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Abstract

When the pazameter space is multidimensional, the prior marginals are sometimes

simple to specify, whereas the joint distribution may be extremely hard to elicit; as a

consequence of this, prior independence is often assumed. When this is the case, it seems

convenient to perform a sensitivity analysis, i.e., to consider a class of prior distributions

(containing the independence as a particular case) and to compute the range of variation

of the pclsterior quantity of interest, when the prior moves in that class. In this paper, the

well-known Farlie-Gumbel-Morgenstern system (or a generalization of it) is proposed as

the class of priors. We show that the robustness analysis is easy to carry out and, although

this family may sometinles seem too narrow, it could be used as a first step in a robustness

study.

1. Introduction

Let x be an observation from a sampling model 1(x~9), where 6 -(8~,...,8„) E O-
Oi x.. . x On. In order to perform a Bayesian analysis we need to specify a prior density
n(B~ ,..., Bn) on the parameters. The posterior density will then take the form

9f(el,...,enlt) OC ~(Slel,...oen)~(Bl~...,en).

Suppose that it is relatively simple to elicit our prior marginal densitiea gl(91), ...,
gn(Bn). If the parameters could be considered independent, the prior density would be
~(B1i...,9n) - II~ lg;(8;). However, in some cases we may not have a strong belief in

the latter assumption and we will want to cazry out a study of robustness with respect to

departures from prior independence. For this purpose it will be convenient to consider a
class of prior densities, all having the specified marginals gl (Bl ) , ..., gn(Bn), while contain-

ing the density under independence as a particular case, and to compute the ranges of the

posterior quantities of interest as the prior moves in that class.



The paper by Lavine, Wasserman and Wolpert (1991) follows these lines. They con-
sider an e-contamination class where the contaminations allowed aze all probability distri-
1)utiolls with thc given marginals. Although their approach is very interesting, it presents
some incorrvcnicnces: in some cases the class may be too lazge, containing distributions
that arc not. rcasonablc in vicw of our prior beliefs, resulting into a misleading impression
of lack of robustness. Furthermore, in order to solve the problem, they need to simplify it,
considering a finite partition for each component of the parameter space and assigning the
probability corresponding to each set of the paztition induced on O, to a single point in
that set. Moreno and Cano (1992) pmpose other classes of prior distributions that could
also be used as approximations to this e-contamination class. Other studies of Bayesian
robustness in multidimensional parameter spaces can be found in Lavine (1991a), and
Berger and Moreno (1992).

Families of multivaziate distributions with fixed mazginals have been investigated in
the literature for a long time. See, for instance, Mardia (1970) and Whitt (1976). There
are wcll-known, simple models that, keeping the marginala fixed, allow for different degrees
of dependence between the components. It seems quite reasonable to use some of these
models as classes of prior distributions to analyze robustness with respect to departures
from the assumption of prior independence. In particular, the Farlie-Gumbel-Morgenstern

(FGM) family is very simple and could be appropriate for our purposes. It will be described
in the next section. As a matter of fact, the FGM system is a particular case of a model
with a very clear and intuitive meaning. This more general model will be introduced in
Section 3. Ranges of posterior expectations as the prior moves over this class are computed
in Section 4. Finally, some examples are analyzed in Section 5.

2. The Farlie-Gumbel-Morgenstern model

The FGM system was discussed by Morgenstern (1956), Gumbel (1958) and Farlie
(1960); see also Johnson and Kotz (1975, 1977). This model is described next. For
notational convenience, we shall restrict ourselves to the bidimensional case; however, the
FGM system and the results in this paper can easily be extended to higher dimenaions.

Let F(B,) and G(BZ) be fixed mazginal distribution functions. The Farlie-Gumbel-
Morgenstern model corresponds to the following distribution function:

II(Bc,BZ) - F(Bi)G(BZ)[1 t~{1 - F(B,)}{1 -G(BZ)}], where ~ E[-1,1].

(Of co,n~se, II(Bi, B2) depCIldS Orl .~ bllt, for the sake of simplicity, this dependence will not
be explicitcly expressed.)

If F(B~ ) and G(BZ ) have density functions f(B, ) and g(B2) respectively, the density
corresponding to II(B~ , 62 ) is easily shown to be

~r(e,,e2) - f(e,)g(e2)[1 f a{1- zF(e,)}{1- aG(e2)}].

