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Abstract

This paper presents a two-step approach to estimating simultancous
equation panel data models with censored endogenous variables and
sample selection. The procedure employs the residuals from the re-
duced form estimation of the endogenous variable to adjust for the
heterogeneity in the primary equation. The panel naturc of the data
allows adjustment, and testing, for three forms of endogeneity.

*This is a substantially shortened and revised version of an carlier paper, circulated
under the title “Estimating and Testing Simultancous Equation Pancl Data Models with
Censored Endogenous Variables”. This paper was partially written while the authors were
visitors in the Department of Economics, Research School of Social Sciences and the De-
partment of Statistics, The Faculties at the Australian National University, Canberra, and
while Vella was visiting the CentER for Economic Research at Tilburg University. Helpful
comments by Bertrand Melenberg, Robin Sickles, Jeffrey Wooldridge and detailed sugges-
tions by two anonymous referees are gratefully acknowledged. We alone are responsible
for any remaining errors.



1 Introduction

This paper proposes a two step estimator for panel data models with cen-
sored endogenous variables and/or sample selection bias. T'he model com-
prises a primary equation with an endogenous explanatory variable and the
reduced form for the endogenous explanator. We derive estimates of the het-
erogeneity generating the endogeneity to include as additional explanatory
variables in the primary equation. These are obtained through a decompo-
sition of the reduced form residuals. The procedure is applicable in cases
where the primary equation has an uncensored dependent variable and the
endogenous explanator is either uncensored or censored, as well as cases
where the primary equation has a censored dependent variable. In addition,
it is applicable to estimation over non-randomly chosen sub-samples.
Previously proposed procedures examining this family of models com-
monly assume that the endogencity is due to time-invariant individual ef-
focts (see, for example, Hausman and Taylor [1981], Amemiya and MaCurdy
[1986] and Honoré [1992, 1993]). We, however, allow the endogeneity to op-
crate through an individual component, a time component and an individual
specific/time component. This allows a richer econometric, and economic,
structure. Moreover, it extends several well known cross-sectional estima-
tors to panel data (see, for example, Heckman [1979], Smith and Blundell
[1986], Rivers and Vuong [1988] and Vella [1993]) and encompasses exist-
ing panel data procedures for sample selection and attrition bias (see, for
example, Ridder [1990], Nijman and Verbeek [1992] and Wooldridge [1993]).
Two-step estimators are generally inefficient in comparison to limited
information maximum likelihood (LIML) (see, for example, Newey [1987]).
The efficiency loss is model specific, while under restrictive conditions the
two-step estimator attains the Cramér-Rao lower bound. We are confident
that our procedure is sufficiently simple that it will be often preferable to
LIML. If efficiency is a primary objective our method provides initial con-
sistent estimators for a LIML approach!. It is possible to estimate a sub-
set of the models we examine under more general conditions, for example
by instrumental variables (IV). We, however, do not consider this a short-
coming as there is a trade-ofl between the economic information extracted
via estimation and the distributional assumptions employed. Purthermore,
the distributional assumptions can be tested by generalizing the approach

'A computationally attractive alternative is simulated maximum likelihood, in which
the integrals in the loglikelihood function are replaced by simulators (cf. Gourieroux and
Monfort [1993]).



in Pagan and Vella [1989] or, for special cases, through comparisons with
semi-parametric alternatives, such as Honoré [1992], via the methodology in
Peters and Smith [1991]. Moreover, we show that IV estimators, including
those in Hausman and Taylor [1981], Amemiya and MaCurdy [1986] and
Breusch, Mizon and Schmidt [1989], can be replicated by our “residual”
approach.

The following section presents the model and outlines the estimation
procedure. Sections 3 and 4 consider two important cases in detail, while
Section 5 discusses the relationship between our procedure and available IV
estimators. Concluding comments are presented in Section 6.

