according to the Tobit model and ita extensfons do

not dtfjer substantially. Secondly, me consider taio-equation models, in

mhich the decision mhether or not to go on vacation and the decision on the

amount to spend are treated separateZy. The ~trst decisfon ia modeZled as a

bínary chotce equatfon, r~hereas the second is treated as a condittonal

reyresston equation. For both equatfons, ~e estfmate, test and compare

parametric and semi-parametrfc specífícatfons. SfmuZations are used to

investigate mhether apparently mísspecified specificatfons índeed Zead to

bfased conclusions about íncome eLasticities of vacation expenditures.
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stimulating discussions and helpful comments and to the Netherlands

Central Bureau of Statistics (CBS) for providing the data. The views

expressed in this paper are those of the authors and do not necessarily

reflect the policies of the CBS. The first author is grateful to the

Netherlands Organisation of Scientific Research (NWO) for financiel

support.
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1. Introduction

The aim of this paper ís to analyse total ennual vacation expenditures
of Dutch families. Using cross-section data, we study the impact of family
income, household composition, and several other family characteristics on
the decision which share of the family budget is spent on vacations.

A typical characteristic of expenditures on vacations compared to other
expenditure categories such as food, clothing, etc., is that many families
do not spend anything on vacations. In our sample, this is the case for 37x
of all observations. Various limited dependent variable models can be used
to account for these zero observations. See, for example, Maddala (1983). In
particular, for the problem at hand, two types of models seem adequate: The
one-equation censored regression model, of which the familiar Tobit model is
the standard special case, and a two-equation model, which consists of a
binary choice part explaining the participation decision,l) and a
conditional regression equation explaining the expenditure level if it is
positive.

Standard estimators for these types of models are based on maximum
likelihood or a Heckman type two-step procedure. Consistency of these
estimators generally requires e complete and correct specification of a
parametric family of the error distribution. As a consequence, specification
testing and model selection are more crucial than in the standard regression
model. In this paper, we focus on a thorough treatment of the choice of the
econometric model. Following the strategy which Horowitz (1991) uses for his
analysis of the binary choice model, we study various parametric and semi-
paremetric models, comparing estimates and performing formal and graphic
tests.

In section 2 we consider the single-equation censored regression model.
Our starting point is the Tobit model, which is characterised by the
assumptions that error terms are homoskedastic and normally distributed.
Pseudo maximum likelihood estimates for the parameters of the censored
regression model obtained by maximising the Tobit likelihood are generally
inconsistent if either the homoskedasticity or the normality assumptions are
violated. Appropriate tests for these assumptions are discussed by, for
instance, Chesher and Irish (1987) and Newey (1985). In our case, botli
homoskedasticity and normality are rejected. Our next step is to account for
parametric forms of heteroskedasticity and nonnormality, but neither of the
extensions are accepted by chi-squared diagnostic tests. We then turn to
semi-parametric estimation and present two estimators which allow for both
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heteroskedasticity and asymmetry: The censored least absolute deviations
eatimator (Powell, 1984) and an efficient two-step estimator given by Newey
and Powell (1987). Parametric and semi-parametric estimates are compared by

looking at estimated confidence bounds for resulting income elasticitiea.
Apart from many observations with zero expenditures on vacations, our

data are also characterised by a lack of observations with small positive
vacation expenditures. This is not captured in the usual (zero threshold)
censored regression model. In Van Scest and Kooreman (1987), a model with

unobserved random thresholds was used to take account of this phenomenon,
similar to Nelson (197~). For such a model, no semi-parametric estimators

are yet available. In this paper, we therefore use an alternative model

which has the same flexibility as the Nelson model. In section 3, the

vacation expenditures decision is modelled in two steps. We use a binary

choice equation to model the participation decision. For the non-zero

observations, we use s regression equation to explain the (positive) level.
We compare and test various paremetric and semi-parametric

specifications of the binary choice model. Using standard apecification
tests, we hardly find eny evidence against a simple Probit model, contrary
to, for instance, Horowitz (1991). The Probit model ia accepted egainst

parametric alternativea ellowíng for heteroskedasticity or nonnormality, end

by nearly ell chi-squared diagnostic testa. It is also accepted by the
specification test against a nonparametric alternative suggeated by Horowitz

(1991).
Subsequently, we estimate the binary choice model using the estimator

proposed by Klein and Spady (1989). We assume that the model can be written

as a single index model: P(y-1~X) z F(X'a) and present estimates of a ea

well as (nonparametric) estimates of the unknown function F. The Probit

model and the single index model estimates can thus be compared by comparing

corresponding predícted probabilities. We find that the outcomes according

to the Klein-Spady estimates are quite close to those obtained for the

Probit model.

In case of the regression equation, which is used to explain the

positive budget share spent on vacation, the hypotheses of normality and

homoskedasticity ere rejected. Imposing the weak moment restriction E(E~X) -

0 ensures consistency but not efficiency of the OLS-estimator. We therefore

also estimate the regression equation using the estimator proposed by

Robinson (1987), which achieves the asymptotic efficiency bound

corresponding to the condition E(e~X) - 0. This specification of the

regression equation is tested in several we,ys and cannot be rejected.
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Parametric and aemi-paremetric specificationa of the complete two-equation
model are compared by calculating predicted budget shares and by performing
some simulations. We do not find substantial differences between the various
specificationa.

In section 4, we briefly evaluate the reaults. Although the models in
section 3 are more flexible then their section 2 counterparts, neither the
parametric nor the semi-parsmetric models are nested. A formal test to
compare the aemi-parametric models in aections 2 and 3 is not available.
Using less formal arguments, we motivate our preference for the two-
equations model.

2. The Censored Regression llodel

In this section we use s censored regression model to explain family
expenditures on vacations as a function of total expenditures and family
characteriatics. The specification of the model i s as follows.

Yi ` Xia ' Ei, Yi- max(Yi.~). (2.1)

Here yi is the budget share spent on vacations for family i(1-1,...,N),
i.e., annual expenditures on vacations as a percentage of total ennusl
family expenditures, and Xi-(Xli,...,~i)' ís a vector of covariates. In our
case, we use Xli-1, X2i is the logarithm of total annuel femily
expenditures, X3i is Lhe logarithm of family size, X4i is an age ludicnLor,
X5i indicates education, X6i is the degree of urbanisation, and }[~i-X21.2)
a-(ocl,...,ac7)' ia a vector of unimown parameters. Note that if a,71s0, then
the Engel curves correspond to the Almost Ideal Demand System (cf. Deaton
and Muellbauer, 1980). ei denotes the error term. The models discussed in
this section differ with respect to the assumptions on the conditional
distribution of Ei, given Xi. Throughout this paper, we assume that the
(Xi,si), 1-1,...,N, are i.i.d.

We use a cross-section of N- 1815 families with at least two adults,
taken from the Consumer Expenditure Survey drawn in 1981 by the Netherlands
Central Bureau of Statistics. In appendix 1, we present details on the
definitions of the variables involved and atatistics for the whole sample
and for the subsamples with zero and positive vacation expenditures.
Basically, the same data were used by Van Soest and Kooreman (1987).
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Parametric models

The most common assumptions about the distribution of error terms in
(2.1) are

ei~Xi ~ N(O,o2). (2.2)

(2.1) and (2.2) yield the well-known Tobit model. Error terms are normally

distributed and independent of the regreasors. Asymmetry and
heteroskedasticity are not allowed for.