Notice that for a- 0 we obtain tr(9,,BZ) - f(9,)g(BZ), that is, B, and BZ are indepen-
dent. The cases ~- 1 and a--1 represent the maximum degrees of positive and negative
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dependence, respectively, allowed in this model. In our Bayesian analysis this translates
into prior beliefs about the parameters. An advantage of the FGM system is that only
moderate depaztures from independence are permitted. We next give two examples of this
assertion (sec Jolinson and Kotz (1977)):
a) If thc ,narginals arc N(0,1), the correlation is ~~r-~ (so it ranges from -0.318 to 0.318).
b) If thc m.u'ginals are uniform distributions over (0,1), the correlation is a~3 (so it ranges
from -0.333 to 0.333).
The FGM model can also be expressed as follows.
For a E [0, 1]:

~(e,,ez) - (i - a)f(B,)g(BZ) t af(8,)g(B~)fl f{1- zF(e,)}{1- zc(BZ)}],

and for a E [-1,0]:

~(e~,ez) -(1 t a)f(e~)g(e~) - af(e~)g(e~)[1- {1- zF(e,)}{1- zc(ez)}1
- (1 - p)f(B,)g(Bz) t pf(B,)g(Bz)[1 - {1 - 2F(B,)}{i - 2G(Bz)}]

where yz - -a E [0,1].
This representation naturally suggests the generalization that we describe in the next
section.

3. A more general model

Let us assume that in the process of prior elicitation we come up with the marginal

densities f(B,) and g(Bz) but we are not entirely comfortable with the assumption of prior

independence between B, and 6z. In this case, a sensible and very simple class of prior

densities is
r-rtur-

where
rt -{~(B~,ez) -(1- a)n~(B~,ez) f a~rt(e,,ez), a E[o, l]}, (3.z)
r- - {x(Bi,ez) - (1 - ~)nt(Bi,ez) f a~r-(Bi, Bz), ~ E [0,1]},

n~(B,,9z) - f(Bl)g(Bz) is the density obtained under independence and ~r}(B,,Bz) and
~r-(9, , Bz ) are fixed densities with marginals f ( Bl ) and g(Bz), representing some degree of
positive and negative dependence, respectively.
Obviously, the FGM model is a special case of this one, with

~r}(B,,e2) - f(e,)g(BZ)[1 f {i - zF(e,)}{1-zc(e2)}],
n-(e~,eZ) - f(B,)g(BZ)[i - {1-zF(B,)}{1-zc(e2)}].
The class rf is quite similar to the class of distributions considered in De la Horra

and Ruiz-Rivas ( 1988).
It is easy to see that for a- 0 we are in the case of prior independence between

91 and Bz. As ~ increases, we obtain a bigger degree of dependence, always keeping the
mazginal densities fixed at f(B,) and g(Bz). The maximum degree of dependence allowed
for is controlled by the choice of ~rt and ~r-.
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As we have already pointed out, the class defined in (3.1) and (3.2) is very adequate
for studies of robustness to departures from the hypothesis of prior independence. Its
main advantage is the simplicity of elicitation and computation. In the next section we
provide analytical results for the supremum and the infimum of the posterior expectation
of a functinn of interest, when the prior ranges over this class. This greatly alleviates the
robustness analysis, which typically is computationally vcry demanding. We think this is
an important point in favour of this class (see Example 5.1 below).

On the other hand, in some cases we may find that this class is too narrow, leaving
out densities that we may not wish to discard a priori. Even when that is the case,
the simplicity of its analysis still makes this class worth to be used at a first step of a
robustness study. If we find absence of robustness with this class, the same conclusion
would be obtained for a wider class of priors (see Example 5.2).

4. Sensitivity of posterior quantities

Consider the class of priors I' introduced in (3.1) and (3.2). We are interested in the
sensitivity of the postcrior expectation of some function, h(BI,B2), as the prior ranges over
that class. We therefore need to obtain

sup J h(B)a(B~x)dB and inf J h(B)a(B~x)dB. (4.1)
xEl' 6 ~rEr e

As I' in ( 3.1) is the union of I'f and I'-, the quantities in (4.1) are equal to

max ( sup
J

h(B)x(B~x)dB, sup
J

h(B)~r(B~x)dB y
lxErt e ~Er- e 111

and min {~ nf} J h(B)a(B~x)dB, ~Ër- J h(B)~r(B~x)dB },
lll e e 111

respectively.
Some common choices for h(B) are h(BI,BZ) - BI, for studying the posterior mean of

the parameter of interest, and h(BI,B2) - Ic(B1,B2), for the posterior probability of a set
C of interest.