2 The general framework

Consider a general model where equations (1)-(2) are of primary focus and
equations (3) (4) constitute the reduced form for the endogenous explana-
tory variable.

vie = 9u(Tit, Zie, 73 01) + pi + €0+ Mt (1)

yie = 92(y5:02) if ga(zir,.,2im;t) #0 (2)
unobserved elsewhere

2, = 94(Tit, zig—1;04) + @i + pr + vir (3)

zie = gs(25;0s), (4)

where ¢ indexes individuals (i = 1,..., N) and ¢ indexes time (¢t = 1,...,T').
y;, and 2], are latent endogenous variables; y;; and 2;; are observed variables
produced by the censoring functions g, and gs noting that these functions
may be characterized by the unknown parameters 6 and 65. The functions
g1 and g4 are assumed to be continuously differentiable with respect to the
parameter vectors 0y, 04, respectively. While we make no assumptions about
the function g3, determining sample selection, we require that the applica-
ble regime is observed. The main parameters of interest are #; and, when
applicable, #5. It is assumed that the parameters are identified up to some
normalization. In nonlinear cascs identification is in principle guaranteed
through distributional assumptions only, but, preferably, functional form
and exclusion restrictions are imposed. Also, standard restrictions on the
functions g;, j = 1,2,4,5 apply?. Finally, the variables in z;; are assumed to

2For example, when gs is the identity mapping, we cannot have both z;, and z, entering
g1 in equation (1).



be independent of all error components such that, potentially, cach function
g; can depend on z;, for any s.

Each equation’s error can be decomposed into individual effects y; and
a;; time effects £, and py; and individual specific time effects 7;; and v;,.
These are assumed to be i.i.d. jointly normal with zero mean and variances
o, 0 = a,p,e,p,n,v. Bach effect is potentially correlated with its counter-
part of the same dimension in the other equation, with covariances O s Tep
and 0,,.> The endogeneity of z;, and z; thus operates through the three
factors common across the two equations.

Consider some models this framework encompasses. The conventional
sample selection model (see Nijman and Verbeek [1992]) is obtained when z;,
and 2}, do not appear in gy, g5 is an index function and g3 equals z;. In this
case z; is a zero-one variable indicating selection into the sample. If g3 equals
[1; zit, attention is restricted to a balanced sub-panel. A dummy endogenous
variable (see Heckman [1978]) appears in (1) when z;; appears in ¢g; and gs
is an index function. More general gs functions allow for categorical and
censored endogenous variables with reduced forms corresponding to ordered
probit or tobit specifications. This allows the inclusion of a range of dummy-
variables in (1) corresponding to diflerent values for z;,. Another feature is
the inclusion of cither z; or 27, as discussed in Blundell and Smith [1993]
and Vella [1993], in the primary equation, which allows the relationship of
interest to be between g and 27, rather than y;, and z;. Finally, the general
specification permits non-lincar transformations of the endogenous variables
which may depend on unknown parameters.

Our general strategy is the following. We estimate (3)-(4) by maximum
likelihood to obtain consistent estimators for 64, #5 and the variances of
the error components. This requires the usual regularity conditions and z;
to be strictly exogenous (see Heckman [1981]). We then condition (1) on
the observed outcomes of the endogenous explanatory variable and employ
the relevant conditional moment restrictions, or the conditional likelihood
function, to estimate the parameters in (1) and (2). For cross-sectional
estimation the conditioning set includes z;; for the relevant time period
(see Smith and Blundell [1986] and Vella [1993]). To exploit the correla-
tion structure of the panel, it is natural to condition upon the vector of
all outcomes. This is required to seperately identify the three sources of
endogencity and, moreover, to guarantec consistency for general sample se-

3Consistent estimation of o, requires N to be large while 0., requires large T'. For
ony we require either N and/or T to be large.



lection functions gy. This allows estimation over subsamples corresponding
to non-randomly chosen values of the endogenous explanator. In addition, it
increases the estimator’s efficiency as it incorporates additional information
into estimation®. It is often useful to include the time effects p; from (3)
in the conditioning set. Accordingly, the conditioning set reduces to {z;,p}
where z; = (2i1,..., ziT)".

