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Abstract

In a binary choice panel data model with individual effects and two time periods, Manski proposed
the maximum score estimator, based on a discontinuous objective function, and proved its
consistency under weak distributional assumptions. However, the rate of convergence of this
estimator is low (N ) and its limit distribution cannot be used for making inference. This paper
overcomes this problem by applying the idea of Horowitz to smooth Manski’s objective function.
The paper extends the resulting smoothed maximum score estimator to the case of more than two
time periods and to unbalanced panels (assuming away selectivity effects). Under weak
assumptions the estimator is consistent and asymptotically normal with a rate of convergence that
is at least N2/5 and can be made arbitrarily close to N½, depending on the strength of the
smoothness assumptions imposed. Statistical inferences can be made. The estimator is applied to an
equation for labour force participation of married Dutch females on the basis of annual
observations from 1984 through 1988. A simulated annealing type of algorithm is used to
maximize the objective function because it can have many local maxima and attention is paid to
the choice of the smoothness parameter. Finally, some model specification tests are performed.

Keywords: panel data, binary choice model, semiparametric estimation, smoothing, selectivity
bias, unbalanced panel.
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1. Introduction

In a binary choice panel data model with individual effects and two time periods, Manski (1987)

proposed the maximum score estimator, based on a discontinuous objective function, and proved

its consistency under weak distributional assumptions. However, the rate of convergence of this

estimator is low (N ) and its limit distribution cannot be used for making inference. This paper

overcomes this problem by applying the idea of Horowitz (1992) to smooth Manski’s objective

function. Moreover, it generalizes Manski (1987) to panels with more than two time periods and to

unbalanced panels.

This paper considers a binary choice panel data model with individual effects:

in which ß∈ k and 1(A) is the indicator function that is 1 if A is true and 0 otherwise. One

(1.1)

observes (yit,x
’
it)’, i=1,..,N for some (possibly all) t∈{1,2,..,T}. The index i represents the

individuals or households and index t represents time. An example of such a model is a labour

force participation model of married females. The dependent variable is whether a female

participates or not and the explanatory variables include household characteristics and labour

supply of the male.

In general, the model assumes independence across individuals and imposes rather strong

assumptions with respect to the distributions ofαi and ui=(ui1,..,uiT), conditional on x=(xi1,..,xiT).

When, for example,αi and ui are assumed to be independently normally distributed and the uit are

i.i.d. over t, we have the Heckman and Willis (1976) model. A drawback of this approach is that

the composite error terms vit=αi+uit are equally correlated over time. A normal distribution with a

general structure for the covariance of the uit is assumed in Avery, Hansen and Hotz (1983). A

drawback of both models is that theαi are not allowed to depend on (xi1,..,xiT). This problem has

been overcome by Chamberlain (1984), who assumes normality ofαi and ui, with unrestricted

covariance matrix and allows theαi to be correlated with (xi1,..,xit). A GMM estimation procedure

can be used to estimate ß.

In contrast, in a fixed effects model, the incidental parameters problem arises (Neyman and Scott

(1948)). One feasible approach to deal with a fixed effects model is to assume the uit to follow an

i.i.d. standard logistic distribution and then use conditional maximum likelihood to estimateβ.

Assuming i.i.d. normal errors cannot be used to estimateβ consistently, see Maddala (1987).
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A drawback of all the random effects parametric models is the assumption of normal

distributions for αi and/or ui. In general, this may yield inconsistent estimators ofβ if the true

distributions ofαi and/or ui are nonnormal. In a fixed effects setting the distributional assumptions

are also rather restrictive. To solve the problem for a cross-section binary choice model (without

the αi), several estimators forβ have been proposed that are consistent under weaker assumptions.

Examples are the maximum score estimator of Manski (1985) and the smoothed maximum score

estimator of Horowitz (1992). A drawback of the former is that the rate of convergence is low

(N ) and its limit distribution is some complicated non-normal distribution that is hard to use for

inference (see Kim and Pollard (1990)). This problem has been overcome by the smoothed

maximum score estimator, which is obtained by smoothing the maximum score objective function,

such that the asymptotic behaviour can be analyzed using standard Taylor series approximations.

If one is willing to make strong distributional assumptions in a binary choice panel data model,

one of the previous mentioned parametric approaches can be used to estimateβ. However,

consistency is lost if the distributional assumptions are not valid. The semiparametric literature is

limited for the binary choice panel data model with individual effects. An example of such an

estimator, for the case T=2, is the maximum score estimator proposed by Manski (1987). The

resulting estimator forβ is consistent under weak assumptions but the limit distribution shares the

problems of the estimator of Manski (1985) for a cross-section. This paper aims to construct a

consistent asymptotically normal estimator forβ in model (1.1) with individual effects, based on

relatively weak assumptions. The estimator will be derived by combining the ideas of Horowitz

(1992) and Manski (1987) and the estimator will be extended to the case of more periods (T≥2)

and for unbalanced panels (without selectivity). The assumptions indicate that the estimator is

consistent both in a fixed effects model and a random effects model, because the distribution ofαi

conditional on x=(xi1,..,xiT) is not restricted. Also, serial correlation between the error terms as well

as forms of heteroskedasticity are allowed for. The resulting smoothed maximum score estimator is

calculated for an empirical application concerning labour force participation of married Dutch

females.

The remainder of this paper is organized as follows: section 2 defines the smoothed maximum

score estimator forβ in model (1.1) and derives its asymptotic properties. Section 3 discusses the

empirical application. The results are obtained by using a global search algorithm to find the global

optimum of some non-concave objective function, as proposed by Corana et al. (1987). Section 4

deals with specification testing. Concluding remarks are presented in section 5. The assumptions

used to prove consistency are presented in the main text: they indicate when things may go wrong.

The additional assumptions required for deriving the asymptotic limit distribution are presented in
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the appendix together with proofs of theorems and lemmas.

2. Smoothed Maximum Score for Panel Data

This section extends the smoothed maximum score estimation method as proposed for cross-

section data by Horowitz (1992) to the case of panel data. The only assumptions concerning uit,

t=1,..,T, is that they are time stationary conditional on (xi1,..,xIt) and αi and that the support of the

distribution function of uit is . As is common in binary choice models, one normalization has to

be made for identification in model (1.1). Because no parametric distributional assumptions are

made, this cannot be established by normalizing a parameter in the distribution function of theαi

or uit. The normalization thus has to concernβ. Following Horowitz (1992), the paper normalizes

to one in absolute value an element inβ that is nonzero and that is related to an absolute

continuous element in wits≡xit−xis. Arrange the components of wits=(wits,1,..,wits,k) such that wits,1

satisfies this condition, then the normalization is b1 =1.

Define

where cits=ritris, with rit=1 if {y it,xit} is observed, and zero otherwise (a missing observation); hence

(2.1)

cits=1 if both {yit,xit} and {yis,xis} are observed and zero otherwise, and sign(z)=1 if z≥0 and −1

otherwise. From the definition of cits it follows that individuals who are not observed or who are

observed in only one time period do not contribute to the objective function and hence N can be

interpreted as the number of individuals for whom at least two of the (yit,xit), t=1,..,T are

observed.2 For T=2 and all cits=1, maximization of G*
NT(b) w.r.t. b (and normalizing b =1) yields

the maximum score estimator of Manski (1987). Let Y={(yit,yis,xit,xis) yit≠yis}. Maximizing G*
NT(b)

boils down to choosing b such that the sign of b’wits equals the sign of yit−yis for as many

observations in Y as possible. Under the same distributional assumptions as mentioned in the

beginning of this section, the resulting estimator is consistent.

