

Center
for
Economic Research

44
No. 9455

TWO-STEP ESTIMATION OF SIMULTANEOUS EQUATION PANEL DATA MODELS WITH CENSORED ENDOGENOUS VARIABLES

by Francis Vella and
Marno Verbeek

August 1994

Two-Step Estimation of Simultaneous Equation Panel Data Models with Censored Endogenous Variables *

Francis VELLA
Department of Economics
Rice University
Marno VERBEEK
Department of Econometrics and CentER
Tilburg University

This version June 1994

Abstract

This paper presents a two-step approach to estimating simultaneous equation panel data models with censored endogenous variables and sample selection. The procedure employs the residuals from the reduced form estimation of the endogenous variable to adjust for the heterogeneity in the primary equation. The panel nature of the data allows adjustment, and testing, for three forms of endogeneity.

[^0]
1 Introduction

This paper proposes a two step estimator for panel data models with censored endogenous variables and/or sample selection bias. The model comprises a primary equation with an endogenous explanatory variable and the reduced form for the endogenous explanator. We derive estimates of the heterogeneity generating the endogeneity to include as additional explanatory variables in the primary equation. These are obtained through a decomposition of the reduced form residuals. The procedure is applicable in cases where the primary equation has an uncensored dependent variable and the endogenous explanator is either uncensored or censored, as well as cases where the primary equation has a censored dependent variable. In addition, it is applicable to estimation over non-randomly chosen sub-samples.

Previously proposed procedures examining this family of models commonly assume that the endogeneity is due to time-invariant individual effects (see, for example, Itausman and Taylor [1981], Amemiya and MaCurdy [1986] and IIonore [1992, 1993]). We, however, allow the endogeneity to operate through an individual component, a time component and an individual specific/time component. This allows a richer econometric, and economic, structure. Moreover, it extends several well known cross-sectional estimators to panel data (see, for example, Heckman [1979], Smith and Blundell [1986], Rivers and Vuong [1988] and Vella [1993]) and encompasses existing panel data procedures for sample selection and attrition bias (see, for example, Ridder [1990], Nijman and Verbeek [1992] and Wooldridge [1993]).

Two-step estimators are generally inefficient in comparison to limited information maximum likelihood (LIML) (see, for example, Newey [1987]). The efficiency loss is model specific, while under restrictive conditions the two-step estimator attains the Cramér-Rao lower bound. We are confident that our procedure is sufficiently simple that it will be often preferable to LIML. If efficiency is a primary objective our method provides initial consistent estimators for a LIML approach ${ }^{1}$. It is possible to estimate a subset of the models we examine under more general conditions, for example by instrumental variables (IV). We, however, do not consider this a shortcoming as there is a trade-off between the economic information extracted via estimation and the distributional assumptions employed. Furthermore, the distributional assumptions can be tested by generalizing the approach

[^1]in Pagan and Vella [1989] or, for special cases, through comparisons with semi-parametric alternatives, such as Honoré [1992], via the methodology in Peters and Smith [1991]. Moreover, we show that IV estimators, including those in Hausman and Taylor [1981], Amemiya and MaCurdy [1986] and Breusch, Mizon and Schmidt [1989], can be replicated by our "residual" approach.

The following section presents the model and outlines the estimation procedure. Sections 3 and 4 consider two important cases in detail, while Section 5 discusses the relationship between our procedure and available IV estimators. Concluding comments are presented in Section 6.

2 The general framework

Consider a general model where equations (1) (2) are of primary focus and equations (3) (4) constitute the reduced form for the endogenous explanatory variable.

$$
\begin{align*}
y_{i t}^{*}= & g_{1}\left(x_{i t}, z_{i t}, z_{i t}^{*} ; \theta_{1}\right)+\mu_{i}+\varepsilon_{t}+\eta_{i t} \tag{1}\\
y_{i t}= & g_{2}\left(y_{i t}^{*} ; \theta_{2}\right) \text { if } g_{3}\left(z_{i 1}, \ldots, z_{i T} ; t\right) \neq 0 \tag{2}\\
& \text { unobserved elsewhere } \\
z_{i t}^{*}= & g_{4}\left(x_{i t}, z_{i, t-1} ; \theta_{4}\right)+\alpha_{i}+\rho_{t}+v_{i t} \tag{3}\\
z_{i t}= & g_{5}\left(z_{i t}^{*} ; \theta_{5}\right) \tag{4}
\end{align*}
$$

where i indexes individuals $(i=1, \ldots, N)$ and t indexes time $(t=1, \ldots, T)$. $y_{i t}^{*}$ and $z_{i t}^{*}$ are latent endogenous variables; $y_{i t}$ and $z_{i t}$ are observed variables produced by the censoring functions g_{2} and g_{5} noting that these functions may be characterized by the unknown parameters θ_{2} and θ_{5}. The functions g_{1} and g_{4} are assumed to be continuously differentiable with respect to the parameter vectors θ_{1}, θ_{4}, respectively. While we make no assumptions about the function g_{3}, determining sample selection, we require that the applicable regime is observed. The main parameters of interest are θ_{1} and, when applicable, θ_{2}. It is assumed that the parameters are identified up to some normalization. In nonlinear cases identification is in principle guaranteed through distributional assumptions only, but, preferably, functional form and exclusion restrictions are imposed. Also, standard restrictions on the functions $g_{j}, j=1,2,4,5$ apply ${ }^{2}$. Finally, the variables in $x_{i t}$ are assumed to

[^2]be independent of all error components such that, potentially, each function g_{j} can depend on $x_{i s}$ for any s.

Each equation's error can be decomposed into individual effects μ_{i} and α_{i}; time effects ε_{t} and ρ_{t}; and individual specific time effects $\eta_{i t}$ and $v_{i t}$. These are assumed to be i.i.d. jointly normal with zero mean and variances $\sigma_{\ell}^{2}, \ell=\alpha, \mu, \varepsilon, \rho, \eta, v$. Each effect is potentially correlated with its counterpart of the same dimension in the other equation, with covariances $\sigma_{\mu \alpha}, \sigma_{\varepsilon \rho}$ and $\sigma_{\eta v .}{ }^{3}$ The endogeneity of $z_{i t}^{*}$ and $z_{i t}$ thus operates through the three factors common across the two equations.

