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Abstract

This paper considers the determination of aircraft landing fees. It is proposed
to model the situation at an airporl as a game with a system of unions and to
use the Owen value for this type of games to determine the fees for movements
at the airport. Such a modelling creates the possibility to take into account the
fact that airplanes are organized in airlines. The ideas in this paper are illustrated
by the description of the situation at the airport Labacolla, which is the airport
of Santiago de Compostela, Spain. Further, a characterization of the Owen value
is provided that is applicable in situations where only the systems of unions are

subject to change.
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1 Introduction

Cooperative game theory has proved to be a useful tool in analyzing cost allocation
situations. There is a whole literature dealing with cost allocation methods that are
based on game theoretic concepts. Examples include Billera et al. (1978), who apply
game theory to determine internal billing rates for long-distance telephone calls that are
placed through WATS (Wide Area Telecommunication Service) at Cornell University,
and Straffin and Heaney (1981), who apply game theory to the cost allocation problem
faced by the Tennessee Valley Authority in the 1930’s.> Another well-known application
of game theory is the use of the game theoretic solution concept of the Shapley value to
determine aircraft landing fees. The so-called airport games were studied in Littlechild
and Thompson (1977), Littlechild and Owen (1973), and others.

In this paper we focus on the determination of aircraft landing fees. Although the
model of airport games that was studied in the literature untill now turned out to be
quite valuable, we believe that there is an important aspect in the determination of
aircraft landing fees that is ignored in the model that is currently used, namely the fact
that airplanes are organized in airlines. From our point of view, airplanes should not
be considered as isolated units but as a part of an airline and one can imagine that
larger airlines have more possibilities to negotiate discounts or other cost advantages
than smaller ones.

In this paper, we propose to use a model and a corresponding solution concept that
give us the possibility to take into account the organizations of airplanes in airlines. The
model and solution concept that we consider are the model of coalitional games with
a priori unions and the extension of the Shapley value to this richer model that was
introduced by Owen (1977) (the Owen value). Since we want to argue that the Owen
value provides an appropriate method to determine aircraft landing fees, we are interested
in axiomatic characterizations of this value. However, the axiomatic characterizations of
this value that already exist in the literature (see Owen (1977), Hart and Kurz (1983),
and Winter (1992)) are only valid when the system of unions is fixed and the coalitional
games are variable. But in the context of the determination of aircraft landing fees when
the organization of airplanes into airlines is taken into account, it is more appealing to
characterize the Owen value in terms of changing systems of unions. This becomes even

more appealing when we realize that the importance of the Owen value is partially due to

5For an overview of applications of game theory in cost allocation situations we refer the reader to
Young (1985) and to Tijs and Driessen (1986).



the fact that it has revealed to be a useful tool to analyze the process of union formation
in coalitional games (see, for instance, the study of a political scenario in Carreras and
Owen (1988)). In this paper we provide a characterization of the Owen value that is
valid when the coalitional game is fixed and the system of unions is subject to changes.

The structure of the paper is as follows. In section 2 we describe the model of airport
games that is currently in the literature and we illustrate this model by the situation at
Labacolla, the airport of Santiago de Compostela, Spain, during the months January,
February, and March of 1993. In section 3 we describe the model of games with a priori
unions and we model the airport cost allocation problem as such a game. We clarify the
modelling process again with the description of the situation at the airport of Labacolla.
Finally, in section 4 we provide an axiomatic characterization of the Owen value that is

appealing in the context of the determination of aircraft landing fees.

2 Airport Games

Several authors have studied the problem of allocating the costs of building and exploiting
an airport movement area® from a game theoretic angle. These costs have a simple but
interesting structure: the cost of building a runway depends essentially on the "largest”
aircraft for which the runway is designed, while the cost of subsequently using the runway
is proportional to the number of movements of each type of aircraft. Hence, the costs can
be divided into two parts: the variable costs that are incurred when airplanes arrive at or
lcave from the airport, and the fixed costs of constructing the runway. In general, there
is no problem in assigning the variable costs, because they are generated by individual
airplanes. The fixed costs, however, are harder to allocate, because they are more or less
independent of movements by individual airplanes. The game theoretic approach to the
allocation of the fixed costs is as follows: first a coalitional game (N, c) is defined in which
the individual movements by airplanes are considered to be the players in the game and
the cost for a group of movements § is defined as the (fixed) costs that would be incurred
when an airport had to be constructed that could accomodate all the movements in the
set S. These costs will essentially be determined by the "largest” airplane that is in the
sct S, because this plane will need the longest runway.

