

$\lg 9-92$

Center
for
Economic Research

No. 9492

GENERAL EQUILIBRIUM IN ASSET MARKETS WITH OR WITHOUT SHORT-SELLING

By Rose-Anne Dana, Cong Le Van and Irançois Magnien

November 1994

general equilibrium in asset MARKETS WITH OR WITHOUT SHORT-SELLING*

Rose-Anne DANA
(GREMAQ, University of Toulouse-I)
Cuong LE VAN
(CNRS, CEPREMAP, Paris)
François MAGNIEN
(DELTA, THEMA, University of Cergy-Pontoise)

* preliminary version of Theorem 1 of the paper has been written by
C.Le Van during his visit In April 1994 at Center and the department of
Econometrics of Tilburg University. The authors thank
Antoon van den Elzen for his remarks and suggestions.

Abstract

In this paper we extend the results of Cheng (1991), Brown and Werner (1993) on the existence of equilibrium in infinite dimensional asset markets : we do not assume that each agent's preferred sets have a uniform direction of improvement but only assume that the preferred sets of attainable allocations have non-empty interiors. We then deduce existence theorems for asset markets without short-selling and for the CAPM.

Correspondence to : Cuong LE VAN CEPREMAP
140, rue du Chevaleret 75013 - PARIS (France)

INTRODUCTION
\uparrow
The CAPM model of Sharpe (1964) and Lintner (1965) has been the first model of equilibrium with consumption sets unbounded below. While the implications of the model (the "mutual fund" result and the "beta law") were widely used in finance, the problem of existence of an equilibrium itself was ignored. Existence results were obtained only a few years ago by Nielsen (1990a,b) and Allingham (1991).

The first finite dimension equilibrium existence result when consumption sets are unbounded below was proven by Hart (1974) under the assumption that agents' utility functions were Von-Neumann Morgenstern and that their directions of improvement were "positively semi-independent". Much later Werner (1987) and Nielsen (1989) reconsidered the problem. Werner gave an existence result based on a generalisation of Gale-Nikaido-Debreu's lemma under the assumption that there was at least one price for which there was "absence of arbitrage opportunity" for all agents. Nielsen who makes fairly weak hypotheses on preferences obtains a very general result under the assumption that agents' directions of improvement were "positively semi-independent".

In the infinite dimension case, two existence results based on Negishi's method were given by Cheng (1991) and Brown and Werner (1993) and applied to subspaces of L^{p} and Von-Neumann Morgenstern utilities.

In this paper, we extend the results of Cheng, Brown and Werner in the following sense : we do not assume that each agent's preferred sets have a uniform direction of improvement nor do we assume the continuity of utility functions. We only assume that the preferred sets of attainable allocations have non-empty interiors.

We first deduce from our result an existence theorem when the consumption sets are the positive orthant of a locally convex solid Riesz space. This result improves theorem 10.1 of Mas-Colell and Zame (1991). We make a local non-satiation assumption instead of an uniform direction of improvement assumption for the attainable allocations.

This assumption can be viewed as a weaker form of the F-properness condition in Mas-Colell and Zame.

We then get existence theorems for the C.A.P.M with an infinite number of assets with or without a riskless asset.

The paper is organised as follows. In section 1, we present the model and its assumptions. In section 2 , we give some criteria for the closedness and boundedness assumptions. The main result and its proof are given in section 3. Section 4 and 5 are devoted to applications, an equilibrium without short-selling and the C.A.P.M.

1. THE MODEL

We consider an exchange economy with commodity space E. The space E is assumed to be a locally convex topological vector space. There are m consumers. Each consumer i is described by a consumption set $X_{i} \subset E$, an initial endowment e_{i} and a preference relation which is represented by a utility function $u_{i}: X_{i} \rightarrow R$. Let $\bar{e}=\sum_{i=1}^{m} e_{i}$ be the total endowment. An allocation is a m-tuple $x=\left(x_{1}, \ldots, x_{m}\right)$ with $x_{i} \in X_{i}$, $\forall i$. It is at tainable if $\sum_{i=1}^{m} x_{i}=\overline{\mathrm{e}}$. It is individually rational attainable if it is attainable and if $u_{i}\left(x_{i}\right) \geq u_{i}\left(e_{i}\right), \forall i$. Let A denote the set of all individually rational attainable allocations. We normalize the utility functions by requiring $u_{i}\left(e_{i}\right)=0, \forall i$.

An allocation x is weakly-optimal (W.O) if $x \in A$ and if there does not exist another $x^{\prime} \in A$ such that $u_{i}\left(x_{i}^{\prime}\right)>u_{i}\left(x_{i}\right)$ for every i. We denote by F the set of weakly-optimal allocations. x is Pareto-optimal (P.O) if $x \in A$ and if there exists no $x^{\prime} \in A$ such that $u_{i}\left(x_{i}^{\prime}\right) \geq u_{i}\left(x_{i}\right), \forall i$, and $u_{j}\left(x_{j}^{\prime}\right)>u_{j}\left(x_{j}\right)$ for some j. The utility set U is defined as follows:

$$
U=\left\{\left(z_{1}, \ldots, z_{m}\right) \in R_{+}^{m} \mid \exists x \in A \text { s.t. } u_{i}\left(x_{i}\right) \geq z_{i}, \forall i\right\}
$$

For $X_{i} \in X_{i}$, define the preferred-set of X_{i} :
$P_{i}\left(x_{i}\right)=\left\{x_{i}^{\prime} \in X_{i} \mid u_{i}\left(x_{i}^{\prime}\right)>u_{i}\left(x_{i}\right)\right\}$.
\bar{x}_{i} is a satiation-point of X_{i} if $P_{i}\left(\bar{x}_{i}\right)=\phi$.

Let E^{\prime} denote the topological dual of E. A quasi-equilibrium is a couple (x, p) such that :
i) $x \in A, p \in E^{\prime} \backslash\{0\}$;
ii) $\mathrm{px}_{\mathrm{i}}=\mathrm{pe} \mathrm{i}_{\mathrm{i}}, \forall \mathrm{i}$;
iii) $u_{i}\left(x_{i}^{\prime}\right)>u_{i}\left(x_{i}\right) \Rightarrow p x_{i}^{\prime} \geq p e_{i}$.

An equilibrium is a couple (x, p) which satisfies i),ii) and iii bis) $u_{i}\left(x_{i}^{\prime}\right)>u_{i}\left(x_{i}\right) \Rightarrow p x_{i}^{\prime}>p e_{i}$.

It is well-known that a quasi-equilibrium (x, p) is an equilibrium if $\forall i, p x_{i}>\inf p X_{i}$.

The assumptions

We make the following assumptions :

H1 : X_{i} is closed, convex, non-empty for every $i=1, \ldots, m$.
$H 2: e_{i} \in X_{i}, \forall i$.
H3 : u_{i} is strictly quasi-concave, $\forall i$.
H4 : U is closed.
H5 : U is bounded.
$H 6:$ If $x=\left(x_{1}, \ldots, x_{m}\right) \in A$ then $\forall i$, int $P_{i}\left(x_{i}\right) \neq \phi$.

2. CRITERIA FOR CLOSEDNESS AND BOUNDEDNESS OF u

Let us recall that $H 5$ is verified if, $\forall i, X_{i}$ is the positive orthant of a topological lattice.

$$
A_{\infty}=\left\{x \in \prod_{i=1}^{m} x_{i} \mid x_{i} \in W_{i}, \forall i \text { and } \sum_{i=1}^{m} x_{i}=0\right\}
$$

\quad If $A_{\infty} \neq\{0\}$ and if $x \in A_{\infty}$ and $x \neq 0$, then $p x_{i}>0$, $\forall i$ with $p \in \sum_{i=1}^{m} S_{i}$,
contradicting $\sum_{i=1}^{m} x_{i}=0$. Thus $A_{\infty}=\{0\}$ and A is compact. Since u_{i} is
continuous for every i, U is compact.
ii) Conversely, assume that U is closed and bounded. Let α belong to the unit-simplex of R^{m} with $\alpha_{i}>0$, $\forall i$. Let \bar{u} be a solution to $\max \left\{\sum_{i} \alpha_{i} z_{i} ; z \in U\right\}$. There exists $\bar{x} \in A$ such that $\forall i, \bar{u}_{i}=u_{i}\left(\bar{x}_{i}\right)$. Hence, there does not exist $\hat{x} \in \prod_{i=1}^{m} W_{i}$ with $\sum_{i=1}^{m} \hat{x}_{i}=0$, and $\sum_{i=1}^{m}-W_{i}$ is closed, contains no line and $\left(\underset{i=1}{m}-W_{i}^{0}\right)^{0}=\sum_{i=1}^{m}-W_{i}$.
 -

Let us make some additional remarks :
a) We say that p is "viable" for agent i if his demand at p exists.

It may easily be proven that if $E=R^{\ell}, p$ is "viable" for agent iff $p \in S_{i}$.