Our approach has two primary advantages over LIML. First, it is compu-
tationally attractive as it gencrally does not require higher order integrals.
Second, as the specifications of g; and g, are only relevant for the second
stage estimation it is relatively casy to conduct specification searches for
the primary equation. These advantages, however, cannot be realized for all
specifications of g;. Two general classes of models that satisfy the require-
ments can be characterized as:

1. Case I: g; is the identity mapping; g, is linear in 2J,.

2. Case 1l g5(23) = 251z}, € A], for some A C IR, where [ is an indicator
function; g3(zi1, ..., zir5t) = [l 2zisg3(zit, ..., 2i7; 1) for some function
93-
The conditions for case I imply that the distribution of z; is continuous if
yir 1s observed (for any t). The next two sections focus on these cases which
we refer to as conditional moment estimation and conditional maximum
likelihood (CML) estimation.

3 Conditional moment estimation

Conditioning® (1) on the NT vector of outcomes z;;, denoted Z, produces

E{yy | Z} = E{gi(zi,zit,25,01) | 7}
FE{ui | 2} + Bled | 2} + E{m | 4. (5)

When g, is the identity mapping, it is straightforward to estimate the pa-
rameters in (5), from the appropriate conditional moment restrictions, given
expressions for the conditional expectations in (5) and consistent estimates

*If g3(.:t) depends on z;; only and g4 does not involve z; (1, a consistent estimator
for #; can be obtained by conditioning upon z,, only and pooling the cross-sections (sec

Wooldridge (1993) for an example).
> All conditional expectations that follow are also conditional upon the exogenous vari-

ables in z,;, (for all t).



for the parameters in (3) and (4). When g is not the identity mapping we
employ the conditional distribution of y;. We focus on this latter case in
Section 4. Our initial task is to find expression for the conditional expec-
tations in (5). Note that the conditional expectation of ¢, is taken over 2
only. If g, is linear in 2}, this is a straightforward function of g4 and the
conditional expectations of the error components in (3).

We proceed by deriving E{u; | U}, E{¢e, | U} and E{n; | U} where
ujpy = a; + py + vy and U is the NT vector of u;’s. We subsequently take
expectations with respect to U given Z, noting this second iteration of the
expectations is influenced by the censoring function gs. Joint normality and
straightforward matrix manipulations (using Hsiao [1986, eq. (3.6.20)]),
produce

i - T | 2N'I' _ 6
/{/I.I | - 0-”“ (1-!2’_*_—'[‘0';2,“'14 II 0_2)(0.2 + I(Tz + N(Tg)u" ())
N o:NT
Bz =0, 5 a A3 - i
{ ‘ I [j} Ocp [05 n N(le) wy (03 T N(Tg)((f,z, 4+ 'I'n.z A N(72) ](7)
1 Pol Noj
1,] i — | — i — v =, s P
{mie | U} oy [03 Uyt 05(03 ']‘02) ag(af, T+ Nag)u

(8)

To? No? 202+ Tok + No?
+0’,3 + Tok 02 + No2 o2(o2+ To2 + Naz) ]
where u = ﬁ YT YN up iy = 5 YN ui and @;, = %Ztlzl Uy
To compute the conditional expectations given Z requires an expression
for E{u;; | Z}. When g5 is a one-to-one function this is equal to u;. In
general, the conditional expectation is more complicated. As T is small for
most panel data studies a first step towards a general solution is to condition
upon the time effects in w;,. This corresponds to treating the time effects in
(3) as fixed unknown parameters®. The conditional expectations are then
given by (6) and (8) with the terms involving o2 set to zero, while (7) reduces
to

It may also be more appropriate to treat the time effects in (1) as fixed. This decreases
the difficulty in estimation as the fixed effects can be captured through time specific
dummies. It also ensures that the approach is robust to incorrect specification of the
distribution of the time effects, and relaxes the requirement for 7' to be large. However,
the estimated fixed time effects in (1) will now comprise the direct effect of time and the
indirect effect of time through the endogeneity of z;; and z,. Naturally, this approach
does not allow one to identify the correlation between the time effects.