Suppose there are T types of airplanes that use the runway and let N, be the (finite)

6This terminology is taken from Littlechild and Thomp (1977). They explain: "A movement
is a take-off or landing. The mo t area includes the r ys, taxiways, and apron areas, as

distinguished from the terminal area.”



e

set of movements that are made by airplanes of type t. Hence, {N;, N;,...,Nr} is a
partition of the player set N. Let ¢; be the cost of constructing a runway that is suitable
for airplanes of type t. Furthermore, we assume (without loss of generality) that the
types are numbered in such a way that types with a higher number generate higher
costs, i.e., ¢; < ¢ < ... < cp. Naturally, a runway that accomodates airplanes of a
type t will also accomodate airplanes of a smaller type 7 < t. Therefore, the costs of
constructing a runway that accomodates all the movements in a set S C N equals the
costs of constructing a runway to accomodate the largest airplane that is represented in

the set of movements S. In formula,
c(S) = max {c; | SN N, # 0}.

Once the airport game is defined, one can apply game theoretic solution concepts
to find allocations of the costs. A game theoretic allocation rule that turned out to be
especially interesting for this type of problems is the Shapley value, that was introduced
by Shapley (1953) and further studied in the context of airport games by Littlechild
and Thompson (1977), Littlechild and Owen (1973), Owen (1982), and others.” The
cost allocation rule that is defined by the Shapley value was also proposed by the air-
port economists Baker and Associates (1965) and Thompson (1971), who approached
the problem from an economic point of view. The Shapley value was axiomatically
characterized within the context of airport cost allocation problems by Dubey (1982).

The Shapley value of the airport game described above assigns to each movement by
an airplane of type t the same cost, namely

t

Cr — Cr)
$(N,c)= ) ——
Lhie TZ=:1 N>

where ¢ := 0 and N5, := UJ_, N, the set of all the movements made by planes of
type 7 or larger planes. This allocation has the following interpretation: the costs of
constructing the first part of the runway, the cost ¢; that is incurred by all types of
airplanes, is divided equally among all the movements at the airport. Then, the costs
of constructing the second part of the runway, the cost c; — ¢; that is incurred by all
types of airplanes except for the first type, is divided equally among all the movements
by airplanes of types 2, 3,..., T. Continuing in this way, the total cost cr is allocated

to all the movements at the airport.

7 Also, the nucleolus of airport games was studied by several authors. We mention Littlechild (1974),
Littlechild and Owen (1976), and Owen (1982). However, we will focus on the Shapley value in this

paper.



To illustrate the problem of airport cost allocation and the application of game theory
to this type of problems, we consider the situation at Labacolla, the airport of Santiago
de Compostela, Spain, in the first three months of 1993.% In Table 2.1 we provide the
types of airplanes that use Labacolla, and the number of movements made by these types
of airplanes. Further, we also give the costs for the types of airplanes and the allocation
of the costs corresponding to the Shapley value. The costs in the table are given in

thousands of Pesetas.

Type t SR Cost | Shapley value
movements
CESSNA 1 10 8,120 6.455
LEARJET-25 | 2 6 | 15,134 12.075
B-757 3 78 | 32,496 26.054
DC-9 4 464 | 34,265 27.574
B-737 5 232 | 39,494 35.044
B-727 6 438 | 44,850 46.488
DC-10 7 30 | 50,000 218.150
Table 2.1

Although the approach of cost allocation in airports that is described above (and stud-
ied extensively in several papers) is quite interesting and useful, it ignores one important
aspect of the situations that are described, namely that the movements by aircrafts at
airports are (in general) not individual movements, since the airports in reality have
agreements with airlines. Hence, the movements of airplanes at a certain airport are
grouped according to the airlines they belong to. One can easily imagine that this con-
sideration may have an impact on the allocation of the costs, since airlines that have a
larger number of movements at a certain airport may have more opportunities to negoti-

ate discounts on landing fees or other cost advantages than airlines with less movements.

8The situation that we describe here is taken from Bergantifios et al. (1995) and it is based on the
data that they were able to gather. Although we do not know all the movements in the airport, we
believe that the data that we do have are sufficient to make an example that illustrates the ideas that
we want to express in this paper. Further, we restrict the scope of our analysis to the months January,
February, and March of 1993. In particular, we consider only the depreciation of the runway during
these months. The costs for certain types of airplanes are computed using specifications for the types
of airplanes and data on the costs of constructing a square meter of a runway. We computed the fees
over a period of three months, but this period can of course be varied. Typically, computing the fees

over a different time span will result in different fees.