The problems with the limit distribution of the estimator obtained by maximizing G*
NT(b) are

caused by the sign function, which is a step function. The idea of Horowitz (1992) is to smooth

the objective function. Note that maximizing G*
NT(b) boils down to maximizing

2 Since this paper imposes independence between the c’
tss and the other variables, there is no harm in

defining N this way.
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This objective function can be smoothed by replacing the indicator function 1(.) by some smooth

(2.2)

function KN(.) that converges to the indicator function as N→∞. Rewriting yit−yis as

1(yit≠yis)[2*1(yit=1,yis=0)−1], following Horowitz (1992), let

whereσN→0 (N→∞) and K(.) is a continuous function of the real line into itself satisfying:

(2.3)

K1. K(v) <M for some finite M and all v in ;

K2. lim v→−∞ K(v)=0 and limv→∞ K(v)=1.

K(v) could thus be a distribution function but it also might take on values larger than one or lower

than zero and it need not necessarily be increasing. Two examples satisfying K1 and K2 are

K2(v)=Φ(v) and

cf. Horowitz (1992).

(2.4)

The derivative of Kh(v) (h=2,4) with respect to v is an hth order kernel. It is easily seen that if z

equals zero with probability zero, then K(z/σN)→1(z≥0) almost surely as N→∞ (and thusσN→0)

and use this to prove that GNT(b;σN)→G*
NT(b) almost surely uniformly in b as N tends to infinity.

Use this property, together with assumptions that are similar to Horowitz (1992), and some

additional assumptions concerning exclusion of any form of selectivity bias (caused by attrition,

initial nonresponse, wave nonresponse or item nonresponse, see Verbeek and Nijman (1992)), to

prove consistency of the smoothed maximum score estimator in model (1.1). The continuity and

differentiability of GNT(b;σN) makes it feasible to derive the asymptotic distribution through the

usual Taylor series approximations.

Let x=(x1,..,xT) and let F denote the population distribution of {(y*
t,xt,ut; t=1,..,T),α}.

Let Fu x,α denote the distribution of u conditional on (x,α) and let denote the distribution of wts

(i subscripts are suppressed). To prove consistency of the estimator resulting from maximization of
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GNT(b;σN) over the set b1 =1 and (b2,..,bk) in a compact set̃B, use the followingassumptions

(assumptions (i)−(iii) are the analogons of Manski (1987), assumption (iv) is from Horowitz (1992)

and assumption (v) is extra):

(i) a) for all (x,α) and s,t≤T;

b) The support of is for all (x,α) and all t;

(ii) a) For all t,s the support of is not contained in any proper linear subspace ofk;

b) For all t,s there exists at least one j in {1,2,..,k} such that ßj≠0 and such that, for

almost every value of̃wts=(wts,1,..,wts,j−1, wts,j+1,..,wts,k) the scalar random variable wts,j

has everywhere positive Lebesgue density conditional onw̃ts and yt≠ys. Notice that

j=1 has already been used;

(iii) A random sample is drawn from F;

(iv) ß1 =1 andβ̃=(ß2,..,ßk)’ is contained in a compact subsetB̃ of k−1;

(v) cts is independent of (y1,x1,..,yT,xT) and P(cts>0)>0 for some t,s.

Assumption (i) a) says that the distribution of the error term in (1.1) is time stationary conditional

on (x,α). Assumptions (i) b) and (ii) a) are regularity conditions needed for identification. For

assumption (ii) b) to hold, wts should contain an absolute continuous element with non-zero

coefficient. Assumptions (iii) and (iv) need no explanation. Assumption (v) allows for an

unbalanced or rotating panel but requires the absence of selectivity bias. (v) implies that N, the

number of observations for which at least two time periods are available, tends to infinity if the

random sample grows in size. To prove consistency, it is sufficient that cts is independent of

(yt,xt,ys,xs), but the slightly stronger assumption (v) that cts is independent of (y1,x1,..,yT,xT) is

needed to derive the limit distribution. The assumptions place no restrictions on the distribution of

α conditional on x, and assumption (i) implies that no restrictions are imposed on the serial

dependence between ut and us (s≠t), while the form of heteroskedasticity is restricted only through

(i) b). It includes heterogeneity of the form Var(ut α,x)=exp(α+τ’x), t=1,..,T, whereas it excludes

Var(ut α,x)=exp(α+τ’x t), t=1,..,T, so the dependence must be through x and not just through xt.

The following corollary indicates that the present panel data problem has a median regression

interpretation (cf. Manski (1987, p. 360)), which is the basis for the construction of the estimator.

Corollary 1:

Let assumption (i) hold. Then for all t,s Median(yt−ys wts,yt≠ys)=sign(ß’wts) (i subscripts are

suppressed).

This conditional median restriction can be viewed as an alternative way to write the model
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(conditional on yt≠ys) as:

and Median(uits wits,yit≠yis)=0, for all i, t and s.

(2.5)

The following theorem shows that the smoothed maximum score estimator for panel data is

consistent under assumptions (i)-(v).

Theorem 1 (Consistency):

Let assumptions (i)−(v) hold. Definẽb=(b2,..,bk)’and w̃ts=(wts,2,..,wts,k)’. Let bN be a solution to

Then limN→∞ bN = ß almost surely.

(2.6)

Before stating the theorem that deals with the asymptotic distribution of the smoothed maximum

score estimator, this section will provide some definitions. Let zts=ß’wts. Then, because of the

normalization inβ, there is a one-to-one relation between (z,w̃ts) and wts for each fixedβ. By

assumption (ii), the distribution of zts conditional onw̃ts and yt≠ys has everywhere positive density

with respect to Lebesgue measure for almost everyw̃ts. Let p(zts w̃ts,yt≠ys) denote this density. For

each positive integer i define

p(i)(zts w̃ts,yt≠ys)=∂ip(zts w̃ts,yt≠ys)/∂zi
ts whenever the derivative exists and let

p(0)(zts w̃ts,yt≠ys)=p(zts w̃ts,yt≠ys).

Let P(w̃ts yt≠ys) denote the cumulative distribution function ofw̃ts conditional on yt≠ys,

and let Fu(−zts zts,w̃ts,yt≠ys) denote the cumulative distribution of u=uts conditional on zts, w̃ts and

yt≠ys, evaluated at −zts and where u (=uts) is the error term in model(2.5).

For each positive integer i, define F(
u
i)(−zts zts,w̃ts,yt≠ys)=∂iFu(−zts zts,w̃ts,yt≠ys)/∂zi

ts whenever the

derivative exists.

Let
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and

(2.7)

(2.8)

In addition, let assumptions (vi) to (xi) (see appendix) hold for some h≥2. This requires the use of

(2.9)

a smoothing function K(v) such that the derivative of K(v) is an hth order Kernel (h≥2, examples

are K2(v) and K4(v) introduced above) and some additional assumptions on the density of

(suppressing the i subscript)β’w ts and the distribution of uts, both conditional on (̃wts, yt≠ys), (see

appendix assumptions (vii), (viii) and (ix)). The following theorem shows the main result

concerning the asymptotic distribution of the smoothed maximum score estimator.