3 7 05
E{e, | U,p} = a;'o" (9)
p

Conditional on p, we have E{u; | Z,p} = E{u; | zi,p} and

E{uit | zi,p} = pe + /[ai + E{vit | zit, p, i }] [ | 21, p)de,  (10)

where f(«; | z;,p) denotes the conditional density of «;. The conditional
expectation of v;; given z;, p and «; is the generalized residual from (3)
as, conditional on p and «;, the errors from (3) are independent across
observations. The form of the generalized residual depends on g5 (see, for
example, Gourieroux et al. [1987], Pagan and Vella [1989] or Vella [1993]).

The conditional distribution of «; given z; can be derived by using the
result that?”

f(zi | ai,p)f(a: | p)
f(zi | p)

where f(z; | p) = [ f(zi | @i,p)f(ei | p)de; is the likelihood contribution of
individual 7 in (3)-(4), conditional on p. Furthermore, [(«; | p) = f(«;) is
a normal density and f(z; | au, p) is the conditional likelihood contribution
given «; and p. Finally, f(z | ai,p) = 1, f(zie | @i, p), where f(2i | ai,p)
has the form of the likelihood contribution in the cross sectional case.

Computation of the conditional expectations in (6) (8) when gs is not a
one-to-one mapping requires an expression for the likelihood contribution in
an i.i.d. context, the corresponding generalized residual and the numerical
evaluation of two one-dimensional integrals. Given consistent estimates of
the parameters in (3) and (4), including the variances of the error compo-
nents, the only unknowns in the expectations are the covariances. Due to
the linearity these are easily estimated consistently in the second step from
the conditional moment restrictions. The null hypothesis of no endogeneity
is a linear restriction on these covariances and is thus easily tested.

The simplest way to obtain the second stage estimates is by standard
GMM or nonlinear least squares based on (5).® Standard crrors can be
obtained in the usual way after accounting for the generation of the expec-

f(ei| zi,p) = (11)

tations (sce appendix).

"We use f(.) as generic notation for any density /mass function.

81t is possible to exploit the covariance matrix of the errors in an additional round of
estimation. This requires analytical expressions for the conditional (co)variances of ju, €
and 7, and is therefore, in general, computationally nnattractive.



4 Conditional Maximum Likelihood Estimation

When g2 is not the identity mapping the conditional distribution of ;;
is needed for estimation. This section discusses case 11 where, inter alia,
gs(z5) = 251z}, € A], with the identity mapping as a special case. Under
our assumptions the conditional distribution of the error terms in (1) is still
normal and the error components structure is preserved. Consequently, we
can estimate (1)-(2) conditional on the estimated parameters from (3) us-
ing the random effects likelihood function, after making appropriate adjust-
ments for the mean and noting that the variances now reflect the conditional
variances. Moreover, the unconditional variances and the cross-equation co-
variances can be recovered from this procedure, while endogencity tests are
casily performed.