Therefore, we propose to use a model that takes into account the fact that movements

of airplancs arc organized in airlines.

3 Games with a Priori Unions and Aircraft Land-
ing Fees

The model and solution concept that we propose to use are the model of games with
a priori unions and the extension of the Shapley value to these games as defined by
Owen (1977). This value is usually referred to as the Owen value and we will adopt this
terminology. A system of (a priori) unions for a coalitional (cost) game is a partition
of its player set which provides a prior description of the cooperative structure of the
players. The Owen value is a cost allocation rule for games with a priori unions that
is based on marginal contributions, just like the Shapley value is. It first allocates the
total costs among the unions as the Shapley value of the induced game played among
the unions. Further, within each of the unions it re-allocates the costs that are to be
paid by the union among its members, taking into account their possibilities for joining
other unions. We formally introduce the model of games with a priori unions and the

Owen value in this section.

A game with player set N and a system of unions Pis a triple (N, c, P), where c is the
characteristic function of a (cost) game (N,c) and P = {P!, P?,..., PA} is a partition of
the player set N into a priori unions. We will denote the set of all such triples (N, ¢, P)
by U(N) and we will denote by U the class of all sets U(N) for any finite N. The Owen
value allocates the total cost among the unions as the Shapley value of the induced game
played among the unions. The game played among the unions is called the quotient game
and it is the game (P,c”) where the characteristic function cP is defined by

F(P):=c (UP.EpP")

for all P C P. This means that the cost of a (sub)set of unions equals the cost of the
set of all players that belong to either one of these unions. The Shapley value of the
game (P, c”) assigns a part of the total cost to each of the unions P®. The part of the
cost that is assigned to the union P* has to be paid by the members of this union. The
Owen value allocates the cost assigned to the union among its members again according
to the philosophy of the Shapley value. Hence, the share of the cost that each member of

the union has to pay is determined using marginal costs. For the sake of completeness,



the formula to compute the Owen value for general games with a priori unions is given
in the appendix.

In the context of airport games, however, the formula of the Owen value can be
simplified. First, we model the airport cost allocation problem as a game with a priori
unions. In addition to the description of the airport cost allocation problem described
in section 2, we now also take into account the fact that the movements in the set N are
grouped according to the airlines they belong to. Suppose there are A airlines that use
the airport. Then we have a system of a priori unions P = {P', P?,..., P4}, where P*
consists of those movements in the set N that are made by airplanes of airlire a. The
triple (N, ¢, P), where N and c are defined as in section 2 and P is defined as above,
models the airport cost allocation problem as a game with a priori unions. The Owen
value of (N, c, P) assigns to each movement by an airplane of type t and of airline a the

cost®

Cr — Cr—1
(N, P 1
VaslMye, F) = Z}.M NS’ ()

where ¢o := 0, N§, := UT_, Nx N P°, the set of planes of airline a that are of type 7 or
of a larger type, and Ay, := {a € {1,2,...,A} | N3, # @}, the set of airlines that do
own airplanes of type 7 or larger types. This allocation has the following interpretation:
the costs of constructing the first part of the runway, the cost ¢, that is incurred by
all types of airplanes, is divided equally among all the airlines and within each airline
the allocated costs are reallocated equally among all the airplanes. Then, the costs of
constructing the second part of the runway, the cost ¢; — ¢ that is incurred by all the
types of airplanes except for the first type, is divided equally among all the airlines that
own airplanes of type 2 or larger types and within each airline the allocated costs are
reallocated equally among all the airplanes of types 2,3,... ,T. Continuing in this way,
the total cost cr is allocated to all the movements at the airport.

Note that when the fees are computed according to the Owen value, the total fee paid
by an airline only depends on the types of airplanes of this airline that make movements
at the airport and not on the number of airplanes of the airline. But for a larger airline
the total fees to be paid can be distributed among more movements. As a result, the fee
per movement will be lower for larger airlines. Note that this does not tell us what will

happen when airlines merge. Rather, it compares the specific fees for different airlines

9Gince the derivation of this formula is similar to the derivation of the Shapley value for airport
games as performed by Littlechild and Owen (1973), we do not include this derivation in the paper.
The derivation can be obtained from the authors upon request.



in an existing situation. It is not possible to make general statements about what will
happen when airlines merge. To analyze such a merger one has to take into account
explicitly the specific decomposition of the airlines into movements.

