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ABSTRACT

Broadening the stochastic assumptions on the error terms of regresion models
was prompted by the analysis of linear multivariate ¢t models in Zellner (1976). We
consider a possibly non-linear regression model under any multivariate elliptical
data density, and examine Bayesian posterior and predictive results. The latter are
shown to be robust with respect to the specific choice of a sampling density within
this elliptical class. In particular, sufficient conditions for such model robustness
are that we single out a precision factor 72 that does not influence the way the
density changes over ellipsoids, and that we specify an improper prior density on
2. Apart from the posterior distribution of this nuisance parameter 72, the entire
analysis will then be completely unaffected by departures from Normality. Similar
results hold in finite mixtures of such elliptical densities, which can be used to

approximate more general data processes.
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1. INTRODUCTION

The Bayesian analysis of regression models with dependent non-Normal error
terms has received considerable attention, especially since the seminal paper of
Zellner (1976), who considered linear multivariate Student ¢ regression models.
This assumption was extended to scale mixtures of Normal distributions in Jam-
malamadaka et al. (1987) and in Chib et al. (1988) whereas Osiewalski (1990)
and Chib et al. (1990) generalize, in addition, to nonlinear models. Here we shall
examine a further generalization to the entire class of multivariate elliptical or el-
lipsoidal densities, as it was defined in e.g. Kelker (1970), Cambanis et al. (1981)
or Dickey and Chen (1985).

In particular, we find that any multivariate elliptical regression model, com-
bined with an improper reference prior on the “nuisance” scalar precision param-
eter 72, will lead to exactly the same posterior and predictive analyses as in the
Normal case. Thus, in this sense, our inference is fully robust with respect to
changes in the specification of the sampling process within this wide class of ellip-
tical densities. Remark that this property differs from robustness against extreme
observations, as used e.g. in Ramsay and Novick (1980), who defined a concept of
“[ robustness”. The latter relates to the sensitivity of the likelihood to the data,
and is based on the influence function. Instead, we arrive at robustness of posterior
and predictive results with respect to the sampling model itself, within a broad
class of models that includes many L robust cases, like e.g. Student or Cauchy
models. Thus, we focus on “model robustness” [see Berger (1985, p. 248)], and in
particular, on what Box and Tiao (1973, p. 152) call “inference robustness”.

These robustness results are derived for multivariate elliptical distributions,
and do not generally hold under independent non-Normal error terms. If we as-
sume that the errors are independently and identically distributed according to
some elliptical process other than the Normal, no such robustness occurs. The re-
sults in Box and Tiao (1973, Ch. 3), West (1984) and Bagchi and Guttman (1988)
provide some evidence in this respect. However, if we start from a multivariate
elliptical framework, where independence can only be accommodated under Nor-
mality [see Kelker (1970, Lemma 5)], the usual improper reference prior on 72 does
the trick. Only posterior results for 72 are affected by departures from Normality,
as in Zellner (1976). Given the nuisance character of this scale factor, however,
these results are not explicitly stated here. Predictive inference and posterior infer-



ence on the parameter 6, which defines the location and shape of the ellipsoids, can
then be conducted exactly as in the usual Normal case. The remaining parameter
v only serves to index the way the density function changes over ellipsoids, and
the sample will only update the marginal prior on v through its prior dependence
on 6.

A finite mixture of elliptical data densities is then considered for cases in
which we want to avoid a symmetry assumption. The mixing will be preserved
in posterior and predictive analyses, which allows broadening the class of data
densities, without really affecting the complexity of the ensuing analysis. It is just
like mixing Normal distributions defined over different ellipsoids, where the mixing
parameter A will be revised by the sample, albeit in a rather moderate way.

Section 2 introduces the Bayesian model, on the basis of which we derive pos-
terior and predictive results in Sections 3 and 4, respectively. The finite mixtures
of data densities are examined in Section 5, whereas a final section summarizes
some conclusions.

