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Abstract

Missing observations are a rule rather than an exception in panel data.
In this paper we discuss several tests to check for the presence of selec-
tivity bias in regression estimates based on panel data. One approach to
test for selectivity bias in these estimates is to specify the missing data
mechanism explicitly and to estimate the response mechanism and the regres-
sion equation jointly. Alternatively, one can derive the asymptotically
efficient Lagrange Multiplier test once an assumption on the response
mechanism has been made. Both approaches are computationally demanding as
e.g. multivariate probit models have to be estimated. We propose the use of
simple variable addition and (quasi) Hausman tests to test for selectivity
bias and compare the power of these tests with the asymptotically efficient
tests using Monte Carlo methods.
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1. Introduction

Míssing observations are a rule rather than an exception in panel data
sets. It is common practice in applied economic analysis of panel data to
analyze only the observations on units for which a complete time series is
available. Since the seminal contributions of Heckman [1976, 19~9] and
Hausman and Wise [19~9] it is well known that inferences based on either the
balanced sub-panel (with the complete observations only) or the unbalanced
panel without correcting for selectivity bias, may be subject to bias if the
nonresponse is endogenously determined. Because the estimation of the full
model including a response equation explaining the missing observations, is,
in general, rather cumbersome (cf. Ridder [1990], Verbeek [1989]), it is
worthwhile to have some simple tests to check for the presence of selec-
tivity bias which can be performed first. An obvious choice for such a test
is the Lagrange Multiplier test, which requires estimation of the model
under the null hypothesís only. As will be shown in this paper, the com-
putation of the LM test statistic is still rather cumbersome and, in
addition, its value is highly dependent on the specification of the response
mechanism and the distributional assumptions (cf. Manski [1989]). In this
paper we will therefore consider several simple tests to check for the
presence of selectivity bias without the necessity to estimate the full
model or to specify s response equation. A consequential advantage of these
tests is that they can be performed in a simple wa,y in cases with wave
nonresponse, where all information on individuals is missing in some
periods, as well as unit nonresponse, where only information on the en-
dogenous variable may be missing.

For ease of presentation we will in this paper restrict attention to

the linear regression model, although several of the tests can straightfor-
wardly be generalized to nonlinear models. Consider

yit - Xitp 4 ai ~ Eit' t - 1,...,T; i - 1,..,N (1)

where Xit is e k dimensional row vector of exogenous variables of individusl
i in period t, g is a column vector of unknown parameters of interest, ací
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and Eit are unobserved random variables and T and N denote the number of
periods and the number of individuals (households, firms) in the panel,
respectiveMy. We assume that observations on yit are available if a latent
variable rit is nonnegative only, for which we assume

N N

rit - Zit7 } ~i } ~it . t - 1,....T; i - 1,..,N (2)

with Zit a row vector of exogenous variables, possibly containing (partly)
the same variables as Xit, and N,it an unobserved random variable. Following
Chamberlain [i984] we assume that,

w
5i - Zilnl . Zi2rt2 t... a Zi,rn,r i 5i. (3)

where gi is independent of all Zit's, in order to account for possibler
correlation between ~i and the explanatory variables in Zit. Substitution in
(2) yields

M
rit - Zitr t Zilnl t"' t ZiTRT }~i } nit' (4)

r
The (observed) indicator variable rit is defined as I(rit ) 0) and we define

ci -~t-lrit' so that ci - 1 if and only if yit is observed for all t. We
assume that rit and Zit are always observed and that yit and Xit are ob-
served as well if rit - 1. Normality of the error terms in (1) and (4) is
assumed for convenience. In particular, we assume that the unobserved random
variables are normally distributed according to

Ei

~i
' N 0,

~i
~i

2
6E IT

2
oenlT onlT

0 0 0~
0 0 6a~ 6á

(5)
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with ei -(ei1,...,eiT)~ ~d ~i -(~il "" n T)~- For identification of the
probit model we will impose (as usual) on .'a~ - 1. Throughout, we impose
the (important) assumption that (Ei' ~i' gi' ai) is independent of Xft and
Zjt (Vj,t).

The fully efficient maximum likelihood estimator of the parameters in
the model can be derived using e.g. the results in Ridder [1990], but this
will in general be a computationally highly demanding and time consuming
estimation procedure, which is unattractive in applied work (cf. Nijman and
Verbeek [1989]). In this paper attention will be paid to several símple
testing procedures that can be used to check whether selectivity bias is
seriously present, end thus to decide whether such a complicated estimation
procedure is required. First, we shall have a look at the consequences of
selective nonresponse on four commonly used estimators for the parameter
vector g in (1), namely the fixed effects and the random effects estimators
based on the balanced sub-panel and the unbalanced panel. Second, we suggest
several simple tests for selectivity bias and compare the power properties
of these tests with those of the Lagrange Multiplier test.

The paper is orgenized as follows. In Section 2, where analytical conditions
for the fixed effects and random effects estimators on either balanced or
unbalanced panels to be (asymptotically) unbiased are derived, we show that
the fixed effects (FE) estimator is more robust to nonresponse biases than
the random effects (RE) estimator. In Section 3 numerical results from a
Monte Carlo study are presented to illustrate these findings. In Section 4
we show how differences between the FE and RE estimators from a balenced and
unbalanced design can be used to construct simple (quasi) Hausman tests of
selectivity bias, while Section 5 discusses other tests for selectivity
bias, including some simple variable addition tests and the (asymptotically
efficient) Lagrange Multiplier test. In Section 6 a Monte Carlo study is
used to investigate the power properties of the proposed tests in comparison
with the LM test. Finally, Section ~ contains some concluding remarks.
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2. Selectivity bias in the fixed and random effects estimators

In this section we will derive conditions for the (asymptotic) bias of
the fixed effects (or "within") estimator of the regression coefficients ~B
in (1) to be zero. Subsequently, we will consider the random effects es-
timator. If we define Xit as the value of Xit in deviation from its
(observed) individual mean, i.e.

.. T T T
Xit - Xit - s~1Xisris ,s~lris if s~lris ) 0

- 0 otherwise

(6)

and analogously for yit, the FE estimator based on the unbalanced panel is
given by (cf. xsiao [i986], p. 31)1)

SFE(U) -` i~l t~l XitXitrit J-ll i~l t~l Xityitrit ,

and the one based on the balanced sub-panel by

(7)

~FE(B) - l i~l t~l XitXitci J-ll i~l t~l Xityitci )' (8)

Evidently, p~(.) is consistent (for N-~ m) if selection given Zit is
completely random, i.e. if the hypothesis HU: 6E~ - 6a~ - 0 holds.