Theorem 2 (Asymptotic Distribution):

Let assumptions (i)−(xi) hold for some h≥2 (assumptions (vi)−(xi) are in the appendix) and let

{bN} be a sequence of solutions to the maximization of problem(2.6). The fastest rate of

convergence in distribution is obtained by the following: LetσN=(λ/N)1/(2h+1) with 0<λ<∞; let Ω be

any nonstochastic, positive semidefinite matrix such that A’Q−1ΩQ−1A≠0; let EA denote the

expectation with respect to the asymptotic distribution of Nh/(2h+1)(b̃N−β̃), and

MSE=EA(b̃N−β̃)’Ω(bN−β̃). MSE is minimized by setting

λ=λ*=[trace(Q−1ΩQ−1D1)]/(2hA’Q−1ΩQ−1A),

in which case

N h/(2h+1)(b̃N−β̃) →d MVN(−(λ*)h/(2h+1)Q−1A, (λ*)−1/(2h+1)Q−1D1Q
−1).

Note that the rate of convergence is lower than N½ and depends on h. By choosing h large enough,

the rate of convergence can be made arbitrarily close to N½. As before, a larger h requires the use

of a higher-order kernel and stronger requirements with respect to p(zts w̃ts,yt≠ys) and

Fu(−zts zts,w̃ts,yt≠ys), see assumptions (vii), (viii) and (ix) in the appendix. For h=1 the rate of

convergence is N and N (b̃N−β̃) has an unknown limit distribution, and is therefore not useful for
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making inferences (see Horowitz (1992), p. 514); hence for h=1 the smoothed maximum score

estimator for panel data has no apparent advantages over Manski’s estimator. For h≥2, the

estimator has an asymptotic bias. The structure of the asymptotic covariance matrix is similar to

that of an extremum estimator or to that of a pseudo maximum likelihood estimator. The theorem

stated here follows from theorems 1 and 2 in the appendix. The interested reader can find detailed

information concerning lower rates of convergence (theorem 2) there.

Finally, if theorem 2 is to be used to make inferences, consistent estimators for the matrices

involved in the asymptotic distribution of the smoothed maximum score estimator have to be

constructed. The following theorem shows how to construct consistent estimators for A, D1 and Q,

where the expressions for TNT(bN,σN) and QNT(bN,σN) are the (familiar) first-order derivatives and

the second-order derivatives of the objective function GNT(b,σN) with respect tõb, respectively.

Theorem 3:

Let bN be a consistent smoothed maximum score estimator based onσN=O(N−1/(2h+1)). For

b∈{−1,1}x B̃ and i=1,..,N, define

Let σ*
N=O(N−δ/(2h+1)), where 0<δ<1. Then

(2.10)

(a) ÂN=(σ*
N)−hTNT(bN;σ*

N) converges in probability to A;

(b) the matrix

converges in probability to D1;

(2.11)

(c) QNT(bN;σN) converges in probability to Q.

Note that TNT(bN;σN)=0 by the first-order condition of the optimization problem (2.6). Becauseσ*
N

is of lower order thanσN , TNT(bN;σ*
N) is not identically zero.

3. Empirical Example

We examine what kind of problems arise when applying the smoothed maximum score

estimator, by applying the estimation procedure to an empirical model explaining labour force

participation of married Dutch females in age between 18 and 65. Participation is defined as
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having a job or looking for a job. Theαi (individual specific effects) are introduced to deal with

characteristics that are not observed and thus are not included in xit. Estimates are based upon the

October waves of 1984 through 1988 of the Socio−Economic Panel (SEP), drawn by the

Netherlands Central Bureau of Statistics. Hence T=5. The endogenous variable (IEF) is one if the

female participates, and zero if she does not. Descriptions of the endogenous and explanatory

variables are given in table 1.3

Table 1: overview of variables

variable description

IEF dummy variable indicating participation of the female (IEF=1) or no participa-

tion (IEF=0)

T time (in years after 1900)

OI after tax other family income, excluding female’s earnings and earnings of

children living with the family (Dutch Guilders per week), including husband’s

earnings and benefits and excluding the female’s benefits

HM the number of hours per week that the male is working

NCH number of children younger than 18 years old, living with the family

DCH6 dummy, indicating whether the family contains one or more children with an

age less than 6 years. DCH6=1 if this is the case, DCH6=0 otherwise

IEM dummy, IEM=1 if the husband is working and IEM=0 if the husband is not

working

AGE2 age squared

Instead of using OI itself, the model uses the natural logarithm of (OI+1) as an explanatory

variable. This variable will be denoted by LOI from now on. The variables NCH and DCH6

represent the household characteristics; IEM and HM represent the actual labour supply of the

male. The female’s labour force participation decision is thus made conditional on the male’s

actual labour supply and income. The variable T corrects for time effects, as does the variable

3 AGE and HM are integer values.
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AGE2. The variable AGE is left out because estimation is based on differences between two time

periods and the difference in AGE is perfectly correlated with the difference in T. This implies that

the estimated coefficient on T should be interpreted as a combination of a time effect and an age

effect. The dataset used in estimation was constructed by linking the five SEP waves and selecting

the married females that are present in at least two waves and for whom information on the

variables of interest (see table 1) is available.4 This yields a dataset consisting of N=3174 married

Dutch females. Sample statistics are presented in table 2.

Table 2: sample statistics (11675 observations)

Variable Mean Standard Dev. Minimum Maximum

IEF 0.4277 0.4948 0 1

LOI 6.1931 0.9829 0 9.2606

HM 35.4571 17.7123 0 97

NCH 1.1522 1.1156 0 7

DCH6 0.2940 0.4556 0 1

IEM 0.8394 0.3672 0 1

AGE2 1596.02 893.6183 324 4096

In the period 1984-1988, on average 43% of the married Dutch females were participating,

whereas 84% of their males had a job. Over time, labour force participation of the females

increased gradually, whereas the average of IEM did not change much. The averages of NCH and

DCH6 did not change that much over time although they tend to decrease slightly.

Furthermore, from the objective function it is obvious that the only observations that contain

information onβ are the ones for which changes in the participation have taken place, i.e. females

who shifted from participating to non-participating or vice versa. This yields 2563 combinations of

(yit,yis), i=1,..,N, s,t=1,2,..,T, such that yit≠yis. For the two subsamples (yit,yis)=(1,0) and

(yit,yis)=(0,1), sample statistics on these differences are given in table 3.

4 The only problem that occurred here was that for some observations OI and/or HM were/was missing
(item nonresponse). These observations were left out. The initial panel contained 4268 individuals and 13629
observations; after leaving out the observations with item nonresponse, the panel shrunk to 12583
observations.
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Table 3: sample statistics for differences used in estimation (2563 observations)

Total 2563 observations

Variable*

IEF=1

(1325 obs)

IEF=−1

(1238 obs)

T 2.129

(1.023)

2.054

(0.981)

LOI 0.031

(0.909)

0.084

(1.121)

HM −1.004

(12.369)

−0.271

(13.685)

NCH 0.018

(0.515)

0.286

(0.740)

DCH6 −0.097

(0.362)

0.238

(0.493)

IEM 0.002

(0.262)

0

(0.273)

AGE2 150.165

(80.420)

146.439

(84.325)

* Note that the variables refer to differences between levels in different time periods

It must be concluded that the only effect (ignoring the standard errors) that occurs is that DCH6

has a negative effect on the willingness to participate (due to a negative effect on z*
ts). For the

other explanatory variables the effects are unclear.

