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Abstract

High frequency data are often observed at irregular intervals, which complicates

the analysis of lead-lag relationships between financial markets. Frequently,

estimators have been used that are based on observations at regular intervals,

which are adapted to the irregular observations case by ignoring some

observations and imputing others. In this paper we propose an estimator that

avoids imputation and uses all available transactions to calculate (cross)

covariances. This creates the possibility to analyze lead-lag relationships at

arbitrarily high frequencies without additional imputation bias, as long as weak

identifiability conditions are satisfied. We also provide an empirical

application to the lead-lag relationship between the SP500 index and futures

written on it.
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1. Introduction.

Lead-lag relationships have been analyzed between many financial markets. A

prime example is the link between the index futures and the cash market, where

many researchers have found that the futures market leads the cash market (see

e.g. Kawaller, Koch and Koch (1987), Stoll and Whaley (1990), Chan (1992) and

Grünblicher, Longstaff and Schwartz (1994)). Others considered the relationship

between the stock market and the option market. Stephan and Whaley (1990) find

that the stock market leads the option market; this phenomenon is explained by

Chan, Chung and Johnson (1993). Also, an increasing number of securities is

traded on more than one financial market e.g. securities from many European

countries outside the UK are traded on London’s SEAQ International market in the

domestic currency. Analysis of the lead-lag relationship between these markets

would be yet another example.

In order to analyze information flows between markets on short time

intervals, high frequency data are required. Typically, all transactions for

some sample period are available for analysis. However, the statistical analysis

of transactions data is often hampered by the fact that the clock time interval

between such observations is varying. For some research questions, such as most

micro-structure issues, the differences in clock time interval are not very

important and one relies on estimating models in transaction time. However, for

the analysis of information flows between markets the clock time is of utmost

importance. The usual approach to tackle the problem of irregularly spaced

observations is to split the time axis in fixed length intervals of, say, 5

minutes, and use the last observation recorded in that interval in the

statistical analysis. This approach has two important drawbacks, however:
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(i) If the intervals are small and trading is not very frequent, some

intervals may contain no observation. This is referred to as the non-

trading or non-synchronous trading problem. Another cause of missing

observations are imperfections in data collection, e.g. errors on the data

file, which sometimes cause a loss of observations. In both cases, ad hoc

procedures to deal with missing observations must then be invoked.

(ii) On the other hand, in periods where trading is busy, a lot of observations

are thrown away. This makes the statistical analysis less efficient. The

loss of efficiency is an especially serious problem if busy trading is

associated with large price changes, which is usually the case.

In this paper we propose an estimator that avoids arbitrary imputation methods.

This creates the possibility to analyze lead-lag relationships at arbitrarily

high frequencies without additional imputation bias, as long as weak

identifiability conditions are satisfied.

The plan of the paper is as follows. In section 2 we introduce a

consistent estimator of the covariances and correlations of interest from

irregularly spaced data. In section 3 we derive the large sample distribution of

these estimators. In section 4 we discuss some potential extensions of the

method. Section 5 contains an empirical application to the lead-lag relationship

between the S&P500 index and the futures on this index. Section 6 concludes.

Technical details are discussed in the appendices.

2. Estimation of correlations in real time with irregularly spaced observations.

In this section, we present a method for estimating correlations between returns

from irregularly spaced transactions data. The underlying model is a discrete
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time process at an arbitrary time interval, not a continuous time process. We

first consider the case where the returns have zero mean and there are no

1deterministic components in the model . Let p and q denote the (logarithm of)t t

levels of the two price series under consideration, where t is the clock-time

index. The price levels are assumed to be non-stationary processes, which are

stationary after differencing. Denote the cross-covariance function of the

underlying returns (one-period price changes) by

(1) γ = Cov(∆p ,∆q ), ∆p ≡p -p , ∆q ≡q -q .k t t-k t t t-1 t t t-1

If the price levels were observed at every point, the covariancesγ could bek

estimated efficiently by the usual expressions. However, when using transactions

data there are potentially a lot of time intervals with no new observation on

the price level. One way to ‘solve’ this problem is to impute a zero return for

this interval, but that will bias the usual covariance estimators towards zero.

In order to obtain an unbiased covariance estimator, we use the differences

between observations on the price level over more than one interval. We then

infer the covariances of the underlying but unobserved one-period returns from

the cross-products of these more-period returns. In this section, we discuss

this method in some detail.

