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Sensitivity Analysis and Optimization of System Dynamics Models:
Regression Analysis and Statistical Design of Experiments

Jack P.C. Kleijnen

Abstract

This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems
are solved, using the statistical techniques of regression analysis and design of experiments (DOE).
These issues are illustrated by applying the statistical techniques to a System Dynamics model for
coal transportation, taken from Wolstenholme’s book "System Enquiry: a System Dynamics
Approach" (1990). The regression analysis uses the least squares algorithm. DOE uses classic
designs, namely, fractional factorials and central composite designs. Compared with intuitive
approaches, DOE is more efficient: DOE gives more accurate estimators of input effects. Moreover
DOE is more effective: interactions are estimable too. The System Dynamics model is also optimized.
A heuristic is derived, inspired by Response Surface Methodology (RSM) but accounting for con-
straints. Some remaining pertinent problems are briefly discussed, namely DOE for cases with many
factors, and DOE for random System Dynamics models. Conclusions are presented for the case
study, and general principles are derived. Finally 23 references are given for further study.

Introduction

Typically, analysts spent most of their time on developing the System Dynamics model, and little
time on the sensitivity analysis of their model. Nevertheless, it is important to answer questions such
as: what are the effects of changing input values; are there interactions among inputs? This article
uses a case study that concerns a well-structured problem, so one more question is raised: which
input values give optimal output? Many System Dynamics studies, however, concern ill-structured
problems, so optimization is of academic interest, at most. But even models of ill-structured systems
do require sensitivity analysis. Hopefully, this article will inspire System Dynamics analysts to apply
the techniques of regression analysis and statistical design of experiments, to answer questions about
what-if analysis, optimization, goal seeking, and model validation,.

System Dynamics uses simulation to ’solve’ its models. Simulation is a mathematical
technique that is very popular, because it is flexible, simple, and realistic. By definition, simulation
involves experimentation, namely with the model of the real system. Experimentation, however,
requires an appropriatedesign and analysis, if reliable results are desired.

Note that experiments withreal systems have been frequently subjected to the design and
analysis techniques developed in the field of mathematical statistics. In the 1930s Fisher focussed on
agricultural experiments. Since the 1950s Box concentrated on chemical experimentation. Nowadays
Taguchi’s designs are very popular in industrial quality control. (Paragraphs starting with ’Note that’
may be considered to be footnotes.)

Experiments withsimulatedworlds can also benefit of an appropriate design and analysis,
as the case study in this article will illustrate.

Note the followingdidactic dilemma: should the theory of DOE be explained, starting from
one or more case studies (inductive approach) or starting from general principles (deductive
approach)? Because DOE is not well known in the Systems Dynamics community, it seems wise to
introduce DOE to that community though a case study. For thediscrete-eventsimulation community,
Kleijnen (1994) gives an overview starting from general principles, summarizing several case studies.
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Though DOE is not well known in System Dynamics, there are counterexamples.
Optimization of System Dynamics models is investigated in Gustafsson and Wiechowski (1986) and
Wolstenholme and Al-Alusi (1987); their techniques will be briefly discussed in the section on
optimization. A recent book on System Dynamics is surprisingly brief on sensitivity analysis and
optimization; see Wolstenholme, Henderson, and Gavine (1993, p. 54, 232). Also see Barlas and
Carpenter (1990) and Richardson and Pugh (1981, pp. 277-292).

Crucial questions in simulation experimentation are: which combinations of inputs should be
simulated, and how can the resulting output be analyzed? Obviously, these questions are asked in
both random and in deterministic simulations. The case study in this paper concerns a deterministic
model; random models will be briefly discussed near the end of this article.

Note that the terminputs refers not only to parameters and variables, but also to ’behavioral
relationships’, described as follows. Parameters are quantities that are not directly observable so they
must be estimated; examples are the average delays in System Dynamics models. Examples of
variables are resources such as bunker capacities in the case study of this article. Changing a
behavioral relationship may mean that a certain policy is replaced by a different rule, as the case
study will demonstrate. All three types of inputs are called ’factors’ in DOE.

This article is further organized as follows. First the case study is presented, namely
Wolstenholme’s coal transportation model. Then his intuitive design is reproduced, for comparison
with DOE. Next DOE is presented in the following subsections. First a simple, additive approxima-
tion to the input/output (I/O) behavior of the System Dynamics model is discussed; next a more
general approximation is proposed, which accounts for interactions between factors and requires a
design with 23 input combinations. A next section presents the results of the formal regression
analysis of the 23 design. First the validity of the regression model is checked. Next individual input
effects are examined. Three policies are modeled as a single qualitative factor; it is shown that the
third policy is best. Finally the System Dynamics model is optimized: total cost is minimized such
that efficiency remains 100%. A heuristic is derived, inspired by Response Surface Methodology
(RSM) but accounting for constraints. Some remaining pertinent issues are briefly discussed, namely
DOE for cases with many factors, and DOE for random System Dynamics models. Conclusions are
presented for the case study, and general principles are derived. Finally 23 references are given for
further study.