The only exogenous variable that satisfies assumption (ii) b) is LOI and we expect it to have a

non-zero effect on the willingness to participate (y*
i t). Therefore, the coefficient related to LOI will

be normalized to one in absolute value. Before conducting smoothed maximum score, a standard

probit was performed first, treating the 2563 combinations as a cross-section. The estimates will be

used as a comparison to the ones resulting from smoothed maximum score. Note that, even with

normally distributed error terms uit in (1.1) and in the absence of individual effects, the
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transformed model (2.5) does not satisfy the assumptions of the probit model. However, assuming

that the uits in model (2.5) are i.i.d. N(0,σ2
u), probit fits in model (2.5). If the distributional

assumptions are not valid, the probit estimator, as well as the standard errors, may be inconsistent.

The probit estimator will be used to compare the estimation results with those of smoothed

maximum score on the basis of the same data. The probit results both for normalizationσ=1 and

normalization bLOI=−1 are presented in table 4. The estimator in the second column is denoted

bprobit.

Table 4: results from probit estimation (standard errors in parentheses), dependent variable IEF

Variable Normalizationσ=1 Normalization bLOI=−1

T 0.412

(0.055)

13.773

(11.150)

LOI −0.030

(0.026)

−1

n.a.

HM −0.011

(0.004)

-0.378

(0.315)

NCH −0.176

(0.053)

-5.866

(5.029)

DCH6 −1.182

(0.079)

-39.482

(32.184)

IEM 0.446

(0.180)

14.912

(11.847)

AGE2 −0.005

(0.001)

-0.163

(0.132)

σ 1.

n.a.

33.405

(26.972)

With the normalizationσ=1, all the coefficients are significant except for bLOI. The coefficients

have the expected sign (except maybe for IEM). The fact that LOI does not enter the model

significantly is unfortunate because its coefficient is (going to be) normalized at (minus) one. It
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indicates that it might be wise to carry out the optimization of the smoothed maximum score

function over both bLOI=−1 and bLOI=1. To test whether the assumption of normality is justified by

the data, a specification test was performed. For the moment, normalizeσ to one and let f andΦ

denote the density of the standard normal and its distribution function, respectively. We performed

a LM test on H0:γ1γ2=0 in the family of probability distributions P(uts≤t wts)=Φ(t+γ1t
2+γ2t

3),

generalizing the standard normal. This class was proposed by Ruud (1984), and Newey (1985)

showed that the test statistic can easily be computed using the R2 of an OLS regression of a vector

of ones on the scores and the moments

Under the null, the distribution of the test statistic isχ2
2. The value of the test statistic was 45.6

(3.1)

which leads to a rejection of the hypothesis of normally distributed errors at a significance level of

5% and it implies that we have to be a bit careful when interpreting the probit estimates.

To perform smoothed maximum score, two problems have to be solved: 1)σN has to be chosen

and 2) a non-concave function has to be maximized. A few arbitrary choices could be made forσN

(keeping in mind that it has to be of some order, as stated in theorem 1) and then maximize

GNT(b;σN) w.r.t. b. This, however, does not seem to be tractable because since one does not know

what σN should be, one would have to conduct a global optimization algorithm quite often, which

is time consuming. To provide some indication of how to chooseσN, we carried out (non-

smoothed) maximum score to get a consistent estimator bMS for b. bMS is then used to determineσN

as follows: transform the observations on wits linearly in such a way that the sample covariance

matrix of the transformed wits equals the identity matrix. Transform bMS in the reverse way, so that

b’wits remains the same for all i, t and s. The smoothed maximum score objective function is

drawn as a function of one of the elements in b, keeping the other values at their value in bMS.

This is repeated for all free parameters in bMS and for various choices ofσN. σN is determined as

that value for which all these figures are smooth (i.e. not too erratic and not too flattened out).

With the choice forσN, GNT(b;σN) can then be optimized. To save time we tried to use only a local

search algorithm starting from bMS (steepest descent). It appeared that the solution obtained from

local search was not as good as the one returned by the global optimization algorithm. The

following strategy therefore holds:

(i) calculate bMS using a global optimization algorithm;

(ii) transform the data such that the empirical variance-covariance matrix equals the identity,

(reversely) transform bMS, choose the function K(.) and determineσN as described
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previously;

(iii) use a global optimization algorithm on the transformed dataset with the transformed

estimates bMS as the starting solution;

(iv) transform back the final solution.

When optimizing G*
NT(b) (maximum score, step (i)) over the set bLOI =1, one is confronted with

the problem of maximizing an objective function that has no properties that would simplify

locating the global maximum (e.g. concavity); hence, one must use a global search maximization

algorithm. The algorithm used is the one proposed by Corana et al. (1987). Goffe et al. (1994)

show that it performs well compared to several local maximization algorithms. The algorithm runs

as follows: for each free parameter an initial parameter search interval must be provided. For a

given starting point (possibly randomly drawn from the search intervals) and an initial

’temperature’, T0, compute the value of the objective function. Alter the coordinate of the first free

parameter by randomly choosing an element in the parameter search interval. If the value of the

objective function in this candidate point is higher, this point is accepted. If it is lower it is

accepted with a probability depending on the difference in the objective function value and the

temperature. The procedure is repeated for the second free parameter in the last accepted point.

Repeat this until all free parameters have come in turn. The whole procedure is repeated NS times.

After that the search intervals are adjusted. A search interval is increased if many of the candidate

points in this direction were accepted. The interval is decreased if few points were accepted, and

the interval remains unchanged if approximately 50 percent of the candidate points in this direction

are accepted. All this is repeated NT times, after which temperature is reduced by a factor rT<1 so

that decreases in objective function values are less frequently accepted. Call the previous

procedures a round. The last accepted point in the last round is compared with the optimal solution

found so far and also with the last accepted points in the previous Nε rounds. If the absolute value

of the difference between all these points is lower thanε, the algorithm has converged. If the

stopping criterion is not met, the algorithm continues with the next round. To apply the algorithm,

one must choose several parameters; the choices used are mentioned in the tables. The parameters

c and v have not been mentioned previously: these involve the modification of the search intervals.

For the exact expressions, see Corana et al. (1987). The domain and T0 are problem specific and

choosing v equal to half the length of the initial parameter search interval performs quite well. T0

should be chosen large relative to the range of the objective function in the domain. The

optimization has to be conducted both for bLOI=1 and bLOI=−1. For K(.), K4(.) is used, so h=4.
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The estimation results for the maximum score estimator after normalizing bLOI=−1 are in table 5.

Table 5: maximum score estimates5

Variable Parameter Estimate

T 4.288

LOI −1

HM −0.228

NCH 0.552

DCH6 −14.219

IEM 9.463

AGE2 −0.046

Value objective function : 991
* Note that the variables refer to differences between levels in different time periods

The value of the objective function when bLOI=1 was 957. For both normalizations the optimization

algorithm took approximately five hours on a vax/vms mainframe. For comparison, the value of

the objective function for the probit estimates as reported in the second column of table 4 is 895.

