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ABSTRACT - In this paper we extend the results of Cheng (1991), Brown
and Werner (1993) on the existence of equilibrium in infinite
dimensional asset markets : we do not assume that each agent’'s preferred
sets have a uniform direction of improvement but only assume that the
preferred sets of attainable allocations have non-empty interiors. We
then deduce existence theorems for asset markets without short-selling
and for the CAPM.
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INTRODUCTION
1]

The CAPM model of Sharpe (1964) and Lintner (1965) has been the
first model of equilibrium with consumption sets unbounded below. While
the implications of the model (the "mutual fund" result and the "beta
law") were widely used in finance, the problem of existence of an
equilibrium itself was ignored. Existence results were obtained only a
few years ago by Nielsen (1990a,b) and Allingham (1991).

The first finite dimension equilibrium existence result when
consumption sets are unbounded below was proven by Hart (1974) under the
assumption that agents’ utility functions were Von-Neumann Morgenstern
and that their directions of improvement were "positively
semi-independent”. Much later Werner (1987) and Nielsen (1989)
reconsidered the problem. Werner gave an existence result based on a
generalisation of Gale-Nikaido-Debreu’s lemma under the assumption that
there was at least one price for which there was "absence of arbitrage
opportunity” for all agents. Nielsen who makes fairly weak hypotheses on
preferences obtains a very general result under the assumption that

agents’ directions of improvement were "positively semi-independent"”.

In the infinite dimension case, two existence results based on
Negishi’s method were given by Cheng (1991) and Brown and Werner (1993)

and applied to subspaces of LP and Von-Neumann Morgenstern utilities.

In this paper, we extend the results of Cheng, Brown and Werner in
the following sense : we do not assume that each agent’s preferred sets
have a uniform direction of improvement nor do we assume the continuity
of wutility functions. We only assume that the preferred sets of

attainable allocations have non-empty interiors.

We first deduce from our result an existence theorem when the
consumption sets are the positive orthant of a locally convex solid
Riesz space. This result improves theorem 10.1 of Mas-Colell and Zame
(1991). We make a local non-satiation assumption instead of an uniform

direction of improvement assumption for the attainable allocations.
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This assumption can be viewed as a weaker form of the F-properness
condition in Mas-Colell and Zame.

We then get existence theorems for the C.A.P.M with an infinite

number of assets with or without a riskless asset.

The paper is organised as follows. In section 1, we present the
model and its assumptions. In section 2, we give some criteria for the
closedness and boundedness assumptions. The main result and its proof
are given in section 3. Section 4 and 5 are devoted to applications,
an equilibrium without short-selling and the C.A.P.M.

1. THE MODEL

We consider an exchange economy with commodity space E. The space E
is assumed to be a locally convex topological vector space. There are m
consumers. Each consumer i is described by a consumption set Xi c E, an

initial endowment ey and a preference relation which is represented by a

m
utility function ug x1 ->R. Let e = X e be the total endowment. An
i=1
allocation 1is a m-tuple x = (xl,...,xm) with xi € Xi. vi. It As
m
attainable if I Xy = e. It is individually rational attainable if it
i=1

is attainable and if ui(xi) z ui(el). Vi. Let A denote the set of all
individually rational attainable allocations. We normalize the utility

functions by requiring ui(el) =0, Vi.

An allocation x is weakly-optimal (W.0) if x € A and if there does
not exist another x’'e€ A such that ul(xi) > ui(xi) for every i. We denote
by F the set of weakly-optimal allocations. x is Pareto-optimal (P.0) if
x € A and if there exists no x’ € A such that ui(xi) z ui(xi). ¥i, and

u.(x") > u,(x,) for some j. The utility set U is defined as follows :

J3 Ji

m
U= {(zl.....zm) €eR, | 3xeAs.t. ulx) =z, Vi } :
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For x, € Xi, define the preferred-set of x

i i’

Pi(xl) = { x; € X; | ui(xi) > ul(xi)} .

;1 is a satiation-point of Xl if Pi(;l) = ¢.

Let E' denote the topological dual of E. A quasi-equilibrium is a
couple (x,p) such that

i) x €e A, p € EE\{0} ;
ii) Px; = pe;, Vi ;
iii) ul(xi) > ul(xi) => px; = pe; .

An equilibrium is a couple (x,p) which satisfies i),ii) and
iii bis) wu, (x}) > u; (%) => PX; > pe;.

