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ABSTRACT

Broadening the stochastic asswnptions on the error terms oF regresion models

was prompted by the analysis oF linear multivariate t models in Zellner (1976). We

consider a possibly non-linear regression model under any multivariate elliptical

data density, and examine Bayesian posterior and predictive results. The latter are

shown to be robust with respect to the specific choice of a sampling density within

this elliptical class. In particular, sufficient conditions for such model robustness

are that we single out a precision factor r'- that does not influence the way the

density changes over ellipsoids, and that we specify an improper prior density on

r-. Apart from the posterior distribution of this nuisance parameter r', the entire

analysis will then be completely unaRected by departures from Normality. Similar

results hold in finite mixtures of such elliptical densities, which can be used to

approximate more general data processes.
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1. INTRODUCTION

The Bayesian analysis of regression models with dependent non-Notmal error

terms has received considerable attention, especially since the seminal paper oC

Zellner (1976), who considered linear multivariate Student t regression models.

This assumption was extended to scale mixtures of Normal distributions in Jam-

malamadaka ei al. (1987) and in Chib et at. (1988) whereas Osiewalski (1990)
and Chib et al. (1990) generalize, in addition, to nonlinear models. Here we shall

examine a further generalization to the entirc dass of multivariate ellipticat or d-

lipsoida! densaties, as it was defined in e.g. Kelker (1970), Cambanis et at. (1981)

or Dickey and Chen (1985).

In particulaz, we find that any multivariate elliptical regression model, com-

bined with an impropet reference prior on the "nuisance" scalar precision param-

eter r', will lead to exactly the same posterior and predictive analyses as in the

Normal case. Thus, in this sense, our inference is fully robust with respect to

changes in the specification of the sampling process within this wide class of ellip-

tical densities. Remark that this property differs from robustness against extreme

observations, as used e.g. in Ramsay and Novick (1980), who defined a concept of

"!, robustness". The latter relates to the sensitivíty of the líkelihood to the data,

and is based on the influence function. Instead, we arrive at robustness of posterior

and predictive results with respect to the sampling modcl itself, within a broad

class of models that includes many L robust cases, like e.g. Student or Cauchy

models. Thus, we focus on "model robustness" (see Berger (1985, p. 248)], and in

particular, on what Box and Tiao (1973, p. 152) call "inference robustness".

These robustness results are derived for multivariate elliptical distributions,

and do not generally hold under independent non-Normal error terms. If we as-

sume that the errors are independently and identically distributed according to

some elliptical process other than the Normal, no such robustness occurs. The re-

sults in Box and Tiao (1973, Ch. 3), West ( 1984) and Bagchi and Guttman (1988)

provide some evidence in this respect. However, if we start from a multivariate

elliptícal framework, where independence can only be accommodated under Nor-

mality [see Kelker (1970, Lemma 5)], the usual improper refetence prior on rZ does

the trick. Only posterior results for r2 are affected by departures trom Normality,

as in Zellner ( 1976). Given the nuisance chazacter of this scale factor, however,

these results are not explicitly stated here. Predictive inference and posterior infer-
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ence on the parameter 9, which defines the location and shape of the eltipsoids. can

then be conducted exactly as in the usual Normal case. The remaining parametet

v only serves to indes the way the density function changes over ellipsoída, and

the sample wi11 only update the marginal prior on v through its príor dependence

on B.

A finite mixture of elliptical data densities is then considered for cases in

which we want to avoid a symmetry assumption. The mixing will be preserved

in posterior and predictive analyses, which allows broadening the class of data

densities, without really alïecting the complexity of the ensuing analysis. It is just

like mixing i`lormal distributions defined over different ellipsoids, where the mixing

parameter a will be revised by the sample, albeit in a rather moderate way.

Section 2 introduces the Bayesian model, on the basis of wliich we derive pos-

terior and predictive results in Sections 3 and 4, respectively. The finite mixtures

of data densities are examíned in Section 5, whereas a final section summarizes

some conclusions.

2. THE BAYESIAN MODEL

2.1. The Elliptical Sampling Model

A general form o( elliptical, also known as ellipsoidal, dístributions will be

a~sumed for the sampling process. The observation vector y has an n-variate

continuous elliptical distribution. given a set of exogenous variables X and a suf-

ficient parameterization, say ,.,, iC and only if its data density is

P(y~X,~)-~V(X,fl)~-~9.,.W~(y-h(.r,Q))~(V(~,~))-t(Y-h(.C.13))~. (2.1)

In (2.1) g,,,W( ) is a nonnegative function, which for any n and W has to fulfil the

condition

f~ ui-19~,W(u)du- r(2)n-7. (2.2)
0

It can be shown (see Cambanis et at. (1981), Dickey and Chen ( 1985), Kelker

(19ï0)] that (2.2) is both necessary and sufficient to make ( 2.1) a proper, normal-

ized density function.