This implies that using bMS instead of bprobit leads to an increase in matching sign(yt−ys) with

sign(β’w ts) from 1729 to 1777. The difference between bMS and bprobit seems substantial when

normalizing bLOI=−1. However, if both estimators are normalized to have norm one, it appears that

the estimates for T, DCH6 and AGE2 are nearly the same, whereas the estimates for the other

parameters differ substantially both in sign and magnitude.

5 Choices for parameters in the Corana et al. (1987) algorithm (for notation see the main text):
Domain : [−50, 50]x{−1}x[−5, 5]x[−25,25]x[−75, 75]x[−50, 50]x[−5, 5]
c : [2, 2, 2, 2, 2, 2] (free parameters only)
v : [50, 5, 25, 75, 50, 5] (free parameters only)
rT : 0.95
T0 : 10000
ε : 0.000001
Nε : 4
Ns : 30
Nt : 20
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To apply smoothed maximum score we have to fix the smoothness parameter. Using the

previously proposed determination process forσN, it is fixed at 0.5. Again simulated annealing is

used to locate the global optimum (step (iii)). Transforming back the optimal solution to the

original data and normalizing bLOI=−1, resulted in the estimates as reported in table 6. Call the bias

corrected estimates bSMS.

Table 6: smoothed maximum score estimates

Ω=I

δ=0.7

K(.)=K4(.)

Variable Bias corrected estimate Bias Standard errors

T 4.880* 0.141 0.435

LOI −1 − −

HM −0.127* −0.005 0.023

NCH 2.914* 0.133 0.563

DCH6 −15.895* −0.811 2.127

IEM 4.762* 0.134 0.823

AGE2 −0.054* 0.001 0.006

Mean Square Error is 6.42 and choices for parameters in the Corana et al. (1987) algorithm are the

same as in the previous table.
* significant at 5%

The asymptotic bias and asymptotic standard errors are calculated using the expressions in theorem

2. For Ω the identity matrix was used and the choice forδ did not change the results dramatically.

The results in the table are reported forδ=0.7. I conclude that the bias is low in comparison to the

standard errors and that the standard errors are low in comparison to the parameter estimates so

that all the parameters are significant. Small standard errors were also encountered in Horowitz

(1993), where smoothed maximum score is applied in a cross-section context.

The results shown in table 6 should be interpreted as the effect of changes in certain explanatory

variables on the participation decision. The estimates imply that,ceterus paribus, time has a
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positive effect when AGE2 is low and a negative effect when AGE2 is high, that the hours that the

male is working have a negative effect, that the number of children living with the family has a

positive effect, that the dummy indicating whether the family contains children under the age of six

years has a negative effect, that the dummy indicating whether the male participates has a positive

effect and that age squared has a negative effect on the willingness to participate. The coefficient

related to time consists both of a true time effect and an age effect because including age in xit

would lead to the same difference as the difference in time. Hence no distinction can be made

between both effects. An increase in the number of working hours of an already working male

increases HM and LOI and hence leads to a decrease in the willingness to participate for the

female. An increase in the number of working hours for a previously unemployed male leads to

negative effects on the willingness to participate through LOI and HM, but to a (relatively large)

positive effect through IEM. The total effect, hence, depends on the number of hours that the male

works. If the number of working hours is low, it will have a positive effect on the willingness to

participate, but the effect turns negative if the amount is high. The birth of a child has a positive

effect on the willingness to participate if the family already had a child under age six (such an

effect seems a bit strange). On the other hand, if the family had no child under age six, the effect

is severely negative.

Comparing the probit and smoothed maximum score estimates was done after normalizing the

parameter estimates to norm one and the results are presented in table 7. This is done to correct for

possible differences in bLOI (which were normalized at −1 for both estimators). The estimates for T,

HM, DCH6, IEM and AGE2 are similar for both estimators. In the probit estimates, the coefficient

related to LOI is less than half the estimates in smoothed maximum score. The estimates for NCH

vary both in magnitude and in sign. The standard errors for the probit estimates decreased

tremendously as compared to the estimates with normalization bLOI=-1 (see table 4). Except for

LOI, all the coefficients are significant after normalizing b =1. All the parameters are significant

in the smoothed maximum score estimates. It can be concluded that for most coefficients the

smoothed maximum score estimates are similar to the estimates based on ordinary probit.

Differences in magnitude appear for LOI and a difference in sign appears for NCH. This implies

that the probit and the smoothed maximum score estimates are similar for most of the parameters,

although the probit specification was rejected on the basis of a conditional moment test on the

normality assumption.
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Table 7: probit and bias corrected smoothed maximum score estimates with normalisation b =1

probit Smoothed MS*

T 0.307*

(0.044)

0.278*

(0.035)

LOI -0.022

(0.018)

-0.057*

(0.007)

HM -0.008*

(0.003)

-0.007*

(0.001)

NCH -0.131*

(0.039)

0.166*

(0.022)

DCH6 -0.881*

(0.044)

-0.905*

(0.016)

IEM 0.333*

(0.121)

0.271*

(0.034)

AGE2 -0.004*

(0.0006)

-0.003*

(0.0004)

* significant at 5%

4. Specification testing

Finally this paper will test the specification of the model on which the smoothed maximum

score estimator is based. Although the model assumptions are weak, the implicit assumptions of a

constantβ over time and/or linearity of the effect ofβ’x it on y*
i t could be wrong. Such a test can be

based on the following relationship that is implied by assumptions (i)-(v):

This relationship holds for all t and s, 1≤s<t≤T.

(4.1)

The idea is to construct uniform confidence bands for P(yt−ys=1 β’w ts,yt≠ys), for each separate pair

(s,t) using a nonparametric regression of 1(yt-ys=1) on bSMS’w ts for those observations for which
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yt≠ys. This was suggested by Manski as reported in Horowitz (1993, footnote 11). A requirement

for the nonparametric method to apply is that P(yt−ys=1 β’w ts,yt≠ys) is a continuous function of

β’w ts. The uniform confidence bands are constructed using a (slightly adapted) proposition by

Horowitz (1993). Heuristically, the argument is that the (bias corrected) semiparametric estimator

bSMS has a larger rate of convergence than does the nonparametric kernel regression and henceβ

may be replaced by bSMS without affecting the limiting distribution. For each (s,t), 1≤s<t≤T, use the

subsample of observations for which cits=1 and yit≠yis. Let F̂n(β’w ts) denote the nonparametric

estimate for P(yt−ys=1 β’w ts,yt≠ys). Instead of yt−ys, consider 1(yt−ys=1). F̂n(β’w ts) is essentially a

weighted average of observations 1(yt−ys=1) for which b’
SMSwts is close to (the chosen value) of

β’w ts. The weights are determined by the choice of the kernel, the smoothness parameter and the

distance between b’
SMSwts and β’w ts. Note that the number of observations used (n) may depend on

(s,t). Let the kernel (K) be a probability density that is symmetric around zero, has bounded

support, and with first derivative of bounded variation. Take the bandwidthωn=dn−τ, 1/5<τ<1/3,

d>0. Let f(.) denote the probability density function ofβ’w ts. Let f̂n denote the kernel estimate of f

based on b’SMSwts, kernel K and bandwidthωn. Let S be a closed interval on the real line on which f

is strictly positive. Assume that f is twice differentiable. Then, for any real z, x∈S,

where

(4.2)

The expression for dn as presented in Horowitz (1993) is not completely correct. The difference

(4.3)

(4.4)

(4.5)

(4.6)
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is the factor d2 in the denominator of the last term of dn. This arises from modifying theorem 3.1

of Bickel and Rosenblatt (1973) (on which theorem 4.3.1 of Härdle (1990) is based) to more

flexible bandwidths of the form dn−τ, d>0, instead of n−τ. The idea is to rewrite the expressions

with the flexible bandwidth to the ones with bandwidth n−τ and then to apply theorem 3.1 of Bickel

and Rosenblatt (1973).