For computational purposes it is unattractive, due to the integration,
to allow for random time effects in the error terms in nonlinear models.
Accordingly, we treat the time effects in both equations as fixed and include
time dummies in both mean functions. Write the joint density of y; =
(Yi1y -, yir)" and z; given X; = [z;...z;7]) (including the time cffects) as

N1y | 20, Xi;0M,03) fo(2; | X;;69), (12)

where §(1) denotes (8y,60,,02%,02,0,4,0,,) and 0 denotes (84,05,02,02).
The conditional maximum likelihood approach involves first estimating 6(2)
by maximizing the marginal likelihood function of the z;’s. Subsequently,
the conditional likelihood function

T f1(vi | 2:;6,6) (13)

is maximized with respect to 8("). Given our restrictions on g3 and g5 the
latter step has the same computational complexity as when z;; is strictly
exogenous. This is due to the fact that the conditional distribution of yJ,
given z; and sample selection (g3 # 0) is normal with expectations given in
(5), and a covariance structure corresponding to that of vy; + vz, where vy;
and vy are zero mean normal variables with zero covariance and variances

0% =Viw} = 0’3, =2 (T%UO'U_Z, (14)

T2 2 2 2 =2
loua”u < 20'“0,0’,71,0'” — OpyTa

ai(o} +To3)

; (15)

0% i= V{mul = oi -



which follows from the usual matrix manipulations needed to derive a con-
ditional covariance matrix. The results in (14) and (15) show that the error
components structure is preserved and the conditional likelihood function
of (1)(2) has the same form as the marginal likelihood function without
endogenous regressors or sample selection. The asymptotic variance of the
conditional ML estimator, and an expression for the efliciency loss, is pro-
vided in the appendix. Under the null hypothesis of exogeneity, no loss
of efficiency is incurred such that routinely computed ¢-statistics for the co-
variances provide efficient tests of endogeneity (compare Smith and Blundell
(1986]).

The algebraic manipulations simplify if ¢ and o2 replace the uncondi-
tional variances 02 and o2 in #(1). In this case, estimates for the latter two
variances are easily obtained in a third step from the estimates from the first
stage for 02 and 02, and the estimated covariances from the mean function.

5 Relationship with IV estimators

IFor several cases of our model alternative estimators are available which are
more robust to the distributional assumptions. We now analyse the rela-
tionship between our two-step approach and the appropriate IV estimators.
To do this, we concentrate on the special case where gy is lincar in z;, 2;
and does not depend upon =z, both g3 and g5 are identity mappings and
g3 # 0 (no sample selection). The model of interest is thus given by

Yir = T + 2zt + i + it (16)

where there is only one endogenous explanatory variable, z;, and the time
effects, if present, are included in z;;. To simplify notation we do not trans-
form (16) to obtain a scalar error covariance matrix. This does not affect
the primary result.

Let w;; denote a set of appropriate instruments for z;; (including z;;). It
is well known that the linear IV estimator for 6; = (4’,%)" in (16) can be
obtained through least squares on

Yir = ThPB + za¥ + Eud + e, (17)

where ¢;; denotes a zero mean error term orthogonal to the regressors in this
equation, and & is the residual from projecting z;; on the instruments w;;.
In our two-step approach a reduced form for z;,; is specilied as

Zi = My + i, (18)



where u;; = a; + vy and my; is a vector of exogenous variables, including
z;. The appropriate residuals are derived from (6) and (8) and are linear
functions of ;; and )~ 45, where 4;, is the least squares residual from (18).

Following Hausman and Taylor [1981], Amemiya and MaCurdy [1986]
and Breusch, Mizon and Schmidt [1989], first assume that the endogeneity
operates only through a nonzero covariance between p; and «;. The ap-
propriate residual in our two-step approach is proportional to 3", u;s. IV
thus produces algebraically the same estimator if m;; and w;; are such that
this residual is proportional to f},. Consider the instrument set suggested
by Hausman and Taylor, i.e. w;; = [z;,Z;,2;t — %]. It can be shown (see
appendix) that proportionality is attained if m;, in (18) is chosen as [z, Z;].
Amemiya and MaCurdy [1986] extend the Hausman-Taylor approach by
including [z;1,..., z;7] in the instrument set. The two-step approach is iden-
tical to this IV estimator when we include in the reduced form in (18) the
exogenous variables from all periods, as well as z;; in deviation from its
individual mean, i.e. if we choose m;, = [ziy,...,zi7, 2y — &;]. If we extend
my, to include 2y — 2;, ..., z;7 — z;, our lwo-step procedure produces identical
results to the IV estimator suggested by Breusch, Mizon and Schmidt [1989)].