Thus the hypothesis $\bigcap_{i=1}^{m} S_{i} \neq \phi$ is equivalent to the existence of a price which is viable for every agent.
b) We recall that the notion of absence of free lunch is more restrictive than the notion of arbitrage free. Indeed if $p \in R^{\ell}$ admits no free lunch for agent i then it is arbitrage free for this agent (see Brown and Werner, 1993, proposition 1).
c) The hypothesis which is hard to verify is H4. We quote two results.

Proposition 5 - (Chichilnisky-Heal, 1993). Assume that E is a reflexive Banach space and $X_{i}=E, \forall i$. Assume moreover :
a) A is norm bounded,
b) u_{i} is norm continuous and concave.

Then H4 and H5 are fulfilled.

Proof - Obviously, H5 is satisfied. We prove that $H 4$ holds. Let $\left\{z_{n}\right\} \in U$ converge to z. There exists $x^{n} \in A$ such that $u_{i}\left(x_{i}\right) \geq z_{i}, \forall i$. Since A is convex, norm closed and norm bounded, it is weakly compact. Since u_{i} is norm-continuous and concave, it is weakly upper semi-continuous. Thus there exists a converging subsequence $x^{n} k \xrightarrow[x]{\sigma}$ and $u_{i}\left(\bar{x}_{i}\right) \geq$ $\overline{\lim } u_{i}\left(x_{i}{ }^{n}\right) \geq z_{i}, \forall i$. Thus $z \in U$.

Proposition 6 - (Cheng, 1991). Assume :
a) $X_{i}=L^{p}(\mu), \forall i$ where μ is a finite measure and $1 \leq p \leq \infty$,
b) $\forall i, \quad u_{i}(x)=\int U_{i}(x(s)) d \mu(s)$ with $U_{i}: R \rightarrow R$, strictly increasing, strictly concave and
$\int U_{i}(x(s)) d \mu(s) \in R, \forall x \in L^{p}(\mu)$

Then U verifies $H 4$ and $H 5$.

Proof - It follows from proposition 2 and example 1 that H5 holds. The proof of H 4 which is long and delicate can be found in Cheng (1991).

Under the above hypotheses Cheng (1991) also shows that if for at least one agent $i, \lim _{x \rightarrow-\infty} \partial U_{i}(x) \neq+\infty$, then A is not p-norm bounded. So that in that case the hypothesis a) of proposition 5 is not fulfilled.

3. THEOREM 1

Assume $\mathrm{H} 1, \ldots, \mathrm{H} 6$. Then there exists a quasi-equilibrium.

Proof

This will be done in several steps. Throughout this section we assume that $e=\left(e_{1}, \ldots, e_{m}\right)$ is not weakly-optimal. This assumption is not restrictive since if e is W.O. then there exists $p \in E^{\prime} \backslash\{0\}$ such that (e,p) is a quasi-equilibrium (see e.g. Cheng, 1991).

Lemma 1 - Assume H4, H5. Then U is compact, convex with non empty-interior.

Proof - It is obviously convex, compact. Its interior is non-empty since e is not W.O.

Let Δ be the unit-simplex of R^{m}, i.e,

$$
\Delta=\left\{s \in R_{+}^{m} \mid \sum_{i=1}^{m} s_{i}=1\right\},
$$

and let $f: \Delta \rightarrow R_{+}$be defined by $s \in \Delta \rightarrow f(s)=\max \left\{\alpha \in R_{+} \mid \alpha s \in U\right\}$.

Since U has a non-empty interior, $f(s)>0$ for every $s \in \Delta$.

Lemma 2 - Assume $\mathrm{H} 1, \ldots$, H5. If $\mathrm{x} \in \mathrm{A}$ and if there exists an $\mathrm{s} \in \Delta$ such that $u_{i}\left(x_{i}\right) \geq f(s) s_{i}, \forall i$, then x is weakly-optimal.

Conversely, for every $s \in \Delta$, there exists an $x \in A$ such that $u_{i}\left(x_{i}\right) \geq$ $f(s) s_{i}, \forall i$.

Proof - Obvious.

By Lemma 2, one can define
$s \in \Delta \rightarrow H(s)=\left\{x \in A \mid u_{i}\left(x_{i}\right) \geq f(s) s_{i}, \forall i\right\}$.

Lemma 3 - Assume H4, H5, then f is continuous.
Proof - Let $s^{n} \in \Delta \rightarrow s$ and $f\left(s^{n}\right) \rightarrow \alpha$. Since U is closed, $\alpha s \in U$, and hence, $\alpha \leq f(s)$. Assume $\alpha<f(s)$. From Lemma 1 , there exists $W \in U$ with $W_{i}>0, \forall i$.

Define : $W^{\boldsymbol{\gamma}}=(1-\gamma) f(s) s+\gamma W$, for $\gamma \in 10,1[$.
For γ sufficiently close to 0 , one has

$$
\alpha s_{i}<w_{i}^{\gamma}, \forall i,
$$

and therefore $f\left(s^{n}\right) s_{i}^{n}<W_{i}^{\gamma}, \forall i$, for n sufficiently large. Since $W^{\gamma} \in U$ we have a contradiction with the definition of $f\left(s^{n}\right)$.

Remark 1 - The proof of Lemma 3 does not require the continuity of the utility functions u_{i} as in Cheng (1991). One can also observe that Lemma 3 is true if U is compact, convex, comprehensive, i.e.,

$$
v \in U \text { and } 0 \leq v^{\prime} \leq v \Rightarrow v^{\prime} \in U \text {, }
$$

and if U contains an element W with $W_{i}>0, \forall i$.
Lemma 4 - There exist a convex symmetric open set V of E, an integer k, m finite sets of k elements of $E,\left\{W_{i}^{1}, \ldots, W_{i}^{k}\right\}$ with $i=1, \ldots, m, k$ elements x^{1}, \ldots, x^{k} of A and k open sets of $\Delta, U^{1}, \ldots, U^{k}$ which cover Δ, such that :

$$
\forall s \in \Delta, s \in U^{j} \Rightarrow \forall i, u_{i}\left(x_{i}^{j}+W_{i}^{j}+z\right)>f(s) s_{i}, \forall z \in V .
$$

Proof - Let $s \in \Delta$ and $x^{s} \in H(s)$. From H6, $\forall i$, there exists $v_{i} \in E$ such that :

$$
u_{i}\left(x_{i}^{s}+v_{i}\right)>u_{i}\left(x_{i}^{s}\right) \geq f(s) s_{i} .
$$

Since f is continuous, $\forall i$, there exists an open neigborhood U_{i}^{s} of s in Δ such that :

$$
u_{i}\left(x_{i}^{s}+v_{i}\right)>f\left(s^{\prime}\right) s_{i}^{\prime}, \forall s^{\prime} \in U_{i}^{s}
$$

Let $s^{\prime \prime} \in \Delta, x^{\prime \prime} \mathbf{s} \in A$ be such that :

$$
u_{i}\left(x_{i}^{\prime \prime} s\right) \geq f\left(s^{\prime \prime}\right) s_{i}^{\prime \prime}=\max \left\{f\left(s^{\prime}\right) s_{i}^{\prime} \mid s^{\prime} \in \bar{U}_{i}^{s}\right\}
$$

From H6, $\forall i$, there exist a $v_{i}^{\prime \prime}$ and a convex symmetric open set v_{i}^{s} such that :

$$
u_{i}\left(x_{i}^{\prime \prime} s+v_{i}^{\prime \prime}+z\right)>u_{i}\left(x_{i}^{\prime \prime} s\right) \geq f\left(s^{\prime}\right) s_{i}^{\prime}, \forall z \in v_{i}^{s}, \forall s^{\prime} \in U_{i}^{s}
$$

Define $U^{s}=n_{i=1}^{m} U_{i}^{s}$
and $\forall i, v_{i}^{\prime s}$ by $x_{i}^{s}+v_{i}^{\prime s}=x_{i}^{\prime \prime}+v_{i}^{\prime \prime}$.

Then we have :
$\forall i, u_{i}\left(x_{i}^{s}+v_{i}^{\prime s}+z\right)>f\left(s^{\prime}\right) s_{i}^{\prime}, \forall z \in V_{i}^{s}, \forall s^{\prime} \in U^{s}$.
Let $\left\{U^{S_{1}}, \ldots, U^{S^{K}}\right\}$ be an open covering of Δ. One has :

$$
\forall s \in \Delta, s \in U^{s_{j}} \Rightarrow u_{i}\left(x_{i}^{s_{j}}+v_{i}^{\prime} \mathbf{s}_{j}+z\right)>f(s) s_{i}, \forall z \in V_{i}^{s}{ }_{j}
$$

Define for every i :

$$
\begin{aligned}
& w_{i}^{j}=v_{i}^{\prime}{ }^{s_{j}} \\
& v={\underset{i=1}{m}}_{n_{j=1}^{k}}^{n^{k}} v_{i}^{s_{j}}
\end{aligned}
$$

and note : $x_{i}^{j}=x_{i}^{s}$

$$
U^{j}=U^{s}{ }^{\mathbf{j}}, \forall i, \forall j
$$

Then :
$\forall s \in \Delta, s \in U^{j} \Rightarrow \forall i, u_{i}\left(x_{i}^{j}+W_{i}^{j}+z\right)>f(s) s_{i}, \forall z \in V$.

