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Abstract

For a competitive economy with production, a simplicical algorithm
is described for finding an approximate equilibrium price vector, being a
price vector at which the excess demand or supply is sufficiently small. The
algorithm generates a sequence of price vectors with the property that every
subsequence contains a subsequence that converges to an equilibrium price
vector. The algorithm subdivides the underlying price space into simplices
and finds within a finite number of iterations a simplex that contains an
approximate equilibrium price vector. At this price vector the algorithm can
be restarted to improve the accuracy of approximation. We assume that pro-
duction sets exhibit decreasing returns to scale. Moreover, instead of con-
tinuous demand and supply functions we allow for upper hemi-continuous cor-
respondences. In this way we obtain a constructive proof for the existence
problem of en equilibrium price vector in a general economic model.
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1. Introduction

Whereas showing the existence of an economic equilibrium is in gene-
ral rather easy, computing an equilibrium causes typically more difficul-
ties. The existence problem dates back to Walras [13], who argued already
why a system of equations setting demand equal supply should have a solu-
tion. In the fifties Debreu [1] proved rigorously that under very weak con-
ditions on the behaviour of the economic agents a price equilibrium exists
in a general equilibrium model. For his proof he used the very powerful
fixed point theorem of Kakutani. These days, this theorem is still a basic
tool for existence proofs in equilibrium models.

The computation of economic price equilibria was initiated by
Samuelson C9]. He proposed to follow the solution path of a system of ordi-
nary differential equations. Along the path, prices are adjusted according
to the law of demand and supply, yielding an increase (decrease) of the
price of a commodity if the demand for it is larger (smaller) than its sup-
ply. This intuitively very appealing price adjustment process, known as
Walras tatonnement, converges only under very strong conditions on the beha-
viour of the agents. Scarf [10] gave examples of reasonable economies for
which the Walras tatonnement never reaches an equilibrium. Other adjustment
processes introduced later and also being based on following a solution path
of a system of differentisl equetions also fail to converge from every star-
t.inq vect.or (globally) or for every demand and supply system (universally),
i.e., they only lead to an equilibrium price vector under very strong condi-
tions on the demand and supply functions or when the price vector at which
the process is initiated lies in some specific area of the price space such
as the boundary or close enough to an equilibrium.

In his pioneering work, Scarf [11] proposed a new technique for
computing an equilibrium price vector. Scarf's method operates on a unit
simplex, being the space of price vectors on which the prices are normalized
to sum up to one. In his method, the unit simplex is subdivided into small
simplices (or primitive sets) and a search is made for a simplex that yields
an approximate equilibrium price vector. By linearizing the system of demand
and supply equations on each simplex the algorithm of Scarf traces a piece-
wise linear path of prices in a sequence of adjacent simplices. Each linear
piece of the path can be traced by making a linear programming pivoting step
in a system of linear equations. When initiated on the boundary of the price
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space, Scarf's algorithm terminates within a finite number of iterations
with an approximate equilibrium. To make Scarf's algorithm efficient, van
der Laan and Talman [5J proposed a simplicial algorithm on the unit simplex,
which can start from an arbitrarily chosen price vector. Since the accuracy
of approximation is related to the diameter of the simplices in Lhe subdivi-
síon, their algorithm can be restarted at the approximate equilibrium for a
subdivision of simplices having smaller diameter, in order to find a better
approximation within typically a few number of steps. Under some regularity
condition, their algorithm converges globally and universally. Moreover, the
path of prices traced by a simplicial algorithm can be interpreted as the
path followed by some sophisticated price adjustment process on the unit
simplex. Recently, simplicial algorithms that can start in an arbitrary
point have been introduced on the simplotope, the Euclidean space, poly-
topes, and unbounded convex polyhedra, for example see Doup [2], Kojima and
Yamamoto [4], and Talman and Yamamoto [12]. Simplical algorithms have been
applied to find equilibria in international trade models, see Preckel [8],
and in economies with linear production technologies, see Mathiesen [7].