Case study: Wolstenholme’s (1990) coal transportation System Dynamics model

Wolstenholme (1990, pp. 107-128) presents the following case (he spent eight years with British
Coal); also see Figure 1 (which gives the influence diagram for only two bunkers and a simplified
version of policy III).

A certain coal mine has three coalfaces, each linked to its own bunker. These bunkers have
specific capacities (which are a topic of investigation in both Wolstenholme’s book and this article).
Each bunker receives its input from a single coalface, and discharges its output onto a conveyor belt
that serves all three bunkers. This belt transports the coal to the surface of the mine. Whenever a
bunker is full, the corresponding coalface must stop its output; obviously this congestion decreases
the efficiency. The objective of management is to optimize the amount of coal moved from the
coalface to the surface, each day.

Figure 1. Influence diagram of coal clearance model incorporating bunker discharge policy III
(reproduced from Wolstenholme 1990, p. 128, figure 7.11).
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When optimizing the coal flow, it is important to study capacity restrictions and control
rules.Vital questionsare: what are the efficiency effects of changing input values; which input values
give optimal output; which decision rule leads to the best result; are there interactions among inputs,
and so on. So this case study is representative of many problems that arise in real life, especially in
physical distribution and production planning.

Wolstenholme’s model assumes that bunker #3 is the first bunker that discharges coal onto
the conveyor belt, followed by bunker #2, and finally bunker #1. The simulation response isefficien-
cy that cannot exceed 100%. Wolstenholme presents the following three control rules for managing
the discharge rate of the bunkers.

Policy I: The discharge rate of each bunker can only be either zero or maximal (no
intermediate values). The maximum is used as long as there is coal in the bunker and room on the
conveyor belt.

Policy II: The bunker discharge rate can be any value between zero and its maximum: this
rate equals the ratio of the bunker level and the bunker capacity. As in policy I, the discharge rate is
subject to coal being available in the bunker and room being available on the conveyor belt.

Note that both policies lead to coal losses: production is stopped at the coalfaces whenever a
bunker is full and no room is available on the conveyor belt. The order in which bunkers discharge
onto the belt implies that the last coalface in line (coalface #1) suffers the heaviest losses. Therefore
policy III is formulated.

A good explanation of policy III would require understanding the details of the coal
transportation model, and hence would take more space than seems warranted for the purpose of this
article. Details on the model and the policies can be found in Wolstenholme. For this article it
suffices to understand that policy III is more sophisticated than policies I and II; hence the following
crude explanation should do.

Policy III: The maximum discharge rate for a specific bunker is used, whenever that bunker
is full and enough capacity is available on the conveyor belt. Next this policy calculates the discharge
rate for the other partly empty bunkers. This rule determines whether the tentative allocation of the
remaining conveyor belt capacities to these bunkers would result in violating their maximum
discharge rates. In case of such a violation, these discharge rates are reduced to their maxima. If
there is no such violation, remaining conveyor belt capacities are allocated among the remaining
bunkers in proportion to their bunker levels.

For each policy, a System Dynamics model is programmed (this article uses thePOWERSIM
1.1 software, whereas Wolstenholme uses STELLA). Diagrams and equations of the model variants I,
II, and III can be found in Wolstenholme.

This article will show that DOE treats the Systems Dynamics model as a black box; that is,
the details of that model are not important. Nevertheless it is interesting to see that the case study
concerns a truly complicated model. Therefore Figure 1 was added.

Intuitive Experimental Design

In the preceding section a number of ’vital’ questions were raised, related to sensitivity analysis.
Wolstenholme (1990, p. 115) answers these questions by varyingthree inputs, namely total belt
capacity, maximum discharge rate per bunker, and capacity of each bunker. He then selects theinput
combinations(or runs) reproduced in Table 1. He seems to use intuition and common sense to select
these particular combinations: for example, the number of values per factor is three, two, and five
respectively.

Next he runs the nine combinations of Table 1; this yields the efficiency values in that table.
The following problem is how to find a pattern in the I/O behavior of the coal transport model.
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Table 1. Input/output of Wolstenholme’s design per policy (source: Wolstenholme 1990, p.115, table
7.1).

Total Maximum Capacity Policy I Policy II Policy III
belt discharge of each
cap. rate of bunker

(tons each bunker (tons)
/hour) (tons/hour)

Run 1 2000 1000 500 72.84 73.75 75.68
Run 2 2000 700 500 55.73 68.20 75.04
Run 3 2000 1000 1000 76.30 77.86 83.00
Run 4 2000 1000 1200 78.47 80.73 85.60

Run 5 2500 1000 150 64.59 64.79 69.54
Run 6 2500 1000 500 73.17 84.48 90.78
Run 7 3500 1000 150 72.63 65.48 72.63
Run 8 3500 1000 500 98.46 86.16 98.46

To solve this problem, Wolstenholme (1990, pp. 116-121) again uses intuition and common sense,
studying run after run. Moreover, based on this analysis he formulates policy III.

Statistical Design of Experiments (DOE)

DOE does not tellwhich factorsshould be studied; therefore the same three inputs as Wolstenholme
used, are considered in this section. Neither does DOE tellwhich range of input valuesto consider;
hence the same minimum and maximum values per factor are used, as in the preceding section. DOE
does tellwhich combinations of input valuesto use, as follows.