For each pair (s,t), s<t, the bandwidthωn was determined using Generalized Cross Validation as

discussed in Craven and Wahba (1979). This was used instead of cross-validation because it is

computationally much more convenient and appears to work quite well in practice (cf. Newey,

Powell and Walker (1990)).τ is chosen to be 4/15 and for given n andωn this determines d. The

95% uniform confidence bands for P(yt−ys=1 β’w ts,yt≠ys)−0.5 are presented in figure 1.6 It must

be concluded that the hypothesis of correct specification cannot be rejected for nearly all the

combinations of (s,t), s<t. For the combination of years (84,86) the lower confidence band is above

zero for values ofβ’w ts just below zero. This also occurs for the years (84,87) and (84,85). In the

latter case, things go completely wrong for values ofβ’w ts between 5 and 8. The latter is caused

by the few observations on bSMS’w ts in this area. The accurate estimates as suggested by the

confidence bands, are due to the fact that a limited number of observations bSMS’w ts are used in

calculatingF̃. The observations for which 1(yt−ys=1) was zero was given most weight and henceF̃

is close to zero and thus̃σ2 is also close to zero. In the area withβ’w ts between 5 and 8,̃σ2 is

closer to zero thañf is. This explains the very narrow confidence bands. For all the other

combinations, bSMS’w ts was distributed more or less uniformly over the intervals displayed, so this

problem does not occur there. These results might indicate that something is going on for the year

1984, although this is not immediately obvious from the data. It might suggest thatβ is not

constant over the time period of five years, being especially different for 1984. Allowingτ to vary

(keeping each d as before) led to closer confidence bands forτ=1/5 and to wider confidence bands

for τ=1/3. In general,τ=1/5 led to similar figures as in figure 1 (i.e. the confidence bands did not

get that much closer) whereasτ=1/3 led to better figures in the sense that the problems around

β’w ts=0 disappeared for the years (84,85), (84,86) and (84,87).

5. Conclusions

This paper has described a smoothed maximum score estimator for the binary choice panel data

model with individual fixed/random effects. The estimator was derived combining the ideas of

6 The number of observations for each combination of years are respectively 175, 210, 264, 289, 171,
244, 289, 274, 374 and 273. The bandwidths used are respectively 0.45, 1.50, 2.10, 2.00, 1.05, 2.00, 1.60,
2.60, 1.70 and 1.80.
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Horowitz (1992) with those of Manski (1985, 1987). The estimator has also been extended to the

case of more than two periods and an unbalanced panel under the assumption that there is no

selectivity or attrition bias. Under slightly more restrictive assumptions than in Manski (1987), it is

found that the smoothed maximum score estimator converges more rapidly than does that of

Manski, and has a tractable asymptotic distribution. Use of a sufficiently large sample makes it

possible to estimate consistently the parameters of the asymptotic distribution and to make

statistical inferences. Optimizing the objective function requires a global optimization algorithm

because the objective function can have many local maxima. The smoothed maximum score

estimator for the binary choice panel data model with individual effects is applied to labour force

participation of married Dutch females in age between 18 and 65. Interpreting the smoothed

maximum score estimates yields fairly good results: most coefficients have the expected sign. For

example, the coefficient related to the log of other family income is negative, the parameter related

to a dummy indicating whether the family has children under age six is negative and the parameter

related to age squared is negative.

Comparing the probit estimates with the bias corrected smoothed maximum score estimates, it

can be concluded that the estimates for T, HM, DCH6, IEM and AGE2 are similar for both

estimators. In the probit estimates, the coefficient related to LOI is less than half the estimates in

smoothed maximum score. The estimates for NCH vary both in magnitude and in sign. Except for

LOI, all the coefficients are significant after normalizing b =1. All the parameters are significant

in the smoothed maximum score estimates. It can be concluded that for most coefficients the

smoothed maximum score estimates are similar to the estimates based on ordinary probit.

Differences in magnitude appear for LOI and a difference in sign appears for NCH. This implies

that the probit and the smoothed maximum score estimates are similar for most of the parameters,

although the probit specification was rejected on the basis of a conditional moment test on the

normality assumption.

Finally, specification tests on the model on which the smoothed maximum score estimator is

based, were performed. The hypothesis of correct specification was not rejected except for some

tests where 1984 was involved. This might indicate that something is going on for the year 1984,

although nothing is immediately obvious from the data.
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Figure 1: specification testing, 95% uniform confidence bands
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APPENDIX

In this appendix proofs of the theorems stated in the text are given. These theorems in turn are

proven using several lemmas. The proofs of these lemmas are also reported. The lemmas and

theorems are similar to those in Horowitz (1992). The numbering of the lemmas corresponds with

the numbering in Horowitz (1992) and the numbering of the theorems corresponds with the

numbering in the main text. Lemmas 1 to 4 are used to prove theorem 1 (strong consistency of the

smoothed maximum score estimator). This theorem, together with lemmas 5 to 9 are used to prove

theorem 2 (asymptotic distribution of the smoothed maximum score estimator) and theorem 3

(consistent estimators for the matrices involved in the asymptotic distribution).

In all the lemmas and theorems one should keep in mind that the results of Horowitz (1992) are

extended to panel data models with individual effects, with more than two time periods and with

missing observations. Extending the results in the direction of the inclusion of individual effects

and more than two time periods relies heavily on Manski (1985 and 1987) whereas the extension

in the direction of unbalanced panels is possible by assuming away selectivity.

Define the expectation of G*NT(b) by (i subscripts are suppressed)

where the expectation is taken over cts, wts, yt and ys.
6

(4.7)

Lemma 1:

Let b∈{−1,1}x k−1. Under assumptions (i), (ii) and (v), GT(b)≤GT(ß) with equality holding only if

b=ß.

Proof:

From assumption (i) and (ii) it follows, similar to Manski (1987, lemma 3), that for all t,s≤T and

all b∈{−1,1}x k−1

with equality only if b=β.

(4.8)

This result together with assumption (v) implies that if there exist t and s, 2≤t≤T, s<t, such that

6 These expressions are closely related to the definitions of H(b) and HN(b) in Manski (1987, p. 361).
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E{cts}>0, then

with equality only if b=ß. Q.E.D.

(4.9)

Lemma 2:

Under assumptions (iii) and (v), G*NT(b) → GT(b) almost surely uniformly over b∈ k.