It is well-known that a quasi-equilibrium (x,p) is an equilibrium

if vi, px, > Inf pX

i 1

The assumptions

We make the following assumptions :

H : Xi is closed, convex, non-empty for every i = 1,...,m.
H2 : e; € Xi, Vvi.

H3 : uy is strictly quasi-concave, Vi.

H4 : U is closed.

HS : U is bounded.

H6 : If x = (xl,...,xm) € A then Vi, int Pl(xi) * 9.

2. CRITERIA FOR CLOSEDNESS AND BOUNDEDNESS OF U

Let us recall that H5 is verified if, Vi, Xi is the positive

orthant of a topological lattice.



m
¥i and £ x, = 0}.

m
A ={xe I X |x €W,
® i=1 : | i i f=1 ¥
m
If A = {0} and if x € A_ and x * O, then px; > 0, Vi withpe n S,
i=1
contradicting I X, = 0. Thus Am = {0} and A is compact. Since u, is

i=1 5

continuous for every i, U is compact.

1i) Conversely, assume that U is closed and bounded. Let « belong

to the unit-simplex of R™ with oy > 0, Vi. Let u be a solution to

max { Z @,z ; Z € U}. There exists x € A such that Vi, Gi = ui(ii). Hence,

1
= m m &
there does not exist x € m W with b X = 0, and
i i
i=1 i=1

m 0.0 m

e wi is closed, contains no line and ( A -Vi) = Z- Hi

i=1 i=1 i=1
Therefore A - H? has a non empty interior. Equivalently A Si # ¢.

i=1 i=1
<]

Let us make some additional remarks :

a) We say that p is "viable" for agent i if his demand at p exists.
It may easily be proven that if E=R¢. p is "viable" for agent i iff

P € Si'



m
Thus the hypothesis n S1 # ¢ is equivalent to the existence of a
i=1
price which is viable for every agent.

b) We recall that the notion of absence of free lunch is more

restrictive than the notion of arbitrage free. Indeed if p e Rt admits
no free lunch for agent i then it is arbitrage free for this agent (see

Brown and Werner, 1993, proposition 1).

c) The hypothesis which is hard to verify is H4. We quote two

results.

Proposition 5 - (Chichilnisky-Heal, 1993). Assume that E is a reflexive

Banach space and X, = E, Vi. Assume moreover :

i

a) A is norm bounded,

b) ui is norm continuous and concave.
Then H4 and HS are fulfilled.

Proof - Obviously, HS is satisfied. We prove that H4 holds. Let (zn} e U
Vi. Since A is
i is

norm-continuous and concave, it is weakly upper semi-continuous. Thus

converge to z. There exists x™ € A such that ui(xg) =z,
convex, norm closed and norm bounded, it is weakly compact. Since u

there exists a converging subsequence x s X and ui(;l) =

lim ul(xi ) 2z, Vi. Thus z € U.

i’

Proposition 6 - (Cheng, 1991). Assume

a) X, = LP(u), Vi where u is a finite measure and 1 = P =ow
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b) Vi, ui(x) = I Ul(x(s))du(s] with U, : R —> R, strictly

increasing, strictly concave and

I Ui(x(s))du(s) € R, Vx € Lp(u)

Then U verifies H4 and HS.

Proof - It follows from proposition 2 and example 1 that HS holds. The
proof of H4 which is long and delicate can be found in Cheng (1991).

Under the above hypotheses Cheng (1991) also shows that if for at

least one agent i, lim 8U1(x) # + o, then A is not p-norm bounded. So
X—>-m
that in that case the hypothesis a) of proposition 5 is not fulfilled.

3. THEOREM 1

Assume H1,..., H6. Then there exists a quasi-equilibrium.
Proof

This will be done in several steps. Throughout this section we
assume that e = (eI,...,em) is not weakly-optimal. This assumption is
not restrictive since if e is W.O. then there exists p € E'\ {0} such

that (e,p) is a quasi-equilibrium (see e.g. Cheng, 1991).

Lemma 1 - Assume H4, HS. Then U is compact, convex with non

empty-interior.

Proof - It is obviously convex, compact. Its interior is non-empty since

e is not W.O.
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Let A be the unit-simplex of R", i.e,

m
e | 2 8 =1}

A= { s € R
i=1 1

and let f : A —> R+ be defined by

s € A > f(s) = max {« € R, |as € U}.

Since U has a non-empty interior, f(s) > O for every s € A.

Lemma 2 - Assume H1,...,H5. If x € A and if there exists an s € A such that
ui(xi) z f(s)sl. Vi, then x is weakly-optimal.

Conversely, for every s € A, there exists an x € A such that ui(xl) z
f(s)si, vi.