Next, define for $s \in \Delta$ and for $j=1, \ldots, k$, such that $s \in U^{j}$:

$$
W^{j}(s)=\sum_{i} W_{i}^{j}, \text { and }
$$

$\tilde{P}(s)=\left\{p \in E^{\prime}| | p z \mid \leq 1, \forall z \in m V, p W^{j}(s) \geq 1, \forall j\right.$ such that $\left.s \in U^{j}\right\}$.

Lemma 5

i) $\forall s \in \Delta, \tilde{P}(s)$ is convex, $\sigma\left(E^{\prime}, E\right)$ - compact and non-empty.
ii) $\forall s \in \Delta, \exists p \in \tilde{P}(s)$ such that :
$\forall x, u_{i}\left(x_{i}\right) \geq f(s) s_{i}, \forall i=1, \ldots, m \Rightarrow p \sum_{i} x_{i} \geq p \bar{e}$.
Proof - Let $s \in \Delta$. Define :

$$
\forall i, \pi_{i}(s)=\left\{x \in X_{i} \mid u_{i}(x)>f(s) s_{i}\right\}
$$

and $G(s)=\sum_{i} \pi_{i}(s)-\bar{e}$.
From Lemma 4, $u_{i}\left(x_{i}^{j}+W_{i}^{j}+z\right)>f(s) s_{i}, \forall z \in V$, and $\forall j$ such that
$s \in U^{j}$. Hence, for j such that $s \in U^{j}, W^{j}(s)+m V \subset G(s)$.

From the very definition of $f, 0 \notin G(s)$. Thus, there exists $p \in E^{\prime} \backslash\{0\}$ such that :

$$
p \sum_{i} z_{i} \geq p \bar{e}, \forall z \text { with } u_{i}\left(z_{i}\right) \geq f(s) s_{i}, \forall i
$$

Let x with $u_{i}\left(x_{i}\right) \geq f(s) s_{i}, \forall i$, and let $I=\left\{i \mid x_{i}\right.$ is not a satiation-point $\}$.
For $i \in I$, from H3, there exists $v_{i}\left(x_{i}\right)$ such that :
$\forall \alpha \in] 0,1\left[, u_{i}\left(x_{i}+\alpha v_{i}\left(x_{i}\right)\right)>f(s) s_{i}\right.$.

From Lemma 2, there exists $y \in A$ verifying $u_{i}\left(y_{i}\right) \geq f(s) s_{i}, \forall i$, and from H6, y_{i} is not a satiation-point for any i. Hence, for i $\& I$, $u_{i}\left(x_{i}\right)>u_{i}\left(y_{i}\right) \geq f(s) s_{i}$.

$$
\begin{aligned}
& \text { Define } x_{i}^{\prime} \\
&=x_{i}+\alpha v_{i}\left(x_{i}\right) \text { for } i \in I, \\
& x_{i}^{\prime}=x_{i} \text { for } i \notin I .
\end{aligned}
$$

Then $\sum_{i} x_{i}^{\prime}-\bar{e} \in G(s)$, and therefore

$$
p \sum_{i} x_{i}+\alpha \sum_{i \in I} p \cdot v_{i}\left(x_{i}\right) \geq p e \bar{e}
$$

Letting $\alpha \rightarrow 0$ we obtain $p \sum_{i} x_{i} \geq p \bar{e}$, and statement ii) has been proved.

Since, $\forall j, W^{j}(s)+m V \subset G(s)$, we have :

$$
\forall \mathrm{j}, \mathrm{pW}^{\mathrm{j}}(\mathrm{~s})>0 \text { and }|\mathrm{pz}| \leq \mathrm{p} \mathrm{~W}^{\mathrm{j}}(\mathrm{~s}), \forall z \in \mathrm{mV} .
$$

Let j_{0} verify $\mathrm{pW}^{\mathrm{j}_{0}}(\mathrm{~s})=\min _{\mathrm{j}} \mathrm{p} \cdot \mathrm{W}^{\mathrm{j}}(\mathrm{s})$. We have

$$
\left|\frac{\mathrm{p}}{\mathrm{pW}^{j_{0}}(\mathrm{~s})} \cdot z\right| \leq 1 \leq \frac{\mathrm{p}}{\mathrm{pW}^{j_{0}}(\mathrm{~s})} \cdot \mathrm{w}^{j}(\mathrm{~s}), \forall z \in \mathrm{~m} V .
$$

Thus, $\mathrm{p}^{\prime}=\frac{\mathrm{p}}{\mathrm{pW}^{j_{0}}(\mathrm{~s})}$ belongs to $\tilde{\mathrm{P}}(\mathrm{s})$, i.e, $\tilde{\mathrm{P}}(\mathrm{s})$ is non-empty. It is
compact by Alaoglu's theorem. Obviously $\tilde{\mathrm{P}}(\mathrm{s})$ is convex.

$$
\text { Define } P(s)=\left\{p \in \tilde{P}(s) \mid u_{i}\left(x_{i}\right) \geq f(s) s_{i}, \forall i \Rightarrow p \sum_{i} x_{i} \geq p \bar{e}\right\}
$$

Lemma 6

$$
\forall p \in P(s), \forall i, \forall x_{i} \in X_{i}, u_{i}\left(x_{i}\right) \geq f(s) s_{i} \Rightarrow p x_{i} \geq p x_{i}^{s}, \forall x^{s} \in H(s)
$$

In particular : $\forall i, u_{i}\left(x_{i}\right) \geq u_{i}\left(x_{i}^{s}\right)$ with $x^{s} \in H(s) \Rightarrow p x_{i} \geq p x_{i}^{s}$.

Proof - Let $x_{i} \in X_{i}$ with $u_{i}\left(x_{i}\right) \geq f(s) s_{i}$, and let $x^{s} \in H(s)$. Define :

$$
\begin{aligned}
& x_{j}^{\prime}=x_{j}^{s}, \forall j \neq i, \\
& x_{i}^{\prime}=x_{i} .
\end{aligned}
$$

Let $p \in P(s)$. Then $p \sum_{j} x_{j}^{\prime} \geq p \bar{e}=p \sum_{j} x_{j}^{s}$, and hence, $p x_{i} \geq p x_{i}^{s}$.

Let $s \in \Delta, x^{\mathbf{s}} \in H(s)$, and define :

$$
\phi(s)=\left\{\left(y_{1}, \ldots, y_{m}\right) \in R^{m} \mid y_{1}=p\left(e_{i}-x_{i}^{s}\right), \forall i, \text { with } p \in P(s)\right\}
$$

Lemma 7

(i) ϕ is convex uniformly bounded valued.
(ii) ϕ has a closed graph.

Proof - (i) $\mathrm{P}(\mathrm{s})$ is convex since $\tilde{P}(s)$ is convex and therefore $\phi(s)$ is convex.

Now, $\forall i$, let $\bar{x}_{i} \in X_{i}$ such that $u_{i}\left(\bar{x}_{i}\right) \geq \max \left\{u_{i} \mid\left(u_{1}, \ldots, u_{m}\right) \in U\right\}$.

From Lemma 6, $p \bar{x}_{i} \geq p x_{i}^{s}, \forall i, \forall p \in P(s)$. Since $p \bar{e}=\sum_{i} p x_{i}^{s}$, we have :

$$
p x_{i}^{s}=p \bar{e}-\sum_{j \neq 1} p x_{j}^{s} \geq p \bar{e}-p \cdot \sum_{j \neq i} \bar{x}_{j} \geq B
$$

since $p \in \tilde{P}(s)$ which is $\sigma\left(E^{\prime}, E\right)$-compact.
Then $\left|p\left(e_{i}-x_{i}^{s}\right)\right| \leq\left|p \cdot e_{i}\right|+\left|p \cdot x_{i}^{s}\right|$

$$
\leq \max _{p \in \tilde{P}(s)}\left\{\left|p \cdot e_{i}\right|+\left|p \cdot \tilde{x}_{i}\right|\right\}+B .
$$

(ii) Let $y=1 i m y^{n}, s=1 i m s^{n}$ with $y^{n} \in \phi\left(s^{n}\right), \forall n$. We have $p_{n} \in P\left(s^{n}\right) \subset \tilde{P}\left(s^{n}\right)$. For n sufficiently large, $s^{n} \in U^{j}$ for every j such that $s \in U^{j}$.