In thc next theorcm, we give the supremum and the infimum of the posterior expec-
tation of h(B) when the prior ~r(B) ranges in I't. Similar results can be obtained for I'-
changing at by a-.

Theorem. With I't defined as in (3.2), if

fe h(B)l(x~e)~}(e)dB ~ fe h(B)r(x~B)~.(B)dB
Ie l(x~e)~}(B)de - j'e l(xIB)~,(e)de '

then
sup r h(B)~r(B~x)dB - fe h(B)l(x~B)~t(B)dB

nErt Je fe l(x~B)af(B)dB
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and

inf h(B)~r(B~x)dB - fe h(B)1(x~B)~rr(B)dB
,.Ert ~e fe 1(x~B)nr(B)dB

If the inequality sign is reversed, the roles of the infimum and the supremum are inter-
changed.

Proof: For n E I'},

j (1- a) fe h(B)1(x~B)~r(B)de f a fe h(B)r(x~e)~t(e)de
JA h(B)~(B~~`)dB - (1- a) fa 1(~le)~r(e)de f a fa 1(x~e)~f(e)de ~

where ~ E [0,1].
Its derivative with respect to ~ is

fe h(B)1(x~B)~r}(B)dB fe l(x~B)~r(B)dB - fe h(B)1(x~B)~rr(B)dB fe I(x~B)af(B)dB

{(1- ~) fe 1(x~B)~r(B)dB f a fe 1(x~e)~t(e)de}Z .

If
f~ h(B)!(x~B)nt(B)dB

fe l(x~B)xf(B)dB
, fe h(B)1(x~B)ar(B)dB

- fe 1(~~B)~r(B)dB '

the derivative is nonnegative and the result is obtained. ~
Needless to say, the above result could also be derived by applying the elegant lin-

e.uizatiou technique (sc~c Lavine (1991b)), which turns the nonlineaz problem of optimizing
a postcrior cxpectation into a lincar one; but this technique is obviously not necessary here.

Thc~ thcorc~ui togcthcr with thc statcmcnt in (4.2) imply that our calculations will be
reduced to evaluating t.he integrals

f h(B)r(x~e)~r(B)de, f h(e)1(x~e)~}(e)de, f h(B)1(x~e)~-(e)de,
e e e

fe 1(x~e)~rr(B)dB, fe 1(x~e)~r}(B)de and fe 1(x~e)~r-(e)de.

These evaluations will very often have to be done by numerical methods.
We would like to remark that the FGM model is even simpler, since it can be expressed

as a function of a unique parameter

~r(B1iBZ) - f(Bc)g(B~)[1 f a{1 - 2F(Bc)}{1 - 2G(BZ)}], a E[-1,1].

In this case, the extrema are attained at a--1 and ~- 1, which correspond to n- and
~}, respectively, and only four integrals need to be computed.
In the following section we use this class in two robustness analyses.
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5. Examples

Example 5.1: ECMO dat.a
A clinical trial was designed to compare the performance of ECMO (extracorporeal

membranc oxygeuation) with that of the stanciard therapy in thc treatment of a respiratory
ciixasc in iufants (scr Wa.rc (1989)). Of ninc paticnts that wcrc given ECMO all ninc
survived, whereas of ten patients in the control group, only six survived.