Proof - Obvious.

By Lemma 2, one can define
s €A > H(s) = {x € A | ul(xi) = f(s)si, Vi}.

Lemma 3 - Assume H4, HS, then f is continuous.

Proof - Let s"

€ A —> s and f(s™) —> «. Since U is closed, as € U , and
hence, a = f(s). Assume a < f(s). From Lemma 1, there exists W € U with

Wi >0, V.
Define : W = (1-y)f(s)s + W, for ¥ € 10,1[.
For y sufficiently close to 0, one has

7
as; < Hi. vi,

and therefore f(sn)s? < WZ, Vi, for n sufficiently large. Since W' e U

we have a contradiction with the definition of f(sn).
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Remark 1 - The proof of Lemma 3 does not require the continuity of the
utility functions u, as in Cheng (1991). One can also observe that Lemma
3 is true if U is compact, convex, comprehensive, i.e.,

veUand 0 s v’ sv =>vVv €U,

and if U contains an element W with Hi > 0; ¥i.

Lemma 4 - There exist a convex symmetric open set V of E, an integer k,

m finite sets of k elements of E, (U:,...,HT) with i=1,...,m, k
1 k 1 Uk

elements x ,...,x of A and k open sets of 4, U',..., which cover A,

such that :

Vs € A, s € UJ => Vi, ui(xf + V{ +z) > f(s)si, vz € V.

Proof - Let s € A and x° € H(s). From H6, Vi, there exists v, € E such that :
s s
ui(x1 + vl) > ui(xi) z f(s)si

Since f is continuous, Vi, there exists an open neigborhood Ui of s in
A such that :

s » Yoh » S
ui(x1 + Vi) > f(s )si. vs’' € U1 .

Let s" € 4, x"5 € A be such that :
.S S —
ul(x1 ) & £l )si = max {f(s )51| s’ eU } ‘

From H6, Vi, there exist a v; and a convex symmetric open set V? such

that :

s s " s 5 s
" " e , us .
ul(x1 T z) > ui(xi ) = f(s )sl, vz € Vi. vs' e Ug
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m
Define US = n U

and Vi, vis by xi vy %

Then we have :

s »S S s . s
vi, ui(x1 + vi +2z) > f(s )sl, vz € Vi, vs' € U”.
5 Sk
Let {U *,...,U 7} be an open covering of A. One has :
s s s s
Vs e A, selU J o ui(xiJ + vi J . z) > f(s)si, Vz € Vi-j

Define for every i :

s
- WP
bl Rl
m s
V=n nk V.l‘j
i=1 j=1
s
e e ez
and note : x1 x1
s
UJ =U J, Vi, Vvj.

Then :

Vs € A, s € UJ => Vi, ui(xf + wf +z) > f(S)Si’ Vz € V.

Next, define for s € A and for j =1,...,k, such that s e v .

wj(s) =z WJ, and
i 1

P(s) = {p e E'||pz| s 1, Vz € mV.pUJ(s) 2 1, Vj such that s e UJ }.
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Lemma 5

i) Vs € A, P(s) is convex, o(E’,E) - compact and non-empty.
1i) Vs € A, 3 p € P(s) such that :
vx, ul(xl) = f(s) sp M =1;.0:; MS> P f X, = pe.

Proof - Let s € A. Define :

vi, m(s) = {x € X; | u ) > £(s)s;},

and G(s) = £ n_ (s) - e.
;1

From Lemma 4, ui(xi + Hg + Zz) > f(s)si, vz € V, and Vj such that

s € UJ. Hence, for j such that s € UJ, HJ(s) + mV cG(s).

From the very definition of f, O & G(s). Thus, there exists p € E’\{0}
such that :

= pe, Vz with ui(zi) z f(s)s;,vi.

pZz
1 i

Let x with ui(xi) = f(s)si. Vi,and let I = {i |xi is not a satiation-point}.

For i € I, from H3, there exists vi(xi) such that :

Vo € 10,11, ui(x.1 + Vi(xi)) > f(s)si.

From Lemma 2, there exists y € A verifying ui(yl) z f(s)si, Vi, and
from Hé6, yi is not a satiation-point for any i. Hence, for i eI,
ui(xi) > ui(yi) z f(s)si.

Define x’ =x, + a v, (x,) for i eI,
i i 171

X3 X5 for i ¢ I.

Then I xi - e € G(s), and therefore
i
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pEX ®#a = p.V [k)E p;.
% i1
i iel

Letting @ —> O we obtain p I x, = pe, and statement ii) has been

i i

proved.