The Iocation vector in ( 2.1) is the, possibly nonlinear, but known, function

hOC,~3), and the scale matrix is V(!C,tj), where V is positive definite symmetric
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(I'DS) and a known rnatrix function of .C and ~. Therefore, )3 E B C ~t and

~l E H C IR~ serve to defim~ the isodensity ellipsoids of y. The labelling function

g,,,W that determines the density value for each of these ellipsoids [see e.g. Leamer

(19i8, p. 150)] is indexed by n and w, which may contain parameters other than

~3 and it, inttoduced specifically for the purpose of describing g,,,W. Let us call

these parameters v E,N C IR~. A well-known example of this v is Cound in the
multivariate Student t distribution, where v E IRt and

~
9n,w(')-9~,~(')-

p~(s))
(v~)-3(lt~)-~.

Indeed, from (2.1) we will then obtain a Student t data density with v degrees of

freedom, location vector h(Y,{3) and precision matrix V(.Y,il)~1, denoted by

PÍy ~ Y,w) -fs(y ~ v, h(.Y,J3), V(X,tj)-r). (2.3)

A generalization of (2.3), where the dimension of v is extended, can be found in

Dickey and Chen (1985, p. 173). Elowever, in some cases none of the patameters

in W will appear in g,,,w(.), which will then only depend on n, the dimension of y.

If, in pazticular, we choose

9n.W(~) - g~(') - (2~)-7 exP (-2),

our data density in (21) will be of the Normal form with mean h(X,Q) and

.:ovariauec matrix L'(.~ , rl) :

n(y I-Y, W) - fH(y I h( r, Q), ~( r, n)), (2.a)

where ( Q, q) is now a sufficient parameterization. Neither of these well-known

special cases correspond to an indexing of g,,,W(.) by the parameters appearing

in the definition of the ellipsoid, namely ((3, il). Starting from the more restricted

class of elliptical distributions that can be expressed as scale mixtures of Normals

[see e.g. Kelker (1970)], such a dependence can easily be introduced through

the density of the mixing parameter. Examples appeared in OsiewaLski ( 1990),

Osiewalski and Steel (1990) and Chib et aL ( 1990), who considered some specific

densities oC the general form

P(y I~,~) - f~ fN(Y I h(.r, Q), V V(,Y, i)))
0

fc ~z I v f 6r(Q, n) 6~(0, ~1)1 dz (2.5)
2 2v J

- fs (y ~ v f 6r(d, n), h(X, Q), v t 6r(Q, 7) v(~, n)-t),
ba(Q, n)
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where 6;((3, q), i- 1, 2, are positive fundions of (Q, i7) and fp(. ~ ,) denotes a

gamma density function. In the ( more general) tramework of (2.1), the density in

(2.5) r.an be reproduced by choosing

r(rzfvtbl(~3,~))

9n.~(~) - F( ~~- 6t(Q, ~) ) r~
b~(P, n)-~ (1 t

bx(R, i7))-

~t..f

2

which clearly depends on ((ï, ij) as well.

The explanatory variables in X have a sampling distribution whose sufficient

parameterization is denoted by a. If we assume the joint prior on ~ and a is a

product of p(u) and p(a), both o-finite, we can ignore the process of r for the

purpose of conducting inference with ( 2.1). These assumptions, in fact, amount

to operating a Bayesian cut [see e.g. Florens and Mouchart ( 1985) and Florens et

al. (1990)].

We shall now introduce two restrictions on the class of models in (2.1), since

this will open an avenue to drastic simplifications, using the property in (2.2),

as will become clear in the sequeL Firstly, we restrict ourselves to those scale

matrices V(.Y,il) that can be written as

V(,Y,ti7)- r V(Y,t,), (2.6)

where r- E!ft~ is a scalar precision parameter, implicitly reparameterizing p as

(r',p). For notational convenience, we now define B-(Q,p) which contains all

the information about the location and shape of the ellipsoíds.

Secondly, we shall assume that this scalar precision parameter r~ does not

indea the function g,,,w, i.e.