Maximum likelihood estimates for the Tobit model and corresponding
standard errors are mentioned in the left panel of table 2.1. The estimates
for a2 and a7 imply that the budget share spent on vacations is increasing

as a function of total expenditures as long as total expenditures do not
exceed Dfl 111,000, i.e., in the whole semple range, implying that vacation

is a luxury. The estimated ceterta paríbua difference between Xia for
families with total expenditures Dfl 50,000 and Dfl 20,000 is 0.052. This
number can be interpreted as the difference between budget shares spent on

vacations for such families, assuming that ei and X21,..,X61 are such that,
for both families, vacation expenditures are positive. Young families spend

significantly more on vacations than older families. The education level of

the family head has a significant positive impact on vacation expenditures.
Families in big cities spend more than those living in the country. The

impact of family size is insignificant.
The ML estimates under the Tobit assumptions will generally be

inconsistent if the error terms in the censored regression model are
heteroskedastic or non-normally distributed (see, e.g., Hurd (19~9) and
Goldberger (1983), respectively). These assumptions can be tested using, for
example, the score or Lagrange Multiplier tests based on generalised

residuals described by Chesher and Irish (198~). The test reaults are as
follows.

Heteroskedasticity: realisation 13~.0 with critical values x2 - 40.127;0.05-

~d X2~;0.01- 4~.0. This leads to rejection of the null that errors are
homoskedastic (under the maintained assumption of normality).

Non-normality: realisation 22.3 with critical values xz;0.05- 6.0 and

x2 - 9.2. This leads to rejection of the null of normally distributed
2;0.01

errors (under the maintanied hypothesis of homoskedasticity).



-6-

It thus becomes clear that at least one of the two assumptions is violated.

Table 2.1. Estimation results aarametric models
(standard errors in parentheses)

I II III IV
al -292.11 (94.83) -515.21 (119.01) -608.87 (125.64) -492.87 (102.36)
a2 50.43 (18.35) 92.37 (22.55) 110.18 (23.78) 88.49 (19.371
a3 -0.91 (0.56) -0.38 (0.49) -0.82 (0.38) -0.39 (0.43)
a4 0.22 (0.06) 0.14 (0.06) 0.14 (0.06) 0.14 (0.05)
a5 0.27 (0.17) 0.34 (0.15) 0.29 (0.13) 0.32 (0.13)
a6 0.56 (o.io) 0.39 (0.09) 0.43 (0.09) 0.39 (0.08)
a7 -2.16 (0.88) -4.12 (1.07) -4.96 (1.14) -3.95 (0.92)
a 6.23 (0.10)

18.46 (12.45) 1568.26 (269.99) 9.69 (14.02)
-2.86 (2.36) -26.48 (4.69) -1.21 (2.66)
-0.387 (0.065) -8.23 (1.17) -0.315 (0.078)
0.014 (0.006) 0.13 (0.04) 0.016 (0.008)
-0.047 (0.020) -0.51 (0.14) -0.035 (0.024)
0.044 (o.oll) 0.29 (o.i0) 0.045 (0.014)
0.124 (0.112) 0.11 (0.02) 0.044 (0.126)

-0.061 (0.010)

loglik. -4233.86 -4155.45 -4157.73 -4144.15

Explanation
The censored regression model (equation (2.1)) and the regressors are
described at the beginning of this section.
I: Tobit model (2.2)
II: Exponential heteroskedasticity end normality (2.3)
III:Random coefficients and normality (2.4)
IV: Exponential heteroskedasticity and nonnormality (2.5)
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Explicit incorporation of parametric forms of heteroskedasticity is

straightforward. Estimation results for the following two parametric Forms

are presented in table 2.1:

Ei~Xi - N(O.exP(XiP)2). (2.3)

eilXi - N(O,~Xi~i~). where i-DiaB(Sl....,p~). (2.4)

In (2.3) heteroskedasticity is modelled in a multiplicative way. This
specification has the advantage that the variance is guaranteed to be
positive for ell values of g-(pl,...,p~)'. Gabler et al. (1990) use (2.3) to
test for the presence of heteroskedasticity in a binary choice model.

From an economic point of view, (2.4) is more attractive than (2.3), at

least, if ell components of g-(~1,...,~~)' are nonnegative. In this case,

the latent model can be interpreted as a random coefficient model, with

diagonal covariance matrix of the vector of coefficients. (2.4) is used by

Horowitz (1991) to allow for heteroskedasticity in a binary choice model.

Estimation results for the model with exponentisl heteroskedasticity

(2.3) and the random coefficients model (2.4) are mentioned in the second

and third penel of table 2.1. The signs of the estimates for the ais are the

same as in the Tobit model. Differences in magnitude and significance level

with the Tobit model estimates do not seem too large either. The estimated

difference between the budget share spent on vacations by a family with

total expenditures Dfl 50,000 and Dfl 20,000 is 0.064 and 0.068, for the

exponential heteroskedasticity and the random coefficients model,

respectively.

In the model with exponential heteroskedasticity, four out of six oF

the heteroskedasticity slope parameters (the p~s) are significantly
different from 0 on a 5X level. In the random coefficients model, all
heteroskedasticity parameters are significantly different from 0. Three of
them are negative, contradicting the random coefficients interpretation. For

two observations, the estimated value of XiLXi is negative and taking the

absolute value in (2.4) becomes necessary.
According to the log-likelihoods mentioned at the bottom of table 4.1,

the Tobit model is strongly rejected as a special case of either one of the

two more general models. In terms of likelihoods, the exponential

heteroskedasticity model does slightly better that the rendom ccefficients

model.
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Both heteroskedasticity and nonnormality can be incorporated in a
parametric framework, using, for example, the following family of
distributions for ai~Xi'

P[eiCt~Xi,s] - F(t~Xi.H) - G(tIh(Xi.P)), (2.5)

with
c(s) - ~(rGts.rls2.rZs3). (2.6)

Here h(X1,~) i s s twice differentiable nonnegative function. For the
exponential case we have h(Xi,g)sexp(Xig). The diatribution function G was
proposed by Ruud (1984) as a family of probability distributions
generaliaing the standard normal. i denotea the atandard normal distribution
function. If r-(rG,rl,r2)'-0 then the conditional distribution of Ei is
normal with zero mean and standard deviation h(Xi,g). In general, r must be
such that the probability density function corresponding to G can only take
on nonnegative values. This denaity is given by

g(s) - (1~2rlst3r2s2)~(rGts~rlsZ.r2s3). (2.7)

where y denotes the standard normal density function. Thus, g(s))0 for all
sER, is equivalent to -

r2? ril3. (2.8)

An identifying restriction on the conditional distribution of e. (ori
Ei~h(Xi,~B)) is necessary, implying that rG can be written as a function of
rl and r2. ~ro natural identifying restrictions can be imposed:

e. F(O~Xi,p) - 1~2 (zero conditional median): rG-o.

b. E(e~Xi,g) - 0(zero conditional mean): r0- y(Y1.r2).

intricate function with the properties
where y is some

v(o.o) - o. ~ (a.o) - -1. ~ (o.o) - o. (z.9)1 z

These conditions can easily be verified by substituting y(rl,r2) for rp and
differentiating the equality f s g(s) ds - 0 with respect to rl and r2.
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In the homoskedastic case, a. en b. are equivalent end necessary and

sufficient to identify the constant term al in (2.1). In case of

heteroskedasticity, the equivalence no longer holds. The log-likelihood

contribution (conditional on Xi) of an observation (yi,Xi) is as follows.