Since, Vj, HJ(s) +mV c G(s), we have :

vj, pwj(s) >0and | pz | sp UJ(s), Vz e m V.

J
Let Jo verify pW 0(s) = min p.NJ(s). We have

J
|J—p—- g 2|SIS+.WJ(S), Vz e m V.
oW 2(s) pW 2(s)
Thus, p’= __Ej____ belongs to P(s), i.e, P(s) is non-empty.It is
0
pW (s)

compact by Alaoglu’s theorem. Obviously P(s) is convex.

Define P(s) = {p € P(s) | ul(xi) = f(s) s

Vi=>p2x12p¢;).
i
Lemma 6

_ s s
Vp € P(s), Vi, Vx1 € Xl, ul(xil = f(s)si > px; = pxy, vx~ € H(s).

In particular : Vi, ui(xi) z ui(xf) with x° € H(s) => px; = pxi.
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Proof - Let x. € Xi with ui(xi) z f(s)sl, and let x° e H(s). Define :

i

x’, = xs ; ¥)l= i,

Let p € P(s). Then p £ x, =pe =p X Xs
y 4 ) <

, and hence , px,; z px?.

Let s € A, x° e H(s), and define :
m s
¢(s) = ((yl..‘.,ym) e R | Yy = ple; - x;), Vi, with p € Pis) }:
Lemma 7
(i) ¢ is convex uniformly bounded valued.
(ii) ¢ has a closed graph.
Proof - (i) P(s) is convex since P(s) is convex and therefore ¢(s) is

convex.

Now, Vi, let x, € X1 such that ui(xi) = max (u1 | (ul,...,um) e U}.

i

From Lemma 6, p§1 = pr , Vi, Vp € P(s). Since p; = Ip xs, we have :
i

px? = pé -~ Z pxj =z pE - p. ;J z B
J=i J=i

since p € P(s) which is ¢(E’ ,E)-compact.

s
Then |p(ei—x?) | = |p - eil + |p - X |

s max { | p.eg| +|p - ;il } * B.
peP(s)
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(11) Let y = lim y", s = lim s" with y" € ¢(s"), Vn. We have
P, € P(s™ < B(s™. For n sufficiently large, g € Uj for every j such

that s € UJ.

In other words, P, € P(s) for n large enough. Hence P, S p e P(s).

From H6 and H3, there exists vl(xf) such that :

s s s .
Va € ]0,11, ui(x1 + avi(xil) > ui(xl) = f(s)si, Vi.

The function f being continuous, we derive that

s s n, n
ui(x1 * avi(xi)) > f(s )Si' Vi, vn large enough.

S

s s o _n
From lemma 6, pn(xi + avi(xi)) = p. X =Pe; Yi o
s s
and p(x1 + a vi(xi)) = pe, Yy -
Let @« —> 0. This gives : px? zZpe; - Y; - Since Z x? =e and T Y5 B 0,
i 5 §

s
we have, Vi, px1 = pei - yi.

We now prove that p € P(s).

Let x with ui(xi) = f(s)si. Vi, and

let I = {i | x, is not a satiation-point }.

i
For i € I, from H3, there exists vi(xi) such that Va € 10,11,

ui(xi + avl(xi)) > f(s)si.



17

From Lemma 2, there exists x' € A such that,

ul(xi) z f(s)sl, vi.

From H6, xi is not a satiation-point for any i. In particular,

1el => ul(xi) > ui(xi) z “S)sl'
Since f is continuous, for every n large enough,

n, n
ul(xi +a v(xl)) > f(s )Si' Vi € I,
0, m
and ui(xl) > f(s )sl, vi ¢ I.
Since P, € P(s™) we have

*a E pvilx)=p e,
1 fei o I Ve | n

m
and p I x, +aX p.vi(xl) z p.e, for every a« € 10,1[.
=1 iel

Final step

First we verify that ¢ fulfills the boundary conditions. Indeed,

s; = 0 => f(s)sl =0 = ui(el).

Thus, from Lemma 6, pe; px? =Yy = 0.



Therefore, from the generallzed Kakutani theorem, there existls 5 € A
with 0 € ¢(s), l.e., there exlsts

p € P(S), x° € A verifying : p x? = Eel. vi,

o - -s
and ul(xi) z ul(xi) > P X =pXx;.

In other words, (x,p) is a quasi-equilibrium.