9~,W( ) - 9n.a,~( ). (2.7)

This implies the interpretation for rz can only be linked to the ellipsoids, and

should, thus, be equivalent for all models in our class. Therefore, we can, at this

level, before actually choosing a particular model, consider assigning a prior density

to r', as its meaning does not vary over the elliptical class in ( 2.1), restricted by

(2.6) and (2.7).
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Our framework now excludes densities like (2.5), unless the functions b;(~3, i)) -

b;(E3, r", rl) are constant in r'-, but cases where (2.ï ) is violated seem rather artifi-

cial and somewhat unlikely to occur in actual practice.

2.2. Prior Densities

We now face the task of completing the Bayesian model by assigning a prior

distribution to w -(B, r'-, v). Both B and v (if it appears) will typically be pa-

rameters of interest, and we shall leave the specification of their prior density

completely free at this stage. We shall see in Section 3 that if we specify the

("usual") improper prior structure

p(B, r?, v) - Ty p(B, v), (2.8)

whete c is a positive constant and p(B, v) is functíonally independent of r2, the

analysis will simplify greatly. More in particular, provided g,,,W(.) is nof indexed

by r', its actual form becomes completely irrelevant, so that both posterior and

predictive analyses are ~ully robust with respect to any departures from Normality

in the wide class of remaining elliptical densities.

3. POSTERIOR INFERENCE

Combining the general class of elliptical data densities in (2.1), restricted
only by (2.6) and (2.i), with the improper prior family in ( 2.8), we obtain the
joint density

P(Y,W ~ x) - c P(B,v) (r~)3-t ~ V(,l',n) ~-~ 9~.o.~~r~d(y, ~,B)~, (3.1)

where we have defined

d(y, X, B) -(y - h(-~, R)Y V(X, v)-`(y - h( X,R)).

Let us now consider the transformation from (y, B, r", v) to (y, B, r~, v), where

r'- - rd(y, X, B), (3.2)

leading to

P(rJ,B,r',v~X)-cP(B,v) ~V(X,g)~-} d(y„V,B)-'s(r~)~-~9,..e.~(r~-'). (3.3)
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The function g,,,e,~( ) is not affected by the transformation in (3.2), since it does

not involve r, so that propetty (2.2) can directly be applied to integrate out r-

in (3.3). This leaves us with

P(y,B,v~,C)-cT'(z)a-~p(B,v) ~V(-V,n)I-~d(y..l',B)-~, (3.4)

which no longer depends ou the (orm oC y,,,y,,,( ). The joint (improper) density

of our parameters oC interest and y is thus completcly robust with respect to any

departures from Normality in the dass of elliptical data densities (2.1), restricted

by (2.G) and (2.7), when rZ is treated by assuming the improper prior (2.8).

Let us now assume that the prior p(B, v) is integrable in v over N, which

makes (3.4) integrable in v, and also that the resulting density, p(y,B ~ X) -

fN p(y, B, v ~ X) dv, is integrable in B over O C B x H. We are then sure that the

posterior of (B, v) is well defined as

P(B,~ I y, r) x P(B,~) I v(-V,n) I-} d(y, ~,B)-3, (3.5)

from which we can easily derive the posterior for the location and shape parameters

B.

'1'heorew 1. hbr any~.llipt~cal dala Jcusity (2.1), fullilliug ('~.li) aud (?.i), aud

under an improper prior ( 2.8), which is integrable in v, we obtain the samc pos-

terior oC B:

P(B ~ y, ~) a P(B) I V(~,n) ~-} d(y, ~,B)-~, (3.6)

where p(8) - f~, p(B,v)dv and we have assumed that ( 3.6) is integrable in B over

O. '

Of course, (3.6) is esactly the posterior one obtains for the Vormal data

density (2.4), and may look even more familiar if we consider the simple linear

tase:

Corollary 1: In the special lineaz case of Theorem 1 where h( Y, I?) - X(i and

O- IRk x H. the posterior densities of B are given by

P(íj~7,y,.V)-1i(rll-~p(~,q)Js(I~In-k, d, s".C'V(-C,~)-`-V) ( 3.7 )

and

P(n I y,x) a x(v) I v(r,n) I-3 I x'v(-~,n)-`Y I-~ (3')-ic~-ki, (3.8)



where
R - (-Y~~~í Y, R)-1X)'` .Y'V(X.0)-ls

S` - n1k (Y - Xp)~ V( ~.0)-~ (y -.YQ)

and !i(p), the inverse of the normalizing constant of (3.7), absorbs the prior in-