If yi-0: log F(-XialXi,~)-1og G(si), with si--Xia~h(Xi,~).
(2.10)

If yi)0: log f(yi-XialXi,~)--log h(Xi~)~log B(si), with si-(Yi-Xia)~h(Xi,~).

The Chesher and Irish (1987) test for nonnormality in the Tobit model

can be interpreted as a Lagrange multiplier test on (yl,y2)'-(0,0)' for the

homoskedastic case of (2.5)-(2.6). To obtain a test for nonnormality which

remains appropriate in case of a parametric form of heteroskedasticity (e.g.

exponentia] heteroskedastícity), it ia possible to estimate the model (2.5)-

(2.6) by mnxímum llkellhood, without imposing homoakedasticity but impoaing

normality, end subsequently perform a Lagrange multiplier teat on

(yl,y2)'-(U,0)'. The test statistic can straightforwardly be derived and, as

in Chesher and Irish (1987). be rewritten in terms of generalised

standardised residuals

eik)- EY'0{(ei~h(X~~))kIYi.Xi.~}-u(k). where H(k)'r(k)I{Zk,2-1C(k~2)}.

The result depends on which restriction is imposed, zero conditional median

(case a) or zero conditional mean (case b). In either case, the test

statistic can be obtained as the explained sum of squares in a regresaion of

a vector (1,...,1)'ERN on the columns of en Nxm matrix, where N is the

number of observations and m ie 2 plus the number of free parameters in a

and ~. For the exponential heteroskedasticity case, the typical row entries

in this matrix are

e(1)i
Xji e(2)X

exp(Xi~)' i ji (j-1.....7).

either -ei3)~ 2ei1} ( case a.) or -ei3)t 3ei1)(case b.),

and -ei4)4 3eiZ).
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where the unknown parameters are replaced by their ML estimates under the
null (y-0). Under the null, the test statistic asymptotically follows a x2

2
distribution.

In case of homoskedastic error terms (i.e., pj-0 for j)1) the two
variants a. and b. of the test atatistic coincide and are identical to the
standard test statistic in, for example, Chesher and Irish (198~) and Newey
(1985). This test statistic can also be derived using White's information
matrix comparison (cf. Chesher and Irish, 1987), starting from moment
restrictions as in Newey (1985), or as a Lagrange multiplier test obtained
by embedding the standard normal distribution in a Pearson family (cf. Bera
et al., 1984).

In case of heteroskedastic error terms however, variants a. and b. are
not identical, since the transformed covariates Xji~exp(Xip) will generally
not contain a constant term.

The empirical results of the test for the exponential
heteroskedasticity case are given below. In order to take account of the
inequality restriction (2.9), we also present the test results for one
parameter restriction only. The conclusion is clear: normality, and in
particular the restriction Y1-0, are rejected at the usual significance
levels. The difference in the outcomes of variants a. and b. is very small.
Since the conditional diatribution is symmetric if and only if y1-0, the
results suggest that the error terms follow an asymmetric distribution. Note
that for the third test ~1-0 is a maintained hypothesis and the results for
the second test strongly indicate that this assumption is violated, implying
that the third test ia not feasible.

Tests on normality assumptions in the exponential heteroskedasticitv model

HO degrees of test statistic critical value
freedom test a. test b. level 0.05 level 0.01

él'72-0
ël'o
X2-o

2 13.1 13.0 6.0 9.2
1 12.3 12.2 3.8 6.6
1 1.0 1.0 3.8 6.6

It is straightforward to estimate (2.5)-(2.6) allowing for exponential
heteroskedasticity and without imposing normality, maximising the log-
likelihood based on (2.10). Results are mentioned in the righthand panel of
table 2.1. Restriction ( 2.8) was imposed and appeared to be binding.
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According to the standard t-test, the restriction Y1-0 is rejected at the
usual significance levels. The same conclusion is obtained using a
likelihood ratio test. Still, the estimates for both a and p and their

estimated standard errors are quite close to those in the second panel of
the table.

The implied ceterís paribus pattern of expenditures on vacations as a

function of total expenditures is quite similar to the pattern found
before: the budget share spent on vacations is maximal if total expenditures

are Dfl ~3,000. The difference between the predicted shares if total
expenditures are Dfl 50,000 and Dfl 20,000 is 0.061.

To test whether the parametric models fit the data, without having in
mind a specific parametric alternative, we performed several chi-squared

goodness of fit tests developed by Andrews (1989). These tests are based
upon classifying observations into cells and comparing estimated cell

probabilities (conditional on the covariates) with empirical probabilities
besed upon the sample data. Andrews (1989) indicates how the cells can be
chosen for the Tobit model and his strategy can straightforwardly be
generalised to censored regression models with more general (parametric)

specifications of the error distribution. We used a partitioning based upon
the endogenous variable into five cells: yi-0, and four cella with yi)0,
distinguished by the value of the transformed error term, where the
transformation is such that the transformed error is atandard normel. We

also used products of these cells with a partitioning into four cells of the
space of covariates, based upon the value of X2i (total expenditures) only,

yielding a partitioning into 20 cells.
In case of maximum likelihood estimation, the test statistica can

easily be obtained as the explained sum of squares of a regression of a

vector (1,...,1)'EK on the vectora of scores and the vectors of differences

between predicted and sample probabilities for each of the cells. Under the

null hypothesis of no misspecification, the test statiatics follow a X2

distribution, with 16 or 4 degrees of freedom, depending on whether 5 or 20

cells are used.

The two tests were performed for each of the four parametric

specifications. In all cases, the null hypothesis of no misspecification was

strongly rejected. The values of the test statistic for the 20 cells case

varied from 84.1 (the normal exponential heteroskedasticity model) to 181.6

(the Tobit model). Allowing for heteroskedasticity reduces the chi-squared

statistics and the exponential heteroskedasticity model does better than the

random coefficients model in this respect. Allowing for the chosen
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parametric form of nonnormality in the exponentisl heteroskedasticity model
dces not reduce the values of the chi-squared statistics.

Seai-paremetric models

In this subsection we consider semi-parametric estimation of the
censored regression model. At present, a number of aemi-parametric
estimators for model (2.1) are available. The estimators vary with respect
to the assumptions on the conditional distribution of ei given Xi necessary
for consistency. For most of these estimators, these assumptions include
independence between the error term and the covariates, i.e., the
conditional distribution does not depend on Xi. Examples are the estimators
given by Duncan (1986), Fernandez (1986), Horowitz (1986), and Ruud (1986).
The empirical results of the previous subsection, however, strongly suggest
the presence of heteroskedasticity, which the independence assumption dces
not allow for. Moreover, the significance of the nonnormality parameter yl
suggests that imposing symmetry of the error terms distribution should be
avoided. This excludes the use of Powell's symmetrically trimmed least
squares estimator (Powell, 1986).