We index the observations on p by the index i and the observations on qt t

by the index j, and denote the total number of observations by N and M,

respectively. The differences between two observed price levels can be expressed

as sums of the returns of the unobserved underlying price process

t i + 1
(2) p -p = ∑ ∆pt t ti+1 i t= t +1i

4



thwhere t denotes the clock-time index of the i observation. The cross producti

of price changes on the two markets can thus be written as

t ti + 1 j + 1
(3) y ≡ (p -p )(q -q ) = ∑ ∆p ⋅ ∑ ∆q .ij t t t t t si+1 i j+1 j t= t +1 s= t +1i j

The expectation of this cross-product is a linear combination of the cross-

covariancesγ of the underlying processesk

t t t ti + 1 j + 1 i + 1 j + 1& *(4) E(y ) = E ∑ ∆p ⋅ ∑ ∆q = ∑ ∑ γ(t-s),ij 7 t s8t= t +1 s= t +1 t= t +1 s= t +1i j i j

where the expectation in (4) is conditional on the observed transaction times

(t ,t ,t ,t ). Let x (k) denote the number of times thatγ(k) appears ini j i+1 j+1 ij

this expression. In appendix A the following expression for the x (k) isij

derived:

(5) x (k) = max(0, min(t , t -k) - max(t ,t +k)).ij i+1 j+1 i j

An important property of the x ’s is that they are functions of the transactionij

times t only, not of the observed prices. Therefore, we replace thei

conditioning on the transaction times by a conditioning on the x ’s and writeij

E(y ) as a linear combination of the covariancesγ(k), k=-K,..,K, as followsij

K(6) E(y 1x ) = ∑ x (k)γ(k).ij ij ijk=-K

Our estimation method is based on the fact that equation (6) can be considered

as a regression equation with the unknown cross-covariancesγ as parameters andk
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the coefficients x as explanatory variables. In vector notation, theij

regression equation reads

(7) y ≡ x′ γ + eij ij ij

The covariances can then be estimated by ordinary least squares on the

2observations of y and the constructed x ’s . In principle, all possibleij ij

differences between observed prices can be used to construct an x and y .ij ij

However, we can confine ourselves to differences ofadjacent observations. The

reason for this is that differences of non-adjacent observations always can be

written as exact linear combinations of differences of adjacent observations.

For example, consider

(8) (p -p )(q -q ) =t t t ti+2 i j+1 j

(p -p )(q -q ) + (p -p )(q -q ) = y + yi+1,j ijt t t t t t t ti+2 i+1 j+1 j i+1 i j+1 j

For this reason, non-adjacent observations do not add information and can be

omitted. All in all, N times M cross-products y are available for theij

analysis. It is not necessary to use all of them, however, if the number of non-

zero cross-covariances is limited, say to K. In that case, all cross products

where 1t -t 1 ≥ K and 1t -t 1 ≥ K can be omitted because there will be noi+1 j i j+1

non-zero elements in x in that case. Let all useful observations be containedij

in the design matrix X and vector of observations y as follows
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( ) ( )
2 x (-K) .. x (K) 2 2 y 211 11 112 2 2 2
2 2 2 2x (-K) x (K) y2 12 .. 12 2 2 122
2 2 2 2. . .(9) X = 2 2, y = 2 2x (-K) x (K) y1M 1M 1M2 2 2 2
2 2 2 2. . .2 2 2 2
2 2 2 2x (-K) .. x (K) y2 NM NM 2 2 NM2
9 0 9 0

Following Cohen et al. (1983) and Lo and MacKinlay (1990,1991), we assume that

the order arrival process is independent of the price process. Under this

assumption, and if X′X is invertible and weak regularity conditions are

^ -1satisfied, the OLS estimatorγ ≡ (X′X) X ′y is a consistent estimator for the

unconditional covariances of γ = (γ ,..,γ )′. A necessary condition for-K K

consistency is that all omitted covariances (i.e. of order > K) are indeed equal

to zero. If these covariances are not equal to zero the regression model will

suffer from an omitted variables bias. Hence, even if one wants to estimate,

say, only the first order correlation, one should estimate the whole vector of

non-zero covariances.

The proposed estimator is more general than the models proposed by Cohen

et al. (1983) and Lo and MacKinlay (1991), because we do not assume a particular

process for the order arrival. As long as the order arrival process is exogenous

to the price changes our estimator yields consistent estimates of the

covariances in clock-time.

We shall now discuss some special cases of our estimator.

Example 1. Prices observed in every period.

The first case we discuss is the standard case where p and q aret t

observed in every period. In this case, only the usual first differences

∆p and ∆q need to be considered. When estimating cross-covariances -K tot t

K, the design matrix becomes
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( ) ( )
( ) 2 y 2 2 ∆p ∆q 21,1-K 1 1-K21 0 0 0 02 2 2 2 2
2 2 2 2 2 2y ∆p ∆q20 1 0 0 02 2 1,2-K 2 2 1 2-K 2
2 2 2 2 2 2
2. . . . .2 2 . 2 2 . 2
2 2 2 2 2 20 0 0 0 1 y ∆p ∆q1,1+K 1 1+KX = 2 2, y = 2 2 = 2 21 0 0 0 0 y ∆p ∆q2 2 2 2,2-K 2 2 2 2-K 2
2. .2 2 2 2 2
2 2 2 . 2 2 . 2
2. .2 2 2 2 2
2 2 2 . 2 2 . 2
20 . . 0 12 2 2 2 2

2y 2 2∆p ∆q 29 0 2 N,N+K2 2 N N+K2
9 0 9 0

Obviously, the X′X matrix is a diagonal matrix N⋅I , and X′y is a2K+1

vector with typical elements∑∆p ∆q , so that the OLS estimator is equalt t+k

^ -1to the usual covariance estimator,γ = N ∑∆p ∆q .k t t+k

Example 2. Regularly missing observations.