Corma[ion on rt. ~-

Implicitly, we have also made the assumption that .Y is of full column rank in

Corollary L, which implies n? k in this lineat case. If we specify a uni(orm prior

on 13. í.e. p(p,q) oc p(rl), we simply have a Student t conditional posterior of ~i,

which is proper if n~ k. Moments of (3.7) then exist up to (not induding) order

n- k. Adding some prior information will typically lead to the existence of higher

order moments. In particular. if p((3, q) contains a Student t kernel for p with vo

degrees of freedom, the conditional posterior in (3.7) will be of a 2-0 poly-t form

[see Drèze (1977) and Ftichard and Tompa (1980)), allowing for posterior moments

up to order vp t n- k.

The invariance results obtained here are a ditect consequence o( the fact that,

after integrating out r- under (2.8), we have

P(J I.~.B.v) - P(J I.Y,O) x d(.4,.Y.0)-3, (1.9)

irresprctive o( the form of g,,,d,,,( ). 1'herefore, we address a patticular case of Hill

(1969), who proposed specifying a spherical model without considering a scale

parametet. In the tramework oC (2.1) he does not ímpose ( 2.6) and introduces

sphericity by assuming V(Y,;1) - 1„ directly. The more "traditional" approach,

in e.g. Zellner ( 1976), Jammalamadaka et al. (1987), Chib et at. (1988) and

Osiewalski ( 1990), implicitly starts from the deepet level of patameterízation used

here and amounts to assuming ( 2.6). In that case sphericity is induced by taking

V(.Y, q) - 1,,. Hill's (1969) specification of general spherical errors is thus made

at a level of pazameterization comparable to the one in (3.9). By not imposing

(2.6), Hill's approach is slightly more general, but at the cost of not obtaining the

robustness that follows from (3.9). Nevertheless, Hill (1969) does introduce a scale

factor in his discussion of Normality. At that level, our results impiy that it is

not the Normality assumption but the use of Jeffreys' prior on this scale factor [as

in(2.8)~ that accounts for finding the "usual" posterior results. Therefote, provided

one is willing to accept ( 2.6), Normality does not seem to be quite as restrictive

as suggested by Hill.
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From the joint posterior oC B and v in ( 3.5), it is already obvious that v

only appears through the joint prior p(B, v). This means that given B the sample

contains no information regarding v, so that conditionally upon B v is not updated

through the observations. Tlius, under the conditions ot Theorem 1, we always

have that p(v ~ B,y,.Y) - p(v ~ B), where the latter density is well defined since

p(B, v) is assumed to be integrable in v. The margrnal prior on v, however, will

óenerally be updated ~see also Drèze and Richard ( 1983, p.522)J, since it is given

by the integral of (3.5) in B over O, which can be written as

Plv ~ y,.Y) a f Pív ~ B) P(B I y„Y) dB
0

wh~~re p(B ~ y„Y) was defined in (3.6). Thus, if p(v ~ B) does not depend on B (i.e.

imlep,~udence in prnbability if p(B) is proprr and functional independence if it is

nnt.) thr sample cannor. revixe Lhe marginal prior of v either and we state:

Theorern 2: Uuder the couditions o('1'heorem l, Lhe prior structure for (B, v)

p(B, v) - p(B) y(v)

will prevent updating of the marginal priot information on v, i.e.

(3.10)

P(v I y, ~) - P(v)- (3.11)

The lack of dependence in (3.10), which is taken to be integrable in v, will,

for any proper elliptical sampling model (2.1) fulfilling (2.6) and (2.7), lead to

poscerior independence of B and v, provided we express our prior ignorance about

r by the class of improper densities in (2.8), and if the joint posterior exists, which

is assured if (3.6) is integrable in B. This can be seen directly from (3.5j, and, given

the fact that the sample can only update v through B, this posterior independence

will make sure that our marginal opinions regarding v will not be revised through

the observations. Chib et al. (1990) analyse the particular subclass oC (2.1) where

the elliptical densities can be described as scale mixtures of Normals. A prominent

member of this subclass is the Student t model in (2.3), in which case Theorem 2

exadly reduces to their Corollazy 4, stating a set of sufficient conditions for the

impossibility to update the prior of the degrees-of-freedom parameter.
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4. PREDICTIVE ANALYSIS

,~.Iternatively, we can focus on the predictive properties of Bayesian mod-
els involving elliptical data densities as in (2.1) and improper priors as in (2.8),
maintaining also (2.6) and (2.7).