Moreover, as already noted by Heckman [1979] in the cross sectional sample
selection model, no bias in the slope parameters will occur if nl -... -

nT - yl - 0 or if Zis is independent of Xit. We shall now turn to the ques-
tion whether weaker conditions for consistency can be derived. Letting ri -

(ril,...,ril,)', it is straightforward to show that g~(U) and pFE(B) are
consistent estimators (for N~ m) of p if2)
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E{ eit ~ ri } rit - 0,

or

E{ Eit ~ ci } ci - 0,

t - 1,...,T, i - 1,...,N (9)

t - 1,...,T, i - 1,...,N, (10)

respectively. Consequently, a sufficient condition3) for both conditions
(9) end (10) to hold is that

E{ Eit I ri }- 0, t - 1,...,T, i - 1,...,N. (11)

In Appendix A we show that for the case of normally distributed errors

E{ eit ~ ri }- 6E~6~2 I E{ Sitnit ~ ri }
(12)

T T 1
-~ ris E{ Si}~is I ri }, ~ ris Js-1 s-1

Equatíon (12) implies that pFE is consistent not only if aEn - 0, but also
if E{ Si~~it ~ ri } does not vary over time. The latter condition implies
(see Appendix A) that there is no selectivity bias if the probability of an
individual of being observed is constant over time, even if aEn ~ 0. This is
caused by the fact that the correction term for selectivity in (1) is ab-
sorbed in the fixed effect if it is constant over time. This was noted
earlier in a different model by Meghir and Saunders [198~]. Since (12) does
not contain aas, a correlation between the individual effects in the struc-
tural equation (1) and the probit equation (4) does not result in a bias in
the fixed effects estimator. In this case selectivity has an effect on the
structural equation which is fixed for a given individuel over all periods
in which its dependent variable is observed.

Next we consider the random effects estimator (cf. Hsieo [1986, p. 34
ff.]). Defining i-(1, 1,..., 1)' of dimension T,
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4- V{tai . ei} - tfáet' f 6ÉI, 4i - riri ~ 4,

Xl -( Xil 1' Xi - r~ilXil
l, Yi - I yll J and yi - ( rilyil .

II` J II` J l l JiT iTXiT iT iTYiT

where ` denotes the Hadamard (elementwise) product, the random effects
estimator based on the unbalanced panel can be written as4j

(U) - f ~ X1'(41)t Xi 1-lr F xi~(Qi)~ yi ,,
i-1 J l i-1 (13)

where A} indicates the Moore-Penrose inverse of A. If only the complete
observations in the panel are used the random effects estimator is given by

N , 1 1 r N
PRE(B) -( F Xi4 1Xici

J-
I F Xi4 lyiCi ,, (14)

i-1 ` i-1

Note that these estimators can easily be computed using OLS on transformed
data even if the unbalanced panel is used ( see, e.g., Baltagi [1985] or
Wansbeek and Kapteyn [1989]).

The estimators pHE(.) are (asymptotically) unbiased if

E{ ai 4 eit ~ ri }- 0 t- 1,...,T, i- 1,...,N. (15)

In case of normally distributed errors, the expectation of eit given selec-
tion is given by (see Appendix A)

E{ eit ~ ri } - 6Ena~2 f E { gi . nit ~ ri }

l o~ T
- 2 2 ~ E {

~i ' TEis ~ ri } ) ,
v~ t T6~ s-1

(16)
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while the conditional expectatlon of ai given selection is given by (see
Appendix A)

E{ ai ~ ri }- Zoa~ 2~ E{~i. ~isl ri }.
an . Ta~ s-1

(17)

Note that the second term on the righthand-side of (16) and the righthand-
side of (1~) cancel out in (15) and hence have no effect on the bias if
6a~~6E~ - a~~on, whích restriction was implicitely imposed by Hausman and
Wise [1979]. Clearly, aa~ - vE~ - 0 implies that (15) will hold. However,
the condition that E{ 5i;nit ~ ri } dces not vary with t which is sufficient
for the consistency of ~~ is not sufficient for the consistency of SRE. For
the latter we either need that E{ sianit ~ ri } is constant and T~ m(since
the FE-estimator and the RE-estimator are equivalent when T tends to
infinity5)) or that E{ gi.nit ~ ri } is constant and 6a~ --6En, which does
not seem to be very likely in practice. Thus, the fact that for small T the
estimator ~~ is more robust to selective nonresponse than gRE might be a
reason to prefer the fixed effects estimator although of course some ef-
ficiency is lost by this choice if in fact aEn - aa~ - 0(and the model is
correct).

The size of the bias is determined by the projection of the conditional
expectation that was derived above on the (transformed) Xit's. Although it
is possible to analyze the effects of changes in model parameters on the
conditional expectation of the ( transformed) error term analytically (cf.
Ridder [1988]), it is, in general, virtually impossible to give analytical
expressions in terms of the model parameters for projections of these expec-
tations on the explanatory variables, i.e. of the biases in the estimators.
To obtain some insight in the numerical importance of the bias in the four
estimators discussed above, we will present some numerical reaults in the
next section.
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3. Some numerical results on the pseudo true values of the RE and FE es-
timators.

In this section we will present some numerical results on the pseudo
true values of gFE and sRE for a simple model consisting of equations (1)
and (4) with only one exogenous variable included besides the constant term.
This exogenous variable ( zit - xit) is assumed to be generated by a Gaussian
AR(1) process with mean zero, autocorrelation coefficient px and variance
oX. For simplicity we have imposed equality of all rtt's in ( 3). The model
used for simulation is thus given by

yit - s0 } ~lxit } ai ` Eit (18)
M

rit - y0 4 Ylxit ' rt xi t~i r~it (19)

where xi is the average value of the xit's over time.
We consider two possible specifications for the selection equation, one

in which rt is a priori set to zero (in which case selection in period t is
determined by xit), and one in which yl is a priori set to zero such that
the average value of xit over time determines selection. Given this choice
of specification, the relative biases of the estimators for gi in this
model, defined as (~1-~1)~~1' where ~1 is the pseudo true value of the
respective estimators for ~Bi, depend on

- T, the number of time periods;

- pa - oa(6a~Qe)-1~ the importance of the individual effect in equation

(18);

- p~ - 6~, importance of the individual effect in the selection equation;
- px, the autocorrelation coefficient of xit'
-PO-~(D'0).