In this paper we describe how to adapt the simplicial algorithm of
Doup, van der Laan and Talman C3] on the unit simplex for computing an equi-
librium price vector in case we allow the demand and supply to be upper
semicontinuous mappings instead of continuous functions of the prices. We
further allow that there are a finite number of producers each having a
decreasing returns to scale production possibility set. In this way we also
obtain an elegant constructive proof of the existence of an equilibrium
price vector in a general equilibrium model without making use of Kakutani's
fixed point theorem.

ln section 2 we describe the behaviour of the economic agents in the
economy and derive their demand and supply at given prices. Section 3 intro-
duces the path to be followed by the algorithm. Finally, section 4 describes
how the path can be traced by making linear programming pivot steps and
replacement steps in some underlying simplicial subdivision.
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2. Preliminaries

Let there be given ntl commodities, indexed j- 1,...,nti. There are f

firms, indexed h- 1,...,f, and c consumers, indexed i- 1,...,c. The commo-

dities can be divided into primary goods, intermediate goods, and consump-
tion goods. Primary goods, such as labour, capital, raw materials, are owned
by the consumers and serve only as input commodities for the firms. Interme-

diate goods are produced by some firms and serve as inputs for some other

firms. All other commodities are produced by firms and desired by consumers.
We assume that consumer i is endowed with the emount w~ ~ 0 of commodity j

where wl ) 0 if and only if commodity j is a primary good. We call theJ
(nal)-vector wi the endowment vector of consumer i- 1,...,c. The vector w

'- fi-1w1 reflects how much of each commodity is initially owned by the
consumers all together.

For h- 1,...,f, firm h is characterized by a production (possibili-

ty) set Yh being a subset of the commodity space Rnil. A vector yh in Yh

describes a technologically feasible production plan for firm h with yh

denoting the amount of output of commodity j if y~ 2 0 and -y~ the amount of
input of commodity j if y~ ( 0, j- 1,...,n.l. If commodity j is a primary

good, then for each firm h, y~ 5 0 for all yh E Yh. Let Y be the aggregate

production set of the economy, i.e., Y- Lh-1Yh, then we assume the follow-

ing about the Yh's and Y, where R;~1 denotes the nonnegative orthant of

Rn}1.

Assumption 2.1.
For each firm h, h- 1,...,f, the set Yh satisfies:

hi) 0 E Y (not producing is feasible);
ii) Yh is closed (continuity in technology);

iii) Yh is convex (non-increasing returns to scale);
iv) Yh - Rá~i C Yh (free disposal).
Moreover, Y n(-Y) C{0}, i.e., no aggregate nonzero production plan is
reversible.

Assumption 2.1 implies that the set (Y.{w}) n Rn}1 is bounded and that for
every h if 0~ yh E bd Yh (boundary of Yh) then either ayh E bd Yh for all
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a z 0(constant returns to scale) or ayh a Yh for all a) 1 and ayh E Yh for
all 0 5 a 5 1. The latter property is called decreasing returns to scale,
since a proportional increase of input levels leads to a less proportional
increase of outputs. We call a production plan yh E Yh of firm h attainable
if there exist production plans yk, k~ h, such that ik-1 yk . w 2 0. The
set oF attainable production plans of firm h is compact and convex. Let b E
- R4;h be a(strict) lower bound for the set of attainable production plans
of any firm h. Then we define the set Yh of admissible production vectors of
firm h by

Yh - IyhEYhIY~ Z bj. j- 1. ....., nilf

Clearly, each Y- is nonempty, convex, end compact, and Y:- Lh-lY satisfies
Y n-(Y) -{G}. Producers are assumed to be price takers and maximize profit
over their admissible production set. Let p-(pl,...,pntl)T in R441`{G} be
a price vector with pj the price of commodity j- 1,...,n.l. Given the price
vector p, producer h maximizes his profit, being the value of a production
plan, over all his admissible production plens,

max p.yh subject to yh E Yh.