For this purpose, we partition the n dimensional vector y as follows

ycr)
y - y(a) ~

where y(1) E~~`` and n~ G n, and we are interested in forecasting y~,), given y(1)

and X. Conformably, we partition

h(X.R) - ~h(n(X.i~)~ - ~htt)~
h(,~(X.ll) h~zt

and
t'ii(X,7) ~~iz(-~.7) - v~t

V(,r,Tl)-
V.t(X,rl) V2,(X.7) - Vt

Vi, 1
VZZ J

where the defining equalities are just used to economize on notation. From (3.4) it

is immediately clear that the form o( g,,,e,~( ) will not affect the predictive analysis

either, and we obtain directly

P(y(i),y(x)~8~~ ~ X) -c r( 21) a-f P(B,~) ~ Vit ~-~ a(Y(t), X.B)--f
nt (4.1)

fs'(y(a) I nt, h(z) t ~z~ ~,i`(y(n - h(t)), a(ya),x, e) vxs`t),

with a(y(th X,B) - (Y(r) - h(t))~ Vtii(y(t) - h(i)) and V z t- V22 - V2tVitt Vi~
Given our assumption of integrability of the joint prior in v, it is trivial to integrate

it out, as in Section 3. The posterior of B given the first subsample y(t) will be of

exactly the same form as (3.6) in Theorem 1, but with y(1) instead oC y throughout:

P(e I ytt), t) a P(e) I vt, I-} a(yrt),.t.e)-~, (4.2)

provided ( 4.2) is integrable in B over A. The predictive density thus becomes the

Student density in (4.1) of y(,), given y(i), X and B, weighted by this posterior on

the basis of y(1) :

P(y(s) ~ yfti,.1 ) - 1 P(y(sl ( y(t~,X,e) P(a I yfth.~) dB. (4.3)
e
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As was to be expected from (3.4), the general elliptical character of the data

density does not induce any difference in our predictive analysis with respect to

the Normal framework. Retnark that integrating out rz in (3.3), under the prior

('?.ti), ahvays leads to a density oC y, given B and X, proportional to d(y, X, B)-7,

as was stressed in Settion 3. This, oC course, implies the Student density of y(z),

given y(t), B and X, but this Student t form will generally be lost when we integrate

out B in the predictive density as in (4.3).

A predictive analysis on the basis of (4.3) can be called for when e.g. the

observations on y(z~ are missing, whereas both y(t) and the entire X matrix are

observed. However, in actual practice, it is often the case that only a submatrix

oC .Y, says .Yt, is jointly observed with y(1), so that the posterior information

available for forecasting is only based on y(I) and Xt. We then set out to predict

y(.~, given the observed (y(t~, Xt) and a set of exogenously given values for the

remaining part of .Y, say Xz. Given our maintained assumption of independence

hrtween .Y and w, it is sufficient to assume

h(t) - h(tt(.Yt,p) and Vit - Vit(Xt,n) (4.4)

in order to have posteriorindependence between B and X,.

Theorem 3: Under the conditions of Theorem 1 and (4.4) any elliptical sam-

pling model ( 2.1) will allow conditional forecasting based on the predictive density

n(Y(z) I Yr,), x) -~ fs'(Y(z) I nt, h(~~ f vtv~t`(Y(tt - h(t)),
o (4.5)

a(Yft) x,,B)Vzz~t) P(B I Y(t)~X,) dB.

and p(B ~ y(1),.Yt) is obtained itom (4.2) but now with (4.4) holding. .

The improper prior on r in ( 2.8), conditions ( 2.6)-(2.7) and the existence

of the posterior thus lead to perfect predictive robustness which can be used in

current practice under assumption (4.4).

In the simplest lineat case with a uniform prior on B- ~3, we can write:

Corollary 2: If h(X,Q) - Xl3, V( X, rl) - V is assumed known and O- IRk,

then under a uniform prior on B- p the predictive ( 4.5) in Theorem 3 reduces to

the Student density

P(Y(zi ~ Y(t),X) -f s~(Y(z) ~ nt-k. XzQt fVtVitt(Y(t)-Xtijt), siz4V't) (4.6)
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wich

Qt -(YiVu~Xi)-i-~iVitiY(i)
1

si - n ~ (Yfi~ - .Yilh )~ Vii~(Y(t) - XtAt)
i-

W-(,Yz - l.i Vir1.Yr)(.YiVii~,l'i)-~(.Yz - Vzt Vii1,Yt)~ f Vz.r

and 6-, i defined as in (4.1). r

A uniform prior of ~3 has to be used for obtaining the Student predictive in

(4.6), since we have left the class of prior densities that are natural conjugate for

the ~`ormal case (2.4) by assuming prior (functional) independence between 3 and

rz in (2.8).