It should be emphasized that the selection of input combinations depends on the kind of I/O
behavior that is assumed to hold for the (simulated) system that is experimented with. The simpler
that I/O behavior is, the fewer combinations are necessary (which makes sense intuitively). So in the
following subsections several types of I/O behavior are discussed.

Additive metamodels for approximating I/O behavior of System Dynamics models

The simplest I/O behavior arises when the output (efficiency of coal transport) equals the sum of the
effects (say)βk of the individual inputs k (k = 1, 2, 3), plus an overall value (say)β0 (this β0 is
roughly 80 in Table 1). So the I/O behavior of the System Dynamics model is modeled by anaddi-
tive metamodel(it is called a metamodel because it is a model of an underlying System Dynamics
model). The System Dynamics model is treated as a black box.

However, what exactly is meant bythe effect of the individual input? Is it the effect of
changing the input by one unit? But different inputs have different dimensions, as Table 1 demon-
strates (tons/hour and tons respectively). In this articlesensitivity analysis isdefined as determining
the effects of changing the inputsdrastically, that is, changing the input from its minimum to its
maximum value; the simulation model is not valid outside that range or in practice that factor can
vary only over that domain. This type of sensitivity analysis should be distinguished from marginal
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analysis: what is the effect of infinitely small changes (perturbations). Bettonvil and Kleijnen (1990)
show that the effects in sensitivity analysis are measured byβk provided all inputs are standardized
(scaled), as follows.

Let the original (non-standardized) input be denoted byzk. In the simulation experimentzk

ranges between a lowest valueLk and a highest valueHk. For example, in Table 1z1 denotes total
belt capacity (measured in tons/hour), soL1 = 2000 andH1 = 3500; z2 has a much smaller range
(namely, 1000 - 700 = 300). The variation (or spread) of factork is measured byak = (Hk - Lk)/2 and
its location (or mean) bybk = (Hk + Lk)/2. Then input k may bestandardizedas follows:

where denotes the value of the standardized factork in combinationi (i = 1, ...,n).

(1)xik (zik bk)/ak

xik
So the additive metamodel is

where yi denotes the simulation response of factor combinationi, and ei represents approximation

(2)yi β 0

3

k 1

β kxik ei

error (the other symbols have already been defined).
This metamodel is a first degree polynomial inx; in other words, the I/O behavior within the

experimental domain (determined by the ranges of the inputs) is approximated by aTaylor series cut
off after the first-order effects.

Further this metamodel is a regression model linear in its regression parametersβ (which
quantify the factor effects). Hence these parameters can be estimated through the classicleast
squarescriterion. Software for this fitting algorithm is abundant. The least squares estimator ofβ̂
the parameter vector = (β0, β1, β2, β3)’ isβ

wherey denotes the vector of simulation responses; obviouslyX = (xik) must have full rank.

(3)β̂ (X X) 1y

Let Q denote the number of regression parameters. In the additive metamodel,X is n by Q
= K + 1. To give X full rank, it suffices to simulaten = Q input combinations; in this case study,
four combinations is enough. Moreover, it can be proved that the accuracy of the estimator isβ̂
maximized whenX is orthogonal. An example is provided by the four combinations 1, 4, 6, and 7 in
Table 2, or by the remaining four combinations.

For an orthogonal matrixX the least squares estimator obviously reduces to the scalarβ̂
expression

(4)β̂ k

n

i 1

xikyi/n (k 0, 1,..., K).

Many analysts use aone factor at a timedesign: they first simulate the base scenario; next
they change one input at a time. This design would also require four combinations, but since this
design yields a non-orthogonalX, it gives a less accurate estimator.

However, the additive metamodel may very well be too simple. Therefore it seems wise to
be prudent, and to assume the following type of metamodel.

Metamodels with interactions for approximating I/O behavior

Wolstenholme (1990, p. 123) states ’... the bunker discharge policy itself interacts with the bunker
level’. Intuitively, interaction means that the effect of one factor also depends on the value of another
factor. Formally, the following metamodel can express interactions:
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whereβk,k’ denotes the interaction between factorsk and k’ with k < k’ (obviously depends

(5)yi β 0

3

k 1

β kxik

2

k 1

3

k k 1

β k,k xkxk ei

δy/δβ k
on both k and k’).

In this metamodel,Q (the number of regression parameters) is 1 + 3 + 3(3 -1)/2 = 7, son
(the number of combinations or rows ofX) must be at least seven. However, the standard DOE solu-
tion takes eight combinations, namely the 23 combinations in Table 2. Observe that the combinations
in this table are formed systematically, whereas the combinations in Table 1 are selected intuitively.
Both tables use approximately the same number of combinations (nine and eight respectively), but
Table 2 gives an orthogonalX (so Table 2 gives a more accurate estimator , givenn = 8).β̂

In general, an orthogonalX (such as the one in Table 2) can be found through straight-
forward procedures in casen equals wherep denotes a non-negative integer such thatn Q.2k p ≥
For general n values there are tables and software. See Box and Draper (1987) and Kleijnen (1987).