Now suppose that the prices are not observed in every period, but on

regularly spaced intervals. To choose the simplest example, suppose that

p and q are observed every second period. The useful cross-products thent t

are

y = (p -p )(q -q ) = (∆p +∆p )(∆q +∆q ) ⇒ij t t-1 t-k t-k-1t t-2 t-k t-k-2

E(y ) = γ + 2γ + γij k k-1 k-2

The design matrix X in the simplest case that K=1 takes the form

( )
21 2 1 0 02
2 2
20 0 1 2 12

X = 2. .2
21 2 1 0 02
2 2
20 0 1 2 12
9 0
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It is clear that the first and second column are exact multiples of each

other, so that there is extreme multicollinearity. Therefore X′X is

singular and not all cross-covariances can be estimated. This argument can

be generalized to the statement that either complete observations or some

irregularly missing observations are necessary to estimate all

covariances. Throughout this paper we shall assume that such identifying

conditions are satisfied.

From the estimates of the autocovariances, estimates of the autocorrelations can

be computed in the usual way. The cross-correlation function is defined as the

cross-covariances, scaled by the square root of the product of the estimated

variances of∆p and ∆qt t

γ̂(k)^(10) ρ(k) = ----------------------------------------------------------.
1/2^ ^[γ (0)γ (0)]p q

3. Large sample distribution of the estimators.

In this section we derive the large sample distribution of the estimators

derived in the previous section. This large sample distribution can be used to

test for the significance of lead-lag effects. We start from the usual result

that the regression estimator is asymptotically normal and that its variance-

covariance matrix can be expressed as

-1 -1(11) Ω = (X′X) X ′E(ee′)X(X ′X) .
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Two estimators of Ω will be considered. Under strong additional assumptions it

is possible to obtain an analytic expression forΣ=E(ee′). Subsequently we

present a more robust, White-type estimator ofΩ.

In order to derive the first estimator ofΩ, assume that∆p and ∆q aret t

generated by the same innovationsε , but with different MA coefficientst

∞∆p = φ ε + φ ε + φ ε + = ∑ φ εt 0 t 1 t-1 2 t-2 i =0 i t-i

(12)

∞∆q = θ ε + θ ε + θ ε + = ∑ θ εt 0 t 1 t-1 2 t-2 i =0 i t-i

Note that this assumption implies that the level variables p and q aret t
3cointegrated . In Appendix B it is shown that the elements ofΣ can be expressed

as

4(13) σ = x′ γ ⋅x′ γ + x′ γ⋅x′ γ + (µ -3σ )f(θ,φ)4ij,gh ig p jh q ih jg

where γ and γ denote the auto-covariances of {p } and {q }, respectively,µp q t t 4

the fourth moment of the innovations, and f(θ,φ) is an expression in the MA

coefficients. If the errors are non-normal, the MA coefficients and the fourth

moment of the innovation have to be calculated in order to estimate the

4(µ -3σ )f(θ,φ) term. This makes empirical application of this result cumbersome.4

An alternative and more robust way to calculate standard errors is a White

(1980) type estimator, where the expectation of X′ee′X is estimated by a

summation over all observations for which E(e e ) is non-zero. Thus, theij gh

estimator ofΩ becomes

-1 -1(14) Ω = (X′X) (∑ ∑ x x ′ e e ⋅I(σ ≠0))(X′X) ,ij gh ij gh ij gh ij,gh
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where I(.) is an indicator function which equals one ifσ ≠0, and zeroij,gh

elsewhere. The latter property is easily checked from equation (13). This

estimator will be consistent forΩ under much weaker assumptions on the data

generating process. For example, we do not need normality, nor the restrictive

assumption that both series (p and q) are generated by the same innovations.

Note that the number of non-zero covariances used to calculate the

standard errors in (13) or to calculate the indicator in (14) can be smaller

than the number of covariances actually estimated. For example, we can estimate

10 covariances, but calculate the standard errors under the hypothesis that all

but the first are zero. This will simplify and speed up the calculations of the

standard errors considerably.

4. Extensions of the method.

In this section, we discuss two potential extensions of our method to estimate

covariances on irregularly spaced data. The first extension is the inclusion of

a latent bid-ask spread, which is very relevant for the applications to

financial time series. The second extension is the inclusion of additional

observed explanatory variables.