Consider some models this framework encompasses. The conventional sample selection model (see Nijman and Verbeek [1992]) is obtained when $z_{i t}$ and $z_{i t}^{*}$ do not appear in g_{1}, g_{5} is an index function and g_{3} equals $z_{i t}$. In this case $z_{i t}$ is a zero-one variable indicating selection into the sample. If g_{3} equals $\Pi_{t} z_{i t}$, attention is restricted to a balanced sub-panel. A dummy endogenous variable (see Heckman [1978]) appears in (1) when $z_{i t}$ appears in g_{1} and g_{5} is an index function. More general g_{5} functions allow for categorical and censored endogenous variables with reduced forms corresponding to ordered probit or tobit specifications. This allows the inclusion of a range of dummyvariables in (1) corresponding to different values for $z_{i t}$. . nother feature is the inclusion of either $z_{i t}$ or $z_{i t}^{*}$, as discussed in Blundell and Smith [1993] and Vella [1993], in the primary equation, which allows the relationship of interest to be between $y_{i t}$ and $z_{i t}^{*}$ rather than $y_{i t}$ and $z_{i t}$. Finally, the general specification permits non-linear transformations of the endogenous variables which may depend on unknown parameters.

Our general strategy is the following. We estimate (3)-(4) by maximum likelihood to obtain consistent estimators for θ_{4}, θ_{5} and the variances of the error components. This requires the usual regularity conditions and $z_{i 0}$ to be strictly exogenous (see Heckman [1981]). We then condition (1) on the observed outcomes of the endogenous explanatory variable and employ the relevant conditional moment restrictions, or the conditional likelihood function, to estimate the parameters in (1) and (2). For cross-sectional estimation the conditioning set includes $z_{i t}$ for the relevant time period (see Smith and Blundell [1986] and Vella [1993]). To exploit the correlation structure of the panel, it is natural to condition upon the vector of all outcomes. This is required to seperately identify the three sources of endogencity and, moreover, to guarantee consistency for general sample se-

[^3]lection functions g_{3}. This allows estimation over subsamples corresponding to non-randomly chosen values of the endogenous explanator. In addition, it increases the estimator's efficiency as it incorporates additional information into estimation ${ }^{4}$. It is often useful to include the time effects ρ_{t} from (3) in the conditioning set. Accordingly, the conditioning set reduces to $\left\{z_{i}, \rho\right\}$ where $z_{i}=\left(z_{i 1}, \ldots, z_{i T}\right)^{\prime}$.

Our approach has two primary advantages over LIML. First, it is computationally attractive as it generally does not require higher order integrals. Second, as the specifications of g_{1} and g_{2} are only relevant for the second stage estimation it is relatively easy to conduct specification searches for the primary equation. These advantages, however, cannot be realized for all specifications of g_{j}. Two general classes of models that satisfy the requirements can be characterized as:

1. Case I: g_{2} is the identity mapping; g_{1} is linear in $z_{i t}^{*}$.
2. Case II: $g_{5}\left(z_{i t}^{*}\right)=z_{i t}^{*} \mathrm{I}\left[z_{i t}^{*} \in \Lambda\right]$, for some $A \subseteq \mathbb{I R}$, where I is an indicator function; $g_{3}\left(z_{i 1}, \ldots, z_{i^{\prime} T} ; t\right)=\prod_{s} z_{i s} g_{3}^{*}\left(z_{i 1}, \ldots, z_{i T} ; t\right)$ for some function g_{3}^{*}.

The conditions for case II imply that the distribution of z_{i} is continuous if $y_{i t}$ is observed (for any t). The next two sections focus on these cases which we refer to as conditional moment estimation and conditional maximum likelihood (CML) estimation.

3 Conditional moment estimation

Conditioning ${ }^{5}(1)$ on the $N T$ vector of outcomes $z_{i t}$, denoted Z, produces

$$
\begin{align*}
E\left\{y_{i t}^{*} \mid Z\right\}= & E\left\{g_{1}\left(x_{i t}, z_{i t}, z_{i t}^{*}, \theta_{1}\right) \mid Z\right\} \\
& +E\left\{\mu_{i} \mid Z\right\}+E\left\{\varepsilon_{t} \mid Z\right\}+E\left\{\eta_{i t} \mid Z\right\} . \tag{5}
\end{align*}
$$

When g_{2} is the identity mapping, it is straightforward to estimate the parameters in (5), from the appropriate conditional moment restrictions, given expressions for the conditional expectations in (5) and consistent estimates

[^4]for the parameters in (3) and (4). When g_{2} is not the identity mapping we employ the conditional distribution of $y_{i t}$. We focus on this latter case in Section 4. Our initial task is to find expression for the conditional expectations in (5). Note that the conditional expectation of g_{1} is taken over $z_{i t}^{*}$ only. If g_{1} is linear in $z_{i t}^{*}$ this is a straightforward function of g_{4} and the conditional expectations of the error components in (3).

We proceed by deriving $E\left\{\mu_{i} \mid U\right\}, E\left\{\varepsilon_{t} \mid U\right\}$ and $E\left\{\eta_{i t} \mid U\right\}$ where $u_{i t}=\alpha_{i}+\rho_{t}+v_{i t}$ and U is the $N T$ vector of $u_{i t}$'s. We subsequently take expectations with respect to U given Z, noting this second iteration of the expectations is influenced by the censoring function g_{5}. Joint normality and straightforward matrix manipulations (using Hsiao [1986, eq. (3.6.20)]), produce

$$
\begin{align*}
& \begin{array}{l}
E\left\{\mu_{i} \mid U\right\}=\sigma_{\mu \alpha}\left[\frac{T}{\sigma_{v}^{2}+T \sigma_{\iota}^{2}} u_{i .}-\frac{\sigma_{\rho}^{2} N T}{\left(\sigma_{v}^{2}+T \sigma_{\alpha}^{2}\right)\left(\sigma_{v}^{2}+T \sigma_{\alpha}^{2}+N \sigma_{\rho}^{2}\right)} \bar{u}_{. .}\right] \\
E\left\{\varepsilon_{t} \mid U\right\}
\end{array}=\sigma_{\varepsilon \rho}\left[\frac{N}{\sigma_{v}^{2}+N \sigma_{\rho}^{2}} u_{. t}-\frac{\sigma_{\alpha}^{2} N T}{\left(\sigma_{v}^{2}+N \sigma_{\rho}^{2}\right)\left(\sigma_{v}^{2}+T \sigma_{\alpha}^{2}+N \sigma_{\rho}^{2}\right)} u_{. .}\right] \tag{6}\\
& E\left\{\eta_{i t} \mid U\right\}=\sigma_{\eta v}\left[\frac{1}{\sigma_{v}^{2}} u_{i t}-\frac{T \sigma_{\alpha}^{2}}{\sigma_{v}^{2}\left(\sigma_{v}^{2}+T \sigma_{\alpha}^{2}\right)} \bar{u}_{i .}-\frac{N \sigma_{\rho}^{2}}{\sigma_{v}^{2}\left(\sigma_{v}^{2}+N \sigma_{\rho}^{2}\right)} u_{. t}\right. \tag{7}\\
& \left.\quad+\frac{T \sigma_{\alpha}^{2}}{\sigma_{v}^{2}+T \sigma_{\alpha}^{2}} \frac{N \sigma_{\rho}^{2}}{\sigma_{v}^{2}+N \sigma_{\rho}^{2}} \frac{2 \sigma_{v}^{2}+T \sigma_{\alpha}^{2}+N \sigma_{\rho}^{2}}{\sigma_{v}^{2}\left(\sigma_{v}^{2}+T \sigma_{\alpha}^{2}+N \sigma_{\rho}^{2}\right)} u_{. .}\right]
\end{align*}
$$