The three original inputs are ’total belt capacity’z1, ’maximum discharge rate of the bunker’
z2, and ’capacity per bunker’z3. Hence the 23 design of table 2 gives Table 3, which also shows the
simulated outputs.

Note that some combinations in Wolstenholme’s design and in the 23 design have identical
input combinations (see Tables 1 and 3). The fact that the corresponding output values are identical
(apart from numerical rounding errors) strongly suggests that both models have been programmed
correctly (verification).

Note that interactions may be important, but they may be ignored in the analysis (that is, the
additive model of Eq. 2 is used, whereas the model with interactions of Eq. 5 holds). It can be
proven that even then the 23 design gives unbiased estimators of the main effects. (The 23 design is
said to have at least ’resolution 4’; see Kleijnen 1987, p. 301).

Table 2. Full factorial 23 design in standardized factors .xik

Combination x1 x2 x3

1 -1 -1 -1

2 1 -1 -1

3 -1 1 -1

4 1 1 -1

5 -1 -1 1

6 1 -1 1

7 -1 1 1

8 1 1 1

Table 3. Input/output of 23 design per policy.
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input efficiency

Run z1 z2 z3 policy I policy II policy III

1 2000 700 150 55.78 56.87 65.87

2 3500 700 150 66.34 57.65 66.34

3 2000 1000 150 56.48 62.09 66.42

4 3500 1000 150 72.63 65.48 72.63

5 2000 700 1200 62.62 74.61 85.16

6 3500 700 1200 87.94 74.76 87.94

7 2000 1000 1200 78.47 80.73 85.60

8 3500 1000 1200 100 93.18 100

Regression Analysis of Experiment

Practitioners often make ascatter plotwith on the x-axis the values of one factor (for ex-
ample, capacity per bunkerz3) and on the y-axis the simulation response (efficiency). This graph
indicates the input/output behavior of the simulation model, treated as a black box. It shows whether
this factor has a positive or negative effect on the response, whether that effect remains constant over
the relevant domain of the factor, and so on.

This scatter plot can be further analyzed,fitting a curve to the (x, y) data; for example, a
straight line (y = β0 + β1x). Moreover, this graphical analysis should account for the variations in the
other factors (total belt capacityz1 and maximum discharge rate per bunkerz2): interaction.

To study these interactions, scatter plots per factor can be superimposed. For example, the
scatter plot for different values ofz3 may be drawn, given a certain combination of values forz1 and
z2. Plots of y versusz3 for different combinations ofz1 and z2 can now be superimposed. Intuitively,
the curve for a combination ofhigh values forz1 and z2 lies above the curve for a combination of
low values (if not, the System Dynamics model is probably wrong; see Kleijnen 1995). If the re-
sponse curves are not parallel, there are interactions, by definition. To save space, these pictures are
not shown in this article (they are available from the author upon request).

However, superimposing many plots is cumbersome. Moreover, their interpretation is
subjective: are the response curves really parallel, etc.? These shortcomings are removed by re-
gression analysis, as this section will demonstrate.

In his intuitive analysis of the I/O data in Table 1, Wolstenholme (like many other analysts)
does not explicitly mention interactions. DOE, however, implies that if interactions are conjectured to
be important, then they are estimated. This estimation uses the least squares estimator in Eq. (3)
where in case of interactionsX becomes an eight by seven matrix (there aren = 23 runs in Table 3,
andQ = 7 effects in Eq. 5).

Of course intuition should never be discarded lightly. So it is good practice to eyeball the
results of the experiment, before performing a formal analysis. For example, in Table 3 inputs 1 and
2 seem to have some effects with policy I, but input 3 has the greatest effect. With policy II input 1
has little influence. The factors 2 and 3 have relatively strong effects. With policy III it seems
difficult to see how much influence inputs 1 and 2 have; probably input 1 has more effect than input
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2 has. For sure, input 3 has a very strong effect on efficiency. For all three policies, factor 3 has a
great effect. When input 3 reaches its maximum, efficiency improves.

The formal regression analysis considers the three inputsz1 through z3, which are
quantitative inputs, plus the three policies (I through III), which are qualitative. Qualitative factors are
slightly more difficult to represent in a regression model. Therefore the effects of the three
quantitative factors are first examinedper policy. Next policy is incorporated as a factor.

In practice, analysts often try to interpret individual effects before they check that the
regression model as a whole makes sense. In this article, however, first it is checked that the esti-
mated regression model is avalid approximation of the System Dynamics model’s I/O behavior. If
the metamodel seems valid, its individual effects are examined.

Checking the validity of the metamodel

To check whether the estimated regression model is a valid approximation, two approaches can be
followed. The second approach is only supported by modern statistical software (such as SAS).

(i) How well the regression model fits the simulated data, can be measured through theR-
square coefficient:

where denotes the average output; denotes the fitted values ( ); is called the

(6)R2 1

n

i 1

(yi ŷi)
2

n

i 1

(yi y)
2

y ŷ ŷ Xβ̂ ŷ y
residual. So a perfect fit givesR2 = 1. However, obviouslyR2 increases asQ increases (any re-
gression model withQ = n yields R2 = 1). Therefore theadjusted R2 is defined:

The factorn - Q is called the degrees of freedom. WhenQ = n, then is undefined.