2. THE BAYESIAN MODEL
2.1. The Elliptical Sampling Model

A general form of elliptical, also known as ellipsoidal, distributions will be
assumed for the sampling process. The observation vector y has an n—variate
continuous elliptical distribution, given a set of exogenous variables X and a suf-

ficient parameterization, say w, if and only if its data density is
p(y | X\w) =| V(X,7) 7% gnw (v = H(X,B)(V(X,3) " y = A(X,8)]. (2.1)

In (2.1) gnw(-) is a nonnegative function, which for any n and w has to fulfil the
condition

/m uttg, o (u)du = T(2)r~ %, (2.2)
A 2

It can be shown [see Cambanis et al. (1981), Dickey and Chen (1985), Kelker
(1970)] that (2.2) is both necessary and sufficient to make (2.1) a proper, normal-
ized density function.

The location vector in (2.1) is the, possibly nonlinear, but known, function
h(X, ), and the scale matrix is V(X,7), where V is positive definite symmetric



(PDS) and a known matrix function of X' and 7. Therefore, 3 € B C R* and
7 € H C R serve to define the isodensity ellipsoids of y. The labelling function
Jnw that determines the density value for each of these ellipsoids [see e.g. Leamer
(1978, p. 150)] is indexed by n and w, which may contain parameters other than
B and 7, introduced specifically for the purpose of describing g, .. Let us call
these parameters v € N C IR®. A well-known example of this v is found in the
multivariate Student t distribution, where » € IR, and

- < T123%) . o UG
Inw() =gnu() = —ITZ;-_) (vr)~F(1 4+ 2) S

Indeed, from (2.1) we will then obtain a Student t data density with v degrees of
freedom, location vector h(.X,3) and precision matrix V(X. 7)~!, denoted by

ply | X,w) = f2(y | v, h(X,B), V(X,5)™Y). (2.3)

A generalization of (2.3), where the dimension of v is extended, can be found in
Dickey and Chen (1985, p. 173). However, in some cases none of the parameters
in w will appear in g, (), which will then only depend on n, the dimension of y.
If, in particular, we choose

Inu() = gn(1) = (20} exp (),
our data density in (2.1) will be of the Normal form with mean h(X,3) and

covariance matrix \7(.\’,17) :
Py | X,w) = fR(v | (X, B), V(X. 7)), (24)

where (f3,7) is now a sufficient parameterization. Neither of these well-known
special cases correspond to an indexing of gn.(-) by the parameters appearing
in the definition of the ellipsoid, namely (3, 7). Starting from the more restricted
class of elliptical distributions that can be expressed as scale mixtures of Normals
[see e.g. Kelker (1970)], such a dependence can easily be introduced through
the density of the mixing parameter. Examples appeared in Osiewalski (1990),
Osiewalski and Steel (1990) and Chib et al. (1990), who considered some specific

densities of the general form
syl Xo) = [ fuly | ACE8), 2 VX, 7)
0
L v+bhi(8.1) ba(B.7)
oz AN HOD) 4 s

v+ b1(8,7)

7 vy
b(8,5) )

= f5(y [ v +61(8,7), h(X,B),



where b;(8,7%), i = 1,2, are positive functions of (3,7) and fg(- | - , -) denotes a
gamma density function. In the (more general) framework of (2.1), the density in
(2.5) can be reproduced by choosing

2 +v+6:(8,7)

Gp() = ————2
r(u+bx2(ﬁ, 1N

b2(8,7)" % (1+m>-m:;uw,

which clearly depends on (3, 7) as well.

The explanatory variables in X have a sampling distribution whose sufficient
parameterization is denoted by A. If we assume the joint prior on w and A is a
product of p(w) and p(A), both o-finite, we can ignore the process of X for the
purpose of conducting inference with (2.1). These assumptions, in fact, amount
to operating a Bayesian cut [see e.g. Florens and Mouchart (1985) and Florens et

al. (1990)].

We shall now introduce two restrictions on the class of models in (2.1), since
this will open an avenue to drastic simplifications, using the property in (2.2),
as will become clear in the sequel. Firstly, we restrict ourselves to those scale

matrices l—/(.\’,r']) that can be written as
= o 1
V(X %) = — V(X,n), (2.6)

where 7> € IR, is a scalar precision parameter, implicitly reparameterizing 7 as
(72,71). For notational convenience, we now define § = (8,n) which contains all
the information about the location and shape of the ellipsoids.