Let p~ and p2 be the probabilities of survival under the standard treatment and ECMO,
respectively. We reparameterize in terms of (ó,ry), where Á - r)2 - r11, ry- (~7i f~72)~2
and p; - log{p;~(1 - p;)}, i-1, 2. The goal is then to determine whether ó~ 0(or
equivalently p2 ~ p~ ), ry being a nuisance pazameter. Therefore we will focus on the
posterior probability P(ó ~ O~data).

hatis aud Greenhouse (1989) carry out a robust analysis of this quantity by specifying
42 differcnt prior distributions on (ó, ~~ ) and on (À, ry), assuming in all cases prior indepen-
dence. The prior marginal distributions favoured in this study aze a Cauchy(0, 1.099Z) for
á and a Cauchy(0,0.4192) for ry. This choice is made on the basis of the assumption that
randonuratiou is ethically justifiable and some historical control information. Under this
independent prior, it is obtained that P(ó ~ O~data) ~ 0.94. Other studies of sensitivity
of this posterior quantity to the specification of the prior distribution can be found in
Lavine (1991a), Lavine„ Wasserman and Wolpert (1991), Berger and Moreno (1992) and
Moreno anci Cano (1992). They all find small ranges of variation of the posterior proba-
bility of ECMO being superior to the standard therapy, as long as the class of priors is not
unreasonably large.

In this section, we shall use the FGM system to check for robustness to departures from
prior indcpendence, keeping the marginal distributions fixed at Cauchy(0, 1.099Z) for 6 and
Cauchy(0,0.4191) for y. According to the previous section, the extrema of P(b , O~data)
will takc the form

~~~ h(ê,ry)af(ó,ry~data)dódry and ~~T h(b,ry)~r-(ó,y~data)dódry,

where
h(ó,7) - I(o,f~)(ó),
~}(ó,7) - f(ó)g(y)[1 f {1- 2F(ê)}{1- 2G(y)}],
~r-(ë, y) - f(è)g(y)[1 - {1 - 2F(ó)}{1 - 2G(ry)}],

f, g are the density functions and F, G are the distribution functions of the fixed marginal
Cauchy distributions.

Evaluating these integrals through Monte Carlo importance sampling gives

f~2
h(ó, ry)at(ó, y~data)dódry N 0.96,

J
h(ó, y)n-(ó, ry~data)dódry N 0.89,

x~

from which we conclude that the posterior probability of ECMO being superior to the
standard treatment is reasonably robust when the prior ranges over the FGM class. Of
course this is not a surprising finding in view of the previous literature, but it is included
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here with t,hc purposc of illustrating the performance of our method with a well-known
data set.

It is worth mentioning that although the FGM class is parametric, the bounds that we
find here are not necessarily narrower than those obtained when using a more complicated,
non-pararnetric class. For instance, the extreme values found in this particulaz example,
are rathcr closa to the ones in Lavine, Wasserman and Wolpert (1991) when e lies in a
neighborhood of 0.25.

Example 5.2:
Let (0.52,0), (4.95,0.03), (0.1,0.05), (-3.43; 0.01) and (3.15;0.11) be an independent

sample frorn a model with density

~(~i,xz~ei,ez) - 1 z 1 e-(zz-ez)'lo.02
n{1 f (xr - Br) } 0.02zr

that is, conditionally upon B-( B~,Bz), ar and xz are drawn independently from a

Cauchy(8~, 1) and a Normal(Bz,O.lz), respectively.
We wish to test the hypothesis Ho : Br G 1.25 against Hl : Bl 1 1.25. Thus we are

interested iu finding the posterior odds P(Ho~data)~P(Hl~data).
The rnarginal prior for B~ is a mixture of two Gamma distributions, leading to the

density function

f(Bi)- ~2 {(0.25)-ze-e,lo.zsgi} f ~ {(0.2~5~-ioe-e~lo.zsBi}~
j(o,~)(Br),

whereas thc marginal distribution for Bz is Exponential with density

9(Bz) - 2 c-ze,I(o,~)(B2).

Observe that the prior chosen for Bl leads to P(Ho)~P(HI) - 1, therefore representing
indifference among the hypotheses.

Under the independent prior, aI(Br,Bz) - f(Br)g(Bz), the posterior odds are 3.17. If

we now analyze sensitivity to departures from independence by embedding at(9r,Bq) in a

FGM class, results in Section 4 tell us that the extrema of this posterior quantity will be

attained for thc priors nf and r-. For rr} it is found that P(Ho~data)~P(Hl~data) ~ 6.14,

which strongly favours the null hypothesis, whereas for a-, P(Ho~data)~P(Hl~data) N

1.22, which essentially dces not favour any of the hypotheses. This range of variation

seems too big to proceed confidently. Therefore, in this case, absence of robustness has
been detected by means of a simple analysis.
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