To start with the first extension, suppose that the observed prices can be

decomposed in an equilibrium priceπ plus or minus a fixed bid-ask spread,i

δ=S/2. We are interested in estimating the autocorrelations of∆π . Define at

binomial indicator b , which can take values +1 and -1, such thati

(15) p = π + b δ,i i i

so that the observed price differences can be written as
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t i + 1
(16) p -p = π -π + (b -b )δ = ∑ ∆π + (b -b )δ.t t t t i+1 i t i+1 ii+1 i i+1 i t= t +1i

First, consider the case where we do not know whether the transaction is at the

bid or at the ask, hence b is unobserved. We now introduce some strongi

assumptions on the bid-ask indicator: b has expectation zero and isi

uncorrelated with both its own past and with the price and transaction time

processes. Note that these are basically Roll’s (1984) assumptions, and

therefore our method can be seen as an adaption of Roll’s estimator. Under these

assumptions, the expectation of the cross-product of price differences is

2 2(17) E[(p -p )(p -p )] = x′ γ + E[(b -b )(b -b )]δ = x′ γ + d δt t t t ij i+1 i j+1 j ij iji+1 i j+1 j

where γ now is the vector of covariances of the equilibrium price changes∆π ,t

and the the new regressor d is defined as follows: d =2 if i=j, d =-1 ifij ij ij

j=i+1 or j=i-1, and d =0 otherwise. Note that the values of d do not dependij ij

on the time of the transactions, only on the sequencing.

Equation (17) is a straightforward extension of the original model (5),

and the estimators and standard errors described in the previous sections can be

applied to this model immediately. Twice the square root of the estimated

coefficient of d can be used as an estimator for the realized bid-ask spread.ij

This estimator of the bid-ask spread is similar in spirit to the one proposed by

Roll (1984) and Richardson and Smith (1991), who use a GMM estimator to estimate

the mean, variance and bid-ask spread on series of overlapping returns. Our

estimator is more general than Roll’s estimator and Richardson and Smith’s

estimator because it allows for serial correlation in the equilibrium price

process and for irregular trading intervals. However, the spread estimator

suffers from the same weaknesses as Roll’s estimator: it needs the assumption
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that the bid-ask bounce is independent of the price process. Market

microstructure theory suggests that this is a very unrealistic assumption. For

example, in the Glosten-Milgrom (1985) model with only asymmetric information

there is a bid-ask spread, but the serial correlation in observed prices is

zero, hence Roll’s and our estimator will estimate a zero spread.

The second extension is the inclusion of observed regressors other than

the x ’s. Conceptually, this is trivial as it extends the model toij

(18) y = x′ γ + z′ β + e .ij ij ij ij

As long as the z ’s are uncorrelated with the error term, nothing changes andij

the OLS estimators and the robust standard errors will be consistent. This

extension is useful if the bid-ask indicator b is observed. In that case, thei

observed cross-products (b -b )(b -b ) can be added to the model asi+1 i j+1 j

additional regressors:

2(19) E(y ) = x ′γ + (b -b )(b -b )⋅δ + e .ij ij i+1 i j+1 j ij

In this case, there will be no bias in the effective spread estimates even if

the b series is serially correlated or depends on previous price changes.i

5. Empirical application.

In this section we present an empirical application of the proposed estimator to

the lead-lag relationship between the S&P 500 stock index and futures on this

index. As stated in the introduction, this is a well-studied relationship, with

the general conclusion that the futures market leads the cash market. Typically,

researchers have used five minute intervals, where few observations are missing.
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In this section, we also present results at the one minute interval, at which

more intervals without trade occur in the futures market. Since the stock market

index is adjusted every minute there are no missing data points on the index

unless the frequency at which the data are analyzed is even higher than one

minute.

Following Stoll and Whaley (1990), the relation between cash index prices

and futures prices can be expressed simply as

(20) F = S exp[(r-d)(T-t)],t t

where F denotes the futures price, S the cash price, (r-d) the interest ratet t

minus the convenience yield (dividends), assumed constant, and T the expiration

date of the futures contract. From (20) it is easily seen that there is an exact

theoretical relation between the logarithmic returns on the cash index and the

futures:

F S(21) R = (r-d) + R .t t

In practice, the equality does not always hold exactly. An obvious cause of

these deviations are measurement errors and the effect of the bid-ask spread.

Another explanation, which for the purpose of our paper is more interesting, is

given by potential differences in the speed at which information is disseminated

to both markets or the limited ability of index arbitrage, which involves

trading in a large number of assets. Therefore, it is interesting to assess

whether the returns on one market are predictable from the returns in the other

market.

Stoll and Whaley (1990) investigate this question for the US indexes.

Stoll and Whaley use observations on all transactions or quote changes of the
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S&P 500 index and the Major Market Index (MMI) and the futures on these indices.

The trading day is divided into intervals of 5 minutes. The first prices to be

observed in these intervals are then used to construct 5-minute returns in both

the cash index and futures markets. This creates some problems if there are no

transactions in some interval. Usually, a zero return for these periods is

imposed. Stoll and Whaley’s empirical methodology is in two steps. First, they

S Fcalculate the auto- and cross-correlations of R and R . The SP500 cash index

returns show strong positive serial correlation. The futures returns are almost

serially uncorrelated. Individual stock returns tend to be negatively serially

correlated due to the bid-ask bounce.