Secondly, we shall assume that this scalar precision parameter 72 does not
index the function gn ., i.e.

Inw(-) = gno()- (2.7)

This implies the interpretation for 72 can only be linked to the ellipsoids, and
should, thus, be equivalent for all models in our class. Therefore, we can, at this
level, before actually choosing a particular model, consider assigning a prior density
to 72, as its meaning does not vary over the elliptical class in (2.1), restricted by
(2.6) and (2.7).



Our framework now excludes densities like (2.5), unless the functions b;(3, ) =
bi(B, 72, n) are constant in 72, but cases where (2.7) is violated seem rather artifi-
cial and somewhat unlikely to occur in actual practice.

2.2. Prior Densities

We now face the task of completing the Bayesian model by assigning a prior
distribution to w = (6, 72,v). Both @ and v (if it appears) will typically be pa-
rameters of interest, and we shall leave the specification of their prior density
completely free at this stage. We shall see in Section 3 that if we specify the
(“usual”) improper prior structure

P(6. 7% ) = 5 p(O.V), (28)

where ¢ is a positive constant and p(,v) is functionally independent of 2, the
analysis will simplify greatly. More in particular, provided g, .(-) is not indexed
by 72, its actual form becomes completely irrelevant, so that both posterior and
predictive analyses are fully robust with respect to any departures from Normality
in the wide class of remaining elliptical densities.

3. POSTERIOR INFERENCE

Combining the general class of elliptical data densities in (2.1), restricted
only by (2.6) and (2.7), with the improper prior family in (2.8), we obtain the
joint density

ply,w | X) =cp(8,v) (F)F | V(X,n) [T} gnou[r?d(y, X.0)], (3.1)

where we have defined

d(y, X,0) = (y — h(X,8) V(X,n)™ (¥ = h(X, ).

Let us now consider the transformation from (y, 8, 7%, v) to (y,6, r2,v), where
r? = r2d(y, X, 9), (3.2)
leading to

p(y.0,7% v | X) = cp(B.v) | V(X,0) 7Y d(y, X, 0)"F(r*)#  gns.(r?). (3.3)



The function gn .. (-) is not affected by the transformation in (3.2), since it does
not involve 72, so that property (2.2) can directly be applied to integrate out r?
in (3.3). This leaves us with

p(y,0,v|X)=¢c l"(;) % p(8,v) |V(X,m) 7Y d(y.X.0)" 2, (34)

which no longer depends on the form of gn g .(-). The joint (improper) density
of our parameters of interest and y is thus completely robust with respect to any
departures from Normality in the class of elliptical data densities (2.1), restricted
by (2.6) and (2.7), when 72 is treated by assuming the improper prior (2.8).

Let us now assume that the prior p(8,v) is integrable in v over N, which
makes (3.4) integrable in v, and also that the resulting density, p(y,8 | X) =
Jn p(y.8,v | X) dv, is integrable in 6 over © C B x H. We are then sure that the
posterior of (8,v) is well defined as

p(0.v | v.X) x p(6,v) |V(X,m) [~} d(y, X,0)7 %, (3.5)

from which we can easily derive the posterior for the location and shape parameters
f.

Theorem 1. For any elliptical data density (2.1), fulfilling (2.6) and (2.7), and
under an improper prior (2.8), which is integrable in v, we obtain the same pos-
terior of #:

P01y, X) x p(8) |V(X,n)|™¥ d(y, X,6)"%, (36)

where p(8) = fN p(8,v)dv and we have assumed that (3.6) is integrable in 8 over
o. .