where $\bar{u}_{. .}=\frac{1}{N T} \sum_{t=1}^{T} \sum_{i=1}^{N} u_{i t} ; \bar{u}_{. t}=\frac{1}{N} \sum_{i=1}^{N} u_{i t}$ and $\bar{u}_{i .}=\frac{1}{T} \sum_{t=1}^{T} u_{i t}$.
To compute the conditional expectations given Z requires an expression for $E\left\{u_{i t} \mid Z\right\}$. When g_{5} is a one-to-one function this is equal to $u_{i t}$. In general, the conditional expectation is more complicated. $\Lambda s T$ is small for most panel data studies a first step towards a general solution is to condition upon the time effects in $u_{i t}$. This corresponds to treating the time effects in (3) as fixed unknown parameters ${ }^{6}$. The conditional expectations are then given by (6) and (8) with the terms involving σ_{ρ}^{2} set to zero, while (7) reduces to

[^5]\[

$$
\begin{equation*}
E\left\{\varepsilon_{t} \mid U, \rho\right\}=\frac{\sigma_{\varepsilon \rho}}{\sigma_{\rho}^{2}} \rho_{t} \tag{9}
\end{equation*}
$$

\]

Conditional on ρ, we have $E\left\{u_{i t} \mid Z, \rho\right\}=E\left\{u_{i t} \mid z_{i}, \rho\right\}$ and

$$
\begin{equation*}
E\left\{u_{i t} \mid z_{i}, \rho\right\}=\rho_{t}+\int\left[\alpha_{i}+E\left\{v_{i t} \mid z_{i t}, \rho, \alpha_{i}\right\}\right] f\left(\alpha_{i} \mid z_{i}, \rho\right) d \alpha_{i} \tag{10}
\end{equation*}
$$

where $f\left(\alpha_{i} \mid z_{i}, \rho\right)$ denotes the conditional density of α_{i}. The conditional expectation of $v_{i t}$ given $z_{i t}, \rho$ and α_{i} is the generalized residual from (3) as, conditional on ρ and α_{i}, the errors from (3) are independent across observations. The form of the generalized residual depends on g_{5} (see, for example, Gourieroux et al. [1987], Pagan and Vella [1989] or Vella [1993]).

The conditional distribution of α_{i} given z_{i} can be derived by using the result that ${ }^{7}$

$$
\begin{equation*}
f\left(\alpha_{i} \mid z_{i}, \rho\right)=\frac{f\left(z_{i} \mid \alpha_{i}, \rho\right) f\left(\alpha_{i} \mid \rho\right)}{f\left(z_{i} \mid \rho\right)} \tag{11}
\end{equation*}
$$

where $\int\left(z_{i} \mid \rho\right)=\int f\left(z_{i} \mid \alpha_{i}, \rho\right) \int\left(\alpha_{i} \mid \rho\right) d \alpha_{i}$ is the likelihood contribution of individual i in (3)-(4), conditional on ρ. Furthermore, $\int\left(\alpha_{i} \mid \rho\right)=\int\left(\alpha_{i}\right)$ is a normal density and $\int\left(z_{i} \mid \alpha_{i}, \rho\right)$ is the conditional likelihood contribution given α_{i} and ρ. Finally, $f\left(z_{i} \mid \alpha_{i}, \rho\right)=\prod_{t} f\left(z_{i t} \mid \alpha_{i}, \rho\right)$, where $f\left(z_{i t} \mid \alpha_{i}, \rho\right)$ has the form of the likelihood contribution in the cross sectional case.

Computation of the conditional expectations in (6) (8) when g_{5} is not a one-to-one mapping requires an expression for the likelihood contribution in an i.i.d. context, the corresponding generalized residual and the numerical evaluation of two one-dimensional integrals. Given consistent estimates of the parameters in (3) and (4), including the variances of the error components, the only unknowns in the expectations are the covariances. Due to the linearity these are easily estimated consistently in the second step from the conditional moment restrictions. The null hypothesis of no endogeneity is a linear restriction on these covariances and is thus easily tested.

The simplest way to obtain the second stage estimates is by standard GMM or nonlinear least squares based on (5). ${ }^{8}$ Standard errors can be obtained in the usual way after accounting for the generation of the expectations (see appendix).

[^6]
4 Conditional Maximum Likelihood Estimation

When g_{2} is not the identity mapping the conditional distribution of $y_{i t}$ is needed for estimation. This section discusses case II where, inter alia, $g_{5}\left(z_{i t}^{*}\right)=z_{i t}^{*} I\left[z_{i t}^{*} \in A\right]$, with the identity mapping as a special case. Under our assumptions the conditional distribution of the error terms in (1) is still normal and the error components structure is preserved. Consequently, we can estimate (1)-(2) conditional on the estimated parameters from (3) using the random effects likelihood function, after making appropriate adjustments for the mean and noting that the variances now reflect the conditional variances. Moreover, the unconditional variances and the cross-equation covariances can be recovered from this procedure, while endogeneity tests are easily performed.

For computational purposes it is unattractive, due to the integration, to allow for random time effects in the error terms in nonlinear models. Accordingly, we treat the time effects in both equations as fixed and include time dummies in both mean functions. Write the joint density of $y_{i}=$ $\left(y_{i 1}, \ldots, y_{i T}\right)^{\prime}$ and z_{i} given $X_{i}=\left[x_{i 1} \ldots x_{i T}\right]^{\prime}$ (including the time effects) as

$$
\begin{equation*}
f_{1}\left(y_{i} \mid z_{i}, X_{i} ; \theta^{(1)}, \theta^{(2)}\right) f_{2}\left(z_{i} \mid X_{i} ; \theta^{(2)}\right) \tag{12}
\end{equation*}
$$

where $\theta^{(1)}$ denotes $\left(\theta_{1}, \theta_{2}, \sigma_{\mu}^{2}, \sigma_{\eta}^{2}, \sigma_{\mu \alpha}, \sigma_{\eta v}\right)$ and $\theta^{(2)}$ denotes $\left(\theta_{4}, \theta_{5}, \sigma_{\varepsilon}^{2}, \sigma_{v}^{2}\right)$. The conditional maximum likelihood approach involves first estimating $\theta^{(2)}$ by maximizing the marginal likelihood function of the z_{i} 's. Subsequently, the conditional likelihood function