for all t;

the (unconditional) probability of observation when xit - 0

- R2 - A262(Rz62tc2}o2)-1~ ~ y i y ti ~ , the (theoretical) R2 of equation (1);
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- Rr, the R2 of the selection equation; Rr -~rlax(~rlax.l)-1 if n- 0, or

Rr - rtZaX(rt2aXi1)-1 if rl - 0 with aX - aX(3 . 4px t 2pX)~9 ( the variance

of xi);

and

- pE~ - aEn~aEan, the correlation between the error shocks in (18) and (19);

- p~, the correlation between the individual effects in (18) and (19).~

If we assume that all correlations are nonnegative, all parameters,
except T, are restricted to the interval [0,1]. Without loss of generality,
it is assumed that yl ) 0 or rt) 0. In Table 1 estimated relative biases
(relative differences between the estimated pseudo true values and the true
values) of the four estimators discussed above are given for several com-
binations of paremeter values and T- 3. The number of replications is
chosen in such a way that all stendard errors are smaller than .005.
Although, as always, it is difficult to draw definitive conclusions from

results for specific parameter values the results in Table 1 suggest the
following points.

- The biases in the estimators can be substantial. In some cases it is even
possible that the sign of the pseudo true value i s opposite to the sign of
the true value of gl. Moreover, like other simulation results (not
reported in this paper) suggest, if the true pl parameter is equal to zero
(which implies that RY - 0), a significant effect of the explanatory
variable on yit can be found. This phenomenon is also known from the
standard ( cross section) semple selection model of Heckman [1979]-

- The bias is negative in all cases for which a selectivity bias is expected
from the analytical results of the previous section. Thus, as one would
expect, the parameter of interest is underestimated i f selection is
positively affected by the corresponding variable (yl ) 0, n ~ 0) and if
the covariances between the error terms in the structural equation and the
probit equation are positive (aE~ ~ 0, a~~ ) 0). If ~rl (or n) and the
covariences have opposite signs, the parameter pl would be overestimated.
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Table 1. Relative bias (in X) in the FE and RE estimators from a balanced
and an unbalanced panel

Reference situation: T- 3, Ry -.1, Rr -.9, Pa -.1, px -,7,
PO - .5. P~ ' .1 and Pa~ - -5

A] rr - o, pER - ,y

REF. RY-.9 Rr-.1 p~-.9 Px--3 PO'~(1) P~--9 Pa~-.9
Estimator
FE(B) -78 -8 -49 -z5 -90 -61 -z8 -77

RE(B) -79 -9 -49 -z7 -93 -61 -39 -81

FE(U) -98 -10 -50 -33 -loi -77 -37 -98
RE(U) -116 -13 -53 -39 -115 -88 -56 -izl

B]3) R-O, pEn-O

REF. Ry-.9 Rr-.1 pa-.9 Px--3 PO'~(1) P~-.9 P~~--9Estimator
RE(B) -6 -1 -5 -2 -6 -6 -17 -11

RE(U) -6 -1 -4 -6 -7 -5 -19 -12

C]3) xl - o. pE~ - -9

REF. Ry-.9 Rr-.1 Pa-.9 Px--3 PO-~(1) P~--9 Pa~-.9
Estimator
RE(B) -34 -3 -38 -1 -17 -z7 -17 -35
RE(U) -74 -7 -44 -4 -41 -61 -3z -75

Notes: 1) The number of replications in each situation is chosen in such a
way that all standard errors are smaller than 0.5 X.

2) All simulation results are obtained using the NAG-library sub-
routines G05CCF and G05DDF.

3) From the analytical results we know that the fixed effects es-
timators are consistent in thís case, which was confirmed by the
Monte Carlo results.
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- Although the fact that the conditions for the fixed effects estimator to
be consistent are weaker than those for the random effects estimator does
not necessarily imply that the bias in the latter is always larger than
that in the first, our simulations show that this ia in fact the case. If
there is a difference between the RE and FE pseudo true values, it is in
favor oF the latter estimator. This result is caused by the fact that we
have assumed that pa~ ) 0. In the not very likely situation where pa~ C 0
and pEn ) 0, the bias in the random effects estimator may in fact be
smaller. If the amount of bias is used as criterion for choosing an es-
timator, it is obvious from our analytical and numerical results that the
fixed effects estimator is likely to be preferable to the random effects
estimator. .

- For almost all situations we consider, the bias in the estimator based on
the unbalanced panel is larger (in absolute value) than that in the same
estimator based on the balanced panel; if it is smaller the difference
between the two estimates is negligible given the size of the Monte Carlo
experiment. This somewhat surprising result suggests that a balanced panel
may be preferred to an unbalanced panel. A possible explanation for this
result might be that the individuals that are not observed in all periods
have on average a lower probability of being observed, thus also a lower
probability in those periods they are observed, implying a larger correc-
tion term in the regression equation. In the standard sample selection
model of Heckman this would mean that for those individuals Heckman's
lambda deviates more from zero.

Keeping all parameters fixed at some level except one, it may be pos-
sible to say something about the change of the bias if that one parameter is
changed. It is evident from the analytical results and also from the
numerical results above that a rise in RZ will cause a decrease in the

Y
absolute value of the bias, simply because a rising Ry diminishes the role
of the error terms oci and eit. On the other hand, a rise in Rr increases the
absolute value of the bias, since it increases the correlation between the
probabilities of being observed and the explanatory variable(s) xit. For
p~ )}(,r0 ) 0), an increase in pp diminishes this correlation and therefore
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decreases the absolute value of the bias. Obviously, íncreasing the
(absolute values of the) correlation coefficients pE~ or p~~ (already being
nonnegative) causes a rise in the absolute value of the bias of all es-
timators. A more important individual effect in equation (18), pa, seems to
reduce the absolute value of the bias; the effect of px and p~ however is
ambiguous.