4. APPLICATION 1 : EQUILIBRIUM WITHOUT SHORT-SELLING

In this section the commodity space E is a topological locally
convex-solid Riesz space. Its positive orthant E‘ is closed and convex.

For x € E*, we define :

I(x) = {y e E| |y|] s Ax for some A > 0 }

If x is strictly positive then I(x) is dense in E (see Aliprantis,

Brown and Burkinshaw, 1989). We make the following assumptions :

e=% € is strictly positive ;
i

A3 : Vi, u, is strictly quasi-concave and continuous from E* into R ;3

3}
A4 : U is closed ;
AS : U is bounded ;
A6 : If x = (xl'”"xm) € A, then, for every i, there exist an open

neigborhood of 0, Hi_ and a vector vy such that

Ilv,) = I(e) and

vA € ]O,1], ul(xl

+ Alv, + 2)) > u,(x) if z € W, and if x. + A(v, + z) € E
i i i i i +
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Remark 2

i) In assumption A6, the condition I(vi) = I(e) is equivalent to :
there exist A > 0, p > O such that ué < Vi < Ae. If int E+ # ¢, and if
v, and e are strictly positive than this condition is satisfied since

i
I(e) = I(v)) = E.

ii) Consider the second statement of assumption A6. This condition
is weaker than the F-properness mentioned in Mas-Colell-Zame (1991). One
can also observe that, since u1 is strictly quasi-concave, this condition
is the reformulation of assumption H6 (non-satiation) of Theorem 1 when

int E* is empty.
Theorem 2

Assume Al,...,A6. There exists a quasi-equilibrium.
Proof - It will be done in two steps.

Step 1 - We shall prove there exists a quasi-equilibrium for the economy
with I(e) as commodity space. The consumption set for an agent i is
I,(e) = E,nl(e). The set of indlvidually rational attainable allocations
of this economy is equal to A, and hence the utility set is U. Thus,
assumptions H1,...,HS of Theorem 1 are satisfied.

Let us check now assumption H6 of Theorem 1. We shall endow I(e)

with the following norm :

[1x|]g=1inf {2 >0 ] |x| = Ae }.
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Since E 1is solid, every neigborhood of O (with the initial

topology) in E contains a neigborhood of O in I(e) (with the norm | Ilé)'

Consider the open set W, of assumption A6. From the remark above

i
there exists an open neighborhood of 0 in I(e), Vi. which is contained
in W, .Since I(vi) = I(e), one can choose V, such that v . + V, clae,pel

for some A > 0, u > 0, and therefore : x1 + v1 + z € E+. Vz € Vi. Hence,

H6é of Theorem 1 is verified.

One concludes there exists a quasi-equilibrium (x*,p*) of the

economy with I(e) as commodity space and p* € I(e)’ (the dual of I(e)
with the norm || IIE)'

Step 2 - We shall prove that p* is continuous in the initial topology

and has an extension p € E’ such that (x*, p) is a quasi-equilibrium for

the initial economy.

Denote by H;, v; the open sets and the vectors associated with x*

by assumption A6.

- - - * - 3
Since, ui(xl + vi +2z) = ui(x;), Vi’e Vi (V1 is defined above), we

have
p‘(v; +2z) 20, Vz € V; 5
and hence p* v; > 0.

Normalize p* by p* Z v; = 1.
5 ¢

Without loss of generality, assume H; symmetric and solid. Let

m
W* = n w;. We have just to prove that p* is bounded on W* n I*(é)
i=1

Let y € W* n I+(;). There exists A > 1 such that 0 <y < A e.

Define z = —%— y = e = T x*.
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One has : I x¥ - z +

since v; is strictly positive (I(v;) = I(e), e strictly positive => v;

strictly positive ; see Aliprantis, Brown and Burkinshaw, 1989).

By the Riesz decomposition, there exists (21,...,zm) verifying '

Since 0 = z; sz = % y € % W* , and W* is solid, one has z, € % W*, Vi.

1
% » 2 - _ - g
From A6 : ul(x1 el (vi A zi)) > “i(xi)' vi ;
and 1 = p* £ v; = p* y.
|

We have proved that p* is continuous on I(e) with the initial
topology.

Since I(e) is dense in E, p* has a unique extension p € E’.

Since E = I(e) = { x €e E | |x] A n e —> |x| }, and u, is

continuous on E+,1f x' € E+ and ui(x') > ui(x;), one has x> An e —> x’

and hence, for n large enough ui(x' Ane)> ui(x;). Therefore,

= figh = Do = T =
p(x* Ane) zp x3 and p X} = p X] = pe;.