$$
\begin{equation*}
\prod_{i} f_{1}\left(y_{i} \mid z_{i} ; \theta^{(1)}, \hat{\theta}^{(2)}\right) \tag{13}
\end{equation*}
$$

is maximized with respect to $\theta^{(1)}$. Given our restrictions on g_{3} and g_{5} the latter step has the same computational complexity as when $z_{i l}$ is strictly exogenous. This is due to the fact that the conditional distribution of $y_{i t}^{*}$ given z_{i} and sample selection $\left(g_{3} \neq 0\right)$ is normal with expectations given in (5), and a covariance structure corresponding to that of $\nu_{1 i}+\nu_{2, i t}$, where $\nu_{1 i}$ and $\nu_{2, i t}$ are zero mean normal variables with zero covariance and variances

$$
\begin{align*}
& \sigma_{1}^{2}:=V\left\{\nu_{1 i}\right\}=\sigma_{\eta}^{2}-\sigma_{\eta v}^{2} \sigma_{v}^{-2} \tag{14}\\
& \sigma_{2}^{2}:=V\left\{\nu_{2, i t}\right\}=\sigma_{\mu}^{2}-\frac{T \sigma_{\mu \alpha}^{2} \sigma_{v}^{2}+2 \sigma_{\mu \alpha} \sigma_{\eta v} \sigma_{v}^{2}-\sigma_{\eta v}^{2} \sigma_{\alpha}^{2}}{\sigma_{v}^{2}\left(\sigma_{v}^{2}+T \sigma_{\alpha}^{2}\right)}, \tag{15}
\end{align*}
$$

which follows from the usual matrix manipulations needed to derive a conditional covariance matrix. The results in (14) and (15) show that the error components structure is preserved and the conditional likelihood function of (1)-(2) has the same form as the marginal likelihood function without endogenous regressors or sample selection. The asymptotic variance of the conditional ML estimator, and an expression for the efliciency loss, is provided in the appendix. Under the null hypothesis of exogeneity, no loss of efficiency is incurred such that routinely computed t-statistics for the covariances provide efficient tests of endogeneity (compare Smith and Blundell [1986]).

The algebraic manipulations simplify if σ_{1}^{2} and σ_{2}^{2} replace the unconditional variances σ_{η}^{2} and σ_{μ}^{2} in $\theta^{(1)}$. In this case, estimates for the latter two variances are easily obtained in a third step from the estimates from the first stage for σ_{v}^{2} and σ_{α}^{2}, and the estimated covariances from the mean function.

5 Relationship with IV estimators

For several cases of our model alternative estimators are available which are more robust to the distributional assumptions. We now analyse the relationship between our two-step approach and the appropriate IV estimators. To do this, we concentrate on the special case where g_{1} is linear in $x_{i t}, z_{i t}$ and does not depend upon $z_{i t}^{*}$, both g_{2} and g_{5} are identity mappings and $g_{3} \neq 0$ (no sample selection). The model of interest is thus given by

$$
\begin{equation*}
y_{i t}=x_{i t}^{\prime} \beta+z_{i t} \psi+\mu_{i}+\eta_{i t}, \tag{16}
\end{equation*}
$$

where there is only one endogenous explanatory variable, $z_{i t}$, and the time effects, if present, are included in $x_{i t}$. To simplify notation we do not transform (16) to obtain a scalar error covariance matrix. This does not affect the primary result.

Let $w_{i t}$ denote a set of appropriate instruments for $z_{i t}$ (including $x_{i t}$). It is well known that the linear IV estimator for $\theta_{1}=\left(\beta^{\prime}, \psi\right)^{\prime}$ in (16) can be obtained through least squares on

$$
\begin{equation*}
y_{i t}=x_{i t}^{\prime} \beta+z_{i t} \psi+\hat{\xi}_{i t} \phi+e_{i t} \tag{17}
\end{equation*}
$$

where $e_{i t}$ denotes a zero mean error term orthogonal to the regressors in this equation, and $\hat{\xi}_{i t}$ is the residual from projecting $z_{i t}$ on the instruments $w_{i t}$. In our two-step approach a reduced form for $z_{i t}$ is specified as

$$
\begin{equation*}
z_{i t}=m_{i t}^{\prime} \gamma+u_{i t} \tag{18}
\end{equation*}
$$

where $u_{i t}=\alpha_{i}+v_{i t}$ and $m_{i t}$ is a vector of exogenous variables, including $x_{i t}$. The appropriate residuals are derived from (6) and (8) and are linear functions of $\hat{u}_{i t}$ and $\sum_{s} \hat{u}_{i s}$, where $\hat{u}_{i t}$ is the least squares residual from (18).

Following Hausman and Taylor [1981], Amemiya and MaCurdy [1986] and Breusch, Mizon and Schmidt [1989], first assume that the endogeneity operates only through a nonzero covariance between μ_{i} and α_{i}. The appropriate residual in our two-step approach is proportional to $\sum_{s} u_{i s}$. IV thus produces algebraically the same estimator if $m_{i t}$ and $w_{i t}$ are such that this residual is proportional to $\hat{\xi}_{i t}$. Consider the instrument set suggested by Hausman and Taylor, i.e. $w_{i t}=\left[x_{i t}, \bar{x}_{i}, z_{i t}-\bar{z}_{i}\right]$. It can be shown (see appendix) that proportionality is attained if $m_{i t}$ in (18) is chosen as $\left[x_{i t}, \bar{x}_{i}\right]$. Amemiya and MaCurdy [1986] extend the Hausman-Taylor approach by including $\left[x_{i 1}, \ldots, x_{i T}\right]$ in the instrument set. The two-step approach is identical to this IV estimator when we include in the reduced form in (18) the exogenous variables from all periods, as well as $x_{i t}$ in deviation from its individual mean, i.e. if we choose $m_{i t}=\left[x_{i 1}, \ldots, x_{i T}, x_{i t}-\bar{x}_{i}\right]$. If we extend $m_{i t}$ to include $z_{i 1}-\bar{z}_{i}, \ldots, z_{i T}-\bar{z}_{i}$, our two-step procedure produces identical results to the IV estimator suggested by Breusch, Mizon and Schmidt [1989].

Next, assume that the endogeneity potentially operates through both μ_{i} and $\eta_{i t}$. As no transformation of z_{i} will provide a valid instrument in this case, a possible instrument set is given by $w_{i t}=\left[x_{i t}, \bar{x}_{i}\right]$. If $m_{i t}=w_{i t}$, it can be shown (see appendix) that the linear IV estimator and the two-step estimator are, again, algebraically the same. This general equivalence of the two-step approach and IV indicates that normality is not required in the linear case and imposing normality does not increase efficiency. However, normality is needed to interpret the coefficients on the residuals as covariance-variance ratios.