These results are exactly in the direction predicted by Lo and MacKinlay

(1991), who show that the returns of a continuously trading market must lead the

observed returns from a market with a positive probability of non-trading.

However, the magnitude of the correlations found by Stoll and Whaley cannot be

explained by the actually observed probability of non-trading. Chan (1992)

corroborates these conclusions on the Major Market Index, which consists of 20

large stocks and is therefore less prone to non-trading problems. The futures

returns lead the MMI index return by 15 minutes and also tend to lead individual

stock returns. Especially market-wide information seems to be processed faster

in the futures market.

The conclusion of the literature therefore is that the futures market

processes new information faster than the cash index market. In this paper we

shall investigate this proposition using the covariance estimators developed in

the previous sections. The estimator deals naturally with intervals without new

observations on the index or futures price. Therefore, the analysis can be

4performed on a higher frequency than the usual 5 minutes .

Our data concern spot and futures prices of the S&P 500 index, obtained

5from the ISSM. The sample is from the last quarter of 1993 . The index prices
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are time stamped exactly at the full minute, whereas the timing of the futures

prices is exact up to one second. The data are discretized by taking the last

trade or index report in a given interval as the value of the level variable for

that interval. If there is no single trade in an interval, this observation is

missing. We consider observations on the futures that expire in December 1993

(before 15/12) and March 1994 (after 15/12). As usual when dealing with intra-

day data, we exclude overnight returns from the analysis, as these cannot be

expected to have the same covariance structure as within-day returns, see French

and Roll (1986). We have nearly complete observations for the index. However,

for the futures there are intervals without transactions. For example, at the

one minute frequency, 13% of the intervals does not contain a new observation.

As a first step in the analysis, we estimate the autocorrelations of the

futures price changes and the index changes. Table 1 reports the autocorrelation

estimates of the index and Table 2 those of the futures returns. We consider

time intervals of ten and five minutes, as well as a one minute interval. In all

empirical results, the variance-covariance matrix of the estimates is calculated

under the assumption that only the variance and the first covariances of the

returns are non-zero. First, we consider the results on a five and ten minute

interval. Following Chan (1992), the maximum order of correlation considered is

six. The index returns show little serial correlation on a ten minute interval,

and positive first order correlation on a five minute interval, but further lags

are not significant. The futures returns are serially uncorrelated at both the

five and ten minute interval. If we increase the frequency of observation to one

minute, a different pattern emerges. For the index, the serial correlations are

significantly positive, up to order eight. The estimated autocorrelations are

smaller than the estimates in Harris et al. (1994), probably as a result of the

different sample period used. The first order autocorrelation in the futures

returns is significantly negative. This is very likely due to the bid-ask bounce
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of the futures contract. There is no significant higher order serial correlation

in the futures returns, which shows that all relevant information is immediately

reflected in the futures prices, even on such a high frequency as one minute.

We now turn to the lead-lag structure of cash and futures price changes.

The cross-correlations between futures and index returns are reported in Table

x f3. These are defined as the cross-covariances, Cov(R ,R ), divided by thet t-k

standard deviation of the index and futures return on the same interval. A

positive correlation for k>0 indicates that the futures returns have predictive

ability for the index returns. The results of this table are unambiguous: at all

intervals, the futures returns significantly lead the index returns. The time

span of this correlation is at least ten minutes, given the significant first

order cross-correlation at the ten minute interval. At the one minute frequency,

up to ten lead correlations of the futures are significant. This conclusion is

confirmed by the joint significance tests of all lead coefficients in Table 4.

On the other hand, there is no evidence that the index returns lead the futures

returns by more than five minutes, because the cross-correlations for k<0 are

insignificant at the five and ten minute intervals. At the one minute interval,

there is some lead correlation from the index to the futures returns, but only

up to two minutes.

The cross-correlations are stronger than is predicted by the

autocovariances in the index alone (cf. Boudoukh, Richardson and Whitelaw

(1994)). Hence, the correlation cannot be due solely to thin and nonsychronous

trading in the index alone. An alternative explanation, put forward by Chan

(1993) and Bossaerts (1993) is based on differential information in markets. If

firm specific information cannot be separated from market wide information in

the individual stock markets, index returns will be positively serially

correlated, despite the fact that the individual stock returns are serially
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uncorrelated. If the futures market reflects only market wide information it

will lead the returns on the cash index.

6. Conclusions.

In this paper we have developed a method for estimating covariances of non-

stationary time series with irregularly spaced observations. Under weak

conditions, this estimator is consistent under any pattern of missing

observations. Several extensions to include latent or deterministic variables

are developed.