The estimators we do apply are characterised by the weak identifying
restriction that the conditonal distribution of ei has zero median:

Med(Ei~Xi) - 0. (2.11)

T~vo estimators thus are appropriate. The first one is Powell's Censored
Least Absolute Deviations (CLAD-) estimator (Powell, 1984). The CLAD
estimate for a solves the minimisation problem

N
Mán SN(a), where SN(a) - N i~llyi-

max{O,Xia}~ (2.12)

This eatimator is consistent end asymptotically normal if condition (2.11)
together with some mild regularity conditions on the distribution of the
covariates are satisfied. Powell (1984) elso derives a consistent estimator
for its asymptotic covariance matrix. The CLAD estimator is not efficie~et:
its asymptotic covariance matrix dces not attain the asymptotic efficiency
bound.3)
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The second estimator is proposed by Newey and Powell (198~). They show
that, under mild regularity conditions, the efficient score correaponding to
(2.11) satisfies

s(Zi) - 2f(olXi) I(o m)(-a'X1) sgn(Yi-a'xi).Xi. (2.13)

Here Z1-(yi,Xi)', f(.~X1) denotes the conditional density function of Ei
given Xi with respect to the Lebesgue measure on R, and sgn(ei)al if ei)0,
sgn(ei)-0 if ei-0, and sgn(Ei)--1 if eiCO.

Let

N1 - Int(N~2), the largest integer C N~2, N2 - N- N1,

I1 - {1,...,N1}, I2 - {N1.1,...,N},

ocl,oc2 : CLAD-estimators (or other feasible preliminary estimators)

based on subsamplea I1 and I2, reapectively,

sl(Z),s2(Z) : estimators of the efficient score, based on I1 and I2,

~1 - ~FiEI2s1(Zi)sl(Zi)'~N2~-1. ~2 - LFiEIls2(Zi)s2(Zi)~,N1~-1'

Then the estimator oc proposed by Newey and Powell is given by

a - ~(al`a2) ~ N~~2 ~iEIls2(Zi) ~ V1 ~iEI2s1(Zi)~' (2.14)

This estimator is based on the efficient score. Newey and Powell prove that,
under some regularity conditions, i t is semi-parametrically efficient, and
derive a consistent estimator for its asymptotic covariance matrix.

CLAD-estimates require minimisation of the non-differentiable
expression in (2.12). For this purpose, we used the simplex algorithm
introduced by Nelder and Mead (1965) end extended by 0'Neill (1971).

Estímation results are mentioned in table 2.2. Eatimating the covarience
matrix of the CLAD estimator involves the choice of smoothness parameters c0
and y, cf. Powell ( 1984). Following Powell ( 1984) we chose Y-0.2 end we

tried various values of c0. Reported smoothing parameters minimised the
covariance matrix. Thus the resulting standard errors might be interpreted

as (estimated) lower bounds for the true standard errors. In case of the
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Newey-Powell estimator, the choice of the smoothness parameters not only
affects the covariance matrix but also the estimates themselves. We tried
different values of the smoothing parameters. The choice hardly affected the
parameter estimates, but had some impact on the estimated covariance matrix.
The reported smoothing parameters yield standard errors which are smaller
than the corresponding CLAD-standard errors.

According to the point estimates, the budget share spent on vacations
is maximal if total expenditures are Dfl 57,000 (CLAD) or 79,000 (Newey-
Powell). The estimated difference between the shares for families with total
expenditures Dfl 50,000 and Dfl 20,000 is o.066 (CLAD) or 0.047 (Newey-
Powell). These numbers do not seem to be too much out of line with those
based upon the parametric estimates. This is also the case for the estimates
of the slope parameters corresponding to femily size, age, education, and
degree of urbanisation.

Table 2.2. Estimation results semi-parametric model
(standard errors in parentheses)

I
-731.30 (180.65)
133.99 (33.68)
-0.23 (0.90)
o.i4 (o.lo)
0.14 (o.i8)
0.49 (o.il)
-6.12 (1.57)

II
-350.72 (175.75)
62.92 (33-05)
-1.03 (0.44)
0.13 (0.06)
o.oi (0.13)
0.31 (0.08)

-2.79 (1.55)

Explanation
The model assumptions are given by (2.1) and (2.11). The regressors are
described at the beginning of this section.
I: CLAD estimator with smoothness parameters c-0.73875 and y-o.20.
II: Newe Powell estimator with smoothness 0y- parameters c-0.7 and k-40.

The estimated standard errors for the CLAD-estimator are larger then
those for the Newey-Powell estimator. Still, the estimated difference
between the two covariance matrices fails to be positive definite. As a
consequence, a Hausman type specification test could not be performed. This
may be a consequence of the choice of smoothness paremeters.
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In order to compare the results of parametric and semi-parametric
model estimates, we used the estimates to compute confidence intervals for
elasticities of vacation expenditures with respect to total expenditures
(TE). Results are given in table 2.3. Two elasticities were considered: the
elasticity of yiTEi with respect to TEi for the average family (EL1), and
the elasticity of the average value of yiTEi with respect to TEi with the
same percentage for all families (EL2). The censoring was not taken into
account, because computation of elasticities of yiTEi would require a
complete specification of the error distribution, which is not provided by
the semi-parametric model.

The elasticities are calculated 500 times, for 500 independent draws
of the parameter values from the estimated asymptotic distribution of the
estimator of the parameter vector. For each cese, we present the mean and
the median elasticity, and the 0.05 and o.95 quantiles. The latter two can
be interpmted as the bounds of a two-eided 90x confidence interval.

The difference between elasticities based on CLAD and Newey-Powell

estimates are relatively large, although these estimatora are consiatent

under the same assumptions. In particular, the elasticities according to

Newey-Powell estimates are small compared to the others. This estimator also

yields the smallest confidence intervals. All confidence intervals overlap

and in each case the elasticity is significantly larger than one on a 5X
level.

Table 2.3: Elasticities

EL1 EL2

meen median Q05 Q95 mean median Q05 Q95
Tobit model 3.00 3.13 2.05 4.72 2.67 2.78 1.95 3.84
Expon. Heterosk. 2.95 3.10 2.05 4.64 3.75 4.11 2.40 7.03
Exp. Het. 8~ Nonnorm. 2.82 2.89 2.14 3.98 3.52 3.68 2.15 5.47
CLAD 2.53 2.54 1.74 3.44 3.45 3.62 2.00 5.85
Newey-Powell 1.70 1.70 1.17 2.25 1.89 1.95 1.05 2.8]

3. A Two Equations Model

In the previous section, a single latent variable equation was used to
model both the choice between zero and a positive budget share, and the
level of the budget share. In this section we consider a model in which
these two decisions are separated:
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P(ai'llXi) - F(Xiaa): P(ai-OlXi) - 1-F(X~aa). (3.1)

yi - Xiab4 Ebi' (3.2)

yi - 0 if ai~0; yi - yi if ai)o. (3.3)

Here F is an unknown function (not necessarily a distribution function) with
range contained ín [0,1]. (3.1) is e single index binary choice equation for
the decision whether or not to go on holiday. Xi only enters (3.1) through
the 'single index' Xiaa. In order to identify a8, some normalisation must be
imposed. If it is assumed that F(z)-~(z~va), where ~ denotes the standard
normal distribution function, f3.1) becomes the familiar Probit model.