(7)R2
adj 1 (1 R2) (n 1)

(n Q)
.

R2
adj

(ii) The regression model can also be used to predict the simulation output for anew
combination. To save computer time,cross-validation is used: the regression model is estimated
using only seven of the eight combinations in Table 3. In that table, first combination 1 is deleted;
then combination 2, and so on. So when combination 1 is deleted, the regression parameters are
estimated from the remaining seven combinations (2 through 8). This estimator (say) is used toβ̂ 1
predict the simulation response . The actual simulation response is already known (y1 = 55.78 forŷ1
policy I; see Table 3). Hence prediction errors can be computed. Table 4 gives therelative prediction
errors /y.ŷ

Table 4. Relative prediction errors in cross-validation, for policy I.

Combination deleted: 1 2 3 4 5 6 7 8
ŷ-i/yi 0.766 1.039 1.053 1.102 1.194 0.981 0.973 0.916

The I/O data of the 23 design in Table 3 are also analyzed through other regression
(meta)models. Searching for a ’good’ regression model requires intuition, common sense, and knowl-
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edge of the underlying system that generated the I/O data (the System Dynamics model and the real
system). This search receives more attention in econometrics than in DOE. To save space, these
details are skipped. The final conclusion is that in this case study a regression model with the three
main effects seems best (interactions turn out to be insignificant; deleting the main effect of input #2
increases the relative prediction error); see Table 5.

Note that if the fit of the estimated regression model is not acceptable, then it may be
worthwhile to replace the variables z by log(z). In general, transformations of variables may improve
the validity of the regression (meta)model (also see the subsection on random System Dynamics
models, later on).

Individual input effects

It is well-known that the estimated effects can be tested statistically, assuming that the approximation
errors e are white noise, that is, e is normally and independently distributed with zero mean and
constant variance (say) . Then the least squares estimator, defined in Eq. (3), yields the variance-σ2

covariance matrix

where the elements on the main diagonal of are the estimated variances of the estimated

(8)ˆcov(β̂ ) (X X) 1σ̂2

ˆcov(β̂ )
input effects. Taking the squares gives thestandard errors (say) . To test if βk is zeros(β̂ k)
(unimportant effect), Student’s t statistic is computed:

The critical value of this statistic can be looked up in a table, provided asignificance level(say)α is

(9)tn Q β̂ k/s(β̂ k).

fixed. A usual value is 0.10, but to reduce the probability of falsely eliminating important inputs,α =
0.20 is also used in this article.

It is interesting to see how the estimated individual effectsβk change, as combinations are
deleted. Obviously, if the specified regression model (see Eqs. 2 and 5) is a good approximation,
then the estimates remain stable. Table 5 illustrates this approach for the additive metamodel in Eq.
(2) when using the I/O data of Table 3 (23 design). Observe that the three estimated main effects
have the correct signs: increasing input capacities increase the efficiency. Moreover, the intuitive
analysis suggested that input 3 has more effect than input 1, which in turn exceeds the effect of input
2.

For policy II, however, the best metamodel turns out to have main effects only for inputs #2
and #3: deleting the nonsignificant main effect of input #1, decreases the maximum relative predic-
tion error; interactions are not significant. For policy III a model with the three main effects gives
again a good approximation.

Note that in another case study, concerning a Flexible Manufacturing System (FMS), only a
regression modelwith interactions (besides main effects) gives valid predictions and sound
explanations; see Kleijnen and Standridge (1988).

Regression metamodels with policy as a qualitative factor

Next policy is modeled as a single qualitative factor. Hence there are now three quantitative inputs,
each simulated for only two values, and there is one qualitative factor with three ’levels’ (policy I, II,
III). (Technically, regression analysis handles this qualitative factor through two binary (0, 1) vari-
ables; see Kleijnen 1987.)
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Table 5. Estimates of main effects, upon deleting a combination, in policy I; blanks mean nonsignif-
icant; * denotes significance at level 0.20, other values are significant at level 0.10.

Combination
deleted ß0 ß1 ß2 ß3 R2 adj. R2

1 70.900 10.823 5.995 11.358 0.9772 0.9543
2 72.858 9.520 4.038 * 9.400 0.9316 0.8632
3 72.906 8.821 4.736 * 9.351 0.9202 0.8404
4 73.466 10.129 5.300 8.791 0.9478 0.8955
5 74.053 7.675 2.843 * 11.245 0.9730 0.9461
6 72.320 8.983 4.575 * 9.613 0.9194 0.8387
7 72.271 9.456 4.101 9.463 0.9310 0.8620
8 71.486 8.149 8.679 0.9026 0.8052
None 72.535 9.195 4.363 9.725 0.9314 0.8799

The best regression model includes the main effects of all four factors. Policy III is the best
policy; policy II is worse than policy I, even though policy I is the simplest policy. These regression
results agree with an intuitive analysis of the raw I/O data in Table 3: calculate the efficiency per
policy, averaged over all 23 combinations of the three other factors (these averages are 72.50, 70.75,
78.75).