We apply the method to the lead-lag relation between stock market index

returns and index futures returns. An analysis on a one minute frequency reveals

that the futures lead the cash index by at least ten minutes, whereas the cash

index leads the futures by at most two minutes. Another application of our

estimator can be found in De Jong, Mahieu and Schotman (1995). In that paper, we

apply the proposed methods to exchange rates. In particular, we study lead-lag

patterns between the actual Yen/Dmark exchange rate and the exchange rate

implied by cross-arbitrage via the US dollar exchange rates.
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Appendix A. An expression for x .ij

Recall the definition of x in (4). In this appendix we show how to simplifyij

the calculations necessary to obtain the elements of x . By changing the indexij

of summation from i-j to k and working out the resulting expression we obtain

t t t t -t -1 t -t -1i + 1 j + 1 i + 1 j i+1 j
x′ γ ≡ ∑ ∑ γ(t-s) = ∑ ∑ γ(k) = ∑ x (k)γ(k),ij ijt= t +1 s= t +1 t= t +1 k= t -t k= t -t +1i j i j+1 i j+1

What remains to be determined is the coefficient x (k) ofγ(k). To facilitateij

the derivation of this number, in Figure A the intervals [t ,t ] and [t ,t ]i i+1 j j+1

are graphed.

Figure A. Overlapping intervals between two pairs of observations.
q===========================================================================================================================================================================================e
2t t 2
2 i i +1 2
2 2
2j--------------k--------------k--------------k--------------k--------------l 2
2 2
2 j--------------k--------------k----------------k--------------k--------------k--------------l 2
2 2
2 2t t2 22 j j +12
z===========================================================================================================================================================================================c

The number of correlationsγ(k) between the price changes over these intervals

can be determined by shifting the [t ,t ] interval by k periods to the right,j j+1

to obtain [t +k,t +k]. The coefficient of γ(k) is exactly equal to the numberj j+1

of periods in the overlap of the intervals [t ,t ] and [t +k,t +k]. If thei i+1 j j+1

set of overlapping periods is not empty, the time index of the upper bound of

the overlapping interval is min(t ,t +k), and the time index of the loweri+1 j+1

bound of the overlapping interval is max(t ,t +k)). The number of covariancesi j

γ(k) is thus equal to the difference between the upper and lower bounds of this

interval. If the intervals do not overlap,γ(k) is by definition equal to 0. The

upshot of this analysis is the following expression
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x (k) = max(0, min(t ,t +k) - max(t ,t +k)).i+1 j+1 i jij

If the maximal order of correlation is restricted a priori, so thatγ(k)=0 for

1k1>K, then the summation over k is truncated between -K and K, as follows

Kx′ γ = ∑ x (k)γ(k),ij ijk=-K

where the definition of x (k) remains unchanged. Using this expression for xij ij

reduces the computation time substantially because double summations are

avoided.

In the case of estimating auto-covariances, the coefficients x (-k)ij

should be added to x (k) for all k=1,..,K. Note that x (0) is not changed. Theij ij

dimension of the regression model is thus reduced to K+1.
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Appendix B. The covariance structure of the error terms.

Let ∆p and ∆q have the following Wold representations, driven by the same innovationst t

ε but with different MA parameters {φ } and {ϑ }t i i

K
∆p = Σ φ εt i t-ii=0

K
∆q = Σ ϑ εt i t-ii=0

The error terms of the regression equation (5) are

t t t ti + 1 j + 1 i + 1 j + 1
e = y - E(y ) = ( ∑ ∆p )( ∑ ∆q ) - ∑ ∑ γ(t-s)ij ij ij t st= t +1 s= t +1 t= t +1 s= t +1i j i j

The covariance between two such errors is

t t t ti + 1 j + 1 g+ 1 h+ 1& *E(e e ) = E ( ∑ ∆p )( ∑ ∆q )( ∑ ∆p )( ∑ ∆q ) -ij gh 7 t s u v 8t= t +1 s= t +1 u= t +1 v= t +1i j g h

t t t ti + 1 j + 1 g + 1 h+ 1& *& *∑ ∑ γ(t-s) ∑ ∑ γ(u-v)
7 87 8t= t +1 s= t +1 u= t +1 v= t +1i j g h

t t t ti + 1 j + 1 g+ 1 h + 1& *= ∑ ∑ ∑ ∑ E(∆p ∆q ∆p ∆q ) - γ(t-s)γ(u-v)
7 t s u v 8t= t +1 s= t +1 u= t +1 v= t +1i j g h

By application of the expression given in Brockwell and Davis (1987, p.220), for

the expectation of the four-fold product∆p ∆q ∆p ∆q we obtaint s u v
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t t t ti+ 1 j + 1 g+ 1 h + 1&E(e e ) = ∑ ∑ ∑ ∑ γ (t-u)γ (s-v) + γ(t-v)γ(u-s) +p qij gh 7t= t +1 s= t +1 u= t +1 v= t +1i j g h