In other words, (x*,p) is a quasi-equilibrium.



22

S. APPLICATION 2 : C.A.P.M.

As we mentioned in the introduction, the CAPM played a very
important role in the finance literature although the problem of
equilibrium existence was only discussed rather recently by Allingham
(1991), Nielsen (1990a, 1990b).

In the next paragraph, we show that the "mutual fund" result and
the "beta law" are only necessary conditions for equilibrium. They are
however important relations from an equilibrium point of view because
they may be used to bring down an infinite dimensional equilibrium

problem to a two dimensional one.

5.1. The model

There are S states of the world. A o-field ¥ models agents common
information on the set S of states of the world and P is either an

objective probability or agent’s common subjective probability on (S,¥).

The economy E is described as follows. There is only one good taken

as numéraire tradable at every state s.

There are n agents. Agent i is described by a consumption space )(.1
< LZ(P) (we do not assume here that Xi is finite dimensional), an
endowment € and a utility function u; Xi —> R assumed to be "mean
variance", in other words, there exists U.1 : R¥® R+——> R such that ui(z)
= Ul(E(z),var(z)), z € Xi where E(z) and var(z) denote the expectation

and variance of z.

We make the following assumptions :

B1 Xi = 2, Vi, where Z is a closed subspace of LZ(PJ

n
B2 €, € Z, E(ci) >0, Vi. e = I € is not a constant, E(g) = 1,
i=1
Var(e)=1 ;
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B3 Vi, U1 is strictly concave, C2, Ui(.,y) is increasing Vy € R_,
while Ui(x,.) is decreasing Vx € R ;
B4 1 € Z (there exists a riskless asset).

As Z is a closed subspace of LZ(P), an asset price ¢ being a
continuous linear form is identified by Riesz representation theorem

with an element of Z. We denote by <x,y> the dot product of x and y in
Z. Given a price ¢, the budget set of an agent i is defined by

Bi(v) = {c1 € LZ(P) s.t. 3z €2 ; <p,2> s 0, ¢y = ci+z}.

Equivalently,

Bi(vp) = {ci €2, < ¢9,c;> S <p,8y }

Definition - An equilibrium is a pair (c,p) € Z® x 2 with

c = (cl,...,cn) such that

a) c. maximizes ui(ci) subject to c; € Bi(a). for every i=1,...n,

=
1

b) T -
We first remark that the mutual fund result and the beta law are

necessary conditions for equilibrium.

Let H denote the span of 1 and €.

Proposition 7 - If (E.;) is an equilibrium, then a € Hand c € H'. More

n+1 1

n+
precisely, there exist (a.al....,an] € R+ and (b'bl""'bn) € R

such that (*) @ = -ac + b, and (**) Ei = ae ¢+ b for every

i
=1, . e 00,

Proof - Let cl(v) denote agent's 1 demand at price ¢, being the solution

to the problem :
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max UI(E(Z),var(z)) subject to

z € Z, b

<g.2z> = <@.€y

It exists iff there exists a multiplier By € R+ such that

a, 1 +2 bi(ci(wl = E(ci(w))l) = K0 and

i
“1(<¢’°1(°)> = <¢.ei>) =0,

where ai=U11(E(ci(¢)),var(ci(p))) and b1 = Uiz(E(ci(w)),var(ci(w))L

Thus ci(v) =A, 1-1t

i i ¢ with ti € R+.

At equilibrium z?=l Ei(w) = g¢. Therefore summing up over agents,
(Bl t) e=-e+rTi

Under B2 since € is not a constant, we may write

€|

= -a € + b, ae R+. b € R,

0l

. =a,e+b,, a.€e R ,b, €
i i i i +

i R for every i=1,...,n,

which proves the claim. As it is

and (*) is a version of the beta

It follows from proposition

¢ € H and c; =a; e+ bi

max Ui(a + b, az)

for every 1 =

well known (**) is a mutual fund result

law.