Of course, (3.6) is exactly the posterior one obtains for the Normal data
density (2.4), and may look even more familiar if we consider the simple linear
case:

Corollary 1:  In the special linear case of Theorem 1 where h(X,3) = XS and
© = R* x H. the posterior densities of 8 are given by

2B | my, X)= K~ p(B.0) fEBIn—k 8, sT2X'V(X,m)™'X)  (3.7)
and

o019, X) x K(n) [V(X,n) 74 1 X'V(X, )X 7Y ()30, (38)



where .
B=(X'V(X,n)™'X)"' X'V(X.n)ly

9 1 AV » 3
= — (W= XB)Y V(X,n)™ (v- XB)

and A’(7), the inverse of the normalizing constant of (3.7), absorbs the prior in-

formation on 7. =

Implicitly, we have also made the assumption that X is of full column rank in
Corollary 1, which implies n > k in this linear case. If we specify a uniform prior
on 3, i.e. p(B,n) x p(n), we simply have a Student t conditional posterior of 3,
which is proper if n > k. Moments of (3.7) then exist up to (not including) order
n—k. Adding some prior information will typically lead to the existence of higher
order moments. In particular, if p(3,7n) contains a Student ¢ kernel for 3 with v
degrees of freedom, the conditional posterior in (3.7) will be of a 2-0 poly-t form
[see Dréze (1977) and Richard and Tompa (1980)], allowing for posterior moments
up to order vg +n — k.

The invariance results obtained here are a direct consequence of the fact that,
after integrating out r* under (2.8), we have

ply| X.0,v)=ply| X.0) x dy X0~} (3.9)

irrespective of the form of gn 4., (-). Therefore, we address a particular case of Hill
(1969), who proposed specifying a spherical model without considering a scale
parameter. In the framework of (2.1) he does not impose (2.6) and introduces
sphericity by assuming V(X,7) = I directly. The more “traditional” approach,
in e.g. Zellner (1976), Jammalamadaka et al. (1987), Chib et al. (1988) and
Osiewalski (1990), implicitly starts from the deeper level of parameterization used
here and amounts to assuming (2.6). In that case sphericity is induced by taking
V(X,n) = I,. Hill’s (1969) specification of general spherical errors is thus made
at a level of parameterization comparable to the one in (3.9). By not imposing
(2.6), Hill’s approach is slightly more general, but at the cost of not obtaining the
robustness that follows from (3.9). Nevertheless, Hill (1969) does introduce a scale
factor in his discussion of Normality. At that level, our results imply that it is
not the Normality assumption but the use of Jeffreys’ prior on this scale factor [as
in(2.8)] that accounts for finding the “usual” posterior results. Therefore, provided
one is willing to accept (2.6), Normality does not seem to be quite as restrictive
as suggested by Hill.



From the joint posterior of § and v in (3.5), it is already obvious that v
only appears through the joint prior p(6,v). This means that given 6 the sample
contains no information regarding v, so that conditionally upon @ v is not updated
through the observations. Thus, under the conditions of Theorem 1, we always
have that p(v | 8,y,X) = p(v | 8), where the latter density is well defined since
p(6,v) is assumed to be integrable in v. The marginal prior on v, however, will
generally be updated [see also Dréze and Richard (1983, p.522)], since it is given
by the integral of (3.5) in 6 over ©, which can be written as

p(uly,.v)«L p(v10) p(8 | ¥, X) db

where p(8 | y, X) was defined in (3.6). Thus, if p(v | §) does not depend on 6 (i.e.
independence in probability if p(0) is proper and functional independence if it is

not) the sample cannot revise the marginal prior of v either and we state:

Theorem 2: Under the conditions of Theorem 1, the prior structure for (6, v)

p(8,v) = p(6) p(v) (3.10)

will prevent updating of the marginal prior information on v, i.e.

plv |y, X)=pv). (3.11)

The lack of dependence in (3.10), which is taken to be integrable in v, will,
for any proper elliptical sampling model (2.1) fulfilling (2.6) and (2.7), lead to
posterior independence of 8 and v, provided we express our prior ignorance about
2 by the class of improper densities in (2.8), and if the joint posterior exists, which
is assured if (3.6) is integrable in 8. This can be seen directly from (3.5), and, given
the fact that the sample can only update v through 8, this posterior independence
will make sure that our marginal opinions regarding v will not be revised through
the observations. Chib et al. (1990) analyse the particular subclass of (2.1) where
the elliptical densities can be described as scale mixtures of Normals. A prominent
member of this subclass is the Student ¢ model in (2.3), in which case Theorem 2
exactly reduces to their Corollary 4, stating a set of sufficient conditions for the
impossibility to update the prior of the degrees-of-freedom parameter.