In other words, $p_{n} \in \tilde{P}(s)$ for n large enough. Hence $p_{n} \xrightarrow{\sigma} p \in \tilde{P}(s)$. From H6 and H3, there exists $\mathrm{v}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}^{\mathbf{s}}\right)$ such that :

$$
\forall \alpha \in] 0,1\left[, u_{i}\left(x_{i}^{s}+\alpha v_{i}\left(x_{i}^{s}\right)\right)>u_{i}\left(x_{i}^{s}\right) \geq f(s) s_{i}, \forall i\right.
$$

The function f being continuous, we derive that

$$
u_{i}\left(x_{i}^{s}+\alpha v_{i}\left(x_{i}^{s}\right)\right)>f\left(s^{n}\right) s_{i}^{n}, \forall i, \forall n \text { large enough. }
$$

From lemma 6, $p_{n}\left(x_{i}^{s}+\alpha v_{i}\left(x_{i}^{s}\right)\right) \geq p_{n} x_{i}^{s}{ }^{n}=p_{n} e_{i}-y_{i}^{n}$,
and $p\left(x_{i}^{s}+\alpha v_{i}\left(x_{i}^{s}\right)\right) \geq p e_{i}-y_{i}$.

Let $\alpha \rightarrow 0$. This gives : $p x_{i}^{s} \geq p e_{i}-y_{i}$. Since $\sum_{i} x_{i}^{s}=\bar{e}$ and $\sum_{i} y_{i}=0$,
we have, $\forall \mathrm{i}, \mathrm{px} \mathrm{S}_{\mathrm{i}}=\mathrm{pe} \mathrm{i}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}$.

We now prove that $p \in P(s)$.
Let x with $u_{i}\left(x_{i}\right) \geq f(s) s_{i}, \forall i$, and
let $I=\left\{i \mid x_{i}\right.$ is not a satiation-point $\}$.

For $i \in I$, from $H 3$, there exists $v_{i}\left(x_{i}\right)$ such that $\left.\forall \alpha \in\right] 0,1[$, $u_{i}\left(x_{i}+\alpha v_{i}\left(x_{i}\right)\right)>f(s) s_{i}$.

From Lemma 2, there exists $x^{\prime} \in \mathbb{A}$ such that,

$$
u_{i}\left(x_{i}^{\prime}\right) \geq f(s) s_{i}, \forall i
$$

From H6, x_{i}^{\prime} is not a satiation-point for any i. In particular, $1 \notin I \Rightarrow u_{i}\left(x_{i}\right)>u_{i}\left(x_{i}^{\prime}\right) \geq f(s) s_{i}$.

Since f is continuous, for every in large enough,

$$
u_{i}\left(x_{1}+\alpha v\left(x_{1}\right)\right)>f\left(s^{n}\right) s_{1}^{n}, \forall i \in I
$$

and

$$
u_{i}\left(x_{1}\right)>f\left(s^{n}\right) s_{i}^{n}, \forall i \notin I .
$$

Since $p_{n} \in P\left(s^{n}\right)$ we have

$$
p_{n} \sum_{i=1}^{m} x_{i}+\alpha \sum_{i \in I} p_{n} \cdot v_{i}\left(x_{i}\right) \geq p_{n} \bar{e}
$$

and $p \sum_{i=1}^{m} x_{i}+\alpha \sum_{i \in I} p \cdot v_{i}\left(x_{i}\right) \geq p \cdot \bar{e}$, for every $\left.\alpha \in\right] 0,1[$.

Hence $\quad p \sum_{i=1}^{m} x_{i} \geq p \bar{e}$.

Final step

First we verify that ϕ fulfills the boundary conditions. Indeed, $s_{i}=0 \Rightarrow f(s) s_{i}=0=u_{i}\left(e_{i}\right)$.

Thus, from Lemma 6, $\mathrm{pe}_{\mathrm{i}} \geq \mathrm{px} \mathrm{s}_{\mathrm{i}}^{\mathbf{s}} \Rightarrow \mathrm{y}_{\mathrm{i}} \geq 0$.

Therefore, from the generallzed Kakutioni theorem, there exists is $\in \Delta$ with $0 \in \phi(\bar{s})$, l.e.. there exists
$\bar{p} \in P(\bar{s}), \bar{x}^{s} \in \Delta$ verifying $: \bar{p} x_{i}^{s}=\bar{p} e_{i}, \forall i$,
and

$$
u_{i}\left(x_{i}\right) \geq u_{i}\left(\bar{x}_{i}^{s}\right) \Rightarrow \bar{p} x_{i} \geq \bar{p} \bar{x}_{i}^{s} .
$$

In other words, (\bar{x}, \bar{p}) is a quasi-equilibrium.

4. APPLICATION 1 : EQUILIBRIUM WITHOUT SHORT-SELLING

In this section the commodity space E is a topological locally convex-solid Riesz space. Its positive orthant E_{+}is closed and convex. For $x \in E_{+}$, we define :

$$
I(x)=\{y \in E| | y \mid \leq \lambda x \text { for some } \lambda>0\}
$$

If x is strictly positive then $I(x)$ is dense in E (see Aliprantis, Brown and Burkinshaw, 1989). We make the following assumptions :

$$
A 1: \forall i, X_{i}=E_{+} \text {; }
$$

$A 2: e_{i} \in E_{+}, \forall i ;$

$$
\bar{e}=\sum_{i} e_{i} \text { is strictly positive; }
$$

$A 3: \forall i, u_{i}$ is strictly quasi-concave and continuous from E_{+}into R;
A4: U is closed ;
A5 : U is bounded ;
A6: If $x=\left(x_{1}, \ldots, x_{m}\right) \in A$, then, for every i, there exist an opern neigborhood of $0, W_{i}$, and a vector v_{i} such that:
$I\left(v_{i}\right)=I(\bar{e})$ and
$\forall \lambda \in 10,11, u_{i}\left(x_{i}+\lambda\left(v_{i}+z\right)\right)>u_{i}(x)$ if $z \in W_{i}$ and if $x_{i}+\lambda\left(v_{i}+z\right) \in E_{+}$

Remark 2

i) In assumption $A 6$, the condition $I\left(v_{i}\right)=I(\bar{e})$ is equivalent to : there exist $\lambda>0, \mu>0$ such that $\mu \bar{e}<v_{i}<\lambda \bar{e}$. If int $E_{+} \neq \phi$, and if v_{i} and \bar{e} are strictly positive than this condition is satisfied since $I(\bar{e})=I\left(v_{i}\right)=E$.
ii) Consider the second statement of assumption A6. This condition is weaker than the F-properness mentioned in Mas-Colell-Zame (1991). One can also observe that, since u_{i} is strictly quasi-concave, this condition is the reformulation of assumption H6 (non-satiation) of Theorem 1 when int E_{+}is empty.

Theorem 2

Assume $\mathrm{A} 1, \ldots, \mathrm{~A} 6$. There exists a quasi-equilibrium.

Proof - It will be done in two steps.

Step 1 - We shall prove there exists a quasi-equilibrium for the economy with $I(\bar{e})$ as commodity space. The consumption set for an agent i is $I_{+}(\bar{e})=E_{+} \cap I(\bar{e})$. The set of individually rational at tainable allocations of this economy is equal to A, and hence the utility set is U. Thus, assumptions $\mathrm{H} 1, \ldots$, H5 of Theorem 1 are satisfied.

Let us check now assumption H 6 of Theorem 1 . We shall endow $\mathrm{I}(\overline{\mathrm{e}})$ with the following norm :

$$
\|x\|_{\overline{\mathrm{e}}}^{-}=\inf \{\lambda>0| | x \mid \leq \lambda \overline{\mathrm{e}}\} .
$$

Since E is solid, every neigborhood of 0 (with the initial topology) in E contains a neigborhood of 0 in $I(\bar{e})$ (with the norm $\|\mid\|_{\mathrm{e}}$).

Consider the open set W_{i} of assumption A6. From the remark above there exists an open neighborhood of 0 in $I(\bar{e}), V_{i}$, which is contained in W_{i}. Since $I\left(v_{i}\right)=I(\bar{e})$, one can choose V_{i} such that $v_{i}+V_{i} C[\lambda \bar{e}, \mu \bar{e}]$ for some $\lambda>0, \mu>0$, and therefore : $x_{i}+v_{i}+z \in E_{+}, \forall z \in V_{i}$. Hence, H6 of Theorem 1 is verified.

One concludes there exists a quasi-equilibrium (x^{*}, p^{*}) of the economy with $I(\overline{\mathrm{e}})$ as commodity space and $p^{*} \in I(\overline{\mathrm{e}})^{\prime}$ (the dual of $I(\overline{\mathrm{e}})$ with the norm $\left\|\|-\|_{\mathrm{e}}\right.$.

Step 2 - We shall prove that p^{*} is continuous in the initial topology and has an extension $\hat{p} \in E^{\prime}$ such that (x^{*}, \hat{p}) is a quasi-equilibrium for the initial economy.

Denote by W_{i}^{*}, v_{i}^{*} the open sets and the vectors associated with x^{*} by assumption A6.