6 Concluding remarks

This paper presents a two-step approach to estimating simultaneous equation panel data models with censored endogenous variables and sample selection. Compared to LIML, this approach is computationally simpler as only one-dimensional numerical integration is required. The costs are in a loss of efficiency, which depends, inter alia, upon the magnitude of the covariances responsible for the endogeneity.

In contrast to IV methods, our method can handle a larger variety of models. In particular it allows for truncation, censoring, sample selection
and the inclusion of a latent explanatory variable ${ }^{9}$. Moreover, the twostep method identifies an additional number of parameters that may have economic appeal, including two or three sources of endogeneity. Direct test for endogeneity are also provided.

As our procedure requires distributional assumptions this may seem restrictive. However, the general functions (g_{2} and g_{5}) allow for smooth monotonic transformations of the endogenous variables, while the assumption of normality is testable. Normality of the error components in (3) can be tested extending results from, for example, Ruud [1984]. In the second stage normality is needed to guarantee linearity of the conditional expectations and, in the conditional ML case, normality of the conditional distribution. A test for normality in this second stage can be based upon work by Lee [1984] and Gallant and Nychka [1987], by including powered up values of the conditional expectations of the errors to capture departures from normality.

Appendix

Covariance matrix estimation

First, consider case I. With fixed time effects the resulting estimator is \sqrt{N} consistent and asymptotically normal under weak regularity conditions. The asymptotic covariance matrix can be obtained using the results in Newey [1984]. Let $\theta^{(2)}$ denote the parameter vector from (3)-(4) and let the \sqrt{N} consistent maximum likelihood estimator for $\theta^{(2)}$ be given by $\hat{\theta}^{(2)}$ with asymptotic covariance matrix V_{2}. Write

$$
g_{1}\left(x_{i t}, z_{i t}, z_{i t}^{*} ; \theta_{1}\right)=g_{11}\left(x_{i t}, z_{i t} ; \theta_{1}^{(1)}\right)+\lambda z_{i t}^{*}
$$

and let

$$
\theta^{(1)^{\prime}}=\left(\theta_{1}^{(1) \prime}, \theta_{2}^{(1) \prime}\right)
$$

with $\theta_{2}^{(1)}=\left(\lambda, \sigma_{\mu \alpha}, \sigma_{\eta v}\right)^{\prime}$. In vector notation, write

$$
y_{i}=g_{11}\left(x_{i}, z_{i} ; \theta_{1}^{(1)}\right)+Z_{i}\left(\theta^{(2)}\right) \theta_{2}^{(1)}+e_{i}
$$

where $Z_{i}\left(\theta^{(2)}\right)$ denotes the generated regressors and where e_{i} is an error term corresponding to the conditional distribution of $\iota_{T} \mu_{i}+\eta_{i}, \iota_{T}$ being a

[^7]T-dimensional vector of ones. Let Ω_{i} denote the variance of e_{i} for individual i and let
$$
G_{i}=\frac{\partial g_{11}\left(x_{i}, z_{i} ; \theta_{1}^{(1)}\right)}{\partial \theta_{1}^{(1) \prime}}
$$

Defining

$$
\begin{aligned}
& M_{N}=\frac{1}{N} \sum_{i=1}^{N} E\left\{\left[G_{i} Z_{i}\left(\theta^{(2)}\right)\right]^{\prime}\left[G_{i} Z_{i}\left(\theta^{(2)}\right)\right]\right\}, \\
& V_{N}=\frac{1}{N} \sum_{i=1}^{N} E\left\{\left[\begin{array}{ll}
G_{i} & \left.\left.Z_{i}\left(\theta^{(2)}\right)\right]^{\prime} \Omega_{i}\left[G_{i} \quad Z_{i}\left(\theta^{(2)}\right)\right]\right\}, ~ \\
\hline
\end{array}\right.\right. \\
& D_{N}=\frac{1}{N} \sum_{i=1}^{N} E\left\{\left[G_{i} Z_{i}\left(\theta^{(2)}\right)\right]^{\prime} \frac{\partial Z_{i}\left(\theta^{(2)}\right) \theta_{2}^{(1)}}{\partial \theta^{(2) \prime}}\right\},
\end{aligned}
$$

the asymptotic covariance matrix of the second step estimator for $\theta^{(1)}$ is given by

$$
V_{1}=\lim _{N \rightarrow \infty} M_{N}^{-1}\left(V_{N}+D_{N} V_{2} D_{N}^{\prime}\right) M_{N}^{-1}
$$

which can be consistently estimated by replacing expectations with sample moments and unknown parameters by their estimators. The second part within brackets for V_{1} is due to the generated regressors problem and equals zero if $\theta_{2}^{(1)}=0$. An estimator for V_{N}, without specifiying the exact form of heteroskedasticity, is given by

$$
\hat{V}_{N}=\frac{1}{N} \sum_{i=1}^{N}\left[\hat{G}_{i} Z_{i}\left(\hat{\theta}^{(2)}\right)\right]^{\prime} \hat{e}_{i} \hat{e}_{i}^{\prime}\left[\begin{array}{ll}
\hat{G}_{i} & \left.Z_{i}\left(\hat{\theta}^{(2)}\right)\right], ~
\end{array}\right.
$$

where \hat{e}_{i} is the T dimensional vector of residuals. While this estimator does not exploit the error components structure of the original errors it is attractive because of its simplicity.

Finally, if conditioning upon z_{i} implies that certain observations are excluded from the second stage estimation, the dimensions of all vectors and matrices should be adjusted to include only those observations used in estimation.