Note that there are different types of metamodels, besides the linear regression models of
this article. For example, piecewise linear models can perfectly fit the observed deterministic
simulation responsesyi with i = 1, ..., n. A perfect fit can also be obtained without discontinuities at
the observations, by means of splines. Of course, new observations will deviate from the fitted
metamodel. However, these deviations may be assumed to be smaller, the closer the new observation
lies to an old observation. This assumption implies that the approximation errorsei no longer are
white noise. The errors may then be assumed to form a covariance stationary process with positive
correlation such that the correlation coefficients decrease as the distance between the new observation
and the neighboring old observation increases. Sacks, Welch, Mitchell, and Wynn (1989) use such a
process to model the systematic effects of the inputs (not the noise part). Different types of
metamodels are surveyed in Barton (1992). Obviously the metamodels of this article are of the
simplest type.

Optimization of Simulated Coal Transportation

In the introduction, optimization has already been mentioned as one of the crucial questions when
modeling well-structured systems. Wolstenholme (1990, pp. 125-127) assumes that the maximum dis-
charge rate is fixed at an average of 1000 tons/hour. Therefore he optimizes only the two remaining
inputs, ’total belt capacity’z1, and ’capacity per bunker’, denoted byz2 from now on. The optimi-
zation is further restricted to the best control rule, namely policy III. Wolstenholme additionally as-
sumes thattotal costs-denoted byC- is to be minimized, under the condition that the efficiency (y)
remains at its maximum (100%). He assumes that the cost parameters are £1000/ton/hour for z1 and
£2000/ton for z2.

This yields the following mathematical optimization problem:
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(10)Min
z1,z2

C 1000z1 2000z2

such that

There are many optimization procedures in the fields of mathematical programming and

(11)y(z1,z2) 1.

computer science (the best known being linear programming, but Eq. 11 is not linear; other
techniques are genetic algorithms, simulated annealing, tabu search, etc.). Optimization of System
Dynamics models is investigated in Gustafsson and Wiechowski (1986); they apply ’Fletcher and
Reeves’s conjugate gradients’ to a toy problem. Optimization of System Dynamics models is also
studied in Wolstenholme and Al-Alusi (1987). Their heuristic ’might take 100 or more iterations’
(see their page 102); no constraints seem to be accounted for, but no details of the heuristic are
presented. They apply the heuristic to a defence system. A recent overview of optimization in dis-
crete event simulation is Fu (1994) with 133 references; also see Merkuryev and Visipkov (1994).
This article uses the following heuristic.

A new heuristic for optimizing system Dynamics models

The heuristic in the sequel is inspired byResponse Surface Methodology (RSM), which approximates
the I/O behavior -now called the response surface-locally by low-order polynomials in the input
variables (herez1 and z2). In the first stages, RSM uses first-order polynomials; in the final stage it
uses a second-order polynomial. As the preceding sections showed, the estimation of these local
approximations can be performed through regression analysis and DOE.

Note that classic RSM determines the direction of better performance (higher efficiency),
using thesteepest ascentalgorithm. Given a value fory, the first-order polynomial defines a K-
dimensional hyperplane (here K = 2); the steepest ascent path is perpendicular to that plane.
Obviously, as fitted local planes change, so does the direction of the path. Classic RSM, however,
maximizes a single criterion, ignoring restrictions (side-conditions).

Step 1. Find aninitial combinationz = (z1, z2)’ that yields a simulated efficiency of 100% (y
= 1; see Eq. 11). Such a combination is already available: see the element in the last row and column
of Table 3.

Step 2. Reduce each input by (say) 10%. Simulate the System Dynamics model with this
input. Obtain the corresponding output.

Step 3. If the output of step 2 is still 100% (y = 1), then return to step 2; else (y < 1)
proceed to the next step.

Step 4. Find the most recent input combination withy = 1 (see steps 1 and 2), and reduce
the step size to (say) 5%. Simulate the model with this new input combination, and obtain the
corresponding output.

Step 5. Further ’explore’ the most recent local area that includes a combination withy = 1;
that is, simulate the model for four input combinations, specified by the 22 design (the standardized
values are given by Table 2’s first four rows, eliminating the last column; the original values are
determined by the heuristic of this section).

To save computer time, the combination (x1 = 1, x2 = 1) is taken equal to the last input
combination that yieldedy = 1. As the combination (-1, -1) the last combination that gavey < 1 is
taken. So two new combinations must be simulated: (1, -1) and (-1, 1).

The heuristic yieldsL1 = 2693.25,H1 = 2835.00,L2 = 923.40, andH2 = 972.00; also see
Figure 2 (these four points form a rectangle).
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Since no further progress can be made, the optimum seems to be close. Now asecond-order
polynomialis used to approximate the production functiony(z1, z2): such an approximation can model
a ’hill top’, whereas a first-order polynomial can model only a ’hill side’, even when interactions are
included.