Since, $u_{i}\left(x_{i}^{*}+v_{i}^{*}+z\right) \geq u_{i}\left(x_{i}^{*}\right), \forall z \in V_{i}^{*}\left(V_{i}^{*}\right.$ is defined above), we have

$$
\mathrm{p}^{*}\left(\mathrm{v}_{i}^{*}+\mathrm{z}\right) \geq 0, \forall z \in \mathrm{~V}_{i}^{*},
$$

and hence $p^{*} v_{i}^{*}>0$.
Normalize p^{*} by $p * \sum_{i} v_{i}^{*}=1$.

Without loss of generality, assume W_{i}^{*} symmetric and solid. Let $W^{*}=\underset{i=1}{m} W_{i}^{*}$. We have just to prove that p^{*} is bounded on $W^{*} \cap I_{+}(\bar{e})$. Let $y \in W^{*} \cap I_{+}(\bar{e})$. There exists $\lambda>1$ such that $0 \leq y \leq \lambda \bar{e}$.

$$
\text { Define } z=\frac{1}{\lambda} y \leq \bar{e}=\sum_{i} x_{i}^{*}
$$

One has : $\sum_{i} x_{i}^{*}-z+\frac{1}{\lambda} \sum_{i} v_{i}^{*} \geq 0$,
since v_{i}^{*} is strictly positive $\left(I\left(v_{i}^{*}\right)=I(\bar{e})\right.$, \bar{e} strictly positive $=v_{i}^{*}$ strictly positive ; see Aliprantis, Brown and Burkinshaw, 1989).

By the Riesz decomposition, there exists $\left(z_{1}, \ldots, z_{m}\right)$ verifying
$\sum_{i} z_{i}=z$,
$0 \leq z_{i} \leq x_{i}^{*}+\frac{1}{\lambda} v_{i}^{*}, \forall i$.

Since $0 \leq z_{i} \leq z=\frac{1}{\lambda} y \in \frac{1}{\lambda} W^{*}$, and W^{*} is solid, one has $z_{i} \in \frac{1}{\lambda} W^{*}, \forall i$.

From A6: $u_{i}\left(x_{i}^{*}+\frac{1}{\lambda}\left(v_{i}^{*}-\lambda z_{i}\right)\right)>u_{i}\left(x_{i}^{*}\right), \forall i ;$
and $1=p^{*} \sum_{i} v_{i}^{*} \geq p^{*} y$.

We have proved that p is continuous on $I(\bar{e})$ with the initial topology.

Since $I(\bar{e})$ is dense in E, p^{*} has a unique extension $\hat{p} \in E^{\prime}$.

Since $E=I(\bar{e})=\{x \in E| | x|\wedge n \bar{e} \rightarrow| x \mid\}$, and u_{i} is continuous on E_{+}, if $x^{\prime} \in E_{+}$and $u_{i}\left(x^{\prime}\right)>u_{i}\left(x_{i}^{*}\right)$, one has $x^{\prime} \wedge n \bar{e} \rightarrow x^{\prime}$ and hence, for n large enough $u_{i}\left(x^{\prime} \wedge n \bar{e}\right)>u_{i}\left(x_{i}^{*}\right)$. Therefore, $\hat{p}\left(x^{\prime} \wedge n \bar{e}\right) \geq \hat{p} x_{i}^{*}$ and $\hat{p} x_{i}^{\prime} \geq \hat{p} x_{i}^{*}=\hat{p} e_{i}$.

In other words, $\left(x^{*}, \hat{p}\right)$ is a quasi-equilibrium.
5. APPLICATION 2 : C.A.P.M.

As we mentioned in the introduction, the CAPM played a very important role in the finance literature although the problem of equilibrium existence was only discussed rather recently by Allingham (1991), Nielsen (1990a, 1990b).

In the next paragraph, we show that the "mutual fund" result and the "beta law" are only necessary conditions for equilibrium. They are however important relations from an equilibrium point of view because they may be used to bring down an infinite dimensional equilibrium problem to a two dimensional one.

5.1. The model

There are S states of the world. A σ-field φ models agents common information on the set S of states of the world and P is either an objective probability or agent's common subjective probability on (S, φ).

The economy E is described as follows. There is only one good taken as numéraire tradable at every state s.

There are n agents. Agent i is described by a consumption space X_{i} $\subseteq L^{2}(P)$ (we do not assume here that X_{i} is finite dimensional), an endowment ε_{i} and a utility function $u_{i}: X_{i} \rightarrow R$ assumed to be "mean variance", in other words, there exists $U_{i}: R \times R_{+} \rightarrow R$ such that $u_{i}(z)$ $=U_{i}(E(z), \operatorname{var}(z)), z \in X_{i}$ where $E(z)$ and $\operatorname{var}(z)$ denote the expectation and variance of z.

We make the following assumptions :

B1 $X_{i}=Z, \forall i$, where Z is a closed subspace of $L^{2}(P)$;
B2 $\varepsilon_{i} \in Z, E\left(\varepsilon_{i}\right)>0, \forall i . \varepsilon=\sum_{i=1}^{n} \varepsilon_{i}$ is not a constant, $E(\varepsilon)=1$, $\operatorname{Var}(\varepsilon)=1$;

B3 $\forall i, U_{i}$ is strictly concave, $C^{2}, U_{i}(., y)$ is increasing $\forall y \in R_{+}$, while $U_{i}(x,$.$) is decreasing \forall x \in R$;
B4 $1 \in Z$ (there exists a riskless asset).

As Z is a closed subspace of $L^{2}(P)$, an asset price φ being a continuous linear form is identified by Riesz representation theorem with an element of z. We denote by $\langle x, y\rangle$ the dot product of x and y in Z. Given a price φ, the budget set of an agent is defined by

$$
B_{i}(\varphi)=\left\{c_{i} \in L^{2}(P) \text { s.t. } \exists z \in Z ;\langle\varphi, z\rangle \leq 0, c_{i}=\varepsilon_{i}+z\right\}
$$

Equivalently,

$$
B_{i}(\varphi)=\left\{c_{i} \in Z,\left\langle\varphi, c_{i}\right\rangle \leq\left\langle\varphi, \varepsilon_{i}\right\rangle\right\}
$$

Definition - An equilibrium is a pair $(\bar{c}, \bar{\varphi}) \in Z^{n} \times Z$ with $\bar{c}=\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right)$ such that
a) \bar{c}_{i} maximizes $u_{i}\left(c_{i}\right)$ subject to $c_{i} \in B_{i}(\bar{\varphi})$, for every $i=1, \ldots n$, b) $\Sigma_{i=1}^{n} \bar{c}_{i}=\varepsilon$.

We first remark that the mutual fund result and the beta law are necessary conditions for equilibrium.

Let H denote the span of 1 and ε.

Proposition 7 - If $(\bar{c}, \bar{\varphi})$ is an equilibrium, then $\bar{\varphi} \in H$ and $\bar{c} \in H^{n}$. More precisely, there exist $\left(a, a_{1}, \ldots, a_{n}\right) \in R_{+}^{n+1}$ and $\left(b, b_{1}, \ldots, b_{n}\right) \in R^{n+1}$ such that (*) $\bar{\varphi}=-a \varepsilon+b$, and (*) $\bar{c}_{i}=a_{i} \varepsilon+b_{i}$ for every $i=1, \ldots, n$.

Proof - Let $c_{i}(\varphi)$ denote agent's i demand at price φ, being the solution to the problem :
$\max U_{i}(E(z), \operatorname{var}(z))$ subject to
$z \in Z,\langle\varphi, z\rangle \leq\left\langle\varphi, \varepsilon_{i}\right\rangle$.

It exists iff there exists a multiplier $\mu_{i} \in R_{+}$such that

$$
\begin{aligned}
& a_{i} 1+2 b_{i}\left(c_{i}(\varphi)-E\left(c_{i}(\varphi)\right) 1\right)=\mu_{i} \varphi \text { and } \\
& \mu_{i}\left(\left\langle\varphi, c_{i}(\varphi)\right\rangle-\left\langle\varphi, \varepsilon_{i}\right\rangle\right)=0,
\end{aligned}
$$

where $a_{i}=U_{i 1}\left(E\left(c_{i}(\varphi)\right), \operatorname{var}\left(c_{i}(\varphi)\right)\right)$ and $b_{i}=U_{i 2}\left(E\left(c_{i}(\varphi)\right), \operatorname{var}\left(c_{i}(\varphi)\right)\right)$.

Thus $c_{i}(\varphi)=\lambda_{i} 1-t_{i} \varphi$ with $t_{i} \in R_{+}$.
At equilibrium $\sum_{i=1}^{n} \bar{c}_{i}(\varphi)=\varepsilon$. Therefore summing up over agents,

$$
\left(\Sigma_{i=1}^{n} t_{i}\right) \bar{\varphi}=-\varepsilon+\Sigma_{i=1}^{n} \lambda_{i}
$$

Under B2 since ε is not a constant, we may write

$$
\begin{aligned}
& \bar{\varphi}=-a \varepsilon+b, a \in R_{+}, b \in R, \\
& \bar{c}_{i}=a_{i} \varepsilon+b_{i}, a_{i} \in R_{+}, b_{i} \in R \text { for every } i=1, \ldots, n,
\end{aligned}
$$

which proves the claim. As it is well known (**) is a mutual fund result and (*) is a version of the beta law.