4. PREDICTIVE ANALYSIS

Alternatively, we can focus on the predictive properties of Bayesian mod-
els involving elliptical data densities as in (2.1) and improper priors as in (2.8),
maintaining also (2.6) and (2.7).

For this purpose, we partition the n dimensional vector y as follows

- y(n)

4 (y(z) '

where y(1) € R™* and n, < n, and we are interested in forecasting y(2), given y(1)
and X. Conformably, we partition

_[rx.®] = (b
h(X,B) = [hf;:(x, g = (hf::)

_ [V Vi(Xom)| _ (Vi Va2
V= {Vn(xﬂl) sz(X.rr)] = (sz sz)'

where the defining equalities are just used to economize on notation. From (3.4) it
is immediately clear that the form of gn s, () will not affect the predictive analysis
either, and we obtain directly

g, ; -
P(yry, Uy B | X) = e T(F) =% pl00) | Via I™F alyy, X, 8)7 %
Bt | Dy Vi Vi s = Mol e Wikl
2 ' = RS T ’
s \Y2) [ ™ (2) 21V W) (1) a(y), X, 0) 22.1

with a(y), X,8) = (ya) — hwy)’ V' (ua) = hay) and Vaay = Vaz =V Vi ' Vi
Given our assumption of integrability of the joint prior in v, it is trivial to integrate
it out, as in Section 3. The posterior of 8 given the first subsample y(;y will be of
exactly the same form as (3.6) in Theorem 1, but with y(,) instead of y throughout:

(8 | y1y, X) < p(8) | Vay 7} a(yay, X.0)"F, (42)

provided (4.2) is integrable in 8 over ©. The predictive density thus becomes the
Student density in (4.1) of y(2), given y(1), X and #, weighted by this posterior on
the basis of y) :

vy | iy X =/e Py | vy X.60) 26 | vesy, X) db. (4.3)
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As was to be expected from (3.4), the general elliptical character of the data
density does not induce any difference in our predictive analysis with respect to
the Normal framework. Remark that integrating out r? in (3.3), under the prior
(2.8), always leads to a density of y, given 8 and X, proportional to d(y, X,8)” ¥,
as was stressed in Section 3. This, of course, implies the Student density of y(2),
given y(1),0 and X, but this Student ¢ form will generally be lost when we integrate
out @ in the predictive density as in (4.3).

A predictive analysis on the basis of (4.3) can be called for when e.g. the
observations on y(z) are missing, whereas both y(;) and the entire X matrix are
observed. However, in actual practice, it is often the case that only a submatrix
of X, says X, is jointly observed with y(), so that the posterior information
available for forecasting is only based on y(;) and X;. We then set out to predict
Y(2), given the observed (y(1),-X1) and a set of exogenously given values for the
remaining part of X, say X;. Given our maintained assumption of independence
between X and w, it is sufficient to assume

hay = hy(X1,8) and Vi = Viy(Xy, ) (4.4)

in order to have posterior independence between ¢ and X».

Theorem 3: Under the conditions of Theorem 1 and (4.4) any elliptical sam-
pling model (2.1) will allow conditional forecasting based on the predictive density

(¥ | ¥1), X) = /e £22(yeay | m1y heay + Var Vit (v — hny),

i S1) p(0 X,) do e
mvz: 1) p(6 | yry, X1) db.
and p(8 | y1), X1) is obtained from (4.2) but now with (4.4) holding. =

The improper prior on 72 in (2.8), conditions (2.6)-(2.7) and the existence
of the posterior thus lead to perfect predictive robustness which can be used in

current practice under assumption (4.4).
In the simplest linear case with a uniform prior on # = 3, we can write:

Corollary 2: If h(X,8) = X3, V(X,n) =V is assumed known and © = R*,
then under a uniform prior on § = B the predictive (4.5) in Theorem 3 reduces to
the Student density

Py | vy X) = f2(yay | m—k, Xabr+VaVig' (wy — Xah), sT2W1) (4.6)
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with
By = (X{ViR X)) X Vit
1 z _ 5
si= — oy - X181) Viit(way = Xabr)
1
W = (X2 = Vo VT X)XV X)) ™ (X2 — Vaa Vi X)) + Ve
and Vas ; defined as in (4.1). .