Next, consider case II. Let $\hat{\theta}^{(2)}$ denote the (marginal) ML estimator for $\theta^{(2)}$ with asymptotic covariance matrix V_{2} and $\hat{\theta}^{(1)}$ the conditional ML estimator obtained from maximizing (13). Define

$$
F_{11}=E\left\{-\frac{\partial^{2} \ln f_{1}}{\partial \theta^{(1)} \theta^{(1)^{\prime}}}\right\}, \quad F_{12}=E\left\{\frac{\partial^{2} \ln f_{1}}{\partial \theta^{(1)} \theta^{(2) \prime}}\right\} .
$$

Then, it is easily verified from Taylor expansions that

$$
\sqrt{N}\left(\hat{\theta}^{(1)}-\theta^{(1)}\right)=F_{11}^{-1}\left[\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \frac{\partial \ln f_{1}}{\partial \theta^{(1)}}+F_{12} \sqrt{N}\left(\hat{\theta}^{(2)}-\theta^{(2)}\right)\right]+o_{p}(1)
$$

Using the result that the two terms in square brackets are asymptotically independent (see Pierce [1982], Parke [1986]) it follows that the conditional ML estimator is asymptotically normal with covariance matrix

$$
V_{1}=F_{11}^{-1}\left[F_{11}+F_{12} V_{2} F_{12}^{\prime}\right] F_{11}^{-1} .
$$

F_{11}^{-1} is estimated by standard ML programs. In two cases $\hat{\theta}^{(1)}$ attains the Cramér-Rao lower bound. The first corresponds to the null hypothesis of exogeneity $\left(\sigma_{\mu \alpha}=\sigma_{\eta v}=0\right)$ and is characterized by $F_{12}=0$. The second case is given by

$$
J=F_{22}-F_{12}^{\prime} F_{11}^{-1} F_{12}=0,
$$

where

$$
F_{22}=E\left\{-\frac{\partial^{2} \ln f_{1}}{\partial \theta^{(2)} \theta^{(2) \prime}}\right\} .
$$

Note that J summarizes all information on $\theta^{(2)}$ contained in the conditional distribution f_{1}. We refer to $J=0$ as the exactly identified case (see Rivers and Vuong [1988] for an example). In general, the efficiency loss due to the two-step nature is given by

$$
F_{11}^{-1} F_{12}\left(V_{2}-\left[V_{2}^{-1}+J\right]^{-1}\right) F_{12}^{\prime} F_{11}^{-1} .
$$

The relationship between IV and residual-type estimators

Let M denote the matrix of observations for the variables included in the reduced form (18), and let W denote the matrix of instruments for the IV estimator. P_{v} is projection matrix producing individual means and $Q_{v}=I-$ P_{v} (the "within" transformation). Let P_{A} denote the projection matrix upon the space spanned by the columns of Λ, while $Q_{A}=I-P_{A}$. Finally, denote $\mathrm{G}=[\mathrm{X}, Z]$. Each of the estimators for θ_{1} can be written as $\left(G^{\prime} P^{\prime} G\right)^{-1} G^{\prime} P^{\prime} y$, where $P=P_{I V}=P_{W}$ for the IV estimator, $P=P_{1}=Q_{P_{v} Q_{M} Z}$ for the two-step estimator with endogeneity operating through α_{i} only, and $P=$ $P_{2}=Q_{\left[P_{v} Q_{M} Z: Q_{v} Q_{M} Z\right]}$ for the general two-step estimator. Now the following results hold.

Theorem

Provided M has the same column space as $\left[Q_{v} M: P_{v} M\right.$],

$$
\begin{aligned}
& \text { (a) } P_{I V} G=P_{1} G \text { if } W=\left[M: Q_{v} Z\right], \\
& \text { (b) } P_{I V} G=P_{2} G \text { if } W=M .
\end{aligned}
$$

Proof

Given that X is contained in M it is easily verified that $P X=0$ for each of the choices for P. Furthermore, $P_{2} Z=P_{M} Z$, which proves (b). To prove (a), we use that $P_{1} Z=Z-P_{v} Q_{M} Z$, where

$$
\begin{gathered}
P_{v} Q_{M} Z=P_{v}\left(z-P_{M} Z\right)=P_{v}\left(z-P_{Q_{v} M} Q_{v} Z-P_{P_{v} M} P_{v} Z\right) \\
=P_{v}\left(I-P_{P_{v} M}\right) Z .
\end{gathered}
$$

Furthermore, for $W=\left[M: P_{v} Z\right]$ we have

$$
\begin{gathered}
Z-P_{W} Z=Q_{W}\left(Q_{v} Z+P_{v} Z\right)=P_{v} Z-P_{W} P_{v} Z= \\
P_{v} Z-P_{P_{v} W} I_{v} Z=P_{v} Z-P_{P_{v} M} P_{v} Z
\end{gathered}
$$

which proves (a).
Corollary $1\left(\sigma_{\eta v}=0\right)$
The Hausman-Taylor estimator is identical to the two-step estimator for θ_{1} for $M=\left[Q_{v} X: P_{v} X\right]$ or, equivalently, $M=\left[X: P_{v} X\right]$.
Corollary $2\left(\sigma_{\eta v}=0\right)$
The Amemiya-MaCurdy estimator is identical to the two-step estimator for θ_{1} for $M=\left[Q_{v} X: X^{*}\right]$.
Corollary 3 ($\sigma_{\eta v}=0$)
The Breusch-Mizon-Schmidt estimator is identical to the two-step estimator for θ_{1} for $M=\left[Q_{v} X: X^{*}:\left(Q_{v} Z\right)^{*}\right]$.
The notation X^{*} is taken from Breusch, Mizon and Schmidt [1989]. Each column of X^{*} contains values of $x_{k, i t}$ for one t only. Note that $P_{v} X^{*}=X^{*}$. Corollary 4
The IV estimator with instruments $W=\left[X: P_{v} X\right]$ is identical to the twostep estimator for θ_{1} for $M=W$.

References

Amemiya, T. and T. MaCurdy (1986): "Instrumental-Variable Estimation of an Error-Components Model," Econometrica, 54, 869-881.

Breusch, G.E. Mizon and P. Schmidt (1989): "Efficient Estimation Using Panel Data," Econometrica, 57, 695-700.

Blundell, R. and R.J. Smith (1993): "Coherency and Estimation in Simultaneous Models with Censored or Qualitative Dependent Variables," working paper, Dept. of Applied Economics, University of Cambridge.

Gallant, A. and D. Nychka (1987): "Semi-Nonparametric Maximum Likelihood Estimation," Econometrica, 55, 363-390.

Gouricroux, C. and A. Monfort (1990): "Simulation-Based Inference. A Survey with Special Reference to Panel Data Models," Journal of Econometrics, 59, 5-33.
-, - E. Renault and A.Trognon (1987): "Generalized Residuals," Journal of Econometrics, 34, 5-32.

Hausman, J. and W. Taylor (1981): "Panel Data and Unobservable Individual Effects," Econometrica, 49, 1377-1398.

Heckman, J.J. (1978): "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, 931-959.

- (1979): "Sample Selection Bias as a Specification Error," Econometrica, 47, 153-161.
- (1981): "The Incidental Parameters Problem and the Problem of Initial Conditions in Estimating a Discrete-Time-Discrete-Data Stochastic Process," in: C.F. Manski and D. McFadden, eds., Structural Analysis of Discrete Data with Econometric Applications, MIT Press, Cambridge, MA.