It follows from proposition 7 that if $(\bar{c}, \bar{\varphi})$ is an equilibrium, then $\bar{\varphi} \in H$ and $\bar{c}_{i}=\bar{a}_{i} \varepsilon+\bar{b}_{i}$ for every $i=1, \ldots, n$ with $\left(\bar{a}_{i}, \bar{b}_{i}\right)$ solution of
$\max U_{i}\left(a+b, a^{2}\right)$
$\langle\bar{\varphi}, \mathrm{a} \varepsilon+\mathrm{b}\rangle \leq\left\langle\bar{\varphi}, \varepsilon_{\mathrm{i}}\right\rangle$
and $\sum_{i=1}^{n} \bar{a}_{i}=1, \sum_{i=1}^{n} \bar{b}_{i}=0$.

5.2. Existence of equilibrium when there exists a riskless asset

From the previous section it follows that we need only consider prices in H and that we may substitute for the original economy, the economy E which has the same equilibria, and is described by the list :

$$
\varepsilon=\left\{\bar{x}, \bar{u}_{i}: \bar{x} \subset H \rightarrow R, e_{i}, i=1, \ldots n\right\} \text { where }
$$

$\bar{x}=\{a \varepsilon+b \mid a \in R, b \in R\}, \bar{u}_{i}(a \varepsilon+b)=U_{i}\left(a+b, a^{2}\right)$ and e_{i} is the projection of ε_{i} on H, in other words $e_{i}=\bar{a}_{i} \varepsilon+\bar{b}_{i}$ with $\bar{a}_{i}=\operatorname{cov}\left(\varepsilon, \varepsilon_{i}\right), \bar{b}_{i}=E\left(\varepsilon_{i}\right)-\bar{a}_{i}$.

Let $\left(p_{1}, p_{2}\right)$ denote the price of ε and 1 , i.e. $p_{1}=\langle\varphi, \varepsilon\rangle$, $p_{2}=\langle\varphi, 1\rangle$. An equilibrium is now a quadruple ($a^{*}, b^{*}, p_{1}^{*}, p_{2}^{*}$) $\in R_{+}^{n} \times R^{n}$ $\times R \times R_{+}$with $a^{*}=\left(a_{1}^{*}, \ldots, a_{n}^{*}\right), b^{*}=\left(b_{1}^{*}, \ldots, b_{n}^{*}\right)$ such that
a) (a_{i}^{*}, b_{i}^{*}) maximizes $U_{i}\left(a+b, a^{2}\right)$ subject to

$$
p_{1}^{*} a+p_{2}^{*} b \leq p_{1}^{*} \bar{a}_{i}+p_{2}^{*} \bar{b}_{i} \quad \text { for every } i=1, \ldots, n,
$$

b) $\Sigma_{i=1}^{n} a_{i}^{*}=1, \Sigma_{i=1}^{n} b_{i}^{*}=0$.

Since U_{i} is increasing in $b, p_{2}>0$ and we may normalize prices so that $p_{2}=1$. Obviously, it is easier to work in the space of expectations and variances. Let us therefore make the change of coordinates $x=a+b, y=a, q=-p_{1}+1$. Finally let $V_{i}: R \times R \rightarrow R$ be defined by $V_{i}(x, y)=U_{i}\left(x, y^{2}\right)$. For every $i=1, \ldots, n, V_{i}$ is strictly concave and c^{2} and $v_{i y}(x, 0)=0$ for every x.

We may redefine an equilibrium as follows. Let $\bar{x}_{i}=E\left(\varepsilon_{i}\right)$, $\bar{y}_{i}=\operatorname{cov}\left(\varepsilon, \varepsilon_{i}\right)$ for every $i=1, \ldots, n$. An equilibrium is then a triple $\left(x^{*}, y^{*}, q^{*}\right)$ $\in R^{n} \times R_{+}^{n} \times R$ with $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right), y^{*}=\left(y_{1}^{*}, \ldots, y_{n}^{*}\right)$ such that
a) (x_{1}^{*}, y_{1}^{*}) maximizes $V_{i}(x, y)$ subject to

$$
x-q * y \leq \bar{x}_{i}-q^{*} \bar{y}_{i} \quad \text { for every } i=1, \ldots, n,
$$

b) $\sum_{i=1}^{n} x_{i}^{*}=1, \sum_{i=1}^{n} y_{i}^{*}=1$.

In other words (x^{*}, y^{*}, q^{*}) is the equilibrium of a two dimensional economy \mathcal{R} with consumption space R^{2}, agent's i utility $V_{i}(x, y)$ and agent's i endowment $\bar{x}_{i}=E\left(\varepsilon_{i}\right)$ and $\bar{y}_{i}=\operatorname{cov}\left(\varepsilon, \varepsilon_{i}\right)$.

Next we define the set of individually rational allocations A of the reduced economy \mathcal{R} by :

$$
A=\left\{\left(x_{i}, y_{i}\right)_{i=1}^{n} \mid \sum_{i=1}^{n} x_{i}=1, \sum_{i=1}^{n} y_{i}=1, v_{i}\left(x_{i}, y_{i}\right) \geq v_{i}\left(\bar{x}_{i}, \bar{y}_{i}\right), \forall i\right\}
$$

If $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in \mathbb{A}$ we have
(i) $0 \geq U_{i}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)-U_{i}\left(x_{i}, y_{i}^{2}\right) \geq U_{i 1}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)\left(\bar{x}_{i}-x_{i}\right)+U_{i 2}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)\left(\bar{y}_{i}^{2}-y_{i}^{2}\right), \forall i$, implying, as $U_{i 1}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)>0, \forall i$
(ii) $x_{i}-\bar{x}_{i} \geq \frac{U_{i 2}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)}{U_{i 1}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)} \bar{y}_{i}^{2}-\frac{U_{i 2}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)}{U_{i 1}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)} y_{i}^{2}, \forall i$.

$$
\text { As } \begin{aligned}
& \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} \bar{x}_{i}=1 \text {, we have } \\
& 0 \geq \sum_{i=1}^{n} \frac{U_{i 2}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)}{U_{i 1}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)} \bar{y}_{i}^{2}-\sum_{i=1}^{n} \frac{U_{i 2}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)}{U_{i 1}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)} y_{i}^{2} .
\end{aligned}
$$

Therefore $y_{i}^{2} \leq A_{i}, \forall i$ for some $A_{i}>0$.

From (ii), we also get :

$$
x_{1} \geq \bar{x}_{i}+\frac{U_{i 2}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)}{U_{i 1}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)} \bar{y}_{i}^{2}, \forall i, \text { since } U_{i 2}\left(\bar{x}_{i}, \bar{y}_{i}^{2}\right)<0
$$

Via $\sum_{i=1}^{n} x_{i}=1, x_{i}$ is also bounded above for every i.

Thus A is bounded. Since V_{i} is continuous, $\&$ is compact and so is the utility set of R. Hence assumptions H4 and H5 of theorem 1 are fulfilled for the reduced economy. H6 is obviously satisfied since there is no satiation point. We have therefore :

Theorem 3-Under assumptions B1, B2, B3, B4, there exists an equilibrium.

5.3. Existence of equilibrium without a riskless asset

In this section we assume

B4 Bis : $1 \notin Z$ (There doesn't exist a riskless asset).
Let η denote the projection of 1 on Z. We replace $B 2$ by

B2 Bis : $\varepsilon_{i} \in Z, E\left(\varepsilon_{i}\right)>0 \forall i ;$

$$
\varepsilon=\sum_{i=1}^{n} \varepsilon_{i} \text { is not proportional to } \eta . E(\varepsilon)=1
$$

Let us first remark the following :
Proposition 8 - Agent's i utility has a satiation point $s_{i}=t_{i} \eta$ for $t_{i}>0$.
Proof - $U_{i}(E(z)$, var $(z))$ being concave, has a maximum iff
$a_{i} \eta+2 b_{i}\left(s_{i}-E\left(s_{i}\right) \eta\right)=0$ with $a_{i}=U_{i 1}\left(E\left(s_{i}\right), \operatorname{var}\left(s_{i}\right)\right)$ and
$b_{i}=U_{i 2}\left(E\left(s_{i}\right), \operatorname{var}\left(s_{i}\right)\right)$. Thus s_{i} is a satiation point iff there exists a t such that $s_{i}=t \eta$ and the function $t \rightarrow U_{i}(t E(\eta), \operatorname{var}(t \eta))$ has a maximum. Since U_{i} is concave,

$$
U_{i}(t E(\eta), \operatorname{var}(t \eta)) \leq U_{i}(0,0)+t E(\eta) U_{i 1}(0,0)+t^{2} \operatorname{var}(\eta) U_{i 2}(0,0)
$$

Thus, $U_{i}(t E(\eta)$, $\operatorname{var}(t \eta)) \rightarrow-\infty$ as $t \rightarrow \mp_{\infty}$, since $U_{i 2}(0,0)<0$. Therefore $U_{i}(\operatorname{tE}(\eta), \operatorname{var}(t \eta))$ has a maximum.