To estimate the six parameters in this approximation (see Eq. 12 below), the 22 design is
expanded to a so-calledcentral composite design; also see Figure 2. So the central point is added: (0,
0) in standardized values; (2764, 948) in original values. Moreover two one-at-a-time points are
added: (a, 0) and (0,a) with a ≠ 0, a ≠ 1. Two more points are added, namely the mirror images (-
a, 0) and (0, -a). The valuea is set to 0.75: ifa > 1 then (0,a) and (a, 0) give high cost, and (0, -a)
and (-a, 0) give low efficiency. Altogether the number of combinations is 9 (= 22 + 1 + 4). (Obvi-
ously this design simulates five values per input; see the numbers along the axes, except for the
estimated optimal values.) This design yields Table 6.

From these I/O data the second-order polynomial is estimated:

Note that the second-order and interaction coefficients are relatively small, but , , and

(12)ŷ 601.138514 0.1239693z1 0.7161188z2

0.0000334z1z2 0.0000291z1
2 0.0004282z2

2

z2
1 z2

2
are relatively large, so these coefficients should not be ignored.z1z2

Step 6. Combine the restriction in Eq. (11) and the estimated production function in Eq.
(12); that is, replace in (12) by the value 1:ŷ

Under this restriction, minimize the total cost given by Eq. (10). This mathematical problem can be

(13)601.138514 0.1239693z1 0.7161188z2

0.0000334z1z2 0.0000291z1
2 0.0004282z2

2 1

solved through aLagrangean multiplier. In this case study, a unique solution for the estimated
optimal input combination follows: ( ) = (2841.35; 968.17).ẑ1 , ẑ2

Note that Eq. (13) gives the estimatedefficiency frontierin Figure 2: outside the ellipsoid,
inputs are wasted; inside that ellipsoid the efficiency is too low. The optimum combination is the
point where the efficiency frontier is touched by an iso-cost line. There are infinitely many parallel
iso-cost lines (all with angle -1/2; see Eq. 10), but the figure shows the unique iso-cost line that
forms the tangent of the ellipsoid.

Because the estimated optimal combination is based on an approximation, this solution is
checked by simulating the System Dynamics model with this input combination. It indeed gives
100% efficiency. However, its cost is £ 4.77769 mln, which exceeds the lowest cost in Table 6 that
corresponds with a combination that gives 100% efficiency: combination (2835.00; 923.40) gives £ -
4.68180 mln (2.1% lower). The explanation is that the second-order polynomial has an R-square of
only 0.80357.

Compared to Wolstenholme (1990, pp. 125-127), this solution saves 15.12% (£ 0.72231
mln), a substantial cost reduction indeed.

Note that minor cost reductions can be obtained by further exploring the immediate area
around the solution found above. In practice, however, the input may be restricted to multiples of
(say) 100; then the optimal combination is (2900, 1000) with cost £ 4.9.



14

Figure 2. Central composite design, estimated efficiency frontier, and optimal iso-cost line.
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Table 6. Input combinations in the central composite design with corresponding costs and
efficiencies.

Input combination
standard variables

(x1, x2)

Input combination
original variables

(z1, z2)

Cost (£ mln)
C

Efficiency (%)
y

(1.00, 1.00) (2835.00; 972.00) 4.7790 100.00

(-1.00, 1.00) (2693.25; 972.00) 4.63725 99.59

(1.00, -1.00) (2835.00; 923.40) 4.68180 100.00

(-1.00, -1.00) (2693.25; 923.40) 4.54005 99.36

(0.00, 0.00) (2764.13; 947.70) 4.65953 99.35

(0.00, 0.75) (2764.13; 965.97) 4.69607 99.59

(0.75, 0.00) (2817.28; 947.70) 4.71268 100.00

(0.00, -0.75) (2764.13; 929.48) 4.62309 99.36

(-0.75, 0.00) (2710.97; 947.70) 4.60637 98.83

Remaining Pertinent Issues

There are several issues that did not come up in the case study discussed above, but that are relevant.

DOE for cases with many factors

The number of factors in the case study is very small:K = 3. Wolstenholme (1990, p. 114) does
mention that the number of shifts may be a factor too. Now several case studies are briefly
summarized, to illustrate that more factors may indeed be present.

One case study concerns a deterministic ecological simulation model of the greenhouse
phenomenon (increase of temperatures worldwide). Mathematically, this model resembles System
Dynamics models: the model consists of non-linear difference equations. This model requires
sensitivity analysis to support the Dutch government’s decision making. Results for a submodel with
ten factors, investigated in a 210-5 design, are given in Kleijnen, Van Ham, and Rotmans (1992).

In general, if the regression metamodel includes two-factor interactions, then the number of
effects increases to 1 +K + K(K - 1)/2. If K is small (as in Wolstenholme’s case study), then it is
practical to simulaten = 2K. Otherwise, it is better to simulate only a fraction (such as a 210-5 design).

Another submodel of the same greenhouse simulation has 62 inputs. A 262-55 design is
presented in Kleijnen, Van Ham, and Rotmans (1992). However, such a large number of factors may
be better handled as follows.

If a System Dynamics model has a great many factors, then the analysts should assume that
only a few factors are really important: principle ofparsimony. So in the beginning of a study it is
necessary to search for the few really important factors among the many conceivably important
factors. Classic statistics books do not discuss such screening situations, because in real-life
experiments it is impossible to control (say) a hundred factors. In simulation, however, the analysts
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perfectly control all inputs and indeed use models with many inputs. For example, Bettonvil and
Kleijnen (1994) examine 281 factors for the ecological model mentioned above.