K
*4(µ -3σ ) Σ ϑ ϑ φ φ4 i i+s-t i+u-t i+v-t8i=0

2where γ and γ denote the auto-covariances of∆p and ∆q, respectively, andσp q

6and µ denote the second and fourth moment of the innovationsε .4 t

The expression for the covariance considerably simplifies if the

4innovations ε are normally distributed. In that case, the (µ -3σ ) term4t

vanishes and the resulting expression contains only auto- and cross covariances

and the fourfold summation can be split into products of double summations

t t t ti+ 1 j + 1 g+ 1 h + 1& *E(e e ) = ∑ ∑ ∑ ∑ γ (t-u)γ (s-v) + γ(t-v)γ(u-s) =p qij gh 7 8t= t +1 s= t +1 u= t +1 v= t +1i j g h

t t t ti + 1 g+ 1 j + 1 h + 1& *& *∑ ∑ γ (t-u) ∑ ∑ γ (s-v) +p q7 87 8t= t +1 u= t +1 s= t +1 v= t +1i g j h

t t t ti + 1 h+ 1 g+ 1 j + 1& *& *∑ ∑ γ(t-v) ∑ ∑ γ(u-s)
7 87 8t= t +1 v= t +1 u= t +1 s= t +1i h g j

In shorthand, using the definition of x , this can be written as (13).ij
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Table 1. Autocorrelations of index returns.
q p p p===========================================================================================================================================================================================================================================================================e
2 lag1 10 minutes1 5 minutes1 1 minute2
2 1 1 1 2[--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
2 010.003869 (7.53)10.001449 (9.03)10.000166(19.83)2
2 1 1 1 2
2 11 0.083 (1.37)1 0.278* (5.09)1 0.195* (5.84)2
2 1 1 1 2
2 21 -0.023 (0.50)1 0.037 (0.82)1 0.176* (7.08)2
2 1 1 1 2
2 31 0.008 (0.19)1 -0.023 (0.50)1 0.144* (7.16)2
2 1 1 1 2
2 41 -0.032 (0.51)1 -0.014 (0.31)1 0.125* (7.44)2
2 1 1 1 2
2 51 0.020 (0.44)1 0.007 (0.14)1 0.094* (5.87)2
2 1 1 1 2
2 61 0.038 (0.59)1 -0.011 (0.23)1 0.082* (4.66)2
2 1 1 1 2
2 71 1 1 0.040* (2.23)2
2 81 1 1 0.052* (2.97)2
2 91 1 1 0.019 (0.74)2
2 1 1 1 2
2 101 1 1 0.011 (0.44)2
2 1 1 1 2
2 111 1 1 -0.005 (0.19)2
2 1 1 1 2
2 121 1 1 0.005 (0.22)2
2 1 1 1 2
2 131 1 1 0.009 (0.32)2
2 1 1 1 2
2 141 1 1 -0.007 (0.23)2
2 1 1 1 2
2 151 1 1 -0.006 (0.16)2
2 1 1 1 2[--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
2 nobs1 8231 16191 79892
2 1 1 1 2
2%missing1 (0)1 (0)1 (0)2
z $ $ $===========================================================================================================================================================================================================================================================================c
Note: lag 0 denotes the variance of the series, other numbers are correlations.