It may seem strange that when the fees are computed according to the Owen value,
the total fee paid by an airline does not change when this airline decides to make more
movements at the airport with airplanes of types that are smaller than or as large as the
ones it already uses at the airport. However, one should realize that the fees we compute
using the Owen value are only a part of the total fees that have to be paid, namely the
part that is meant to cover the fixed costs of constructing and maintaining the airport
movement area. The variable costs that are incurred when airplanes arrive at or leave
from the airport constitute another part of the total fees, and this part of the fees causes
the total fee paid by an airline to be higher when it decides to make more movements at
the airport.

We continue the example of the airport Labacolla that we started in section 2. Ta-
ble 3.1 provides a description of the airlines that use Labacolla and of the grouping of

movements at the airport according to airlines.



Airline

CESSNA

LEARJET
25

B-757

DC-9

B-737

B-727

DC-10

Air Europa

172

Aviaco

12

Britannia

British

Airways

Condor

Flugdienst

Caledonian

Airways

Eurobelgian
Airlines

Futura

32

Gestair

Executive Set

Iberia

452

438

Air Charter

Corse Air

Air UK Leisure

Ibertrans

LTE

Mac Aviation

Monarch
Airlines Ltd

Sobelair

Trabajos

Aéreos

Tea Basel
LTD

Oleochidraulica
Balear SA

Viasa

Spanair

Table 3.1
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Airline

CESSNA

LEARJET
25

B-757

DC-9

B-737

B-727

DC-10

Air Europa

8.110

11.183

Aviaco

151.093

Britannia

369.224

British

Airways

843.378

Condor

Flugdienst

843.378

Caledonian

Airways

843.378

Eurobelgian
Airlines

1107.673

Futura

69.230

Gestair

Executive Set

176.522

Iberia

2.037

9.070

Air Charter

1107.673

Corse Air

553.836

Air UK Leisure

1107.673

Ibertrans

176.522

LTE

46.854

Mac Aviation

120.367

Monarch
Airlines Ltd

1107.673

Sobelair

369.224

Trabajos
Aéreos

176.522

Tea Basel
LTD

1107.673

Olechidraulica
Balear SA

88.261

Viasa

334.778

Spanair

1107.673

Table 3.2
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In Table 3.2 we give the Owen value for each movement at Labacolla, specified by the
type of airplane and airline. We conclude from this table that the fees for movements
are higher for airlines that use Labacolla incidentally and that they are advantageous for
airlines that use the airport intensively. When reading Table 3.2 one should remember
that these fees are per movement and that an airline with a lot of movements can spread
the costs among all these movements. This is the reason why the fee per movement is
lower. Further, we again remind the reader that these fees only represent the contribution
to the fixed costs of constructing and maintaining the airport movement area and that
there is also a variable cost per movement that has to be paid.

We want to conclude the example by noting that it can be advantageous for airlines to
cooperate when the fees are computed using the Owen value. The 'Iberia-group’ consists
of the airlines Aerolineas Argentinas, Aviaco, Binter Canarias, Binter Mediterrineo,
Ladeco, Viasa, Viva, and, of course, Iberia. When the three airlines of the Iberia-group
that use Labacolla, namely Aviaco, Iberia, and Viasa, act as one airline when negotiating
movement fees, then the fee for a DC-9 will be 2.180, for a B-727 it will be 14.556, and
for a DC-10 the fee will be 186.222 (all in thousands of Pesetas and for the Iberia-group).
Hence, the fee for a DC-9 of Aviaco decreases drastically, and for a DC-9 of Iberia it
increases slightly. The fee for a B-727 of Iberia increases with about 50 percent, but the
fee for a DC-10 of Viasa is only about half of what it was before. In total, the fees that
are to be paid by airplanes of the Iberia-group decrease from 16749.84 to 12973.708 (in

thousands of Pesetas).

4 A Characterization of the Owen Value

Since we would like to propose to use the model of games with a priori unions to describe
the problem of cost allocation in relation with airports and to use the Owen value as
a rule, we have to justify the use of the Owen value in this context. However, all
the characterizations (i.c., justifications) of the Owen value existing in game theoretical
literature (see Owen (1977), Hart and Kurz (1983), and Winter (1992)) use axioms that
are only related to the characteristic function of the corresponding coalitional games.
This, in fact, is equivalent to justifying the Owen value for the family of all coalitional
games with a fixed system of a priori unions. However, when applying the Owen value in
the context of airport cost allocation, it is more appealing to have a characterization that
can be applied to a situation where the coalitional game is fixed and where the unions

are possibly subject to changes. In this section we provide an axiomatic characterization



of the Owen value in this spirit.