The regression equation (3.2) explains the budget share spent on
vacation, conditional upon the decision to go on holiday. We cannot think of
economic arguments for excluding regressors from either (3.1) or (3.2).
Therefore, in principle, (3.2) and (3.3) may include the same regressors,
although in the final empirical specifications, the two sets of regressors
will include different cross products. Instead of imposing exclusion
restrictions on the regressors in (3.2), we make the following identifying
assumption:

E(Ebi~Xi'ai'1) ' 0 (3.4)

This assumption makes it possible to estimate (3.2) separately from
(3.1), using only those observations with y.)0.4)i

In the remainder of this section, we discuss and compare parametric and
semi-parametric estimation results of (3.1) and (3.2) separately. Finally,
the estimation results of both equations are used to perform some
simulations.

The Binary Choice equation

The endogenous variable ai in (3.1) represents the decision to go on
holiday (ai-1) or not (a1-0). We first consider the Probit model, i.e.

F(Z) - ~(z~o8). (3.5)

for some oa~0. In the vector of covariates Xi we included Xli,..-~X6i'
described at the beginning of section 2. On the basis of preliminary
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estimation results with squares and cross products of the regressors

Xli ""'X61' we also included the cross term x4ix5i, whereas there appeared

to be no reason to include X21, which was included in the model in the

previous section.
7'he maximum likelihood estimates of the Probit model are presented in

the left panel of table 3.1. In order to be able to compare the Probit

estimation results with the semi-parametric estimation results discussed

below, we have normalised the ccefficient a~, corresponding to log total

expeiiditures, to be 1. According to the Probit estimates, the probability of

goiiig on vacation is an increasir.g function of family size end degree of

urbanisation, although family size has an insignificant influence. The cross

term between age class and education level implies that a ceterta

paribus increase in age has a positive effect on the probability of going on

holiday for small education levels and a negative effect for high levels of

education. A similar result holds for a ceteris parfbus change in the

education level.

Since the Probit estimator for aa may be inconsistent if the underlying

distributional assumptions are incorrect, we performed various specification

tests. Hardly any of these tests rejected the null hypothesis of no

misspecification. For instance, neither normality nor homoskedasticity was

rejected using the score tests given by Chesher and Irish (1987). In

addition, most of the Andrew's chi-squared tests we performed, did not

result in rejection of the Probit model. There was only one exception:

Partitioning the support of the explanatory variable 'family size' into two

classes, family size less than or equal to three, and family size larger

than three, the Andrew's chi-square test statistic was 8.04, leading to

rejection of the null hypothesis of no misspecification at the 5X level

(8.04~5.99-x2~o.05)'
The problem with the chi-squared diagnostic tests is that the results

may strongly depend on the arbitrary choice of the partitions. We,

therefore, also tested the Probit specification using a test proposed by

Horowitz (1991). This test consists of performing a non-parametric

regression of ai on Xiaa~ag, and computing a uniform confidence band for the

regression function. If the standard normal distribution function ~ lies

within this band, the null-hypothesis that the Probit specification is

correct is accepted. For technical details, see proposition 1 of Horowitz

(1991). The outcome of the test is presented in Figure 3.1, which includes a

plot of 4, the uniform 95 X confidence band, end the values of the kernel

regression5) of ai on Xiaa~va, evaluated in the points Xáiaa,aa,
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Table 3.1 Estimation results of the binary choice model
(Standard errors between parentheses)

parameter I

aal (constant term) -10.896 (0.227) 0.

a~ (log total expenditures) 1. 1.

II

aa3 (log family size) 0.050 (0.083) 0.052 (0.067)

aa4 (age class) 0.060 (0.019) 0.093 (0.012)

aa5 (education level) 0.180 (0.063) 0.236 (0.043)

aa6 (degree of urbanisation) 0.045 (0.015) 0.051 (0.012)

aa~ (x41x51) -0.017 (0.007) -0.023 (0.005)

aá 0.606 (0.104)

log L -1082.3 -1090.4

Explanation~
The first six regressors are the same as those in section 2; x7i-x4ix5i.
I: ML estimates Probit model (3.1), (3.5) (normalisation: a~-1);
II : Klein-Spady estimates single index model ( 3.1) (normalisation: aa1-0,

a~-1; smoothing parameter hN-0.2);
log L: log-likelihood value in case of Probit; quasi-log-likelihood value

(without trimming) in case of the Klein-Spady estimator.

i.z
i.o
0.8

P 0.8
(
v
a 0 1
c

) 0.2

0 01

-o ~ a

Figure 3.1: P(Vac.) from Probit and nonpar regr.

-0 8 ~~ T
-i.l -0.6 -0.1 0.~

- - - Conf. band

b~



-19-

i-1,...,N. Since the normal cumulative distribution function lies entirely
within the uniform 95 z confidence band, the Probit specification is
accepted at the 5X level.

A semi-parametric estimator for the single-index model (3.1) is derived
by Klein and Spady (1989). aa can be estimated by maximising the (estimated)
quasi-log-likelihood,6j given by

N
Q(aa:FN)' N 1F1 (ailogLFN(aáXi)]'(1-ai)log[1-FN(aaXi))}. (3.6)

where FN represents a nonparametric estimate of F, specified as follows: Let
PN denote Llie sample frequency estimating the unconditional probability that
a.-1, i.e.,i

1 NPN - N- ~i:l ai. (3.7)

Next, let gN(.~ai) denote the density estimates for Xiaa conditional on ai
(for ai-1 and ai-0), given by

BN(z~ai-1) - ~~-1 a~ K((z-X~aa)Iht,l)I(hNNPN). (3.8)

gN(z~ai-0) - ~~-1(1-a~).K((z-X~aB)I~)I(hNN(1-PN)). (3.9)

with K a Kernel function, and {hN} a sequence of bandwidths which have to
satisfy NhN ~ m and NhN -~ 0, for N a m. Then the estimate FN, evaluated at z
E R, is given by

FN(z) - PNgN(zlai-l)ICPNgN(z~ai-1)'(1-PN)BN(z~a1-0)]- (3.10)

We made use of the kernel given by

K(z) - (3l2 - (ll2)z2)~(z), (3.11)

with p the standard normal density function.7)
Klein and Spady show that, under some regularity conditions, the

estimator aa of aa obtained by maximising ( 3.6), satisfies

JN(aáaa) -~d M(O.~a). (3.12)
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where Va is given by

Va - [E(~P(aa)~~aa)(~P(aa)I~aa)'{1~[P(aa)(1-P(a8))]}]-1. (3.13)

with P(aa) a shorthand notation for F(Xiaa). The covariance matrix Va can be
estimated consistently by using its sample analogue.

In order to guarantee identification of aa in the single index model,
one has to impose some normalisation condition. First of all, the
ccefficient corresponding to the constant term is set equal to zero, since
the constant is absorbed in the function F. In addition, we have fixed the
coefficient corresponding to the variable X2i, i.e., log expenditures, to
be equel to one. The choice of this normalisation is based upon the fact
that log expenditures is the only explanatory variable which can reasonably
be assumed to be continuously distributed.

The estimation results for the regression coefficients of the Klein-
Spady estimator are presented in the right panel of Table 3.1. The function
FN, the estimate of F given by (3.10), is presented in Figure 3.2, together
with the function G(z) -~((z-10.90)~0.77), the corresponding function in
case of Probit. The results are obtained using the value 0.2 for the
smoothing parameter hN in (3.8) and (3.9)8j.