IIsiao, C. (1986): Analysis of Panel Data, Cambridge University Press.
Honoré, B3. (1992): "'Trimmed L, 1) and Least. Squares Estimation of 'Truncated and Censored Regression Models with Fixed Effects," Econometrica, 60, 533-565.

- (1993): "Orthogonality Conditions for Tobit Models with Fixed Effects and Lagged Dependent Variables", Journal of Econometrics, 59, 35-61.

Lee, L. (1984): "Tests for the Bivariate Normal Distribution in Econometric Models with Selectivity," Econometrica, 52, 843-863.

Newey, W. (1984): " Λ Method of Moments Interpretation of Sequential Eistimators," Weonomics Letters, 14, 201-206.
(1987): "Efficient Estimation of Limited Dependent Variable Models with Endogenous Explanatory Variables", Journal of Econometrics, 36 (1987), 231-250.

Nijman, T., and M. Verbeek (1992): "Nonresponse in Panel Data: 'The Impact on Estimates of a Life Cycle Consumption Function," Journal of Applied Econometrics, 7, 243-257.

Pagan, A. and F. Vella (1989): "Diagnostic Tests for Models Based on Individual Data: A Survey," Journal of Applied Econometrics, 4, S29-S60.

Parke, W.R. (1986): "Pseudo Maximum Likelihood Estimation: The Asymptotic Distribution", Annals of Statistics, 14, 355-357.

Pierce, D.A. (1982): "The Asymptotic Effect of Substituting Estimators for Parameters in Certain Types of Statistics," Annals of Statistics, 10, 475-478.

Peters, S. and R..J. Smith (1991): "Distributional Specification 'Tests against SemiParametric Alternatives", Journal of Econometrics, 47, 175-194.

Ridder, G. (1990): "Attrition in Multi-Wave Panel Data," in J. Ilartog, G. Ridder and J. Theeuwes, eds., Panel Data and Labor Market Studies, Elsevier, North Holland.

Rivers, D. and Q. Vuong (1988): "Limited Information Estimators and Exogeneity Tests for Simultaneous Probit Models," Journal of Econometrics, 39, 347-366.

Ruud, P.A. (1984): "Tests for Specification in Econometrics," Econometric Reviews, 3, 221-242.

Smith, R.J. and R. Blundell (1986): "An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply," Econometrica, 54, 679-685.

Vella, F. (1993): "A Simple Estimator for Simultaneous Models with Censored Endogenous Regressors," International Economic Review, 34, 441-457.

Wooldridge, J. (1993): "Selection Corrections for Panel Data Models under Conditional Mean Independence Assumptions," working paper, Michigan State University.

Discussion Paper Series, CentER, Tilburg University, The Netherlands:		
(For previous papers please consult previous discussion papers.)		
No.	Author(s)	Title
9355	Z. Yang	A Simplicial Algorithm for Computing Robust Stationary Points of a Continuous Function on the Unit Simplex
9356	E. van Damme and S. Hurkens	Commitment Robust Equilibria and Endogenous Timing
9357	W. Güth and B. Peleg	On Ring Formation In Auctions
9358	V. Bhaskar	Neutral Stability In Asymmetric Evolutionary Games
9359	F. Vella and M. Verbeek	Estimating and Testing Simultaneous Equation Panel Data Models with Censored Endogenous Variables
9360	W.B. van den Hout and J.P.C. Blanc	The Power-Series Algorithm Extended to the BMAP/PH/1 Queue
9361	R. Heuts and J. de Klein	An (s, q) Inventory Model with Stochastic and Interrelated Lead Times
9362	K.-E. Wärneryd	A Closer Look at Economic Psychology
9363	P.J.-J. llerings	On the Connectedness of the Set of Constrained Equilibria
9364	P.J.-J. Herings	A Note on "Macroeconomic Policy in a Two-Party System as a Repeated Game"
9365	F. van der Ploeg and A. L. Bovenberg	Direct Crowding Out, Optimal Taxation and Pollution Abatement
9366	M. Pradhan	Sector Participation in Labour Supply Models: Preferences or Rationing?
9367	H.G. Bloemen and A. Kapteyn	The Estimation of Utility Consistent Labor Supply Models by Means of Simulated Scores
9368	M.R. Baye, D. Kovenock and C.G. de Vries	The Solution to the Tullock Rent-Seeking Game When $\mathrm{R}>2$: Mixed-Strategy Equilibria and Mean Dissipation Rates
9369	T. van de Klundert and S. Smulders	The Welfare Consequences of Different Regimes of Oligopolistic Competition in a Growing Economy with FirmSpecific Knowledge
9370	G. van der Laan and D. Talman	Intersection Theorems on the Simplotope
9371	S. Muto	Alternating-Move Preplays and $v N-M$ Stable Sets in Two Person Strategic Form Games
9372	S. Muto	Voters' Power in Indirect Voting Systems with Political Parties: the Square Root Effect

No. Author(s)
9373 S. Smulders and
R. Gradus

9374 C. Fernandez,
J. Osiewalski and M.F.J. Steel

9375 E. van Damme
9376 P.M. Kort

9377 A. L. Bovenberg and F. van der Ploeg
F. Thuijsman, B. Peleg, M. Amitai \& A. Shmida

9379
9380 (C. Femandez,
J. Osiewalski and M. Steel

9381 F. de Jong

9401 J.P.C. Kleijnen and R.Y. Rubinstein

9402 F.C. Drost and B.J.M. Werker

9403 A. Kapteyn

9404 H.G. Bloemen

9405 P.W.J. De Bijl
9406 A. De Waegenaere

9407 A. van den Nouweland, P. Borm, W. van Golstein Brouwers, R. Groot Bruinderink, and S. Tijs

9408 A.L. Bovenberg and F. van der Ploeg

Title
Pollution Abatement and Long-term Growth

Marginal Equivalence in v-Spherical Models

Evolutionary Game Theory
Pollution Control and the Dynamics of the Firm: the Effects of Market Based Instruments on Optimal Firm Investments

Optimal Taxation, Public Goods and Environmental Policy with Involuntary Unemployment

Automata, Matching and Foraging Behavior of Bees

Capital Mobility and Social Insurance in an Integrated Market
The Continuous Multivariate Location-Scale Model Revisited:
A Tale of Robustness

Specification, Solution and Estimation of a Discrete Time Target Zone Model of EMS Exchange Rates

Monte Carlo Sampling and Variance Reduction Techniques

Closing the Garch Gap: Continuous Time Garch Modeling

The Measurement of Household Cost Functions: Revealed Preference Versus Subjective Measures

Job Search, Search Intensity and Labour Market Transitions: An Empirical Exercise

Moral Hazard and Noisy Information Disclosure
Redistribution of Risk Through Incomplete Markets with Trading Constraints