We observe that the QOwen value is, in fact, a generalization of the Shapley value.

Namely, we can identify the set of coalitional games (without a system of unions) with
the subset of U that consists of games with trivial systems of unions only. Here, by
a trivial system of unions we mean that all the unions contain exactly one player or,
equivalently, that each player forms a union on his or her own. Since the Owen value
of such a game with a trivial system of unions coincides with the Shapley value of the
corresponding coalitional game, the Owen value is a generalization of the Shapley value
to games with a priori unions. Of course, the Owen value is one out of many possible
answers to the question of how to generalize the Shapley value for those situations in
which the system of unions is non-trivial. To capture this idea we introduce the notion
of coalitional Shapley value.
Definition 1 A coalitional Shapley value is an allocation rule  for games with a priori
unions which assigns to every game with a system of unions (N,c,P) € U(N) C U
an element of R" in such a way that for all games with a trivial system of unions ¥
coincides with the Shapley value of the corresponding coalitional game.

In the remainder of this section we will restrict attention to coalitional Shapley values.
One should realize that this is equivalent to restricting attention to allocation rules that
satisfy the properties that characterize the Shapley value (cf. Shapley (1953) and Dubey
(1982)). We will introduce two more properties of allocation rules for games with a
priori unions and we will show that the Owen value is the unique coalitional Shapley
value satisfying these two properties.

The first property, balanced contributions, is a property that states that if two play-
ers i and j are in the same a priori union, then the loss (or gain) that player inflicts
on player j when he decides to leave the union is the same as the loss (or gain) inflicted
on player i when j leaves the union. This property reflects the idea that all players in a
union should profit equally from joining the union and that it cannot be the case that
one specific player extracts all the benefits that are generated by the formation of the
union. In the context of airport games this means that within an airline the fees should
be assigned to movements in a way that is fair in the sense that no airplane can demand
a lower fee under the threat of withdrawing from the airline and acting as an isolated

airplane at the airport.
Definition 2 An allocation rule  on U has balanced contributions if for all (N, ¢, P)e
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U(N), all P* € P, and all 1,5 € P* it holds that
¥i(N, ¢, P) — ¥i(N, ¢, P_;) = $;j(N,c, P) — ¥;(N,c, P_;),

where P_; is the system of unions that results when player i separates from the union
he belongs to, i.e., P_; := {P',..., P*~', P*\{i}, P**',..., PA {i}}, and P_; is defined
analogously.

The second property, the quotient game property, is a property that states that the
behavior of an allocation rule is consistent in the sense that the sum of the benefits
assigned to the individual players of a union is equal to the total benefit assigned to the
union in the game played among the unions (cf. section 3). In the context of airport
games this means that for an airline it does not matter whether the airport authorities
compute the fees per movement or per airline; as long as the authorities use a rule that
has the quotient game property both procedures will result in the same total fee for the
airline.

Definition 3 An allocation rule ¥ on U has the quotient game property if for all
(N,c,P) € U(N) and all P* € P

3" %i(N,c, P) = ¢pa(P, ", P),

ieps
where P is the trivial system of unions for the set of players P, ie., P :=
{{P'},{P?),....{P*}}.

The following theorem states that the balanced contributions property and the quo-
tient game property characterize a unique coalitional Shapley value. The resulting rule
is the Owen value.

Theorem 1 The Owen value is the unique coalitional Shapley value satisfying balanced
contributions and the quotient game property.

The proof of Theorem 1 is included in the appendix. The proof provided in the
appendix is given in the most general way, namely for the class of all games with a priori
unions. However, the careful reader may note that the proof only requires changing
the unions and that it leaves the characteristic function unchanged. Therefore, it is
straightforward that the Owen value is the unique allocation rule for airport games that
is an extension of the Shapley value satisfying balanced contributions and the quotient
game property.