The Klein-Spady estimates of the regreasion coefficients are quite
close to those obtained using Probit: The mean function is an increasing
function of family size and the degree of urbanisation; it is increasing and
decreasing as a function of age class for small and large values of the
education level, respectively. According to figure 3.2, the Klein-Spady
estimate FN differs somewhat from the corresponding function in case of
Probit. FN is initially steeper and decreases if the value of the mean
function becomes high. Relatively large differences between the t~oo
functions only occur in the region where observations are sparse. The
conclusions from this figure are thus well in line with those from figure
3.1.

In order to get some more insight in the performance of the Klein-Spady
estimation results, we applied an informal graphical test, suggested by
Horowitz (1991). This test consists of assigning observations to cells,
according to the predicted probability of going on vacation. This predicted
probability is given by FN(Xiae), with aa the Klein-Spady estimates of aaend with FN given by (3.10). We used the cells [0;0.3), [0.3;0.4),
[0.4;0.5). .. ,[0.8;0.9), [0.9;1.0]. The first cell is chosen larger ttian
the others in order to obtain a comparable number of observations per cell.
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Figure 3.2 Estirrlated distribution functions
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For each cell, one can compute the quantities

,-
Qpred - ~iEcell FN(Xias)'

Qobs - ~iEcell ai,Ncell'

(3.14)

(3.15)

with Ncell the number of observations in the cell. If the single-index model

is correctly specified, Qobs ~d Qpred Will be close. The same test can also

be applied to the Probit model.
Figures 3.3 and 3.4 represent graphs of Qobs against Qpred for the

Probit and the Klein-Spady specification, respectively. In both cases, the
outcomes are quite close to the 45o-line, suggesting that the model fits the

datA Well.
In conclusion, formal and informal tests suggest that the Probit

specification works quite well for the data at hand. Not surprisingly, the
single index model, of which Probit is e speciel case, yields quite similar
results and also works quite well.

----- Normal distr.
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Figure 3.3: Obs. and pred. probabilities for Probit model
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The Regression part of the model

Once the decision to go on holiday has been made, one has to decide how

much to spend on it. We model this decision by means of the following

conditional regression equation For those families with yi)0:

E(Yilai-l. Xi) - Xio`b'

In terms of the error term Ebi-yi-Xiacb, (3 .16) can also be written as

(3.16)

yi- Xiab. eb1. E(ebi~ai-1. Xi) - 0. (3.17)

As in section 2, yi is the budget share of vacation expendltures (in z). In

the vector of covariates X1 we included X11 ""'X61' described in sectíon 2.

On the basis of preliminary estimation results with squares and cross

products of the regressors Xli ""'X61' we also included the cross product

~]i-X21X6i'
The parameter ocb can simply be estimated by Ordinary Least Squares of

y1 on X1, using the subsample for which y1)0 only. The estimation results

are presented in the left panels of table 3.2. The first set of standard

errors is computed in the standard way, assuming the error terms to be

homoskedastic and independent of the covariates. The second set of standard

errors is based upon an estimator of the covariance matrix of the OLS-

estimator which, under week regularity conditions, remains consistent in

case of heteroskedasticity. This estimator will be discussed below (equation

(3.27)). We also present the estimation results using the mean function

without cross term. According to the OLS-estimation results without cross

term, only the variable log family size has a negative influence on the

budget share. The other variables have a positive influence, although the

coefficients corresponding to log expenditures and education level are

insignificant. The results with the cross term X21X61 included imply that

the ceterís paribus effect of log expenditures is large and positive for

people living in the country, but small or even negative for people living

in cities.

The OLS estimator is asymptotically efficient if the errors are
independent of the covariates and normally distributed. In order to test

these distributional assumptions, we performed various specification tests.

Using the same score test as in section 2, normality was strongly rejected.
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To test against the alternative of heteroskedastic error terms, we used the
same two parametric forms of heteroskedasticity as in section 2 and again
applied similar score tests. In each case, the hypothesis of homoskedastic
error terms was strongly rejected.

The outcomes of these tests suggest that either the normality or the
homoskedasticity assumption or both do not hold. In this case, given (3.16),
the OLS estimator is consistent, but not asymptotically efficient. A semi-
parametric asymptotically efficient estimator for ocb is presented by
Robinson (198~). It is given by

ab - C~i-1Xbi biai2~-1~~1-1 biYiai27. (3.18)

where now N-1143, the number uf observations used in the regression, and a?i
is the so-called uniform k-NN estimator of ai, given by

'2 N '2
6i - ~j-lebjWij. (3.19)

Here ebi is the OLS-residual, and where Wij are weights, given by (if there
are no ties):

Wij - IcNl, if Xj is one of tl~e kN nearest neighbors of Xi,

Wij - 0, otherwise.
(3.20)

The distance between Xj and X1 is determined on the besis of the distance
function p, given by

P(Xi.Xj) - F,~-2(X,~i-X.Cj)2~s.1. (3.21)

where s~ is the (univariate) sample variance of X~i, which is included to
correct for differences in measurement units of the X~i's, and where L
denotes the number of covariates.
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Table 3.2 Estimation results of the regression model

Parameter I II III IV V

ocbl (constant) -2.16 -22.00 -3.78 -18.67 -6.39
(4.34) [4.37] (10.04) C9.2i] (4.01) (8.54) (18.z9)

acb2 (log total exp's) 0.67 2.57 0.87 2.28 1.06
(0.44) [0.44] (0.97) [0.09] (0.40) (0.83) (1.56)

ab3 (log family size) -1.42 -1.46 -1.60 -1.56 -1.47
(0.42) [0.40] (0.42} [0.39] (0.38) (0.37) (0.39)

ab4 (age class) 0.16 0.15 0.15 0.15 0.16
(0.05) [0.05] (0.05) [0.05] (0.05) (0.04) (O.o5)

ocb5 (education) 0.005 0.002 -0.007 0.02 0.03
(o.i3) [o.lz] (0.13) [0.12] (o.ll) (o.ll) (0.15)

ab6 (deg. of urban.) 0.45 5.37 0.40 4.28 0.40
(0.08) [0.07] (2.25) [2.28] (0.07) (2.12) (0.10)

a`b7 (X2iX6i)
- -0.47 -0.37

(o.2z) [0.22] (0.20)
a - - - - 0.48

(2.39)

Explanation:
The model specification is given in (3.16). The first six regressors are the
seme as in section 2; X7i-X2iX6i; X is the ccefficient corresponding to the
inverse of Mill's ratio.
I, II: Ordinary Least Squares estimates;

(.): standard errors, computed in the standard way,
[.]: heteroskedasticity corrected standard errors, based upon (3.27).

III, IV: Robinson-estimates; smoothing parameter 1cN-150,
(.): stendard errors, computed using (3.24).

V: Robinson-estimates with the inverse of Mill's ratio included (without
cross term),

(.): standard errors, computed using (3.24).