A uniform prior of 8 has to be used for obtaining the Student predictive in
(4.6), since we have left the class of prior densities that are natural conjugate for
the Normal case (2.4) by assuming prior (functional) independence between 3 and
72 in (2.8).

5. FINITE MIXTURES OF ELLIPTICAL DATA DENSITIES

Although the class of sampling models described in (2.1), and restricted only
by (2.6)-(2.7), can already cover many cases used in practical applications, it
is still constrained to symmetry and, provided gn.(:) is strictly monotonic, to
unimodality. If we wish to circumvent these restrictions, e.g. when faced with a
blatantly skewed multimodal empirical data characterization, we can consider the
use of finite mixtures of data densities as in (2.1), with (2.6) and (2.7) holding.

Finite mixtures of conjugate prior densities were used to approximate more
general classes of priors in Dalal and Hall (1983) and Diaconis and Ylvisaker
(1985), but here we introduce the mixing in the sampling model instead. This, of
course, widens the family of data densities we can accommodate, and, in princi-
ple, p(8, v) can also involve prior mixtures in our framework, although the latter
point will not be elaborated here. We feel it is important to allow for a large
enough class of sampling models. since the likelihood is (too) often felt to have
some “external validity” [see Berger (1985, p. 249)], and therefore not questioned,
whereas we “agree to disagree” on the formulation of the prior. In the terminol-
ogy of Poirier (1988, p. 130) the “window” entertained should be large enough to
interest a “sizeable audience of like-minded researchers”. Assessment methods for
finite mixtures are found in Dickey and Chen (1985, Section 5), based on elicited
quantiles.

If we suitably extend 8 = (3,7n) and v to parameterize a finite number of

densities as in (2.1), each of which has the same scalar precision parameter 2;
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we still have to introduce a mixing parameter A. Let us, more in detail, analyse
the case where we mix only two elliptical densities, implying that A is scalar. The
relevant sampling model becomes

By | X, 2) = X | V) 17 anally = A (VXD = KX, )

FU=N) | ZWOD 7 Rl - m(X A (5 WX ) (5 = mOX )
0<A<I,

(5.1)
were both gaw(-) and kn o (-) satisfy condition (2.2), and m(-) and W(-) are known
functions in R™ and the space of all n xn PDS matrices, respectively. The nuisance
parameter 7> does not index either of the functions g, . (-) and kn .(-), and we

assume the improper prior structure, integrable in v over N:
[
plw,A) = = p(8, v, ). (5.2)

As in Section 3, this will result in a joint density of (y,8,v,A | X) that no longer
involves the functions gn . (+) of kn,w(-). Under the prior in (5.2), mixing any ellip-
tical data densities with common 72 has the same consequences for both posterior
[on (8,))] and predictive inference as the mixing of Normals. In particular, if the
joint density of (y,8, A | X) is integrable in (8, 1), the posterior of (6, A) will be

(8, ) v, X) o p(8,A) {A | V(X,n) [T} d(y,X,8)"%

5.3
F(1=0 WX, 7Y e(y, X,0)7F}, -

with d(y, X,8) as in (3.1) and e(y, X,8) = (y—m(X,9) W(X,n)~ (y—m(X, 5)).
whereas the prior density

p(8,A) = /N p(8,v,)) dv

must be at least integrable in those elements of § that appear in only one of
the mixed densities in (5.1), due to the summation character of mixtures. The
posterior density in (5.3) is a generalization of (3.8), which it reduces to for A = 1.
For nondegenerate A, however, the mixing in the data density (5.1) is carried over
to the posterior. A convenient choice for the prior of A may be a beta density,
independent of 9, i.e.

p(8,2) = p(8) f(A [ p,9) (5.4)

with0<A<landp, ¢>0.
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From (5.3) we then obtain the conditional posterior of A as a mixture of beta
densities

p(A6,y,X) = (pas + gbs) ™" [pas fo(A|p+1,9)+abe fo(Alpa+1)], (5.5)
where we have defined

ag = | V(X,n) |7} d(y,X,0)"%
bo = | W(X,n) 7% e(y,X,0)"%.