Next, assume that the endogeneity potentially operates through both p;
and 7;;. As no transformation of z; will provide a valid instrument in this
case, a possible instrument set is given by w; = [z, 2;]. If my = wy, it
can be shown (see appendix) that the linear IV estimator and the two-step
estimator are, again, algebraically the same. This general equivalence of
the two-step approach and IV indicates that normality is not required in
the linear case and imposing normality does not increase efficiency. How-
ever, normality is needed to interpret the coefficients on the residuals as
covariance-variance ratios.

6 Concluding remarks

This paper presents a two-step approach to estimating simultaneous equa-
tion panel data models with censored endogenous variables and sample se-
lection. Compared to LIML, this approach is computationally simpler as
only one-dimensional numerical integration is required. The costs are in
a loss of efficiency, which depends, inter alia, upon the magnitude of the
covariances responsible for the endogeneity.

In contrast to IV methods, our method can handle a larger variety of
models. In particular it allows for truncation, censoring, sample selection
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and the inclusion of a latent explanatory variable®. Moreover, the two-
step method identifies an additional number of parameters that may have
economic appeal, including two or three sources of endogeneity. Direct test
for endogeneity are also provided.

As our procedure requires distributional assumptions this may seem re-
strictive. However, the general functions (g2 and g¢s) allow for smooth mono-
tonic transformations of the endogenous variables, while the assumption of
normality is testable. Normality of the error components in (3) can be tested
extending results from, for example, Ruud [1984]. In the second stage nor-
mality is nceded to guarantee linearity of the conditional expectations and,
in the conditional ML case, normality of the conditional distribution. A test
for normality in this second stage can be based upon work by Lee [1984] and
Gallant and Nychka [1987], by including powered up values of the conditional
expectations of the errors to capture departures from normality.

Appendix

Covariance matrix estimation

First, consider case I. With fixed time effects the resulting estimator is VN
consistent and asymptotically normal under weak regularity conditions. The
asymptotic covariance matrix can be obtained using the results in Newey
(1984]. Let 8 denote the parameter vector from (3) (4) and let the VN
consistent maximum likelihood estimator for #(2) be given by 62 with
asymptotic covariance matrix V,. Write

* 1 -
gl(zit,ziuziz;ol) = yn(zu,zu;ffg )) + Az},

and let l l
’ /§
00 = (61,03,

with Hg]) = (X, 0pa,0yy)". In vector notation, write
vi = gui(zi, 2:;00) + Zi(6)85" + e,

where Z;(6(?) denotes the gencrated regressors and where e; is an error
term corresponding to the conditional distribution of vy i + mi, tp being a

91t is also a straightforward extension of the current framework to incorporate switching
regression models.
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T'-dimensional vector of ones. Let §; denote the variance of ¢; for individual
1 and let

3.‘]11(11',2:‘;0%1))
8051)’

Gy =

Defining

N

N = NZ E{[Gi Z(6M))[G; Zi(g(z))]}’
Ivz_l

= Z

E{[G: Z:(0D)ulG: 76},

N (2))p(M)
_ ’ (2)\yr 9Zi(6°)8,
the asymptotic covariance matrix of the second step estimator for 8(!) is
given by

Vi = limy_eoMy' (VN + DNVa Dy )My
which can be consistently estimated by replacing expectations with sample
moments and unknown parameters by their estimators. The second part
within brackets for Vj is due to the generated regressors problem and equals
zero if Hgl) = 0. An estimator for Vjy, without specifiying the exact form of
heteroskedasticity, is given by

& _Z[(* Z(0) el (Gi 7:(6P)),

where é; is the T" dimensional vector of residuals. While this estimator
does not exploit the error components structure of the original errors it is
attractive because of its simplicity.