5. FINITE MIXTURES OF ELLIPTICAL DATA DENSITIES

Although the class of sampling models described in (2.1), and restricted only

by (2.6)-(2.7), can already cover many cases used in practical applications, it

is still constrained to symmetry and, provided g,,,W(-) is strictly monotonic, to

unimodality. If we wish to circumvent these restrictions, e.g. when (aced with a

blatantly skewed multintodal empirical data characterization. we can consider the

use of finite mixtures of data densities as in (2.1), with (2.6) and (2.7) holding.

Finite mixtures of conjugate prior densities were used to approximate more

general classes of priors in Dalal and Hall (1983) and Diaconis and Ylvísaker

(1985), but here we introduce the mising in the sampling model instead. This, of

course, widens the family of data densities we can accommodate, and, in princi-

ple, p(B,v) can also involve prior mixtures in our framework, although the latter

point will not be elaborated here. We feel it is important to allow for a large

enough class of sampling models. since the likelihood is (too) often ïelt to have

some "external validity" [see Berger ( 1985, p. 249)], and theretore not questioned,

whereas we '`agree to disagree" on the formulation of the prior. In the terminol-

ogy of Poirier ( 1988, p. 130) the "window" entertained should be large enough to

interest a"sizeable audience of Jike-minded researchers". Assessment methods for

finite mixtures are found in Dickey and Chen ( 1985, Section 5), based on elicited

quantiles.

If we suitably extend B- (f3,q) and v to parameterize a finite number of
densities as in (2.1), each of which has the same scalar precision parameter rz,
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we scill have to introduce a mi.~ting parameter a. Let us, more in detail, analyse

the case whete we miY only two elliptical densities, implying that a is scalar. The

relevant sampling model becomes

PíyI.Y..,,a)-a~ r„V(t,n)~-}7~.WI(Y-h(Y,3))~(rzV(,Y.n))-1(y-h(-Y.~))]

}( 1- 1) ~ rs W(X.9) ~-~ k".WI(y- m(.Y,d))~( rz W(-Y, B))-1(y - mf,Y.d))],

OG`G1.
(5.1)

were both g",W( ) and k",W(.) satisfy condition ( 2.2), and m( ) and W(-) are known

fuuccions in ~" and the space of aIl n x n PDS matrices, respectively. The nuisance

parameter r' does not index either of the funct~ons g,,,W( ) and k",W(.), and we

assume the improper prior structure, integrable in v over :V:

P(~, a) - TZ P(B, v, a). (5.2)

,~s in Section 3, this will result in a joint density of ( y, B, v, a ~.Y) that no longer

involves the functions g".W( ) or k,,,W(.). Under the prior in ( 5.2), mixing any ellip-

tical data densities with common r- has the same consequences for both posterior

[on (B, a)] and predíctive inference as the mixing of Yormals. In particular. if the

joint densicy of (y, B, a ~ X) is integrable in (B, a), the posterior of (B, a) will be

P(B, ~ ~ Y, r) x P(B, a} {a ~ V( r, 0) ~-7 d(y, l. B)-T (5.3)
}(1 - a) ~ W(~,n) I-} e(y,x,B)-~}~

with d(y, X,B) as in (3.1) and e(y, ~,9) -(y-mlX,~))~W( l.0)-t(y-m(X„3)),

whereas the prior density

p(B, a) - I p(B, v, a) dv
..11 N

must be at least integrable in those elements of B that appear in only one of

the mLred densities in (5.1), due to the summation character of mixtures. The

posterior density in ( 5.3) is a generalization of (3.6), which it reduces to for a- 1.

For nondegenerate a, however, the mixing in the data density (5.1) is cazried over

to the posterior. ~1 convenient choice for the prior of a may be a beta density,

independent of B, i.e.

P(B, a) - P(B) fs(~ I A 4)

wichOGaGlandp, q10.