7 that if (c,¢) is an equilibrium, then

1,0 .,0 WEER (51, Bi) solution of
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5.2. Existence of equilibrium when there exists a riskless asset

From the previous section it follows that we need only consider
prices in H and that we may substitute for the original economy, the
economy & which has the same equilibria, and is described by the 1list 3

:XcH->R, e

i

& = {i, u v 1=1....n} where

X={ae+blaeR beR}, Gi(a € +b)= Ui(a+b,az) and e, is the
projection of & on H, 1In other words e, = 51 € + Ei with

a, = cov(c.ci), b,= E(el) - a

i i B

Let (pl.pz) denote the price of € and 1, i.e. pl = <¢p,e>,
p, = < @,1>. An equilibrium is now a quadruple (a*, b*, p;. pi) € R? x R®
x R x R with a* = (a*,...,a*%), b* = (b*,...,b*) such that
* | n ;| n

a) (a;,b;) maximizes Ui(a+b,a2) subject to

- » » * b =
P] a + P} b= P} 3; *+ P; b1 for every i=1,...,n,
n b =
b) I al =1 F_, b} =0
Since U1 is increasing in b, P, > 0 and we may normalize prices so

that p2=1. Obviously, it is easier to work in the space of expectations
and variances. Let us therefore make the change of coordinates
x=a+b, y=a q-= “Py + 1. Finally let V1 : Rx R —>R be defined
bg Vi(x,y) = Ui(x.yz). For every i=1,...,n, V1 is strictly concave and

C” and Viy(x,O) = 0 for every Xx.

We may redefine an equilibrium as follows. Let ;1 = E(ci).
;1= cov(c.el) for every i=1,...,n. An equilibrium is then a triple (x*,y*,q*)

n n = » . = - L]
€ R'x R* x R with x* = (x;,...,xn). y (yl,....yn) such that
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a) (x'.y;) maximizes V (x,y) subject to

X - q*y = §i - q.;i for every i=1,...,n,

In other words (x*,y*,q*) is the equilibrium of a two dimensional

economy R with consumption space RZ, agent’s i utility V_ (x,y) and

agent’s i endowment ;i = E(e,) and ;i = covl(e,e.).

Next we define the set of individually rational allocations £ of
the reduced economy R by :

n n
4 = { (xi,y i 1 | 51 % =L, 151 ¥y = ¢ Vi(xi.yi) = Vi(xi,yi),VI }

n
If (xi.yi)1=1 € 4 we have

s = =2 B o = =20 = _ /-
(1) o = Ui(xi'yi) Ui(xi'yi) & Uil(xi'yi)(xi xi) + U (x y H (y yi).Vl,

implying, as Uil(xi'yi) >0, Vi
- -2 -2
) _ Uiz(xi’yi) - Uiz( iYi ) 2 )
(f) %, =%, 52— —_y - i . Vi.
i i ~ s o ~ @
U l(xi'yi) Uil(xi'yi)
n n _
As Z X = z X; = 1, we have
i=1 i=1
- =2 - =2
n UiZ(xi'yi) 2 n U Z(Xi’yi) 2
N e e Rl =
i=1 Uil(xi'yi) i=1 Uil(xi'yi)
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Therefore yi = Ai' Vi for some A1 > 0.

From (ii), we also get :

w ol
Upplxy.yy) 5

= =2
Xy 2 X e _2) vy o Vi, since Ulz(xi’yi) < 0:
1,512 08
n
Via Z Xy = o I X is also bounded above for every 1i.
i=1

Thus & is bounded. Since V1 is continuous, & is compact and so is
the utility set of R. Hence assumptions H4 and HS of theorem 1 are
fulfilled for the reduced economy. H6 1is obviously satisfied since

there is no satiation point. We have therefore :

Theorem 3 - Under assumptions Bl, B2, B3, B4, there exists an
equilibrium.
5.3. Existence of equilibrium without a riskless asset

In this section we assume

B4 Bis : 1 ¢ Z (There doesn’t exist a riskless asset).
Let n denote the projection of 1 on Z. We replace B2 by

B2 Bis : €, € 2, E(ci) >0 Wi

i

g; is not proportional to m. E(g) = 1.
1

[y]
[}
e =)

i
Let us first remark the following :
Proposition 8 - Agent’s 1 utility has a satiation point s; = tin for t1> 0.

Proof - Ui(E(z).var(z)) being concave, has a maximum iff

am + Zbi(s1 - E(si)n] = 0 with a; = Uil(E(si),var(si)) and



28

b, = UiZ(E(si).var(si)). Thus s, is a satiation point iff there exists a

i i

t such that sy = tn and the function t —> Ui(tE(n),var(tn)) has a

maximum. Since Ui is concave,

U, (tE(n),var (tn)) = U,(0,0) + tE(m)U;,(0,0) + ¢ var (m)U,,(0,0).

Thus, Ul(tE(n),var(tn)) —> -w as t—> +m, since UiZ(O'O) < 0. Therefore
Ui(tE(n).var(tn)) has a maximum.