We end this section on axiomatic characterizations of the Owen value with the follow-

ing remark. In the original characterization of the Owen value by Owen (1977) the Owen
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value was shown to be the unique allocation rule on U satisfying the carrier property,
symmetry in the unions, symmetry in the quotient, and additivity.'® In this characteri-
zation the property 'symmetry in the unions’ can be replaced by the property ’balanced
contributions’. We do not include a proof of this statement, but it can be obtained from

the authors upon request.
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Appendix

This appendix contains the formula to compute the Owen value for general (cost) games

and the proof of Theorem 1.

Let (N, ¢, ) be a game with a system of unions. Then the Owen value of this game is
given by the following formula. Take ¢ € N and let P° be the (unique) union to which ¢
belongs, i.e., i € P* € P. Then

sep= ¥y BUPITISCNGAZRIZD . g,

QCP\{P} SCP\{i}

where M;(Q, S) denotes the marginal contribution of player i to Q and S given by
(e(UpaegP* US U {i}) — c(UpeeqP? U 5)).

This formula is quite complicated (which is the reason why we did not want to put it
in the main text), but it has an interpretation that is quite similar to the interpretation
of the Shapley value. The Owen value of i € P* € P is the average of all marginal
contributions of 7 in all orderings of the players that preserve the grouping of the players
into unions. Here, an ordering is said to preserve the unions if two players of the same
union have no player in between them that is not a member of the same union. For a

more extensive explanation of the Owen value we refer the reader to Owen (1977).
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We continue with the proof of theorem 1.

Proof of theorem 1. (a) Uniqueness: Suppose that there exist two different coali-
tional Shapley values ¥' and ? satisfying balanced contributions and the quotient game
property. Then, we can find a coalitional game (N,c) and, for this game (N,c), a
system of unions P = {P',P?,..., P4} with a maximal number of unions such that
Y (N,c, P) # $*(N,c, P). Now, taking into account that both %' and ? satisfy the
quotient game property, for all P* € P and all | € {1,2} it holds that,

z !ﬁ‘l'(N,C, P) == 'l)l}"(Pycpap)y
iepa
where P denotes the trivial system of unions (see definition 3). But then, as ¢' and ¢*
are coalitional Shapley values,
Y YH(N,¢, P) = 3 43N, ¢, P) = ®pa(P,c"). (2
i€pe 1€pPe
Hence, if P* € P is such that P* consists of one player (i.e. P* = {1}), then it must
hold that
$!(N,¢, P) = ¢i(N,c, P).

Now, take P® € P with at least two elements and choose ¢,j € P?. Then, as ¥! and ¥?
satisfy balanced contributions,
YNy, P) — ¥i(N,c, P) = $i(N,c, P-;) = (N, ¢, P-)
for all [ € {1,2}. But then, the maximality of P implies that
$!(N, ¢, P) = ¥}(N,c, P) = $}(N, ¢, P) = (N, ¢, P).
Thus, we can state that there exists a constant K*® such that
$!(N,¢,P) = $}(N,c, P) = K*

for all i € P*. But then, using (2), it is clear that K* = 0, i.e. that Y} (N,c,P) =
$2(N,c, P) for all i € P*. Consequently, it holds that $*(N,¢c, P) = ¥*(N,c, P). This
contradiction proves uniqueness.

(b) Existence: It is widely known (see, for instance Winter (1992)) that the Owen
value satisfies the quotient game property. Further, it is shown in Vazquez-Brage et al.
(1994) that the Owen value satisfies balanced contributions. To create a better under-

standing of the balanced contributions requirement in the context of airport games, we
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include a proof of the fact that the Owen value for airport games satisfies this require-
ment.

Let (N, ¢, P’) be an airport game and let P* € P be the movements of a fixed airline a
and t, and t; two types of airplanes of airline a. We have to show that (with a slight

but non-confusing abuse of notation)
'/Ju.h (Nv € I)) - tpa.l.(lva c, P—l;) = '/)d,‘)(Nv c, P) = l/)..'g,(N,(.', P—h)- (3)

Without loss of generality we assume that ¢, < t,. We use formula (1) to find

4

Cr — Cr—1
'pu. chv I) — —-—a
(Ve P) = X T Ne
4y
Cr — Cry
Yau (Nye, Poy) = .
u ) §(|A27I+l)-(lNgfl— )
) o t .
tlh,“,(N,c, P—t.) = E Cr —Cry 4 Cyr — Crq

S Al + 1) - (INg, 1= D) 7 550 s - INS]?

Where the last two equalities follow when taking into account that ¢, (respectively t,)
isolates from airline P°. Now, simply substracting gives us equality (3).

This completes the proof of the theorem. =]
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