It is shown by Robinson that under some regularity conditions the

limiting distribution of the estimator ab satisfies

JN(ab - ~) ~d N(O.Vb). (3.22)

where Vb is given by

Vb - [E(XiXi o-2(Xi))]-1. (3.23)
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Here C2(Xi) - E(ebi~Xi). Vb cap be consiatently estimated by

Vb ' ~N-l~i-lXiXi 6i2]-1 (3.24)

Estimation results using the Robinson estimator are mentioned in the
third and fourth panel of table 3.2. The smoothing parameter kN (c.f.
equation (3.20)), is set equal to 150. Changing kN hardly affected the
outcomes. Because the ccefficient of the cross term turned out to be
insignificant on the 5z level, we also estimated the ccefficients of the
mean function without the cross term.9) The resulting estimates are quite
close to those obtained using OLS. The ccefficient of the education level
changes sign but remains quite insignificent. Estimated standard errors of
the Robinson-estimator are smaller than (heteroskedasticity corrected) OLS
standard errors. Surprisingly, however, the differences are quite small.

Comparing the asymptotically efficient Robinson estimates and the
consistent OLS-estimates, a Hausman specification test for (3.16) can be
performed. Under the assumptions given by Robinson (1987), it follows that
the OI.S-estimstor of the regresaion ccefficients, ~b,OLS' sntisfi.es,

JN(ab.OLS-~) ~d N(0'Vb.OLS).

with

Vb,OLS - ~EXiXi]-1~~iXio2(Xi)]~EXiXi]-1

(3.25)

(3.26)

Using the proofs of Robinson, ít is easy to show that a consistent estimate
of Vb 0~ is given by

vb'0~ - ~N-l~i-lXiXl]-1~N-1~i-1XiXial]~N-l~i-lXiXi]-1
(3.27)

where ai is the estimator of a2(Xi) given in (3.19). The Hausman test
statistic can thus easily be calculated. The outcome (in the case without
cross term) is 7.1, which is less than x6;0.05 - 12.6. Thus, on the basis of
the Hausman test we cannot reject specification (3.16),10)

Finally, we tested the assumption that the error term ebi of the
regression equation (3.17) is independent of the error term occurring in the
latent equation underlying the binary choice equation, generalising the
Heckman (1979) test for selectivity bias. If the function F in (3.1) is a
distribution function, then (3.1) can be rewritten as
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ai ~ Xi~a i Eai, a1-0 if ai(0, ai-1 if ai~0, (3.28)

where the error term eai has distribution function F. The regression model
(3.1~) can then be embedded in the following, more general, setting, which
allows for dependence between eai ~d Ebi'

E(EbilXi' Eai) - XEai' (3.29)

Notice that (3.29) is the usuel assumption imposed in the standard Heckman
two-step procedure. Obviously. (3.29) implies

E(Ebi~Xi,ai-1) - aE(eai~Eai)-Xiaa). (3.30)

In case of Probit, the expectation on the righthand side is the inverae of
Mill's ratio. Since Probit appears to describe the binary choice problem
quite well, the hypothesis H0: a-0, which corresponds to model (3.17), can
easily be tested by including the inverse of Mill's ratio (with aa replaced
by its Probit ML estimate) as an extra regressor in the regression equation.
We estimated the reaulting regression equation (without cross-term) using
the Robinson-estimator. The estimates are presented in the righthand panel
of Table 3.2. It follows that the null hypothesis a~0 is not rejected.

Simulations

Following Ven Soest and Kooreman (198~), we performed various
simulations on the same sample of 1815 households used for estimation and
testing. According to the two-equation model, the expected value of ybi, the
budget share spent on vacation expenditures, conditional on the covariates,
is given by,

E(YiIXi) - E(Yi~ai-1. Xi) P(ai-l~xi). (3.30)

P(ai-1~Xi) can be estimated using the Probit estimates or the Klein-Spady
estimates of aa, together with the non-parametric estimate FN drawn in
figure 3.2. According to (3.17), E(yi~ai-l,Xi) is equal to Xiab and can be
estimated by replacing acb by its OLS or its Robinaon estímate. We estimated
E(yi~a1-1,Xi) using the estlmation results without cross term.
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Table 3.3. Effects of a change of all total expendítures b the same factor
factor I II III IV V VI

0.90 0.583 0.586 i84i.2 1830.4 1188.0 ii85.6

0.99 0.625 0.627 2046.9 2041.4 i4o2.4 1399.6
1.00 0.630 0.631 2069.8 2065.0 1426.6 i423-9
i.0i o.634 0.635 2092.8 2088.7 1450.9 1448.2

i.i0 0.671 0.670 2300.8 2302.7 1672.4 i669.9
Explanation
I: P(yi)0~ Xi) according to Probit;
II : P(yi)0~ Xi) according to Klein-Spady;
III: E(yiTEi~ yi)0, Xi) according to OLS;
IV : E(yiTEi~ yi)0, Xi) according to Robinson-estimator;
V: E(yiTEi~ Xi) according to Probit end OLS;
VI : E(yiTEi~ Xi) according to Klein-Spady and Robinson-estimator.

The first simulations concern changes of all family incomes by the same
factor. Table 3.3 presents the consequences of different overall changes,
ranging from -lOx to t10X.ii) Comparing the various estimation results on
the basis of the outcomes of these macro-economic simulation results, we
hardly find any difference between Probit in combination with OLS and the
Klein-Spady estimator in combination with the Robinson estimator. According
to the last two columns in the table, the elasticity of aggregate vacation
expenditures with respect to total expenditures is 1.70. This outcome is
much smaller that the one in table 2.3. The main reason is that in table 2.3
the truncation was not taken into account.

In addition to overall changes in household incomes, we also consider
the impact of a redistribution of incomes in the sample. Following Van Soest
and Kooreman (i987), we used a redistribution of incomes such that the
sample standard deviation of the logarithm of incomes decreases with 10 y,
while the average íncome remains constant.i2) As a result, the ratio of the
maximum and minimum income in the sample falls from 8.4 to 6.8. According to
the Probit estimates, the participation probability rises from 0.630 to
0.637. Using the Klein-Spady estimator, we find a rise from 0.631 to 0.637.
On the other hand, expected expenditures would slightly fall (with Dfl 4.6
or Dfl 5.1, according to the parametric and semi-parametric estimates,
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respectively). Thus, again, we hardly find any differences between
parametric and the semi-parametric outcomes.

Thus, although, for example, figure 3.2 suggests that for at least some
families, substantial differences between Probit and Klein-Spady estimates
of participation probabillties exist, these are not reflected in the

particular macro-economic simulations we consider.

4. Evaluation and conclusions

In recent years, the use of limlted dependent variable models in

empirical micro-econometrics has become quite popular. In the literature on

structural labour supply modela, for example, more and more complicated

models are now being used, with various error terms reflecting different

sources of rendom variation. Most of these models are estimated by maximum

likelihood under the assumptions of normality and homoskedasticity. People

have by now started to realise the consequences of the fact that this

estimation procedure may yield inconaiatent estimates if the rather strong

assumptions are violated.
One implication of this is the need to test model assumptions

thoroughly. A number of specification tests is available in a rather general
fremework. See, e.g., the studies in Blundell (1987). If the model then
appears to be misspecified, the next step may be to relax the model
assumptlons and find estimators which remain consistent under these more
general assumptions. Although various semi-parametric models end estimation
techniques have been developed for this goal in the recent literature (cf.
Robinson (1988) for a survey), applications are stíll sparse. The aim of
this paper has been to enalyse models explaining vacation expenditures, with
emphasis on specification testing and comparing parametric and semi-
parametric techniques.