Since its derivative at $t=0$ equals $E(\eta) U_{i 1}(0,0)>0$, the maximum is reached at a $t_{i}>0$.

Let H^{\prime} denote the span of η and ε. Using the same proof as in proposition 7 , while replacing $\left\langle 1, c_{i}\right\rangle$ by $\left\langle\eta, c_{i}\right\rangle$, one gets a mutual fund result and a beta law :

Proposition 9 - If $(\bar{c}, \bar{\varphi})$ is an equilibrium, then $\bar{\varphi} \in H^{\prime}$ and $\bar{c} \in H^{\prime}$. More precisely, there exist $\left(a, a_{1}, \ldots, a_{n}\right) \in R_{+}^{n+1}$ and $\left(b, b_{1}, \ldots, b_{n}\right) \in R^{n+1}$ such that (*) $\bar{\varphi}=-a \varepsilon+b \eta$ and (**) $\bar{c}_{i}=a_{i} \varepsilon+b_{i} \eta, \forall i$.

It follows that if $\left(c^{*}, \varphi^{*}\right)$ is an equilibrium, then $\varphi^{*} \in \mathrm{H}^{\prime}$.
Furthermore,

$$
\begin{aligned}
\bar{c}_{i} & =a_{i}^{*} \varepsilon+b_{i}^{*} \eta \text { for every } i=1, \ldots, n \text { with }\left(a_{i}^{*}, b_{i}^{*}\right) \text { solution of } \\
\max & U_{i}(a+b E(\eta), \operatorname{var}(a \varepsilon+b \eta)) \text { such that } \\
& \left\langle\varphi^{*}, a \varepsilon+b \eta\right\rangle \leq\left\langle\varphi^{*}, \varepsilon_{i}\right\rangle=\left\langle\varphi^{*}, e_{i}\right\rangle
\end{aligned}
$$

where e_{i} is the projection of ε_{i} on H^{\prime} and $\Sigma_{i}^{n} a_{i}^{*}=1, \sum_{i=1}^{n} b_{i}^{*}=0$. Thus, we need only consider prices in H^{\prime} and we may substitute for the original economy the economy \mathcal{E}^{\prime}, which has the same equilibria, and is described by the list:

$$
\begin{aligned}
& \mathscr{E}^{\prime}=\left\{\bar{x}, \bar{u}_{i}: \bar{x} \subset H^{\prime} \rightarrow R, e_{i}, i=1, \ldots, n\right\} \text { where } \\
& \bar{X}=\{a \varepsilon+b \eta \mid a \in R, b \in R\}, \bar{u}_{i}(a, b)=U_{i}(a+b E(\eta), \operatorname{var}(a \varepsilon+b \eta)) \text { and } \\
& e_{i}=\bar{a}_{i} \varepsilon+\bar{b}_{i} \eta .
\end{aligned}
$$

Let $\left(p_{1}, p_{2}\right)$ denote the price of ε and η, i.e. $p_{1}=\langle\varphi, \varepsilon\rangle$, and $p_{2}=\langle\varphi, \eta\rangle$.

An equilibrium is a quadruple $\left(a^{*}, b^{*}, p_{1}^{*}, p_{2}^{*}\right) \in R_{+}^{n} \times R^{n} \times R \times R$ with $a^{*}=\left(a_{1}^{*}, \ldots, a_{n}^{*}\right), b^{*}=\left(b_{1}^{*}, \ldots, b_{n}^{*}\right)$ such that
a) $\left(a_{i}^{*}, b_{i}^{*}\right) \operatorname{maximizes} U_{i}(a+b E(\eta), \operatorname{var}(a \varepsilon+b \eta))$ subject to

$$
p_{1}^{*} a+p_{2}^{*} b \leq p_{1}^{*} \bar{a}_{1}+p_{2}^{*} \bar{b}_{i} \quad \text { for every } i=1, \ldots, n,
$$

b) $\sum_{i=1}^{n} a_{i}^{*}=1, \sum_{i=1}^{n} b_{i}^{*}=0$.

Let us now show that the utility set of \mathscr{E}^{\prime} is compact. Indeed, since U_{1} is concave

$$
\begin{aligned}
& U_{i}(0,0)-\bar{u}_{i}(a, b) \geq-(a+b E(\eta)) U_{i 1}(0,0)-\operatorname{var}(a \varepsilon+b \eta) U_{i 2}(0,0) . \\
& \text { Let } M=U_{i}(0,0)-u_{i}\left(e_{i}\right) \text {. Then }
\end{aligned}
$$

$$
\left\{(a, b) \mid \bar{u}_{i}(a, b) \geq u_{i}\left(e_{i}\right)\right\} \subseteq\left\{(a, b) \mid M \geq-(a+b E(\eta)) U_{i 1}(0,0)\right.
$$

$$
\left.-\operatorname{var}(\mathrm{a} \varepsilon+\mathrm{b} \eta) \mathrm{U}_{i 2}(0,0)\right\}
$$

Tedious computation of $\operatorname{var}(a \varepsilon+b \eta)$ and the negativity of $U_{i 2}(0,0)$ show that this last set is bounded. Let A denote the set of individually rational allocations :

$$
A^{\prime}=\left\{\left(a_{i}, b_{i}\right)^{n} \mid \sum_{i=1}^{n} a_{i}=1, \sum_{i=1}^{n} b_{i}=0, \bar{u}_{i}\left(a_{i}, b_{i}\right) \geq u_{i}\left(e_{i}\right), \forall i\right\}
$$

Thus A^{\prime} is compact and again it follows that the utility set of \mathcal{E}^{\prime} is compact which takes care of assumptions H4 and H5.

In the spirit of Nielsen [1990b], we add two more assumptions in order to get H6:

B5 : $u_{i}\left(e_{i}\right)>U_{i}(0,0)$

B6 : $\max _{i}\left\{-\frac{y U_{i 2}(1, y)}{U_{i 1}(1, y)}\right\}<\frac{1}{2}$ with $y=\frac{1-E(\eta)}{E(\eta)}$.
Remark - Nielsen assumes that $u_{i}\left(\varepsilon_{i}\right)>U_{i}(0,0)$. Let us show that B5 is a less strong assumption. Indeed by definition, $\varepsilon_{i}=e_{i}+\ell_{i}$ where $\ell_{i} \in H^{\prime \perp}$. Since e_{i} is the projection of ε_{i} on $H^{\prime}, E\left(\varepsilon_{i}\right)=\left\langle 1, \varepsilon_{i}\right\rangle=\left\langle\eta, \varepsilon_{i}\right\rangle=$ $\left\langle\eta, e_{i}\right\rangle=\left\langle 1, e_{i}\right\rangle=E\left(e_{i}\right)$. Thus $E\left(\ell_{i}\right)=0$ and $\operatorname{cov}\left(e_{i}, \ell_{i}\right)=\left\langle e_{i}, \ell_{i}\right\rangle-$ $E\left(\ell_{i}\right) E\left(e_{i}\right)=0$. Therefore, $\operatorname{var}\left(\varepsilon_{i}\right)=\operatorname{var}\left(e_{i}\right)+\operatorname{var}\left(\ell_{i}\right)>\operatorname{var}\left(e_{i}\right)$, and $u_{i}\left(e_{i}\right)=U_{i}\left(E\left(e_{i}\right), \operatorname{var}\left(e_{i}\right)\right)=U_{i}\left(E\left(\varepsilon_{i}\right), \operatorname{var}\left(e_{i}\right)\right)>U_{i}\left(E\left(\varepsilon_{i}\right), \operatorname{var}\left(\varepsilon_{i}\right)\right)=u_{i}\left(\varepsilon_{i}\right)$.

Assume B5. If $\left(a_{i}, b_{i}\right)_{i=1}^{n} \in \mathbb{A}$, then
$U_{i}\left(a_{i}+b_{i} E(\eta), \operatorname{var}\left(a_{i} \varepsilon+b_{i} \eta\right)\right) \geq u_{i}\left(e_{i}\right)>U_{i}(0,0)$.
Therefore $a_{i}+b_{i} E(\eta)>0, \forall i$.
Since $\sum_{i=1}^{n}\left(a_{i}+b_{i} E(\eta)\right)=1$, we have $0<a_{i}+b_{i} E(\eta)<1$.
Next, we show that $B 6$ implies that $E\left(t_{i} \eta\right)=t_{i} E(\eta)>1$, with $t_{i} \eta$ a satiation-point.