4. Hausman tests for selective nonresponse

In Section 2 four estimators of p have been presented which are all
consistent in the absence of selective nonresponse (i.e. if pEn - pa~ - 0),
namely the fixed effects estimators based on the balanced (sub)panel and the
unbalanced panel and the random effects estimators based on the balanced and
unbalanced penel. It will be clear from the analytical and numerical results
in the previous sections that it is quite unlikely that the pseudo true
values of either two estimators are identical, unless both estimators are
consistent. Therefore, it is possible to construct a test for selectivity
bias based on the differences between either two, three or four estimators.
Letting

S - ( AFE(B), ~FE(U). PRE(B). RREÍU) )~ ~ ~~ N ~ m (20)

and V the corresponding asymptotic variance covariance matrix, the
hypothesis Rg - 0 can be tested using

~R - N s'R' (RVR')- RS. (21)

which is asymptotically distributed as a central Chi-square with d degrees
of freedom under Rg - 0(the null hypothesis), where A- denotes a
generalized inverse of A and d is the rank of RVR'. Note that the asymptotic
Chi-square distribution is also valid in cases with non-normal errors in (1)
and (4) if some regularity conditions are met (see, e.g., Newey [1985]).
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In order to be able to compute the test statistics in (21) for the
restrictions we would like to test, the full matrix V is needed. Using the
following property (see, e.g., Hausman [1978]) of an efficient estimator 8E
for 8 and any consistent estimator 8C for 86),

Cov { 8E - 8C , 8C }- 0. (22)

and the definitions of the four estimators it cen be shown that all blocks
in the matrix V are a function of the variance covariance matrices of the
four estimators in ~ only. In particular, it holds that

v-

V11 V22 V33 V44
-1

v22 v22V11V33 V44
V33 V44

(23)

V44

where V11 L V{g~(B)}, v22 - V{g~(U)}, V33 - V{~(B)} end v44 - v{pRE(v)}.
Using (23) any test statistic given in (21) can easily be computed. Two
obvious candidates from the tests that compare two out of four possible
estimators, are those comparing the fixed or random effects estimators from
the balanced sub-panel and the unbalanced panel, where R- R1 -[ I-I 0 0]
or R- R2 -[ 0 0 I-I], respectively. 1~0 other choices, R3 -[ I 0-I 0]
and R4 -[ 0 I 0-I ], result in the standard Hausman specification test for
uncorrelated individual effects (see, e.g., Hsiao [1986, p. 48]) and its
generalization to an unbalanced panel, respectively. A fifth test compares
the FE estimator in the balanced sub-panel and the RE estimator in the
unbalanced panel (R5 -[ I 0 0-I ]), while for the last possible test R6 -
[ 0 I-I 0]. The first five tests are easy to compute since the variance
covariance matrix RVR' in the test statistics is simply the difference
between two diagonal blocks of V, in particular, the difference between the
variance of the consistent estimator and the efficient estimator. For the
sixth test neither of the two estimators is efficient and the variance
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covariance matrix is somewhat more complicated. Any test statistic based on
comparison of three or four estimators tests two or three of the hypotheses
Rip - 0. Note that any combination of three restrictions from Ri~ - 0 yields
an equivalent null hypothesis with equivalent test statistics.

Unlike in the standard case the Hausman tests proposed above are based
on estimators which are all inconsistent under the alternative. In the very
unlikely case where all estimators would have identical asymptotic biases
these tests will have no power at all. Keeping this in mind the null
hypotheses (H~: Rig - O) of the tests above cen be translated into
hypotheses in terms of the model parameters. If we define

H~E: pEn - 0 or Zitr is constant over t (the fixed effects
estimators are consistent), and

E
0'[ pen - poeg - 0 ] or [ Zity is constant over t and dEn . a~~ - 0 ]

(the random effects and the fixed effects estimators are
consistent),

then the following relationships hold:

~ HDE ~ H~, i - 1,...,6

no ~
~ H~E ~ H~

For conducting inferences it is not relevant whether HU: aa~ - aE~ - 0

is true or not, but whether HÓE or H~E is correct, since inferences will be
based on either the random effects or the fixed effects estimator.
Therefore, the Hausman tests may be appropriate instruments for checking the
consistency of these estimators, although they are only able to test for the
stronger hypotheses H~. If both H~E and H~E are false all estimators are
inconsistent. In this case one can choose for the fixed effects estimator
from the balanced sub-panel (since it probably has - given our Monte Carlo
results - the smallest bias), or compute an efficient random effects or
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fixed effects estimator correcting for selectivity using the reaults from
Ridder [1990] or Verbeek [i989], respectively.

Note that only the first test statistic (based on R1) is appropriate
for checking H~E, while any other test statistic can be used for HÓE. The
optimal testing procedure seems to be to test for the stronger hypothesis
first (HÓE), and, if this test rejects, test subsequently for the weaker one
(H~E). Of course, it is preferable to use the most powerful test out of all
possible tests for the hypothesis HpE. However, the analysis of statistical
power is extremely difficult if not impossible, not only because the teat
statistics are not mutually independent, but also because we are working
with Hausman specification tests for which the null hypotheses H~ cannot be
written down in a simple parametric form. Therefore, standard results on the
power of Hausman tests (cf. Holly [1982]) and on sequential testing (see,
e.g., Mizon [197~], Holly [1987]) are not applicable in this situation.

With respect to the question whether a single Rip - 0(i - 1,...,6) or
a combination of two or three restrictions ahould be tested, one can note
that which of these testing procedures is more powerful depends on the
differences between the poasible pairings of estimators. If, e.g., R~ ~ 0
and R~~á ) 0 then the test based on R~ will be more powerful than the test
based on both Rk and R~ and also more powerful then the one besed on Rk
only. Thus, to obtain some ideas about the power properties of the teats, we
are forced to numerical analyses, which is the subject of the Section 6. If
only a single restriction is tested (one R1 is chosen), nothing can be said
analytically about the power properties either. The test with the highest
power is the one which is based on the estimatora with the largest possible
difference between the pseudo true values end the smallest difference bet-
ween the corresponding variances. Again, numerical analysis should answer
the question.
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5. Some other tests for selective nonresponse

Given the model in (1) and ( 4) and the assumed normality of the error
terms in (5) is it possible to write down the likelihood function (cf.
Ridder [1990]) and to derive the Lagrange Multiplier test statistic for the
null hypothesis that aEn - 6~~ - 0 (HO). Computation of this test statistic
requires estimation of the complete model under the null, which necessitates
numerical integration (over one dimension) for the response equation (4),
which is a random effects probit model. In addition, the acores with respect
to all parameters in the model are required to compute the test statistic
from the first derivatives of the loglikehood, since there does not appear
to be any form of block diagonality of the Fisher information matrix under
the null.