The set of solutions to this problem, denoted Sh(p), is called the supply of
firm h at price vector p. Under Assumption 2.1, Sh is an upper hemi-conti-
nuous correspondence from R~}1`{G} to Yh and Sh(p) is nonempty, convex end
compact for every price vector p. Moreover, Sh is homogeneous of degree zero
in p, i.e., Sh(ap) - Sh(p) for any ~) 0 and p E R4}1`{G}. Further, let
rth(p) be the maximum value of problem (2.1). Then nh is called the profit
function of firm h and each nh is a continuous function from Rn41`{G} to R;.
For details of these properties we refer to Debreu [1952. Ch. 3]. Notice
that rth(p) Z 0 since 0 E Yh. Finally, let the supply correspondence S be
defined by S(p) - ih-1Sh(p), then S satisfies the properties of each Sh
listed above.

The profit of a firm is assumed to be distributed among the consu-
mers. Ler, Oh be the share of consumer i, i- 1,...,c, in the profit of firm
h, h- 1,...,f. For every h, we assume that Oh ) 0 for every i and
Li-1Gh - 1. The income of consumer i at price vector p is then equal to the
value of his initial endowment plus his total share in profits, i.e.,
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f
I1(P) - P.wi t f ~hrth(P).

h-1

We assume that for any price vector the income of every consumer is posi-
tive, i.e.,

Ii(p) ) 0 for ell p E Rn~l `{0}, i- 1, ..., c.

Each consumer i is characterized by a consumption set Xi equel to Rn~l and a
utility function ui from Xi to R. A vector xi E Xi gives a utility level
ui(xi) to consumer i, where x~ is the amount of commodity j conaumed by
consumcr i. We assume that if a commodity is a primary good, then a conaumer
is not able to consume more than his initial endowment of that good. If it
is an intermediate good a consumer neither is initislly endowed with it nor
has eny desire for it.

A consumption vector xi E Xi is called attainable if there exist attainable
production plans yh, h- 1, .. , f, such that

xl ( ~ yh . w
- h-1

and if 0 5 x~ 5 w~ when commodity j ís a prímary or intermedíate good. The
set of attainable consumption vectors of consumer i is compact and convex
since (Yt{w}) n R}}1 is compact and convex. Let a be a(strict) upper bound
in Rtrl for the set Yr{w}. Then the set of admissible consumption vectora of
consumer i is defined by

xlERn}1~0 5 x~ s w~, if commodity j is e primary or inter-
mediate good

0 5 x~ 5 aj, otherwise}.

Clearly, for each i, X1 is nonempty, convex and compact.
Concerning the utility function of a consumer we make the following assump-
tion.



Assumption 2.2.
For each consumer i the function ul: X1 ~ R satisfies:

i) continuity;
ii) monotonicity (ul(xl) ) ul(yl) if xl, yl E Xi and xi ~ yi).

iii) quasi-concavity (the set {xi E Xl~ul(xi) 2 u} is convex For all u).

Monotonicity implies that more of some (non-intermediate) commodity increa-
ses the utilit level. Given p t41`{ }y price vector E Rn 0, consumer i maximizes
his utility over all admissible consumption vectors he is able to buy with
his income I1(p),

max ui(xl) subject to p.xi s Ii(p) and xi E X1. (2.2)

The set of solutions to this problem, denoted D1(p), is called the demand of
consumer i at price vector p. For all i, D1 is an upper hemi-continuous
correspondence on Rt;l`{0} and each Di(p) is nonempty, convex and compact.
Also, D1 is homogeneous of degree zero in p. For details see Debreu [1952.
Ch. 4]. Finally, let the demand correspondence D be defined by D(p) -

Ei-1D1(p), then D satisfies the same properties of each Di listed above.

The excess demand correspondence Z is defined by

Z(p) - D(p) - S(p) - {w}.