The numbers in parentheses are heteroskedasticity and serial correlation

consistent t-statistics (calculated with one lag and lead window).
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Table 2. Autocorrelations of futures returns.
q p p p===========================================================================================================================================================================================================================================================================e
2 lag1 10 minutes1 5 minutes1 1 minute2
2 1 1 1 2[---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
2 010.004646 (8.68)10.002179(12.57)10.000464(29.45)2
2 1 1 1 2
2 11 -0.005 (0.08)1 0.039 (0.86)1 -0.287*(13.39)2
2 1 1 1 2
2 21 0.016 (0.26)1 0.023 (0.49)1 -0.028 (1.52)2
2 1 1 1 2
2 31 0.010 (0.11)1 -0.019 (0.32)1 0.005 (0.29)2
2 1 1 1 2
2 41 0.000 (0.00)1 -0.004 (0.05)1 0.012 (0.58)2
2 1 1 1 2
2 51 0.019 (0.15)1 0.024 (0.27)1 -0.011 (0.41)2
2 1 1 1 2
2 61 0.046 (0.32)1 -0.047 (0.52)1 -0.007 (0.24)2
2 1 1 1 2
2 71 1 1 0.027 (0.61)2
2 81 1 1 0.003 (0.06)2
2 91 1 1 -0.013 (0.29)2
2 1 1 1 2
2 101 1 1 0.011 (0.21)2
2 1 1 1 2
2 111 1 1 0.037 (0.73)2
2 1 1 1 2
2 121 1 1 -0.024 (0.53)2
2 1 1 1 2
2 131 1 1 -0.023 (0.49)2
2 1 1 1 2
2 141 1 1 0.002 (0.05)2
2 1 1 1 2
2 151 1 1 0.026 (0.47)2
2 1 1 1 2[---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
2 nobs1 7601 14941 68072
2 1 1 1 2
2%missing1 (0)1 (1)1 (14)2
z $ $ $===========================================================================================================================================================================================================================================================================c
Notes: see table 1.
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Table 3. Correlations between index and future returns.
q p p p=============================================================================================================================================================================================================e
2lag1 10 minutes1 5 minutes1 1 minute2
2 1 1 1 2[-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
2-151 1 1-0.005 (0.25)2
2 1 1 1 2
2-141 1 1 0.006 (0.36)2
2 1 1 1 2
2-131 1 1 0.013 (0.94)2
2 1 1 1 2
2-121 1 1-0.031 (2.40)2
2 1 1 1 2
2-111 1 1 0.008 (0.60)2
2 1 1 1 2
2-101 1 1 0.001 (0.04)2
2 1 1 1 2
2 -91 1 1 0.002 (0.17)2
2 1 1 1 2
2 -81 1 1 0.012 (0.83)2
2 1 1 1 2
2 -71 1 1-0.002 (0.14)2
2 1 1 1 2
2 -61 0.061 (1.06)1-0.010 (0.25)1 0.014 (0.76)2
2 1 1 1 2
2 -51 0.057 (1.30)1-0.018 (0.49)1-0.014 (0.87)2
2 1 1 1 2
2 -41-0.039 (0.57)1 0.020 (0.69)1 0.015 (0.98)2
2 1 1 1 2
2 -31 0.025 (0.48)1-0.014 (0.29)1 0.008 (0.47)2
2 1 1 1 2
2 -21-0.004 (0.10)1-0.002 (0.04)1 0.033* (3.15)2
2 1 1 1 2-1 0.008 (0.12) 0.075 (1.46) 0.164* (9.19)2 1 1 1 2
2 01 0.647* (6.09)1 0.514* (7.43)1 0.101* (5.07)2
2 1 1 1 2
2 11 0.311* (4.43)1 0.440* (6.82)1 0.171* (7.23)2
2 1 1 1 2
2 21 0.022 (0.50)1 0.146* (3.17)1 0.168* (7.11)2
2 1 1 1 2
2 31 0.015 (0.33)1 0.044 (1.25)1 0.145* (7.81)2
2 1 1 1 2
2 41-0.005 (0.08)1 0.009 (0.28)1 0.110* (6.35)2
2 1 1 1 2
2 51 0.006 (0.12)1 0.003 (0.08)1 0.103* (6.37)2
2 1 1 1 2
2 61 0.013 (0.41)1-0.014 (0.38)1 0.058* (4.32)2
2 1 1 1 2
2 71 1 1 0.056* (3.57)2
2 1 1 1 2
2 81 1 1 0.023 (1.44)2
2 1 1 1 2
2 91 1 1 0.056* (3.83)2
2 1 1 1 2
2 101 1 1 0.020 (1.25)2
2 1 1 1 2
2 111 1 1 0.039* (2.42)2
2 1 1 1 2
2 121 1 1 0.025 (1.57)2
2 1 1 1 2
2 131 1 1 0.010 (0.66)2
2 1 1 1 2
2 141 1 1 0.032* (2.41)2
2 1 1 1 2
2 151 1 1-0.001 (0.08)2
z $ $ $=============================================================================================================================================================================================================c
Note: the entries in this table are estimates of the cross-correlations,

i.e. Cov(∆s ,∆f ) divided by the standard deviation of∆s and ∆f .t t-k t t
The numbers in parentheses are heteroskedasticity consistent t-statistics.
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Table 4. Joint significance of 6 lead or lag covariances.
q p p p============================================================================================================================================================e
2 110 minutes15 minutes11 minute2
2 1 1 1 2[-----------------------------------------------------------------------------------------------------------------------------------------------------------]
2 1 1 1 2lag 1.01 6.73 99.35
2 1 1 1 2
2lead1 20.451 61.011 167.222
z $ $ $============================================================================================================================================================c
Notes: the entries are Wald (F-)statistics for the joint hypothesis that

the lag (k<0) or lead (k>0) covariances are all equal to zero. The asymptotic
2distribution of this statistic isχ (6).

-------------------------------------------------------------------------------------------------------------------------------------------------------------

1 These will be introduced in the model in section 4.
2 In order to calculate auto-covariances of a time series with irregularly

spaced observations, we have to change the definition of x slightly because inij
that caseγ(k)=γ(-k).
3 For the empirical example in section 5, where we estimate cross-correlations

between a stock index and index futures, this is a reasonable assumption.
4 The only study (to our best knowledge) which uses one minute returns is Harris

et al. (1994). However, they calculate only autocorrelations and no lead-lag

correlations between index and futures returns.
5 Not all trading days were reported on the tape. In total, we have only 19

complete trading days available. The maximum number of observations for the

index series and the futures series are different because the trading day for

futures is usually shorter than the period for which the index is reported.
6 This result corresponds to that found in Hannan (1960, p.39).
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