Since its derivative at t=0 equals E(n)Ull(0,0) > 0, the maximum
is reached at a ti > O

Let H' denote the span of m and €. Using the same proof as in
proposition 7, while replacing <1,c1> by <n,ci>, one gets a mutual fund

result and a beta law :

Proposition 9 - If (c,p) is an equilibrium, then ¢ € H' and c e H'". More

n+1 1

n+
precisely, there exist (a,al....,an) € R+ and (b,bl,...,bn) € R

such that (*) 5 = - ac + bn and (**) Ei =a;

£+ bin, Vi.
It follows that if (c*,¢*) is an equilibrium, then ¢* € H'.

Furthermore,

¢y = a;e + b;n for every 1 = 1,...,n with (a;.b;) solution of

max Ui(a+bE(n).var(ac+bu)) such that
< @*,ac+bn> = < ¢',ci> =< ¢',ei>

where e is the projection of €, on H’' and Z? aI =1, Z?=1 b; = 0.

Thus, we need only consider prices in H' and we may substitute for the
original economy the economy &', which has the same equilibria, and is
described by the list

& = (R, u; X c H® — R, e i=1,...,n} where

X = (ae+bn| a € R, b € R}, ﬁi(a,b) = Ui(a+bE(n).var(ac+an) and

ei = aic + binA
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Let (pl.pz) denote the price of € and n, i.e. P, = <p,e>, and
pz = <W0n>-

An equilibrium is a quadruple (a‘,b‘.p;,pi) € R? x R x R x R
#—(o% * ®=(p* -
with a (a1 ,...,an). b (bl""'bn) such that

a) (a;, b;) maximizes Ui(a + bE(n),var(ae + bn)) subject to

p;a # pib < p;£1 + p551 for every i=1,..., n,

. = . =
b) Ef_, at =1, E_ b} =0
Let us now show that the utility set of &' is compact. Indeed, since

U1 is concave

u,(0,0) - Gl(a,b) z - (a + bBE(1))U,(0,0) - var(ae + bm)U,,(0,0).
Let M = Ui(O'O) - ui(ei). Then

{(a,b)] u;(a,b) = u (eI} < {(a,b) | M=z - (a + BE(n))U,,(0,0)

- var(ae + bn)Uiz(0,0)L

Tedious computation of var(ae + by) and the negativity of UiZ(O’O)
show that this last set is bounded. Let 4’ denote the set of
individually rational allocations :

n

n n
t=1 | T a;=l, T b=0, u(a; b)) =ule), vi}

4 = {(a ,b,)
2 3 1=1 i=1

Thus 4’ is compact and again it follows that the utility set of &’

is compact which takes care of assumptions H4 and HS.

In the spirit of Nielsen [1990b], we add two more assumptions in

order to get H6 :
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BS : ui(ei) > Ui(0.0)

y U, (1,y)
) L i2 1 - 1-E(n)
B6 : m?x { Uil(l'y < 5 with y Em)

Remark — Nielsen assumes that “1(ci) > Ui(0,0). Let us show that BS is a
less strong assumption. Indeed by definition, €, = e .+ ti where tl e "L,

i i
Since e is the projection of €; on ) ; G E(ei) = <1.ci> = <m,e;> =
<"’ei> = <1,ei> = E(ei). Thus E(li) = 0 and cov (ei,tl) = <e1.ti> -

E(li)E(ei) = 0. Therefore, var(ei) = var(ei) + var(li) > var(ei). and
ui(ei) = Ui(E(ei),var(ei))= Ui(E(ei).var(ei)) > Ui(E(ei),var(ci)) = ui(ci).

o

Assume BS. If (a.,b )? e &', then
1”71 i=1

Ui(ai+biE(n).var(aic + bin)) = ui(ei) > Ui(o,o).

Therefore a; + biE(n) > 0, Vi.

n
Since I (ai + biE(n)) =1, we have 0 < a

+ biE(n) < s
i=1

i
Next, we show that B6 implies that E(tin) = tiE(n) > 1, with tin a
satiation-point.
Indeed, B6 is equivalent to

(1 var(n))+ 2 var(n) U var(n)

E(n) U (1, ¥ > 0, Mi;
W Em?  Em P Em)
since var(n) = E(n)(1-E(n)).
This implies that at t = E%ﬁT , the function Ui(tE(n), tzvar(n)) is
. 1
increasing. Thus ti > ) -

Consequently, if (ai'bll?—l € 4’, then ae + bin * tin, Vi, which
implies that H6 is fulfilled.

Theorem 4 - Under B1, B2 bis, B3, B4 bis, B5 and B6 there exists an
equilibrium.
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