Lemma 2.1
The correspondence Z defined by (2.3) from R~}1`{0} to Rn`1 satisfies:

i) Z is upper hemi-continuous;

ii) Z(p) is nonempty, convex and bounded, for every p E Rt;l`{0};

iii) Z is homogeneous of degree zero;

iv) p.z(p) - 0 for all z(p) E Z(p), for every p E Rt}1`{O}.

(2-3)

The properties i) to iii) follow from the properties of the correspondences

D and S. Property iv) is also known as Walras' law and follows from the fact

that due to the monotonicity of the utility function each consumer spends

ell his income, i.e.,

p.dl - Ii(p), for all di E Dl(P).
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We call a vector p' E R~;1`{0} an equilibrium price vector if there is at p'

a demand vector d~l in D1(p~) for each consumer i- 1,...,c, and a supply

vector s~h in Sh(p~) for each firm h such that total demand is equal to

total supply plus initiel endowment, i.e.,

c „. f ~
ï d 1- L s h t w.

i-1 h-1

~iWe remark that d also maximizes consumer i's utility given the income

I1(pw) over his feasible consumption set X1 and not only over X1, and simi-
larly sMh maximizes firm h's profit also over Yh and not only over Yh.

~i MhClearly, d is an attainable consumption vector for consumer i and s is
an attainable production vector for firm h.
Obviously, the price vector pM is an equilibrium if and only if 0 E Z(p~).

Because of the homogeneity of degree 0 of Z in p, we have that ~pM is an

equilibrium price vector for any a) 0 if pM is one. This property allows us

to normalize the price vectors to lie in the n-dimensional unit simplex Sn

defined by

Sn - rP E R}.1II,.ipj - 1~.

The unit simpltex Sn is the convex hull of the n.l unit vectors in Rn}1 and
is a nonempty, compact and convex set. The equilibrium problem is therefore
to find a price vector pM in Sn such that 0 E Z(pM).

3. The path of the algorithm

Let p~ be an arbitrarily chosen price vector in the relative inte-
rior of Sn. In case there is no a priori information about the location of
an equilibrium one can take pC equal to the barycentre of Sn, i.e., p~ -

1(ntl)- for j- 1,...,n41. We introduce a piecewise linear path of prices in
Sn, connecting p~ and a price vector pl. The linear pieces of the path can
be followed by s sequence of linear programming pivoting steps as described
in the next section. The price vector pl will be considered as en approxi-
mate equilibrium, to be made precisely below, at which the procedure can be
repeated to find a better approximation. Before describing the piecewise
linear path we need some definitions and notation. We call an (ntl)-vector s
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a sign vector if sj E{-1,O,t1} for all j. A sign vector s is called fea-

sible if s contains at least one -1 and one tl.

Defínition 3.1.
Let s be a feasible sign vector. Then the set AO(s) is given by

AO(s) - jP E SnIPjIPO - m~ PhIPh. if sj - tl
l h 1

PjIPO - min Ph~Ph, if sj --lj.
h J

Clearly, the dimension of AO(s) is equal to t where t is the number of zeros

in s plus one, i.e., t- I{jlsj - 0}Itl.
If wl wt}1 are t~l affinely independent points in Rnrl then we call the

convex hull of these points s t-dimensional simplex or t-simplex, denoted
, 1 t41

o(wl wt 1) The convex hull of eny subset of ktl points of w,., w

is called a k-dimensional face or k-face of o(wl, , wt~l) and is a k-sim-

plex itself. A 0-face of a t-simplex o is called a vertex of Q and a(t-1)-

face is called a facet of o. If a finite collection G of t-simplices is such

that their union covers a t-dimensional convex set C and the intersection of

two t-simplices is either empty or a common face, then we call G a simpli-

cial subdivision or triangulation of C. Two important properties of a trian-

gulation are that it also trangulates every boundary face of the underlying

set C and that every facet of a simplex either lies on the boundary of C and

is contained in only one simplex or it does not and is contained in exactly

two simplices.
Now let GO be a triangulation of Sn such that GO induces also a

simplicial subdivision of each set AO(s) defined above. For such a triengu-

lation that can easily be reproduced and stored on the computer, see Doup,

van der Lean and Talman [3]. Let e0 be the mesh of the triangulation, i.e.,

EO is the largest diameter of any simplex in G0. We now define a linear

approximation z0 of the excess demand correspondence Z with respect to G0.