If we define the (endogenously determined) transformation matrix Ri
such that it transforms i,I,oei . ei into a Ti vector of observed elements, the
loglikelihood contribution of individual i is given by

Li - log f(Riyi, ri) - log f(ri~Riyi) f(Riyi). (24)

Because under HO the two components in the right hand side of ( 24) depend on
non-overlapping subsets of the vector of parameters, the score contributions
with respect to the parameters in (1) can be found in Hsiao [1985, p.
39]~). while those for the parameters in (4) can be derived from a standard
random effects probit likelihood ( see Appendix B). The most difficult score
contributions are those with respect to the two covariances aa~ and 6E~; the
latter even requires double numerical integration ( see Appendix B). Because
estimation under HO requires numerical integration ( for each individual) for
the probit part of the model and computation of each score contribution also
requires numerical integration over one or two dimensions, the LM test is
rather unattractive in applied work.

For the cross sectional sample selection model Heckman [1976, 1979]
proposed a simple way to test for selectivity bias and to obtain consistent
estimators. As discussed in Ridder [1990] this method can be generalized to
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the case of panel data, where two correction terms to equation ( I) are added
instead of just the one variable known as Heckman's lambda (or the inverted
Mill's ratio). These two correction terms are the conditional expectations
of the two error terms (oci and eit) given the sampling scheme, as given in
(16) end (17) evaluated at the (consistent) parameter estimates of the
probit model under the null hypothesis. The two unknown covariances C~~ and
aE are not included in these correction terms but are the corresponding

n
true ccefficients in equation (1). Obviously, consistent estimation of these
coefficients aa~ and vEn allows one to check whether nonresponse is selec-
tive or not. Since estimation of the parameters i n the response equation as
well as computation of the conditional expectation of gi i~it in (16) and

(17) requires numerical integration, these generalized Heckman [1979] method

is still computationally unattractive. Because the parameters of the two

correction terms are not estimated efficiently, the test based on Heci~an's

procedure is not efficíent.

Because of the computational burden of the generalized Heckman [1979]
procedure, it may be worthwhile to have some simple variables that can be
used instead to approximate the true correction terms to check for selective
nonresponse. If the nonresponse is endogenously determined one could have
the intuitive notion that the pattern of missing observations has in one way
or another an influence on the relationship between the endogenous and the
exogenous variables. A simple way to check whether such influence is present
is to include s variable in the regression equation comprising the effect of
the missing data pattern, for example the number of waves the individual is
participating or a dummy indicating whether the individuel is observed in
sll waves or not, and to check whether this variable enters the equation
significantly. In fact this is just a simple way of trying to approximate
the Heckman [1979] like correction terms which are known to have nonzero
coefficient when the null is not true. In many casea the additional
variables are constant over time for each individual implying that the
corresponding parameters are not identified in the case where the individual
effects oci are treated es fixed. In this section we shall therefore reatrict
attention to random effects estimators. We consider three possible variables
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that can be included in the regression equation. First, Ti - fs-lris' the
number of waves individual i participates, second ci - Rs-1ris, a 0-1
variable equal to 1 iff individual i is observed in all periods and third,

ri,t-1' indicating whether individual i is observed in the previous period
or not. Note that ri.0 - 0 by assumption. We are forced to using the un-
balanced panel since in the balanced panel the added variables are identical
for all individuals and thus incorporated in the intercept term.

Although one could have the intuitive feeling that at least one of the
added variables has an influence on the relationship between yit and xit if

there is selective nonresponse, there is no theoretical argument for this
effect being linear and thus the power of the tests may be doubtful. If we

denote the coefficient for the added variable w, say, by ~r then the nullw
hypothesis for the variable addition test is H~: yw - 0. Note that HO
implies HÓ but that the converse is not true.

In the next section where we present some numerical results on the

power of the simple tests proposed in this and the previous section, we

compare these tests with the Lagrange Multiplier test, which is known to be
asymptotically efficient for testing the null hypothesis H0.

6. Some numerical results on the power of the tests

In the preceding two sections a number of tests are proposed which can
be used to check whether selectivity bias is present or not. In this section
we present numerical results on the power properties of the Hausman tests,
the variable addition tests and the LM test for the parameter values that
were already used in Section 3. Note that we do not consider the generalized
Heckman test which is as hard to compute but asymptotícally less powerful
than the asymptotically optimal Lagrange Multiplier test. Because we
transform the t-statistics in the variable addition tests into the cor-
responding Wald testa, the large sample properties of all tests are
determined by the decentrality parameter and the number of degrees of
freedom of a limiting x2-distribution. The decentrality parameters have been
estimated by Monte Carlo. For the (quasi) Hausman tests, for example, and a
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sequence of local alternatives, p- p i b~JN (where b is a 4 dimensional
column vector), it holds that

gR - N p'R' (RVR')- Rg ~ Xá (b'R'(RVR')-Rb ) - Xa(bR). N -~ ~. (25)

Using the estimated pseudo true values p from Section 3 and the correspon-
ding estimated variances V, the decentrality parameter SR can be estimated
by

óR - np~R' (RVR')- Rp. (26)

For the variable addition tests proposed in Section 5 we extend the
random effects estimator based on the unbalanced panel given in (13) to
include the additional regressor w. If the random effects estimator for the
coefficient ~rw is denoted by yw with asymptotic variance Vw, the Wald
variable addition test satisfies

~- N r2~-1 ~ Xz(32~-1) - X2(b ). N~ mw w w 1 w 1 w (27)

under a sequence of local alternatives rw - ;~JN. The decentrality parameter
b can thus straightforwardly be estimated byw

S - ~2~-1
w w w (28)

from which (approximate) probabilities of rejection for sample size n can be
computed.

The Lagrange Multiplier test statistic is given by

N N 1 N
~LM - F (~L1I~) ~ ( F (~L1I~) (~Li~~)',- F (~Li~~)' I - .

i-1 i-1 i-1 9-8~
(29)

where L1 is the loglikelihood contribution of individual í, 9 is the full
parameter vector (including v~~ and oE~) and 8U the estimate for 9 under HU.
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The decentrality parameter of the asymptotic Chi-square distribution (under
a sequence of local alternatives) bLM can be estimated by

bLM - (nIN) ~LM (30)

where g~ equals the expression in (29) evaluated in the ML estimator (under
HO) for ~B, aá and 6E, zeroes for a~~ and aEn and the true values for a~, an

and ~(n). The latter is allowed since the ML estimator for these parameters
under HO is consistent under the alternative. Details on the computation of

~LM are presented in Appendix B.