(5.4)
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From (5.3) we then obtain the conditional posterior of a as a mixture of beta

densities

P(a~e,y,-Y)-(Paet9be)-~(poeJaUIPf1.9)t9óeÍe(~~p,9f1)], (5.5)

where we have defined

ae - ~ V( ~,n) ~-~ d(Y, ~,B)-~

6B - ~ W(-K,7) ~-~ e(Y, t,B)-~.

It is interesting to note that the prior mean of a, given by E(a) - p~

is revised by the data evidence according to the relative posterior "fits" of the

elliptical densities in the mirtute. [f the density multiplied by a in (5.1) fits badly

relative to the other one, ae will be much smaller than be : in the extreme case

that ae - 0, we obtain

E(~~B,y,~)-E(~~y~-~)- p
ptqtl'

a downward revision of the mean by the sample information. The other extreme

with 6q - 0 will lead to

E(a~a,y,~)-E(aly,~)-
ptl

ptqfl'

which is larger than the prior mean. So, although the conditional posterior mean

of a generally depends on B, the mazginal mean will always be confined to the

region (p~,ot~]. Under a uniform prior for a (p - q- 1), the posterior

mean will be in [3, 3], an interval which will shrink very quickly if moderately

strong prior information on a is introduced. In the case that we chooge E(a) -~

(i.e. p- q) the length of this interval is only four times the prior variance of a. It

thus seems the data evidence tan only mildly inHuence our opinions concerning a.

The marginal postetior density of B will be given by

P(B I Y,,ï) x P(B) (Pae t qbe),

which can be written as the followíng mixture oC the "individual" posteriors, each

calculated as in (3.6) on the basis of one of the elliptical models in (5.1):

P(a I Y,.r) - (PEa f 9fió)-1 (pIC,Pa(B I Y.X) t 9f~ape(B I Y, ~)], (5.6)
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where
Pa(B ~ y, X) -!í; 1 p(B) ae

Pe(B ~ Y,-Y) - I~e ~ P(B) be

This Cormulation clearly puts into focus the role of the normalizing constants K,

and fís, which contribute to the "weights' in the same way as p and q. A similar

function was performed by ae and bB in ( 5.5). Of course, (5.6) reduces to (3.6) for

q- U, in which case (5.4) groups all the prior mass at the point a- l.

From the posterior density in ( 5.3) it becomes apparent that, unless the func-

tional forms of h(.) and m( ) or those of V( ) and W( ) diffet, the mixing in (5.1)

will not affect the inference at all. Indeed, then the posterior oC a in ( 5.5) will

reduce to the beta density in the prior (5.4), and the posterior of B will be the

same as ( 3.6) in Section 3.

Le.t us now generalize the main results of this section to mixtures of [~ 2

proper elliptical densities. We shall retain the improper prior as in (5.2) for the

common nuisance parameter r2, but a will now be of dimension [, and we shall,

therefore, generalize the beta prior in (5.4) to a Dirichlet prior on a, with the

parameter vector a- ( al ... a~)', a; ~ 0, V i:

P(a I B) - P(a) - ÍD(a I á), (5.i)

whete a is restrained to the unit simplex (i.e. a; ~ 0, b' i and ~;-t a; - 1).

Analogously to aq and be in the case C- 2, we define ca for the irh density in the

mixture, and we, denote by e' the [-dimensional vector with one ín the i~h position

and zeros elsewhere. Then we can state:

Theorem 4: Finite mixtures of [ elliptical densities, i.e. an obvious extension

of (5.1), with common nuisance parameter r' on which the improper prior (5.2)

is defined, will, under ( 5.i), lead to

~ i t 1
P(aIB.Y,X)-(~o;~e)~ [~o~~efó(a~~fe') J (5.8)

i t

and e i fI r 1
p(e I Y,X) -(~ a~ I~~)~ I~a; !í; R(B ~ Y, X)J, (5.9)

i lll i

where p;(B ~ y,X) - ti; ~p(9) c'B, V i, provided all these posterior densities are

well defined. ~
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Since the posterior results in (5.8) and (5.9) aze also finite mirtures, their

analysis is not more difficult than with a single elliptical sampling density. Just like
in the previous section, predictiott can also be based on mixed sampling models,
now using the posterior densities for both a and B. Again, we end up with a
muture, as formally stated iu thr, final theorem.