Definition 3.2
For p' being a vertex of a simplex in GO choose any z(p') in Z(p'). Let p be

,
any point in Sn and let 6(wl, ., wn 1) be an n-simplex in G containing p.

Then there exist unique nonnegative numbers A1 ""'~n.l summing up to one
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such that p- Ei}i~iwl. The piecewise linear approximation of Z with respect
to GO is given by

n~l
z0(P) - L ~1z(w~).

1-1

The function z0 is well defined. Clearly, z0 is continuous on Sn. Moreover,
z0 is linear on each n-simplex of GO and hence also linear on each t-simplex
in AO(s) for any feasible sign vector s. Due to the free disposal asaumption
for the producers and to the monotonicity assumption on the utilities of the
consumers, for any z in Z(p) it holds that z~ z 0 if p~ - 0. Hence,
z~(p) 2 0 whenever p~ - 0. The piecewise linear path of the algorithm is now
defined as follows. Each point p on the path satisfies

P~IPO - max phlp0 if z~(P) ~ 0
h

and

P~IPO - min phlph if z~(P) C 0.
h

(3.1)

Clearly, the poínt p- p0 satisfies (3.1) with both the maximum and minimum
equal to one. Moreover, system (3.1) has one degree of freedom whereas z0 is
piecewise linear. Hence, as we will show in the next section, the set of
points in Sn satisfying (3.1) contains a piecewise linear path PO connecting
p0 and some price vector pl. At pl we have z0(pl) - 0 if pl - 0 and either~ ~
z0(pl) ( 0 or z0(pl) ) 0. According to (3.1), along the path PG from p0 to
pl, initially the prices of the commodities having positive (piecewise li-
near) excess demand are proportionally increased and the other prices are
initially decreased. In general, prices of the commodities in excess demand
are kept relatively (to the initial pricea) maximal and those in excess
supply relatively minimal. The prices of the commodities for which the ex-
cess demand is zero are allowed to vary between this relative minimum and
maximum. In this way we obtain an intuitively appealing price adjuatment
process from p0 to pl. For more detaíls about this process we refer to van
der Laan and Talman [6].

In the remaining part of this section we show that by taking a se-
quence of triangulations with mesh going to zero we can generate a sequence
of prices p0, pl, p2, ., such that at least one convergent subsequence
converges to a price equilibrium price vector. So, let e0, el, e2, .. be a
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sequence of numbers converging to zero. Let p0 be an arbitrary point in the
intPrior of Sn and G~ a triangulation of Sn with mesh size et most equal to
c~ such that CG triangvlates each set AD(s). Let PG be the piecewise linear
path initiating at p~ as defined in (3.1) and let pl be the other end point
of P~. Then with respect to pl we can take a triangulation G1 of Sn with

mesh size at most equal to el. If pl lies on the boundary of Sn we choose

instead of pl some interior point closer than el from pl. From pl there
initiates a path P1 of points p satisfying (3.1) with pG replaced by (the
perturbed) pl, then let p2 be the other end point of P1. In this way we can
generate a sequence of points p~, pl, p2, .. in Sn such that for every 1 2

0, pl and pl{1 are connected by a piecewise linear path Pi in Sn of points

satisfying (3.1) with p0 replaced by pl and z~ by a piecewise linear appro-
ximation zl of Z with respect to a simplicial subdivision Gi of Sn. This Gi
has mesh size at most equal to ei and is such that it triangulates each set
A1(s) as defined in definition j.l with p~ replaced by pi into t-simplices.
For pl,i-1,2,..., we have that zi-1(pi) - 0 if pi z 0 and either zi-1(pi) ~