The estimated decentrality parameters for six Hausman tests, three
variable addition tests and the LM test are presented in Table 2 for the
parameter values used in Section 3 to determine the pseudo true values of
the four estimators. The numbers presented in the table are the estimated
decentrality parameters for a sample size of 500, i.e. n- 500, based on a
sample size in the Monte Carlo experiment of N- 25,000. The implied
probabilities of rejection (at a nominal size of 5x) for any number of
observations can be computed using Table 3. Note that the estimators are not
normally but (non-centrally) Chi-square distributed, which makes computation
of confidence intervals difficult. Based on the asymptotic normality of the
parameter estimators the variance of b approximately satisfies

V{b} - n2~N2 ( d t N~n b) (31)

where d is the number of degrees of freedom, and where we use the fact that
N~n b is Chi-square distributed. It is important to note that this variance
increases with the true value b. For large enough b the corresponding stan-
dard error for N- 25,000 and n- 500 is (approximately) given by o.283Jb.

Looking at panel A of Table 2 first, where both H~ and HÓE are false,
we see that in this case none of the variable addition tests has any power.
Obviously, these variables are under these data generating processes not
capable of approximating the Heckmen [19~9] like correction terms or the
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Table 2. Decentrality parameters of the Chi-square distributions of several
tests for selective nonresponse at n~ 500 and T a 3

Reference situation: T- 3, Ry -.1, Rr -.9. Pa -'1' Px -'7'
p0 - .5. P~ - . 1 and Pa~ ' -5

A] rt - 0, pEn - .9

REF. Ry-.9 Rr-.1 P~ -9 Px'-3 p0-~(1) P~--9 Pas--9

Hausman tests-
DF

FE(B~U) 1 1.41 1.z7 0.07 2.00 0.3i i.52 0.26 1.05

RE(B~U) 1 7.23 6.00 0.06 3.55 1.53 7.48 1.84 7.33

U(FE~RE) 1 0.85 0.72 0.03 1.76 0.60 0.43 1.13 0.72

FE(B)~RE(U) 1 2.07 1.81 0.01 3.55 0.85 1.43 1.37 i.66

B(FE-RE) 2 2.04 1.64 0.04 2.02 0.89 1.83 1.39 2.49
U(FE~RE)

RE(H-U) 2 7.27 6.04 o.i0 4.25 1.69 7.48 2.44 7.34
FE(B)~RE(U)

Variable addition tests:
DF

~trit 1 0.01 0.01 0.04 0.14 0.03 0.11 0.10 0.04

~trit 1 0.03 0.03 0.00 0.24 0.04 0.04 0.17 0.14

ri,t-1 1 0.02 0.01 0.01 0.02 0.00 0.14 0.03 0.02

Lagrange Multiplier test:
DF

LM 2 55.1 49-2 5-46 31-3 58-5 57-3 14.1 66.3

Bias in the RE estimator (unbalanced panel):

X bias -116X -13X -53X -39X -115X -88X -56X -121X
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Table 2 ( continued)

B]

REF. Ry-.9 Rr-.1

R-O. PE~-O

P~ .9 PX-.3 po-~(1) P~-.9 P~~-.9

Hausman tests~
DF

RE(B--U) 1 0.07 0.06 0.00 0.02 0.00 0.02 0.00 0.00

U(FE~RE) 1 0.12 0.35 0.06 o.7z o.09 0.01 0.81 0.41

FE(B)~RE(U) 1 0.06 0.45 0.04 0.18 0.04 0.00 0.81 0.38

H(FE--RE) 2 0.17 0.44 0.00 0.79 0.12 0.02 0.98 0.57
U(FE-RE)

RE(B~u) 2 0.15 0.36 0.07 0.73 0.11 0.05 0.84 0.46
FE(B)~RE(U)

Variable addition tests:
DF

~trit 1 0.09 0.07 1.88 0.61 0.32 0.22 1.23 0.59

Rtrit 1 0.06 0.09 1.31 0.39 0.17 0.21 0.98 0.64

ri,t-1 1 0.00 0.12 0.16 0.00 0.14 0.04 0.27 0.15

Lagrange Multiplier test:
DF

LM ") z 1.33 0.13 4.12 4.95 1.06 1.15 5.92 3.74

Bias in the RE estimator (unbalanced panel):

x bias -6x -lx -4x -6x -7x -5x -19x -12x

M) If the restriction vEn - 0 is imposed s priori this test has one degree
of freedom.
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Table 2 (continued)

C] r1-0. PEn~.9

REF. Ry-.9 Rr-.1 P~ .9 Px-.3 PO~~(i) P~-.9 P~~-.9

Hausman tests:
DF

RE(B~U) i 19.6 19.4 0.10 1.47 11.4 20.7 8.96 17.7

U(FE~RE) 1 19.9 18.3 3.73 6.68 22.4 15.2 4.35 19.3

FE(B)-RE(U) 1 16.0 14.7 1.56 2.50 15.1 12.7 3.93 15-3

B(FE~RE) z 30.6 29.3 3.73 7.60 27.1 28.3 11.9 29.2
U(FE-RE)

RE(B~U) z 29.4 28.4 3.74 6.86 z4.5 27.5 11.4 27.9
FE(B)~RE(U)

Variable addition tests:
DF

Ftrit 1 29.9 27.6 0.09 3.92 36.7 27.0 16.0 24.9

~trit 1 22.7 21.6 0.08 3.16 30.6 21.6 13.9 18.5

ri,t-1 1 2.80 2.29 0.05 0.04 5.85 2.10 0.59 2.19

Lagrange Multiplier test:
DF

LM 2 75.9 73.6 13.7 20.1 83.8 66.8 12.1 83.0

Bias in the RE estimator (unbalanced panel):

X bias -74X -7X -44X -4X -41X -61X -32X -75X

Notes: 1. Estimated decentrality parametera are based on 25,000 individuel
observations.

2. Estimates for decentrality parameters for semple size n can be
obtained by multiplying the numbers by n~500.
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Table 3. Probabilities of rejection (at 5X) for several decentrality
parameters

decentrality parameter
DF 0 i 2 3 4 5 io 20
i .05 .i7 .29 .4i .52 .6i .89 .99
2 .05 .13 .23 .32 .42 .50 .82 .99

power properties of the Heckman test are poor as well. With regard to the
Hausman tests, the results in Table 2 suggest that the test based on com-
parison of the random effects estimators in the balanced and the unbalanced
panel (the second test) is more powerful than all other tests based on
comparison of two estimators. The same holds with respect to the two tests
not presented in the Table. Looking at the tests that compare two pairs of
estimators (the fifth and the sixth test in Table 2), the latter seems to
perform relatively well, although it is not performing uniformly better than
the best one degree of freedom test. The test statistic based on comparing
all four estimators (which is not reported in the Table) does not result in
a very powerful test compared to those tests based on two pairs of es-
timators, since the additional degree of freedom has a much more dominant
effect on the power than a(fairly small) rise in the decentrality
parameter. For panel A of Table 2, the LM test is obviously far more power-
ful then any Hausman test. Note that the power of all tests reduces
substantially if the R2 of the selection equation is reduced from .9 to .1;
the bias in the estimators is however still substantial (53x for the random
effects estimator from the unbalanced panel).