Theorem 5: Under the conditions of Theorem 4, we can base our predictions

for a finitely mixed elliptical model on the predictíve density

e t e

P(y(~l ~ y(t~,X) -~~a; L;~- ~~o; L, P~(y~z~ I y~n.-Y)~~ (5.10)
i i

which is itself a mixture of

Ptíy(-') ~ y(t~,.Y) -~ P~(Y~ai ~ y(ihX,B) P~(B ~ y(i~, ~) dB,
0

where p;(yt,~ ~ ytl~„Y,B) is the Student t density in ( 4.1) now corresponding to

the i`h data density in the mixtute, and

P~(B ~ y(i~,.Y) - L~ ' P(B) ~ Vii ~-f a~íy(ii„l",B)-~,

as in (4.2), where each L, must be finite, and indices i reCer to the i`h data density

throughout. .

As in Section 4, if we wish tc use posterior densities for B, computed after

observing y~~l and only pazt of .Y, namely Xl, we need a bit more. Imposing

condition (4.4) on every data density that is used in the sampling model will be

sufhcient.

We suggest approamating non-elliptical (e.g. asymmetric) sampling processes

hy such finite mixtures of elliptical densities, since the mixing will be preserved

in both posterior and predictive analyses. We thus have a way oC considerably

broadening the class of data densities, without really adding to the complexity of

the analysis.



16

G. CONCLUDING REMARKS

Under tertain conditions, it was shown that Bayesian postenor and predictive

analysis is períectly robust with respect to the choice of a sampling density within

the entire class of elliptical densities. Sufficient conditions are that we can single

out a scale Factor r that does not in8uence the way the density changes over

ellipsoids, and that we specify an improper prior density on r'-.

Once the scale factor is then integrated out, the tails oC the sampling density

do not matter anymore, only the location and shape oC the el6psoids, pazame-

terized by B, are relevant. The posterior of B will then be given by the simple

expression in Theorem 1, whích is the same as in the Normal case. The only

purpose of the parameter v is to describe the tails of the data de.nsity. Thus, if

thr. latter become irrelevant, then, clearly, the sample can not directly revise our

opinion about v. It can only do so thtough revising B if there is prior dependence

between B and v. This is the object of Theorem 2.

Our ronclusions are similar for prediction: given an improper prior on the

nuisance parameter r'-, everything is just like in the Normal regression model.

Theorem 3 summarizes these findings.

The results from Sections 1 through 4 can be related to previous work in this

area; in particular, our paper extends the framework oC scale mixtures of Normal

densities, found in Jammalamadaka et al. (1987), Chib et al. (1988), Osiewalski

(1990) and Chib et al. (1990), to general elliptical densities. It also broadens

the linear regression model, used in the first two of the above references, to a

possibly nonlinear one. Taking into account that only a diffuse príor for rz was

considered in the present paper, we can establish the following correspondences.

Within the class of scale mi.etures of Normals, Proposition 1 of Jammalamadaka et

aL (1987) is a special case of our Corollary 2 for V(,Y, q) - I,,, whereas Theorem

3 generalizes Proposition 1 of Chib ef al. (1988), who assumed linearity and

a uniCorm prior on a. Both Theorems I and 3 extend results obtained under

scale mixtures of Normals in Osiewalski (1990) to general elliptical densities, and

Theorem 2 generalizes Theorem 2 in Chib et al. (1990) in the same way.

If the inherent symmetry of the single elliptical data density is found to be too

restrirtive, we can make use of finite mixtures of elliptical densities to approximate

some non-elliptical data density. These mixtures are then carried over to posterior
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and predictive results, without leading to an increase in complesity (see Theorems

4 and ~, respectively). Since we have updating oC the mixing pazameter a as

well, we could even think oC incorporatíng this into a testing framework, where we

intend to choose between severa( competing models. The updating of the prior

of .` by the sample will indicate which model is most favoured on the grounds of

posterior fit. Note that the contenders have to correspond to different ellipsoids,

e.g. through different functional Corm or choice of regressors. Mixing e.g. a

Vormal and a Cauchy defined over the same ellipsoid will, of course, give the same

results as with a single Normal data density. Also, we have seen that the sample

information on a can easily be drowned by moderately informative prior notions.

The findings in this paper generalize and explain many results that have

appeared in the literature, and give remarkably weak sufHcient conditions for ro-

bustness with respect to the data density. This provides us with a fairly strong

argument in favour of using the standard Normal results in regression models, and

gives an implicit motivation Cor stressing sensitivity with respect to the choíce of
the prior density instead.
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