Finally, if conditioning upon z; implies that certain observations are ex-
cluded from the second stage estimation, the dimensions of all vectors and
matrices should be adjusted to include only those observations used in esti-
mation.

Next, consider case II. Let 8(2) denote the (marginal) ML estimator
for 8(?) with asymptotic covariance matrix V3 and (1) the conditional ML
estimator obtained from maximizing (13). Define

) 82 ln fl 02 lIl fl
Fin = E{_aeu)a(r)' o Fu=E FTIOrION
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Then, it is casily verified from Taylor expansions that

N «
# — 1 dln f| =
VN@ED -8y = P’ | 7= E_I:W + FiaV/N (6P — 6@)| + 0p(1).

Using the result that the two terms in square brackets are asymptotically
independent (see Pierce [1982], Parke [1986]) it follows that the conditional
ML estimator is asymptotically normal with covariance matrix

Vi = I [Fi+ FeVaF) Fi'

Fl—l} is estimated by standard ML programs. In two cases 6() attains the
Cramér-Rao lower bound. The first corresponds to the null hypothesis of
exogeneity (Oua = Onpy = 0) and is characterized by Fi2 = 0. The second
case is given by

J = Fogy — l"llzl"l-—llFl2 = 07

P LY |
2= Y7 9929y (-

Note that J summarizes all information on 8(?) contained in the conditional
distribution fi. We refer to J = 0 as the exactly identified case (see Rivers
and Vuong [1988] for an example). In general, the efficiency loss due to the
two-step nature is given by

where

Fiy' Fi (VZ =W+ J]_l) Fip PR

The relationship between IV and residual-type estimators

Let M denote the matrix of observations for the variables included in the
reduced form (18), and let W denote the matrix of instruments for the IV
estimator. P, is projection matrix producing individual means and @, = I—
P, (the “within” transformation). Let P4 denote the projection matrix upon
the space spanned by the columns of A, while Q4 = I — P4. Finally, denote
G = [X,Z]. BEach of the estimators for #; can be written as (G'PG)~'G' Py,
where P = Py = Pw for the IV estimator, P = Py = Qp,Quz for the
two-step estimator with endogencity operating through «; only, and P =
P; = QiP,Qm2:Q.Qu 2 for the general two-step estimator. Now the following
results hold.
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Theorem
Provided M has the same column space as [QuM : P,M],

(a) PivG=PG if W=[M:Q,Z],

(b) PvG = PG if W=M.

Proof

Given that X is contained in M it is easily verified that PX = 0 for each
of the choices for P. Furthermore, P,Z = PpZ, which proves (b). To prove
(a), we use that P,Z = Z — P,QmZ, where

P,OQumZ = Pj(z — PuZ) = Py(z — Po,MQuZ — Pp,m Py7)

= BAT = Prar}B.
Furthermore, for W = [M : P,Z] we have

7 — PwZ = Qw(Qu% + P,%) = P, 7% — Py P, % =
PoZ — Pow P2 = PyZ — Po,m P2,

which proves (a).

Corollary 1 (0,, =0)

The Hausman-Taylor estimator is identical to the two-step estimator for 6,
for M = [Q,X : P,X] or, equivalently, M = [X : P, X].

Corollary 2 (0, = 0)

The Amemiya-MaCurdy estimator is identical to the two-step estimator for
6, for M = [Q, X : X*].

Corollary 3 (0,, =0)

The Breusch-Mizon-Schmidt estimator is identical to the two-step estimator
for ) for M = [Q,X : X* : (QuZ)*].

The notation X* is taken from Breusch, Mizon and Schmidt [1989]. Each
column of X* contains values of zj ; for one t only. Note that P, X* = X*.
Corollary 4

The TV estimator with instruments W = [X : P, X] is identical to the two-
step estimator for 8y for M = W.
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