Indeed, B6 is equivalent to
$E(\eta) U_{i 1}\left(1, \frac{\operatorname{var}(\eta)}{E(\eta)^{2}}\right)+2 \frac{\operatorname{var}(\eta)}{E(\eta)} U_{i 2}\left(1, \frac{\operatorname{var}(\eta)}{E(\eta)^{2}}\right)>0, \forall i$,
since $\operatorname{var}(\boldsymbol{\eta})=E(\eta)(1-E(\eta))$.
This implies that at $t=\frac{1}{E(\eta)}$, the function $U_{i}\left(t E(\eta), t^{2} \operatorname{var}(\eta)\right)$ is increasing. Thus $t_{i}>\frac{1}{E(\eta)}$.

Consequently, if $\left(a_{i}, b_{i}\right)_{i=1}^{n} \in \mathbb{A}^{\prime}$, then $a_{i} \varepsilon+b_{i} \eta \neq t_{i} \eta$, $\forall i$, which implies that H 6 is fulfilled.

Theorem 4 - Under B1, B2 bis, B3, B4 bis, B5 and B6 there exists an equilibrium.

REFERENCES

1. C.D.Aliprantis, D.J.Brown and O.Burkinshaw - "Existence and Optimality of Competitive Equilibria", Springer-Verlag, 1989.
2. M.Alligham - Existence Theorems in the Classical Asset Pricing Model, Econometrica, 1991, 59-4, 1169-74.
3. D. Brown, and J.Werner- Arbitrage and Existence of Equilibrium in Infinite Asset Markets, Unpublished, Stanford University 1993.
4. H. Cheng - Asset Market Equilibrium in Infinite Dimensional Complete Markets, Journal of Mathematical Economics, 1991, 20, 137-152.
5. G.Chichilnisky and G.M..Heal - Competitive Equilibrium in Sobolev Spaces without Bounds on Short Sales, Journal of Economic Theory, 1993, 59, 364-384.
6. O.Hart - On the Existence of Equilibrium in a Securities Model, Journal of Economic Theory, 1974, 9, 293-311.
7. J.Lintner - The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets, Review of Economics and Statistics, 1965, 47, 13-37.
8. A.Mas-Colell, and W.Zame - Equilibrium Theory in Infinite Dimensional Spaces, in W. Hildenbrand and H.Sonnenschein eds., The Handbook of Mathematical Economics, Vol.IV, 1991. North Holland.
9. L.T.Nielsen - Asset Market Equilibrium with Short-Selling, Review of Economic Studies, 1989, 56, 467-474.
10.L.T. Nielsen - Equilibrium in C.A.P.M without a Riskless Asset, Review of Economic Studies, 1990a, 57, 315-324.
11.L.T.Nielsen - Existence of Equilibrium in C.A.P.M, Journal of Economic Theory, 1990b, 52,223-231.
12.W.Sharpe - Capital Asset Prices : A Theory of Market Equilibrium Under Conditions of Risk, Journal of Finance, 1964, 19, 425-442.
10. J.Werner - Arbitrage and the Existence of Competitive Equilibrium, Econometrica, 1987, 55, 1403-1418.

Discussion Paper Series, CentER, Tilburg University, The Netherlands:

(For previous papers please consult previous discussion papers.)

No. Author(s)

9409 P. Smit

9410 J. Eichberger and D. Kelsey

9411 N. Dagan, R. Serrano and O. Volij

9412 H. Bester and E. Petrakis

9413 G. Koop, J. Osiewalski and M.F.J. Steel

9414 C. Kilby

9415 H. Bester

9416 J.J.G. Lemmen and S.C.W. Eijffinger

9417 J. de la Horra and C. Fernandez

9418 D. Talman and Z. Yang

9419 H.J. Bierens

9420 G. van der Laan, D. Talman and Z. Yang

9421 R. van den Brink and R.P. Gilles

9422 A. van Soest

9423 N. Dagan and O. Volij

9424 R. van den Brink and P. Borm

9425 P.II.M. Ruys and R.P. Gilles

9426 T. Callan and
A. van Soest

Title

Arnoldi Type Methods for Eigenvalue Calculation: Theory and Experiments

Non-additive Beliefs and Game Theory

A Non-cooperative View of Consistent Bankruptcy Rules

Coupons and Oligopolistic Price Discrimination

Bayesian Efficiency Analysis with a Flexible Form: The AIM Cost Function

World Bank-Borrower Relations and Project Supervision
A Bargaining Model of Financial Intermediation

The Price Approach to Financial Integration: Decomposing European Money Market Interest Rate Differentials

Sensitivity to Prior Independence via Farlie-Gumbel -Morgenstern Model

A Simplicial Algorithm for Computing Proper Nash Equilibria of Finite Games

Nonparametric Cointegration Tests

Intersection Theorems on Polytopes

Ranking the Nodes in Directed and Weighted Directed Graphs

Youth Minimum Wage Rates: The Dutch Experience

Bilateral Comparisons and Consistent Fair Division Rules in the Context of Bankruptcy Problems

Digraph Competitions and Cooperative Games

The Interdependence between Production and Allocation
l'amily Labour Supply and Taxes in Ireland

No.	Author(s)	Title
9427	R.M.W.J. Beetsma and F. van der Ploeg	Macroeconomic Stabilisation and Intervention Policy under an Exchange Rate Band
9428	J.P.C. Kleijnen and W. van Groenendaal	Two-stage versus Sequential Sample-size Determination in Regression Analysis of Simulation Experiments
9429	Mousehold Labour Supply in Urban Areas of a Developing Country	
9430	P. van Soest	

No.	Author(s)	Title
9446	E. Schaling and D. Smyth	The Effects of Inflation on Growth and Fluctuations in Dynamic Macroeconomic Models
9447	G. Koop, J. Osiewalski and M.F.J. Steel	Hospital Efficiency Analysis Through Individual Effects: A Bayesian Approach
9448	H. Hamers, J. Suijs, S. Tijs and P. Borm	The Split Core for Sequencing Games
9449	G.-J. Otten, H. Peters, and O. Volij	Two Characterizations of the Uniform Rule for Division Problems with Single-Peaked Preferences
9450	A.L. Bovenberg and S.A. Smulders	Transitional Impacts of Environmental Policy in an Endogenous Growth Model
9451	F. Verboven	International Price Discrimination in the European Car Market: An Econometric Model of Oligopoly Behavior with Product Differentiation
9452	P.J.-J. Herings	A Globally and Universally Stable Price Adjustment Process
9453	D. Diamantaras, R.P. Gilles and S. Scotchmer	A Note on the Decentralization of Pareto Optima in Economies with Public Projects and Nonessential Private Goods
9454	F. de Jong. T. Nijman and A. Röell	Price Effects of Trading and Components of the Bid-ask Spread on the Paris Bourse
9455	F. Vella and M. Verbeek	Two-Step Estimation of Simultaneous Equation Panel Data Models with Censored Endogenous Variables
9456	H.A. Keuzenkamp and M. McAleer	Simplicity, Scientific Inference and Econometric Modelling
9457	K. Chatterjee and B. Dutta	Rubinstein Auctions: On Competition for Bargaining Partners
9458	A. van den Nouweland, B. Peleg and S. Tijs	Axiomatic Characterizations of the Walras Correspondence for Generalized Economies
9459	T. ten Raa and E.N. Wolff	Outsourcing of Services and Productivity Growth in Goods Industries
9460	G.J. Almekinders	A Positive Theory of Central Bank Intervention
9461	J.P. Choi	Standardization and Experimentation: Ex Ante Versus Ex Post Standardization
9462	J.P. Choi	Herd Behavior, the "Penguin Effect", and the Suppression of Informational Diffusion: An Analysis of Informational Externalities and Payoff Interdependency
9463	R.H. Gordon and A.L. Bovenberg	Why is Capital so Immobile Internationally?: Possible Explanations and Implications for Capital Income Taxation

No. Author(s)	Title				
9464	E. van Damme and	Games with Imperfectly Observable Commitment			
	S. Hurkens		\quad		
:---	:---				
9465	W. Güth and E. van Damme Information, Strategic Behavior and Fairness in Ultimatum				
Bargaining - An Experimental Study -					

No. Author(s)
9483 B. Allen, R. Deneckere, T. Faith and D. Kovenock

9484 J.-J. Herings,
G. van der Laan, D. Talman, and R. Venniker

9485 V. Bhaskar

9486 K. Aardal, M. Labbé, J. Leung, and M. Queyranne

9487 W.B. van den Hout and J.P.C. Blanc

9488 F.C. Drost, C.A.J. Klaassen and B.J.M. Werker

9489 Z. Yang A Simplicial Algorithm for Testing the Integral Property of Polytopes: A Revision

Real Exchange Rate Misalignment and Redistribution
Evolution of the Meaning of Messages in Sender-Receiver Games: An Experiment

General Equilibrium in Asset Markets with or without ShortSelling
P.O. BOX 90153. 5000 LE THBUURG. THF NFTHFRLANDS

Bibliotheek K. U. Brabant

17000012125051