We have considered two types of models. In section 2, we considered
various specifications of the single-equation censored regression model. On
the basis of specification tests, such as chi-squared diagnostics, all
parametric specifications we considered are rejected. We estimated a semi-
parametric specification allowing for heteroskedasticity, using two
different estimators. One of the drawbacks of this approach is that the
distribution function of the error terms cannot be estimated. Thus, we were
not able to compute, for example, the income elasticity of vacation
expenditures. This elasticity seems, from a practical point of view, much
more interesting then the elasticity of the underlying latent variable which
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we did compute. A second drawback is that hardly any methods are available
to test whether this semi-parametric model fits the data.

In section 3, we considered two-equation models, in which the decisions
whether or not to go on holiday and how much to spend are modelled
recursively. The participation decision was modelled by a binary choice
model. The semi-parametric single index specification, and even the Probit
model, a special case of the single index model, appeared to fit the data
quite well. Predicted probabilitíes according to these models differ for
sparse values of the covariates only.

Conditional on the decision to participate, the decision on how much to
spend was modelled by a regresaion equation. This equation was estimated
using both OLS and a semi-parametrically efficient estimator, with nearly
identical results. The assumption of independence between the error in the
regression equation and the error in the Probit model (written as a latent
variable model) was tested and not rejected.

The two-equations model has the advantage that, even in case of the
semi-parametric specification, it can be used to compute expected vacation
expenditures for each family. It thus also allows for the computation of,
for example, the elasticity of vacation expenditures with respect to total
expenditures. The reason is that the probabilities in the binary choice
model can be estimated satisfactorily. Problems would arise if we would try
to estimate the distribution of the error term in the regression equation,
but because of the linearity of this equation, this distribution is not
needed. We therefore think that, at least in our cese, the two-equations
model is more appropriate than the single equation censored regression
model.

If we repeat the simulations discussed in section 3 with some of the
parametric models in section 2, we find similar income elasticities (cf.
appendix 2). On the other hand, it appears that the models in section 3
capture the average value of vacation expenditures in the data much better
than those in section 2. This seems one more reason to prefer the two-
equations model.

Semi-parametric estimators are at this moment only available for some
specific, relatively simple, univariate models. The recursive model in
section 3 serves to illustrate that such simple models can be combined into
a model which in some sense captures the complicated economic phenomena of
interest.
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Appendix 1: The Data

The data stem from the Consumer Expenditure Survey drawn in 1981 by the
Netherlands Central Bureau of Statistics. Sample statistics for the
exogenous variables are given in table A.1.

Table A.1. Sample statistics

All observations Observations with zero Observations with non-zero
vacation expenditures vacation expenditures

Mean Std. dev. Mean Std. dev. Mean Std. dev.

x2i 10.37 0.36 10.22 0.34 10.46 0.35
x3i 1.10 0.37 1.05 0.36 1.13 0.37
x4i 7.09 3.18 7.3z 3.44 6.96 3.01
x51 2.31 1.06 z.o6 0.96 2.45 1.09
x6i 3.86 1.74 3.76 1.77 3.91 1.72

Explanation:
X2i: logarithm of total family expenditures in 1981 (in Dfl)

X3i: logarithm of femily size (2 C family size C 7)

X4i: age class family head; X4i-1: C 20 years old; x4i-2: 20-24 years old;
X4i-3: 25-29 Years old; .. ; x4i-13: ~ 74 years old

X5 : education level family head, ranging from 1(low) to 5(high)i
X6i: degree of urbanisation, ranging from 1(country village) to 6(big

city)

Vacation expenditures are defined as expenditures of any member of the
family on a vacation, which is defined as a'stay away from home for
recreation purposes for at least four successive nights'. The average annual
amount spent on vacations per family is Dfl 1415.4, zeroes included, and Dfl
2247.5 if zero expenditures are not included.

The distribution of positive budget shares of vacation expenditures is
presented in Figure A.1.

Appendix 2: Table 3.3 for two censored regression specifications

The corresponding outcomes of table 3.3 for the Tobit specification and
the censored regression specification essuming normality and exponential
heteroskedasticity are represented in table A.2.
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Figure A.1 Distribution of budget shares spent on vacations (in ó)

Table A.2 Effects of a change of all total expenditures by the same factor
factor I II IIZ IV V VI

0.90 0.562 0.590 1~64.3 1922.2 1100.8 1244.6

0.99 0.595 0.62~ 2o13.z 2056.2 1311.3 1468.6
i.0o 0.599 0.631 2o41.i z182.3 1335.1 1493.6
i.ol 0.602 0.635 2o69.i 2208.5 1359-0 1518.~
1.10 0.629 0.666 2322.5 2444.2 1576.3 1~44.7

Explanation
I: P(yi)o~Xi) according to Tobit;
II : P(yi~o~Xi) according to censored regression model with exponential

heteroskedasticity and normality;
ZII: E(yiTEi~yi)o,Xi) according to Tobit;
IV : E(yiTEi~yi)o,Xi) according to censored regression model with

exponential heteroskedasticity and normality;
V: E(yiTEi~Xi) according to Tobit;
VI : E(yiTEi~Xi) according to censored regression model with exponential

heteroskedasticity and normality.
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Notes

1) 'To go on holiday', 'to participate' end 'positive budget share of
vacation expenditures' are used as synonyms. Vacation expenditures
include expenditures of all members of the family. Thus a family is
said to participate or to go on holiday if at least one member of the
family goes on holiday.
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2) Preliminary estimation results with squares and cross products of the
regressors suggested that only XZi should be incorporated.

3) Moon (1989) presents a Monte-Carlo comparison of the finite sample
performance oF the CLAD-estimator and several other semi-parametric
estimators.

4) A test for (3.4) which generalises the usuel test for aelection bias in
this type of two equation models (cf. Heckman, 1979), will be discussed
below.

5) Following Horowitz we used the normal denaity. The smoothing paremeter
b was set equal to 4~3, and the smoothing parameter hN was chosen such
that ~N, the kernel-bandwídth, was equal to the standard deviation of

Xái~a~á. Other choices of hN yield slightly different curves, but the

conclusion that the Probit specification is accepted, remains.

6) Klein and Spady (1989) suggest that the finite sample performance of
their estimator can be improved by multiplying the quasi-log-likelihood
contributiona with a trimming function tNi, which 1s used to downweight
observations with XiáB near the support boundary, where density
estímates may not be reliable. The parameter estimation results we
obtained using such trimming functions were virtually identical to
those presented in table 3.1. Only the value of the quasi-log-
likelihood increased, as might be expected.

7) An alternative kernel, which we used for comparison, can be found in
Horowitz (1991).

8) Almost identical results were obtained using the kernel used by
Horowitz (1991) (with correspondig smoothness parameter hN-0.1). Other
values of the smoothing parameters resulted in slightly different

outcomes. The (informal) graphical test to be presented later suggests
that the present choice fits the data reasonably well.

9) In addition, we tried other cross products and squares of XZi,.~ "X6i'
using the Robinson-estimator. None of these turned out to be
significant on the 5X level.
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10) The Hausman test may not be very powerful, since, for example, it is
not easy to think of alternative specifications under which the
Robinson estimator is not consistent while OLS remains consistent.

11) For comparison, we present in appendix 2 the corresponding results for
the Tobit model as well as the censored regression model with normality
and exponential heteroskedasticity.

12) For details we refer to Van Scest and Kooreman (1987), footnote p. 224.
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