J ~ -
0 or zi-1(pi) ~ 0. Since the sequences pi and zi-1(pi) i- 1,2,..., both
lie in a compact set there ís a subsequence ik, k- 1,2,..., such that for
that subsequence pl converges to some pM in Sn and zi-1(pi) converges to
some z'. Clearly, either z' ) 0 or z' ( 0.
We will show that z' is an-element of Z(p') and from that it follows toge-
ther with Walras' law that zM - 0 and hence that p' is an equilibrium price
vector. Without loss of generality we can assume that the sequence pi, i-
0,1,..., conver es to ' i-1 i „g p and z (p ), i- 1,2,..., converges to z. Let
Qi l,i ntl,i i i i i(w , w ) be an n-simplex of G containing p. Let al " '~ntl 2
0 with sum equel to one be such that pi - In.lAiwk,i ~en for all i,k-1 kzi-1(pi) is equal to

zi-1(Pi) ' nïl~kzk'1 for some zk'1 E Z(wk'1). (3.2)
k-1

Since the ak's and zk'1's lie in a compact set for all k, there i s a subse-
quence ih, h- 1,2,..., such that for k- 1,...,n41,

i k,i
akh -~ ak and z h-~ zk for h~ m.
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Clearly, ak 2 0 and Lk}i~k - 1. Moreover, since the mesh size of Gi con-
verges Lo zero if i goes to infinity, we also have that wk'1 ~ p` for all k.
Concluding, for k- 1,...,ntl, we have that for the same subsequence, wk,i ~

p` and zk'i ~ zk if i goes to infinity, while zk,i E Z(wk,i) for all i.
According to the upper hemi-continuity of Z we then must have that zk E
Z(p`) for all k. Taking the limit in (3.2) for i going to infinity, we ob-
tain z` - Fk~l~kzk, i.e., z` is a convex combination of the zk's. Since
Z(p`) is convex and zk E Z(p`) for all k, this proves that also z` E Z(p`).

All of this together shows that there exists an equilibrium price
vector. In doing so, we constructed a sequence of price vectors pi and vec-
tors zi-1(pi) for i- 1,2,... . If zi-1(pi) lies in Z(pi) for some index i,
then zl-1(pi) - 0 and pi is en equilibrium vector itself. In general
zi-1(pi) does not lie in Z(pi). But every subsequence of pi, i- 0,1,...,
contains a subsequence to an equilibrium price vector with the corresponding
sequence of zi-1(pi) converging to zero. In that sense every pi in the se-
quence can be considered as an approximate equilibrium price vector. The
existence proof given above is constructive in the sense that each pi}1 is
obtained from pl, and hence from pG, in a finite number of iterations, where
in each iteration a linear piece of the path Pi connecting pi and pi}1 is
followed. In the next section we describe how the linear pieces of such a
path can be followed by alternating linear programming pivoting and replace-
ment steps. The algorithm describing these steps can therefore be considered
as a universally end globally convergent adjustment process for finding a
price equilibrium vector.

4. The steps of the algorithm

The piecewise linear path of points Pi connecting pi and pi41 for
every i can be followed by a sequence of linear programming pivoting steps
and replacement steps. Each linear piece of Pi lies in a simplex in some
A}(s) and can be generated by making a pivoting atep in a system of linear
equations. In which adjacent aimplex the next linear piece of Pi lies is
then determined by making a replacement step in the underlying simplicial
subdivision Gi. Formally, the steps of the algorithm for following the path
P1 from pl are as follows.