It is interesting to note that the prior mean of A, given by E()) = ;ﬁ;
is revised by the data evidence according to the relative posterior “fits” of the
elliptical densities in the mixture. If the density multiplied by A in (5.1) fits badly
relative to the other one, ag will be much smaller than b : in the extreme case
that ag = 0, we obtain

E(A10,y.X) = EQ |y, X) = —2—,
p+q+1
a downward revision of the mean by the sample information. The other extreme
with by = 0 will lead to

; - p+1
EA8,y,X)=E(|y,X)= rirl

which is larger than the prior mean. So, although the conditional posterior mean
of A generally depends on 6, the marginal mean will always be confined to the
region £, ;ﬁ%] Under a uniform prior for A (p = ¢ = 1), the posterior
mean will be in [%, %], an interval which will shrink very quickly if moderately
strong prior information on A is introduced. In the case that we chooge E(A) = %
(i.e. p = q) the length of this interval is only four times the prior variance of A. It
thus seems the data evidence can only mildly influence our opinions concerning A.

The marginal posterior density of 6 will be given by
p(8 | y, X) x p(6) (pae + qbs),

which can be written as the following mixture of the “individual” posteriors, each
calculated as in (3.6) on the basis of one of the elliptical models in (5.1):

p(0 | v, X) = (PKa + qK3)™" [PKapa(8 | ¥, X) + aKsps(0 | v, X)), (5.6)
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where i
pa(f |y, X) = K7 p(9) as

(8 |y, X) = K p(6) be.
This formulation clearly puts into focus the role of the normalizing constants K,
and K, which contribute to the “weights” in the same way as p and ¢. A similar
function was performed by as and bg in (5.5). Of course, (5.6) reduces to (3.6) for
= 0, in which case (5.4) groups all the prior mass at the point A = 1.

From the posterior density in (5.3) it becomes apparent that, unless the func-
tional forms of h(-) and m(-) or those of V(-) and W (-) differ, the mixing in (5.1)
will not affect the inference at all. Indeed, then the posterior of A in (5.5) will
reduce to the beta density in the prior (5.4), and the posterior of ¢ will be the
same as (3.6) in Section 3.

Let us now generalize the main results of this section to mixtures of £ > 2
proper elliptical densities. We shall retain the improper prior as in (5.2) for the
common nuisance parameter 72, but A will now be of dimension ¢, and we shall,
therefore, generalize the beta prior in (5.4) to a Dirichlet prior on A, with the
parameter vector a = (e ... a), ai>0, ¥Vi:

p(A18) = p(N) = fH(A | a), (5.7)

where ) is restrained to the unit simplex (i.e. A; > 0, V i and Ef=1'\-‘ = 1)
Analogously to ag and bg in the case £ =2, we define cj for the i*M density in the
mixture, and we denote by ' the £-dimensional vector with one in the i*h position
and zeros elsewhere. Then we can state:

Theorem 4: Finite mixtures of £ elliptical densities, i.e. an obvious extension
of (5.1), with common nuisance parameter 72 on which the improper prior (5.2)
is defined, will, under (5.7), lead to

[3 -1 £
P16,y X) = (Z o ci) [Zm ¢ fH(A |a+e")] (5.8)
i=1 =1

§O 1y, X) = (i o K.-)_l [Zl; s (59
i=1 i=

where p;i(6 | y, X) = K[ 'p(8) ¢y, V i, provided all these posterior densities are

well defined. .
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Since the posterior results in (5.8) and (5.9) are also finite mixtures, their
analysis is not more difficult than with a single elliptical sampling density. Just like
in the previous section, prediction can also be based on mixed sampling models,
now using the posterior densities for both A and #. Again, we end up with a

mixture, as formally stated in the final theorem.