A Game Theoretic Approach to Problems in Telecommunication

[^8]| No. Author(s) | Title | |
| :--- | :--- | :--- |
| 9409 | P. Smit | Arnoldi Type Methods for Eigenvalue Calculation: Theory and |
| Experiments | | |

No.	Author(s)	Title
9428	J.P.C. Kleijnen and W. van (iroenendaal	Two-stage versus Sequential Sample-size Determination in Regression Analysis of Simulation Experiments
9429	M. Pradlan and A. van Soest	Itousehold Labour Supply in Urban Areas of a Developing Country
9430	P.J.J. Herings	Endogenously Determined Price Rigidities
9431	H.A. Keuzenkamp and J.R. Magnus	On Tests and Significance in Econometrics
9432	C. Dang, D. Talman and Z. Wang	A Homotopy Approach to the Computation of Economic Equilibria on the Unit Simplex
9433	R. van den Brink	An Axiomatization of the Disjunctive Permission Value for Games with a Permission Structure
9434	C. Veld	Warrant Pricing: A Review of Empirical Research
9435	V. Feltkamp, S. Tijs and S. Muto	Bird's Tree Allocations Revisited
9436	G.-J. Otten, P. Borm, B. Peleg and S. Tijs	The MC-value for Monotonic NTU-Games
9437	S. Hurkens	Learning by Forgetful Players: From Primitive Formations to Persistent Retracts
9438	J.-J. Herings, D. Talman, and Z . Yang	The Computation of a Continuum of Constrained Equilibria
9439	E. Schaling and D. Smyth	The Effects of Inflation on Growth and Fluctuations in Dynamic Macroeconomic Models
9440	J. Arin and V. Feltkamp	The Nucleolus and Kernel of Veto-rich Transferable Utility Games
9441	P.-J. Jost	On the Role of Commitment in a Class of Signalling Problems
9442	J. Bendor, D. Mookherjee, and D. Ray	Aspirations, Adaptive Learning and Cooperation in Repeated Games
9443	G. van der Laan, D. Talman and Zaifu Yang	Modelling Cooperative Games in Permutational Structure
9444	G.J. Almekinders and S.C.W. Eijffinger	Accounting for Daily Bundesbank and Federal Reserve Intervention: A Friction Model with a GARCH Application
9445	A. De Waegenaere	Equilibria in Incomplete Financial Markets with Portfolio Constraints and Transaction Costs
9446	E. Schaling and D. Smyth	The Effects of Inflation on Growth and Fluctuations in Dynamic Macroeconomic Models

No. Author(s)
9447 G. Koop, J. Osiewalski and M.F.J. Steel

9448 H. Hamers, J. Suijs, S. Tijs and P. Borm

9449 G.-J. Otten, H. Peters, and O. Volij

9450 A.L. Bovenberg and S.A. Smulders

9451 F. Verboven

9452 P.J.-J. Herings

9453 D. Diamantaras, R.P. Gilles and S. Scotchmer

9454 F. de Jong, T. Nijman and A. Röell

9455 F. Vella and M. Verbeek

Title

Hospital Efficiency Analysis Through Individual Effects: A Bayesian Approach

The Split Core for Sequencing Games

Two Characterizations of the Uniform Rule for Division Problems with Single-Peaked Preferences

Transitional Impacts of Environmental Policy in an Endogenous Growth Model

International Price Discrimination in the European Car Market: An Econometric Model of Oligopoly Behavior with Product Differentiation

A Globally and Universally Stable Price Adjustment Process
A Note on the Decentralization of Pareto Optima in Economies with Public Projects and Nonessential Private Goods

Price Effects of Trading and Components of the Bid-ask Spread on the Paris Bourse

Two-Step Estimation of Simultaneous Equation Panel Data Models with Censored Endogenous Variables

P \cap R $\cap \times 9015350 \cap \cap$ I F TII RI IRG THF NIFTHFRLANDS Bibliotheek K. U. Brabant

17000011912038

[^0]: *This is a substantially shortened and revised version of an earlier paper, circulated under the title "Estimating and Testing Simultaneous Equation Panel Data Models with Censored Endogenous Variables". This paper was partially written while the authors were visitors in the Department of Economics, Research School of Social Sciences and the Department of Statistics, The Faculties at the Australian National University, Canberra, and while Vella was visiting the CentER for Economic Research at Tilburg University. Helpful comments by Bertrand Melenberg, Robin Sickles, Jeffrey Wooldridge and detailed suggestions by two anonymous referees are gratefully acknowledged. We alone are responsible for any remaining errors.

[^1]: ${ }^{1} \Lambda$ computationally attractive alternative is simulated maximum likelihood, in which the integrals in the loglikelihood function are replaced by simulators (cf. Gourieroux and Monfort [1993]).

[^2]: ${ }^{2}$ For example, when g_{5} is the identity mapping, we cannot have both $z_{i t}$ and $z_{i t}^{*}$ entering g_{1} in equation (1).

[^3]: ${ }^{3}$ Consistent estimation of $\sigma_{\mu \alpha}$ requires N to be large while $\sigma_{\epsilon \rho}$ requires large T . For $\sigma_{\eta v}$ we require either N and/or T to be large.

[^4]: ${ }^{4}$ If $g_{3}(. ; t)$ depends on $z_{i t}$ only and g_{4} does not involve $z_{i, t-1}$, a consistent estimator for θ_{1} can be obtained by conditioning upon $z_{z t}$ only and pooling the cross-sections (see Wooldridge (1993) for an example).
 ${ }^{5}$ All conditional expectations that follow are also conditional upon the exogenous variables in $x_{i t}($ for all t).

[^5]: ${ }^{6}$ It may also be more appropriate to treat the time effects in (1) as fixed. This decreases the difficulty in estimation as the fixed effects can be captured through time specific dummies. It also ensures that the approach is robust to incorrect specification of the distribution of the time effects, and relaxes the requirement for T to be large. However, the estimated fixed time effects in (1) will now comprise the direct effect of time and the indirect effect of time through the endogeneity of $z_{i t}$ and $z_{i t}^{*}$. Naturally, this approach does not allow one to identify the correlation between the time effects.

[^6]: ${ }^{7}$ We use $\int($.$) as generic notation for any density/mass function.$
 ${ }^{8}$ It is possible to exploit the covariance matrix of the errors in an additional round of estimation. 'This requires analytical expressions for the conditional (co) variances of $\mu_{i}, \varepsilon_{\ell}$ and $\eta_{2 t}$ and is therefore, in general, computationally mottractive.

[^7]: ${ }^{9}$ It is also a straightforward extension of the current framework to incorporate switching regression models.

[^8]: Consequences of Environmental Tax Reform for Involuntary Unemployment and Welfare