Proof:

Let supb f(b) denote the supremum of f(b) over all b. Then

Because E{cts} =P(cts=1)≤1, the second term in the summations converges to zero uniformly over

(4.10)

b using Manski (1985, lemma 4) for each t and s, which requires assumption (iii). The first term is

smaller than or equal to N−1ΣN
i =1(cits−E{cts}) supb sign(b’wits)(yit−yis) ≤ N−1ΣN

i =1(cits−E{cts}) ,

which converges to zero almost surely uniformly in b by the strong law of large numbers. Q.E.D.

Lemma 3:

Under assumptions (i), (ii) and (v), GT(b) is continuous at all b such that b1≠0.

Proof:

Using (v), the result can be derived analogously to Manski (1985, lemma 5).

Lemma 4:

Under assumptions (ii) and (iii), GNT(b;σN)−G*
NT(b) →0 almost surely uniformly over b∈B* where

B*={−1,1}x k−1.
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Proof:

Horowitz (1992, lemma 4) immediately implies that GNT(b;σN)−G*
NT(b) → 0 (N→∞) almost

(4.11)

surely, uniformly over b∈B*. Q.E.D.

Assumptions (i)−(v) and the results of lemmas 1−4 imply strong consistency of the smoothed

maximum score estimator.

Proof of theorem 1:

The proof of theorem 1 is analogously to Horowitz (1992, theorem 1).

To obtain the limit distribution of the smoothed maximum score estimator for the panel data

model a few additional definitions and assumptions are needed. The definitions of A, D1 and Q are

stated in the main text. Similar to Horowitz (1992, p. 509, 511) define the matrices

where, in case of D2, S={{(t,s),(k,l)} s<t, l<k, t≠k or s≠l}, b 1’={ w̃ts,w̃kl,yt≠ys,yk≠yl} and

(4.12)

(4.13)

(4.14)

b3={0,w̃ts,0,w̃kl,yt≠ys,yk≠yl}.

Apart from the terms related to cts and yt≠ys these expressions are similar to the ones in

Horowitz (1992), with one exception: D1 corresponds to Horowitz’s D whereas D2 is extra. The

expression D2 is a consequence of the correlation between different terms in the summation in

TNT(b;σN) which are absent in a cross−section context.
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4 Restating assumption (8) and (9) of Horowitz (1992) in terms of Fu(−zts zts,w̃ts,yt≠ys) and

p(zts w̃ts,yt≠ys) will enable us to obtain the limit distribution of the smoothed maximum score

estimator for panel data as in Horowitz (1992).

Additional Assumptions (vi)−(xi):

(vi) a) The components of̃wts and of the matrices̃wtsw̃
’
kl, s<t, l<k, andw̃tsw̃

’
tsw̃klw̃

’
kl, s<t,

l<k, have finite first absolute moments conditional on (yt≠ys,yk≠yl);

b) (log N)/(Nσ4
N) → 0 as N→∞;

(vii) a) K is twice differentiable everywhere, K’(.) and K’’(.) are bounded, and each

of the following integrals over (−∞,∞) is finite: ∫[K’(v)] 4dv, ∫[K’’(v)]²dv and

∫ v²K’’(v) dv;

b) for some integer h≥2 and each integer j (0≤j≤h), ∫ vjK’(v) dv<∞ and

(5)

c) For any integer j between 0 and h, any µ>0, and any sequence {σN} converging to

0,

(viii) For each integer j such that 1≤j≤h−1, all zts in a neighbourhood of 0, almost every

(6)

(w̃ts,yt≠ys) and some M<∞, p(j)(zts w̃ts,yt≠ys) exists and is a continuous function of z

satisfying p(j)(zts wts,yt≠ys) <M. In addition, p(zts w̃ts,yt≠ys) <M for all z and almost

every (̃wts,yt≠ys) and p(zts,zkl w̃ts,w̃kl,yt≠ys,yk≠yl) <M for all (zts,zkl) and almost every

(w̃ts,w̃kl,yt≠ys,yk≠yl).

(ix) For each integer j such that 1≤j≤h, all z in a neighbourhood of 0, almost every (w̃ts,yt≠ys)

and some M<∞, F(
u
j)(−zts zts,w̃ts,yt≠ys) exists and is a continuous function of zts satisfying

F(
u
j)(−zts zts,w̃ts,yt≠ys) <M;

(x) ß~ is an interior point of B~;

(xi) The matrix Q is negative definite.



- 32 -

Compared to Horowitz (1992) assumption (vii) b) has been extended to include j=0 which has to

do with the covariance terms in Var[TNT(b;σN)]. In assumption (viii) we have the additional

requirement that p(zts,zkl w̃ts,w̃kl,yt≠ys,yk≠yl) <M for all (zts,zkl) and almost every

(w̃ts,w̃kl,yt≠ys,yk≠yl). This has to do with the same issue.

Lemma 5:

Let assumptions (i)−(iii) and (v)−(ix) hold. Then

a) E{σN
−hTNT(β;σN)} → A (N→∞)

b) Var{(NσN)½TNT(β;σN)} → D1 (N→∞)

Proof:

Under assumption (v) we have

Analogously to Horowitz (1992, lemma 5) it can be shown that

To prove part b), define

(11)

then
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We will start concentrating on E{atsa
’
kl}. We have

where the last step follows from assumption (v).

(12)

Define zts=ß’wts, zkl=ß’wkl, ξts=zts/σN, ξkl=zkl/σN,

b1={zts,w̃ts,zkl,w̃kl,yt≠ys,yk≠yl}, b1’={ w̃ts,w̃kl,yt≠ys,yk≠yl}

b2={σNξts,w̃ts,σNξkl,w̃kl,yt≠ys,yk≠yl}, and

b3={0,w̃ts,0,w̃kl,yt≠ys,yk≠yl},

then
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The last step follows from applying the Lebesgue dominated convergence theorem, using

(13)

assumptions (vii) and (viii).

It now follows immediately thatΣS2E{atsakl’} → D2 (N→∞), where the summation is over all

elements in S.

Completely analogously it follows that

Summarizing:

(14)

(1) σNΣT
t =2Σs<tE{atsa

’
ts} → D1 (N→∞);

(2) ΣT
t =2Σs<tE{atsa

’
ts} does not converge as N→∞;

(3) σN2ΣSE{atsa
’
kl} → 0 (N→∞);

(4) 2ΣSE{atsa
’
kl} → D2 (N→∞).

Lemma 5 b) follows from (1) and (3) above. Q.E.D.

Lemma 6:

Let assumptions (i)−(iii) and (v)−(ix) hold.

(a) If Nσ2
N

h+1→∞ as N→∞, σN
−hTNT(β,σN) converges in probability to A;

(b) If Nσ2
N

h+1 has a finite limit λ as N→∞, (NσN)½TNT(β,σN) converges in distribution to

MVN(λ½A,D1).

Proof:



- 35 -

The proof of (a) is similar to the proof in Horowitz (1992, lemma 6), which requires (i)−(iii) and

(v)−(ix). To prove (b) define

Applying the results of lemma 5 and using tNits instead of the tNn in the proof of lemma 6 in

(15)

Horowitz (1992), result (b) follows. Q.E.D.