If 6En - o, i.e. if the error shocks in the structural equation and the
selection equation are uncorrelated, but aa~ ~ 0 (so H~ is true and HÓE is
not; panel B) all tests seems to have limited power only. Even the power of
the LM test is very limited in this case, in which, of course, the null
hypothesis Hp is only violated in one direction (oa~ f 0). Since the bias in
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the fixed effects estimators is zero in this case, while that in the random
effects estimators is small ( as is apparent from Table 1), this dces not
seem to be a situation to worry about.

As shown in panel C of Table 2, the power of all tests appears to be
larger in the case where the response is determined by an individual effect
which is correlated with the regressor (n ~ 0 end rl - 0) than in the case
where the regressor itself determines the response (rt - 0 and yl ~ 0 with
the same R2 of the probit equation). Note that for the Hausman tests com-
paring FE and RE estimators we have a standard situation in which one of the
estimators in the test statistic is consistent even if the null hypothesis
does not hold. Remarkably, the variable addition tests have fairly good
power properties as well, especially the one based on adding the number of
waves an individual is participating (~trit). The one based on including

ri,t-1 has only very limited power. Concerning the Hausman tests, the one
comparing the RE and FE estimator in the unbalanced panel, which is the
standard Hausman test for uncorrelated individual effects, has the largest
power of the 1 degree of freedom tests. In some cases it is worthwhile to
combine two restrictions and perform a two degrees of freedom test. It
should be clear from the simulation results in the table that it is well
possible that the standard Hausman [19~8] specification test for testing the
hypothesis that the individual effects are uncorrelated with the explanatory
variables rejects due to the presence of selectivity bias.

Unfortunately, none of the simple tests seems to have uniformly better
power properties than the others, so we cannot recommend one particular

test. The power of all tests seems to depend crucially on the fact whether
H~E is false or, if it is true, why HÓE is true (aEn - 0 or rl - 0). In the

latter cese (yl - 0) the power of most simple tests is quite reasonable,
while ít is not if 6Eq - 0. In line with the Monte Carlo results above, we
are tempted to say that both the second end the third Hausman test (RE,
balanced vs. unbalanced, and unbalanced, FE vs. RE, respectively) perform
relatively well and may be a good choice in applied work. The best choice
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for a variable addition test seems to be to include ~trit in the structural
equation.

It should be noted from Table 2 that it is not the case that the power
of the (asymptotically optimal) Lagrange Multiplier test (for H~) increases
with the size of the bias in the random effects estimator in the unbalanced
panel. In some cases the bias in the estimators is substantial while the LM
test only has limited power.

So far, we have only considered numerical analyses for a three wave
panel (T - 3). If T increases, the number of individuals in the balenced
subpenel (keeping all paremeters fixed) will decrease, which may increase
the differences found between the estimators from the balanced and the
unbalanced panel. Moreover, the difference between the fixed effects es-
timator and the random effects estimator for a given sample will get
smaller, since the weight of the between estimator in the random effects
estimator is inversely related with T(cf. Hsiso [1986, p.36]). This sug-
gests that the power of the Hausman tests comparing estimators from the
balanced and unbalanced panel will increase with T and that of the standard
Hausman specification tests will decrease with T. For larger T the second
Hausman test (comparing the random effects estimators from the balanced and
unbalanced panel) is probably the most attractive way to test hypothesis
HRE
0

~. Concluding remarks

In this paper we suggested several simple tests to check the presence
of selective nonresponse in a panel data model. We considered the selec-
tivity bias of the fixed and random effects estimators and showed that the
FE estimator is more robust to nonresponse biases than the RE estimator. In
particular, the FE estimator will be consistent as long as the probability
of being observed of a given household is constant over time. Several simple
Hausman tests have been suggested which are based on the differences in the
pseudo true values of these estimators. Furthermore, some variable addition
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tests are proposed which can be used to test for selectivity bias. Neither
of these tests requires estimation of the model under selectivity nor a
specification of the nonresponse mechanism.

A Monte Carlo study shows that not only the conditions for consistency
of fixed effects estimator are weaker than that for a consistent rendom
effects estimator, but also that the bias of the FE estimator is likely to
be smaller than that of the RE estimator in cases where both estimators are
inconsistent. The numerical results also indicate that the bias resulting
from a balanced sub-panel is likely to be smaller than that from the un-
balanced panel.

Although the proposed Hausman and variable addition tests have poor
power properties in some cases, they may be a good instrument for checking
the importance of the selectivity problem. In particular when response is
partly determined by an individual effect which is correlated with the
regressor the power of several Hausman tests and variable addition tests is
quite reasonable in comparison with the Lagrange Multiplier test. For prac-
tical purposes at least two Hausman tests can be recommended: the one
comparing the random effects estimators from the balanced and unbalanced
panel, and the one comparing the RE and FE estimators in the unbalanced
panel (the standard Hausman test for correlated individual effects). A test
that is even simpler is the variable addition test including Ti -~trit in
the specification of equation (1). This test also seems to perform quite
reasonable in practice.
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Appendix A. Some technical details on Section 3

that
If i-(1, 1, ., 1)' of dimension T, it i s readily verified form (5)

ai 6á 0 oa~t'
ei N 0, 6ÉI aE~I

Q~I t Q~ll'

which yields

26
E{ ei I~i~ . ni }-~En vn2 ( I- 2~ 2 ~~' )(~i~ ~ ni),

To~ ~ on

(A-1)

(A.2)

and proves (16) and (12) if we use the definition of eit and take expec-
tations conditional upon ril "' ' riT'
It also follows Lhat

r 02 l
E{ ai ~~i~ t ni }- oa~ a~2 i' I I- 2~ 2 ii' J(5i~ ~ Ri). (A.3)ll Ta~ . o~

which proves (1~) after taking conditional expectations upon ril" "'riT-

Moreover, since E{ gi ~ ri } is fixed over time and since

P((ZitY { ~i),6n)
E{ nit I ri }- J~((Zity 4~i),a~)

f(gi ~ ri ) dgi if rit - 1,

~i~'Ri

where ~ and ~ are the standard normal density and distribution function
respectively, and f(gi ( ri) is the conditional density of si given selec-
tion (see Ridder [1990]), it is evident that there is no selection bias if
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Zit~ is constant over time, i.e. if the probability of an individual of
being observed is constant for all t.