One approach isgroup screening, which aggregates the many individual factors into a few
group factors. Recently Bettonvil and Kleijnen (1994) further developed group screening intosequen-
tial bifurcation, which is a very efficient technique that accounts for interactions. They detected the
15 most important factors among the 281 factors, simulating only 144 combinations.

Random System Dynamics models

Some System Dynamics models are random or stochastic, for example, models for the effects of
inaccurate information; see Kleijnen (1980, 137-143) and Wolstenholme, Henderson, and Gavine
(1993).

If not only the output means but also the output variances differ with the inputs, then
Weighted Least Squares (WLS)gives the best estimator of the effectsβ. WLS gives smaller weight
to an output, the higher its variance is.

If common random numbersdrive the various input combinations, thenGeneralized Least
Squares (GLS)is best. GLS estimates the correlations between outputs at different combinations. See
Kleijnen (1987, 161-175).

The metamodel’s validitycan be tested in random simulation, usingRao’s adjusted lack-of-
fit F-test based on GLS: the estimated response (co)variances are compared with the residuals. If,
however, the outputy is not normally distributed, then cross-validation based on OLS is better. See
Kleijnen (1992).

If the fit of the estimated regression model is not acceptable, then it may again be useful to
transform variables: for example, replacez by log(z). In general, transformations may improve the
validity of the regression (meta)model, and give simulation responses that better satisfy the statistical
assumptions of normality, constant variances, and lack of autocorrelation. See Kleijnen (1987).

Other questions are: how to start up the simulation run; how long to continue that run; how
often to repeat that run with different random numbers; how to reduce the variance of the output?
See the textbook by Kleijnen and Van Groenendaal (1992) for an introduction; for statistical details
see Kleijnen (1987).

Applicationsof the approach outlined in this article, are numerous in discrete-event (random)
simulations such as queuing simulations. An example is the decision support system (DSS) for
production planning, developed for a Dutch company. To evaluate this DSS, a discrete-event
simulation model is built. The DSS has 15 inputs that are to be optimized. The effects of these inputs
are investigated, using a sequence of classic designs. One criterion variable, namely productive
machine hours, is to be maximized, and one commercial variable measuring lead times, must satisfy
a certain constraint (so mathematically this problem looks like the case discussed in the section on
optimization). RSM is applied in this case study. See Kleijnen (1993).

Conclusions

This article was written to make DOE better known in the System Dynamics community. To
illustrate the benefits of DOE, a case study was presented, namely Wolstenholme’s coal
transportation model. First, conclusion for this case study are presented; next general principles are
summarized.
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Case study results

Wolstenholme’s intuitive design and analysis is not most efficient. DOE gives a good approximation
of the I/O behavior of his System Dynamics model. DOE is objective, scientific, efficient, and
effective.

The conjectures made in the informal analysis are confirmed by the regression analysis.
Policy III is the best policy; it achieves the maximum efficiency, namely 100%. Policy I is better
than policy II, even though the latter is more sophisticated.

DOE can account for interactions among factors. However, the regression analysis with a
classicalα-level of 10% does not give significant interactions.

The second part of this article dealt with the optimization of Policy III’s two inputs, namely
conveyor belt capacity and bunker capacity. A heuristic was derived to obtain the input combination
with minimum cost and 100% efficiency. The resulting minimum cost is 15.12% lower than Wols-
tenholme’s optimum.

General principles

This case study illustrates the following general principles. In practice there is prior knowledge about
the System Dynamics model and the underlying real system. This knowledge can be formalized in a
tentative regression (meta)model; in other words, this model must be tested later on to check its
validity. The regression model specifieswhich inputs seem important, whichinteractions among
these inputs may be important, and whichexperimental domainseems appropriate.

The purpose of the regression model is to guide the design of the simulation experiment and
to interpret the resulting simulation data.

In all experiments, analysts use metamodels, explicitly or implicitly. For example, if they
change one factor at a time, then (implicitly) they assume that all interactions are zero. Ofβ k,k
course it is better to make the metamodel explicit and to find a design that fits that model.

The tentative regression metamodel guides the DOE. The design specifies then combina-
tions of theK factors that are to be simulated. In multi-stage experimentation such as RSM this set
of n combinations is followed by a next set.

Classic DOE gives designs that are both ’efficient’ and ’effective’.Efficiencymeans that the
number of input combinations is ’small’. When there are Q effects in the regression metamodel, the
number of runsn should satisfy the conditionn > Q; for example,K + 1 runs suffice if there are no
interactions among theK inputs. Designs areeffectiveif they permit the estimation ofinteractions.

Experimental design and regression analysis are statistical techniques that have already been
widely applied to data obtained byreal life experimentation and observation in agriculture, chemistry,
social sciences, and so on. The techniques need certain adaptations to account for the peculiarities of
simulation. In discrete-event simulation, these techniques have also gained popularity: many case
studies and much research have been published. Their application to System Dynamics models is
straightforward, as this article has demonstrated, hopefully.
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