Lemma 7:

Let assumptions (i)−(iii) and (vi)−(ix) hold. Assume that̃wts ≤a for all t, 2≤t≤T and s<t for some

a>0. Letη>0 be such that F(u
1)(−zts zts,w̃ts,yt≠ys), F(

u
2)(−zts zts,w̃ts,yt≠ys) and p(1)(z w̃ts,yt≠ys) exist for

all t,s, and are bounded for almost every (w̃ts,yt≠ys) if zts ≤η. For Θ∈ k−1, define T*
NT(Θ) by

Define the setsΘN (N=1,2,..) by {Θ Θ∈ k−1,σN Θ ≤η/2a}. Then

In addition, there are finite numbersα1 andα2 such that, for allΘ∈ΘN

(16)

uniformly overΘ∈ΘN.

(17)

Proof:

Define GNi(Θ) by

Given anyδ>0, divide each setΘN into nonoverlapping subsetsΘNj such that the distance between

(18)

any two points in the same subset does not exceedδσ2
N and the numberΓN of subsets does not

exceed CσN
−3(q−1), then (A17) in Horowitz (1992) remains valid with gNn replaced by GNi. Using
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that E{GNi(Θ)}=0 and the independence of GNi(Θ) over i, Hoeffding’s inequality is still applicable

(see Horowitz (1992, proof of lemma 7), though c2 now depends on T). Assumptions (vii) a) and

(vi) imply that the right hand side of (A17) of Horowitz (1992) in terms of GNi instead of gNn

converges to zero as N tends to infinity and, consequently,

Furthermore,

E{T *
NT(Θ)}= ΣT

t =2Σs<tP(cts=1)P(yt≠ys)KN1+KN2+ΣT
t =2Σs<tP(cts=1)P(yt≠ys)JN2+ΣT

t =2Σs<tP(cts=1)P(yt≠ys)IN2

(KN1, JN2 and IN2 depend on t and s, but these subscripts will be dropped), where

whereξ1,ts andξ2,ts are between 0 and zts, and,

(19)

(20)

(21)

By assumption (vii) c) we have that

(22)

(cf. Horowitz (1992, lemma 7, (A19))),
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for all t and s (cf. Horowitz (1992, lemma 7, (A22)),

for all t and s (cf. (A24) of Horowitz (1992)), which implies that .

Finally, using that JN2 ≤o(1)+α1tsσN Θ +α2tsσN Θ 2 for some finiteα1ts andα2ts (compare (A25)

in Horowitz (1992, lemma 7)) it follows that

whereαk=ΣT
t =2Σs<tαkts. Q.E.D.

Lemma 8:

Let assumptions (i)−(xi) hold, and defineΘN=(b̃N−β̃)/σN, where bN is a smoothed maximum score

estimator. Then plimN→∞ ΘN=0.

Proof:

The proof is analogous to the proof in Horowitz (1992, lemma 8), which requires (i)−(xi). The

adapted lemma 7 is required in the proof.

Lemma 9:

Let assumptions (i)−(iii) and (v)−(x) hold. Let {ßN}={ß N1,β̃N} be any sequence in B={−1,1}x̃B such

that (ßN−ß)/σN→0 as N→∞. Then

Proof:

Assume that ßN1=ß1, since this is true for all sufficiently large N. DefineΘN=(β̃N−β̃)/σN. Let aN be a

sequence such that aN→∞ and aNΘN→0 as N→∞. Define WN={ w̃ts, t=1,..,T, s<t w̃ts ≤aN}.

Then it suffices to show that E{QNT(ßN,σN) WN} →Q and Var{QNT(ßN,σN) WN} →0 (see Horowitz

(1992, proof of lemma 9)). Let PN(w̃ts) denote the distribution of̃wts, conditional on WN and yt≠ys,
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and let pN(w̃ts,w̃kl) denote the distribution of (̃wts,w̃kl) conditional on WN, yt≠ysand yk≠yl. Then,

using Taylor series approximations for both Fu(. .) and p(. .) around zero,

where

(23)

with ξ1,ts andξ2,ts between 0 and zts.

(24)

(25)

(26)

Similar to Horowitz (1992, lemma 9), which requires (i)−(iii) and (v)−(x), it can now be shown

that IN1→P(yt≠ys)Qts, IN2 →0 and IN3 →0 as N→∞. This immediately implies that

Furthermore,

(27)

Now

(28)
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with

(29)

for some finite M, whereξts=zts/σN+Θ ’
Nw̃ts, and

(30)

where the last step follows from assumption (viii). Notice that L1 is similar to (A32) of

(31)

Horowitz(1992) whereas L2 is a consequence of the correlation between different terms in the

summation in QNT(b;σN). Due to boundedness of both integrals in L1 and L2 (from assumption (vi)

and (vii)) both L1 and L2 tend to zero as N→∞, under assumption (vi). It now follows that

Var{QNT(ßN,σN) WN} →0. This completes the proof. Q.E.D.

Theorem 2 (Asymptotic Distribution):

Let assumptions (i)−(xi) hold for some h≥2, and let {bN} be a sequence of solutions to the

maximization of problem(3).

(a) If NσN
2h+1→∞ as N→∞, thenσN

−h(b̃N−β̃)→p −Q−1A;

(b) If NσN
2h+1 has a finite limitλ as N→∞, then



- 40 -

(c) Let σN=(λ/N)1/(2h+1) with 0<λ<∞; Ω be any nonstochastic, positive semidefinite matrix such

that A’Q−1ΩQ−1A≠0; let EA denote the expectation with respect to the asymptotic

distribution of Nh/(2h+1)(b̃N−β̃), and MSE=EA(b̃N−β̃)’Ω(b̃N−β̃). MSE is minimized by setting

λ=λ*=[trace(Q−1ΩQ−1D1)]/(2hA’Q−1ΩQ−1A),

in which case

N h/(2h+1)(b̃N−β̃) →d MVN(−(λ*)h/(2h+1)Q−1A, (λ*)−1/(2h+1)Q−1D1Q
−1).

Proof of theorem 2:

Similar to Horowitz (1992, theorem 2), using theorem 1’ and lemmas 6, 8 and 9, which requires

(i)−(xi).

Note that the matrix D2 does not show up here. This is caused by the fact that the covariances

between different terms in the summation in TNT(b;σN) are of orderσN (which tends to zero as N

tends to infinity) whereas the other terms are of order 1. These other terms are represented by the

matrix D1.

Proof of theorem 3:

The proof of part (a) is exactly the same as in Horowitz (1992, theorem 3), which requires (i)−(xi).

Proof of part (b):

Let ΘN=(b̃N−β̃)/σN and letξts=zts/σN−Θ ’
Nw̃ts, then

where the last step follows from assumptions (vi) and (viii) and Lebesgue’s Dominated

(32)

Convergence theorem.

Furthermore,
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with

(33)

whereξts=zts/σN−Θ ’
Nw̃ts, and

(34)

whereξts=zts/σN−Θ ’
Nw~

ts andξkl=zkl/σN−Θ ’
Nw~

kl. Both I1 and I2 converge to 0 when N tends to infinity

(35)

because both integrals are bounded as N→∞ (by assumption (vii)) and because N→∞ and NσN→∞

(N→∞). This implies that

(36)

Part (c) follows immediately from lemma 9. Q.E.D.