Theorem 5:  Under the conditions of Theorem 4, we can base our predictions
for a finitely mixed elliptical model on the predictive density

¢ il
P(ye) | vy, X) = (Z @i Li) [Z ai Li pi(ye) | y(x),-\')}. (5.10)
i=1 =1
which is itself a mixture of
pi(y2) lya), X) = /epi(ym | ¥(1y, X, 8) pi(6 | y1y, X) db,

where pi(y2) | ¥(1), X,0) is the Student t density in (4.1) now corresponding to
the i*M data density in the mixture, and

pi(8 |y, X) = L7 p(8) | Viy 174 aiyry, X,0)"F,

as in (4.2), where each L; must be finite, and indices i refer to the i*" data density
throughout. -

As in Section 4, if we wish tc use posterior densities for #, computed after
observing y(;) and only part of X, namely X,, we need a bit more. Imposing
condition (4.4) on every data density that is used in the sampling model will be
sufficient.

We suggest approximating non-elliptical (e.g. asymmetric) sampling processes
by such finite mixtures of elliptical densities, since the mixing will be preserved
in both posterior and predictive analyses. We thus have a way of considerably
broadening the class of data densities, without really adding to the complexity of
the analysis.
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6. CONCLUDING REMARKS

Under certain conditions, it was shown that Bayesian posterior and predictive
analysis is perfectly robust with respect to the choice of a sampling density within
the entire class of elliptical densities. Sufficient conditions are that we can single
out a scale factor 72 that does not influence the way the density changes over
ellipsoids, and that we specify an improper prior density on 72.

Once the scale factor is then integrated out, the tails of the sampling density
do not matter anymore, only the location and shape of the ellipsoids, parame-
terized by 0, are relevant. The posterior of § will then be given by the simple
expression in Theorem 1, which is the same as in the Normal case. The only
purpose of the parameter v is to describe the tails of the data density. Thus, if
the latter become irrelevant, then, clearly, the sample can not directly revise our
opinion about v. It can only do so through revising @ if there is prior dependence
between 8 and v. This is the object of Theorem 2.

Our conclusions are similar for prediction: given an improper prior on the
nuisance parameter 7, everything is just like in the Normal regression model.

Theorem 3 summarizes these findings.

The results from Sections 1 through 4 can be related to previous work in this
area; in particular, our paper extends the framework of scale mixtures of Normal
densities, found in Jammalamadaka et al. (1987), Chib et al. (1988), Osiewalski
(1990) and Chib et al. (1990), to general elliptical densities. It also broadens
the linear regression model, used in the first two of the above references, to a

possibly nonlinear one. Taking into account that only a diffuse prior for 72

was
considered in the present paper, we can establish the following correspondences.
Within the class of scale mixtures of Normals, Proposition 1 of Jammalamadaka et
al. (1987) is a special case of our Corollary 2 for V(X,n) = I, whereas Theorem
3 generalizes Proposition 1 of Chib et al. (1988), who assumed linearity and
a uniform prior on 3. Both Theorems 1 and 3 extend results obtained under
scale mixtures of Normals in Osiewalski (1990) to general elliptical densities, and
Theorem 2 generalizes Theorem 2 in Chib et al. (1990) in the same way.

If the inherent symmetry of the single elliptical data density is found to be too
restrictive, we can make use of finite mixtures of elliptical densities to approximate
some non-elliptical data density. These mixtures are then carried over to posterior
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and predictive results, without leading to an increase in complexity (see Theorems
4 and 3, respectively). Since we have updating of the mixing parameter A as
well, we could even think of incorporating this into a testing framework, where we
intend to choose between several competing models. The updating of the prior
of A by the sample will indicate which model is most favoured on the grounds of
posterior fit. Note that the contenders have to correspond to different ellipsoids,
e.g. through different functional form or choice of regressors. Mixing e.g. a
Normal and a Cauchy defined over the same ellipsoid will, of course, give the same
results as with a single Normal data density. Also, we have seen that the sample
information on A can easily be drowned by moderately informative prior notions.

The findings in this paper generalize and explain many results that have
appeared in the literature, and give remarkably weak sufficient conditions for ro-
bustness with respect to the data density. This provides us with a fairly strong
argument in favour of using the standard Normal results in regression models, and
gives an implicit motivation for stressing sensitivity with respect to the choice of
the prior density instead.
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