Appendix B. The Lagrange Multiplier test statistic for selectivity bias

The loglikelihood contribution of individual i in the full model is given by

Li - log f(ri~Riyi) f(RiYi), (B.1)

where f(ri~Riyi) is the likelihood function of a(conditional) T-variate
probit model and f(Riyi) is the likelihood function of a Ti-dimensional
linear error components model (cf. Hsiao [1986, p. 38]). The second term is
simple and can be written as

T
log f(Riyi) -- 2 log 2n -

T
- 12 F rit(Yit - xit~)2 -

2oE t-1

T.-1
12 log aÉ - Z log (6E t Tióa)

ZTi 2 (Yi - I~B - xiP)z.
2(6EtTioa)

(B.z)

The first term in (B.1) is somewhat more complicated because we have to
derive the conditional distribution of the error term in the probit model.
From ( 5) and defining vit - rit(ai4Eit) (where rit is treated as non-
stochastic), the conditional expectation of the error term ~i .~it is given
by

E{gitnitlvil..viZ,} -

26~ 6~
- rit o2 `Vit - Q2tT 62E e i a

T v T
a

~ ~is } 2 f Z ~~is - cit, say.
s-1 oEtTioa s-1

(B.3)

Using (5) the conditional variance of ~i~~it can also be derived. It is
straightforward to show that the conditional distribution of ~i.nit given
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vil ""'viT corresponds with the (unconditional) distribution of the sum of
three normal variables uit } vli } ritvZi whose distribution is charac-
terized by

E{ vli }- E{ v2i }- 0, E{ uit }- cit'

`1{ I11t }- a~ - ritóEn~6E - g~, a9y

V{ vli }- a~ - Tiaá~(aÉ,Tia~)-1 - ~1, say

V{ v2i }- aE~aaaE2(aÉ.Tia~)-1 - uz, sgy

Cov { vli' v21 }--aa~aE~(aÉ.Tiaá)-1 - ulZ, saY.

and all other covariances equal to zero. For notational convenience we do
not explicitly add an index i to the (co)variances at and ~. Note that
cit - 0, st - an, ul - a~ and u2 - 0 under H~. Like in the unconditional
error components probit model (cf. Heckman [1981]), the likelihood function
can be written as (dropping the Zisns terms for notstional convenience)

T
f(rilRiyi) - E9{t~l~(ditatl[Zitr`citiyli`rity2i]) } (8.4)

where the expectation is taken over vli and v2i and dit - Zrit-1. It is this
likelihood function that has to be differentiated w.r.t. the unknown
parameters y, a~ and a~~ and aEn. However, the expectation operator depends
on the unknown parameter vector 9(because the density of vli and v2i is not
defined with respect to the same measure under H~ and the alternative),
implying that the order of taking expectations and differentiating is not
interchangeable. This problem can easily be solved by defining two new
integration variables that are both standard normally distributed (under the
null and the alternative), tl and T2, say. Then we obtain
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T
f(ri~Riyi) - J J t~l~(ditst1~Zítr4cit}aitTl}bitT2~) ~(T1)9~(T2)dT1dT2

(B.5)
where

ait - W1,2 } rit~12~11,2 and bit - rit(~2-w12~11)1,2'

Since f(Riyi) does not depend on o~~ and 6En, differentiating the log of the
expression above and evaluating the result under H~ yields the scores w.r.t.
the two covariances. Using the fact that for any element y of the parameter
vector (y, v2, a , a,~ ~~ E n ) .

c~LiI~W - L ~f(ri~RiYi)I~W ~ ~ f(ri~RiYi) (B.6)

with

~f(ri~Riyi) - r r T T
~ J J ~ IT ~t(.) ~s(.)~~W ~(T1)~(TZ) dT1dT2~ (B-Ï)

s-1 t-1
t~s

the score w.r.t. 6a~ can easily be derived using the following equality
(under H~)

~~t(.)~~~~ - 9~(ditonl~ZitYto~T1~) (dit~ó~)( ~cit~~a~ t ~1,2~~a~T1).
(B.8)

Similarly, for 6E , we use~

~~t(.)~~En -
(B-9)

~Ídit6~1~Zit~.a~T1]).(dit~c~).( ~cit~~aE~ t ritT2a~6EZ(6É . Tioá)-1 ).

from which the score w.r.t. aEn under HD can easily be derived. Note that
both T1 and T2 occur in the integrand such that numerical integration over
two dimensions will be required.
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For the scores w.r.t. ,r and a~ - 1- an it suffices under HD to look at
~f(ri)~~~r and ~f(ri)~~a~, where (cf. Heckman [1981])

T
f(ri) - J IT ~(dita~l[Zit~ t a~zl]) 9~(zl) dzl . (B.10)

t-1

Both scores will require numerical integration over one dimension.

Notes

1 This estimator is only defined if at least one individual is observed
more than once; for finite samples there will generally be a small but
nonzero probability that this is not the case, but for practical purposes
this can be ignored. Similar remarks hold for all other estimators
presented below.

2 The conditional expectations given in the sequel are also conditional on
the exogenous variables, but for the sake of notation these are omitted.

3 A case in which this sufficient condition is not necessarily met but
condition (9) holds, is the situation where observations are missing
deterministically (given Zit) (E{ritlZit} - rit - 0), for example if
being on vacation implies nonresponse. Obviously, the normality as-
sumption of the error terms in (4) is not appropriate in that case.

4 For expository purposes we ignore the fact that in practice unknown
variances have to be replaced by consistent estimates.

5 This equivalency also holds when the model is not correctly specified, as
in our case.

6 This property can be used for an efficient and a consistent estimator
within any class of estimators satisfying: if 81 and 82 are members of
this class, then A81 t B82 is also a member of this class (for any square
matrices A and B). In deriving (23) we apply (22) for the classes of
(linear) estimators using the balanced sub-panel or the unbalanced penel
and the class of estimators treating the individual effects as fixed
constants (using the unbalanced panel).
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~ Note that (3.3.20) in Haiao (i986) contains a typin~ error; the first -
sign on the second line should read a t sign.
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