When the point p E Sn lies on the path pi then p lies in some t-
simplex 6(wl, ..,wt41) induced by the triangulation Gi of Ai(s), such that
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z~(p) 2 0 if sj -~1, z~(p) - 0 if sj - 0, z~(p) s 0 if sj --1, where zl is
a piecewise linear approximation of Z with respect to Gl as defined before.
Therefore if p lies on the path P1 then the system of n.2 linear equations

kEl~k(zl(wk), - sh~0~sh`eGh)~ - `O~
(4.1)

has a nonnegative solution ~i,.. ,~tal and ~ for ah ~ 0 such that p-

Lk4l~kwk' Since system (4.1) has a degree of freedom of one and assuming
nondegeneracy, system (4.1) has a line segment of solutions (~,u) inducing a
line segment of points p- Lkakwk in o(wl. ,wt~l) satisfying (3.1) with p~
and z~ replaced by pl and zi. The line segment can be traced by making a
(linear programming) pivot step in (4.1) with one of the variables being
zero at an end point. When making the pivot step either ak becomes 0 for
some k E{1,...,ttl} or y~ becomes 0 for some h with sh ~ 0. In particular,
let zl(pl) be the chosen excess demand vector out of Z(pi) at pi and let sG
be the sign pattern of zi(pl). Without loss of generality we assume that sG
contains no zeros. Let 6~(wl, w2) be the unique 1-simplex in the 1-dimensio-
nal set A1(s~) such that the vertex wl is equel to pi. Then the first linear
piece of the path Pi is contained in the simplex a~. It can be traced by
makíng a pivot step in (4.1) (with respect to a~) by pivoting in the vari-
able a2 corresponding to the vertex w2. After this pivot step either al
becomes 0 or y~ becomes 0 for some h E{1,...,n41}. Clearly, pi does not lie
on any other line segment of points satisfying (3.1).

Each linear piece of Pi can be followed by meking a pivot step in
(4.1) for some simplex a(wl, ., wt~l) in some A1(s). Suppose that ak be-
comes 0 for some k E{1,...,t~l} after such a pivot step. Then the point p-

L h~k ~hwh lies in the facet Z of 6 opposite the vertex wk. If the facet t
does not lie in the boundary of Ai(s) then there is exactly one other t-
simplex in A1(s) sharing z with c. Let v be this simplex and w the vertex of
à opposite to T, then the next linear piece of P1 lies in à. This linear
piece can be traced by making a pivoting step in (4.1) with (zl(w)T, 1)T for
some zl(w) in Z(w). If the facet T does lie in the boundary of A(s), then
either T lies in the boundary piece of Sn where pj - 0 for all j with sj --
1 or T is a(t-1)-simplex in Ai(s') where s~ ~ 0 for some j with sj - 0 and
sh - sh for all h~ j. In the first case the algorithm terminates with p141

h~k h
h i itl - h i;l ph`1 - 0. In the-~ a w such that z(p )) 0 and z(p )- 0 if
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second case the next linear piece of Pi lies in t and can be traced by ma-
king a pivoting step in (4.1) with s~(e(j)T, 0)T. Finally, suppose that
after a pivot step in (4.1), ~ becomes 0 for some k with sk ~ O. Let the
sign vector s' be determined by sk - 0 and sh - sh for all h~ k. The algo-
rithm terminates with pi`1 - ïhAhwh such that z3(pifl) ~ 0 or zi(pi.l) ~ G

in case s' does not contain positive components or negative components,
respectively. Otherwise, let a be the unique ( t~l)-simplex in Ai(s') having
a as a facet and let w be the vertex of v opposite a. Then the next linear
piece of P1 is contained in v. This line segment can be traced by making a
pivot step in (4.1) with (zl(w)T, 1)T for some zi(w) E Z(w).

Assuming nondegeneracy, all pivoting steps are unique. Since also
all replacement steps are unique, no simplex a(wl, , wt~l) in some Ai(s)
can be visited more than once. The fíniteness of the number of simplicea in
each Aí(s) and of the number of feasible sign vectors s in Rn41 guarentees
that the algorithm initiated at pi and following the path Pi as described
above must terminate within a finite number of steps in one of the two cases
mentioned above. In both cases the point pi}1 ma,y serve as an approximating
price equilibrium and can be used, perturbed i f necessary, as the initial

int of a i.lpo path P of points in Sn, satisfying (3.1) with respect to pi.l

and with a finer simplicial subdivision G141, in order to improve the accu-
racy of approximation.
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