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Abstract

In a recent paper, Kyle Bagwell claimed that the power to commit oneself to an
action does not confer any strategic benefit if this commitment can only be observed
imperfectly. In this paper we show that the validity of this claim depends crucially
on the restriction to pure strategy equilibria. Specifically, the game analysed by
Bagwell always has a mixed equilibrium that is close to the Stackelberg equilibrium
of the game in which the commitment is observed perfectly. We introduce a new
theory of equilibrium selection that combines elements from the theory of Harsanyi
and Selten (1988) with elements from the theory of Harsanyi (1993). When the

noise is sufficiently small, this theory selects the Stackelberg equilibrium.
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1 Introduction

One of the most important insights in game theory is that the power to commit onesell
may confer a strategic advantage: it may be beneficial to constrain one’s own behavior
in order to induce others to behave in a way that is favorable to onesell. One possibility
to commit oneself is to move early: to preempt the others by choosing and communi-
cating the (irreversible) action that one takes before the rivals take their actions. This
idea dates back at least to Von Stackelberg (1934) who demonstrated the existence of
a “first-mover advantage” in a quantity-setting duopoly. Schelling’s (1960) classic The
Strategy of Conflict generalized Von Stackelberg’s initial insight in several dimensions
by describing richer commitment tactics as well as illustrating the ubiquity of the phe-
nomenon that in independent decision situations weakness confers strength, that power

may result from the power to bind oneself.

Schelling already pointed out that for a commitment to an action to be credible, the
commitinent must be irreversible, at least reneging should be sufficiently costly. Schelling
also stressed that the efficacy of commitment depends on the communication structure
of the game. If the opponent is unavailable for messages, or can destroy all communi-
cation channels before any communication takes place, being able to commit oneself is
of no value. Hence, commitment can be beneficial only if the communication channel is
sufficiently reliable. Just how important this latter requirement is has been shown in a
recent paper by Kyle Bagwell (1992). Bagwell shows that a precise communication of
the commitment is important, that it is vital that there are no ambiguities, that there
are no misunderstandings about the action to which the player committed himself. In
fact, Bagwell claims that the first-mover advantage is completely eliminated when there
is even a slight amount of noise associated with the observation of the first-movers ac-
tion. Specifically, he shows that, if there is some noise, a pure strategy Nash equilibrium
outcome of the game in which one of the players can commit must be a Nash equilibrium
outcome of the game in which this commitment possibility is absent. This is a counter-

intuitive and striking result and it suggests that a reconsideration of the literature that



applies the idea of a “first-mover advantage” might perhaps be required.

The intuition for Bagwell’s result can be easily conveyed. Let g = (A, Az, u1,uz) be a
2-person normal form game and consider the sequential move game with player 1 moving
first. However, assume that player 2 is only imperfectly informed about this commit-
ment. Specifically, if player 1 commits to a; € A;, player 2 receives the signal a} € A,
with probability p(a} | ;) > 0 where p(a; | a;) = 1. Hence, player 2 is almost perfectly
informed about the commitment. The crucial observation, however, is that if player |
commits to the pure action aj, the signal that player 2 receives is uninformative. Since
all information sets of player 2 are reached with positive probability, Bayes’ rule dictates
that 2 believes that 1 played aj no matter what signal he receives. In equilibrium, player
2 best responds to af for all possible messages, hence, if 2’s best response to aj in g is
unique (say it is a}), then 2 will respond with a3 no matter what message he receives.
However, then, in order to have an equilibrium in the sequential move game, aj should

be a best response against a} in g, hence, (a},a3) must be an equilibrium of g.

As the above paragraph has shown, Bagwell’s result is driven by the specific type of
imperfection in the communication technology that he assumes. It is not the case that
the commitment sometimes is not communicated, it is rather that the opponent with a
small probability receives the wrong message. To put it differently, Bagwell’s is a model
of errors in perception, rather than errors in communication. His result depends on the
assumption that if, for example, a seller commits himself to “I do not sell for a price less
than $100”, the buyer might interpret this as “I do not sell for less than $10,000” or as
a commitment to “I give the object away for free”. We do not want to enter into the
debate about whether this is a sensible assumption, although we believe that this specific
assumption might explain why Bagwell’s result appears counterintuitive at first. It is,
however, important to note that the assumption is crucial for the result. If communica-
tion errors would take the form as suggested by Schelling (i.e. commitments would not
necessarily be communicated to the second mover, but if they would be communicated,

they would be communicated without error), then there would not be a lack of robust-



ness of the type that Bagwell notes. The reader can easily verify that in the latter case,
as long as the probability that the commitment is received is sufficiently high, a player

will commit himself to his Stackelberg strategy. (See Chakravorti and Spiegel (1993)).

As we do not wish to claim that Schelling’s modelling of the errors is necessarily bet-
ter than Bagwell’s, we take Bagwell’s claim seriously. However, does the theorem that
Bagwell proves justify the claim that he makes? Does the result that the pure equilib-
rium ontcomes of the noisy sequential move game coincide with the pure equilibrium
outcomes of the simultaneous move game really allow us to conclude that “with even the
slightest degree of imperfection in the observability of the first mover’s selection (...) the
strategic benefit of commitment is totally lost” (Bagwell (1992))? In our opinion such a
conclusion would be premature as it would be based on the assumption that only pure
strategy Nash equilibria of a game should be taken into consideration. The restriction
to pure equilibria, however, is not compelling and the game theory literature has offered
no justification for this restriction so far. In fact, the concept of pure strategy Nash
equilibrium suffers from the important and well-known drawback of failing to generate a
solution for some games. (Existence might be considered the most fundamental property

that a solution concept should satisfy.)

In this paper we take the position that there is no a priori reason to discriminate
against cquilibria that are not in pure strategies. Consequently, we have to take mixed
strategy cquilibria into account and this raises the question of which outcomes can be
obtained by mixed equilibria of the sequential move game with imperfectly observable
commitment. We show that Bagwell’s noisy game has a “noisy Stackelberg equilibrium”,
i.e. a mixed equilibrium that generates an outcome that is close to the Stackelberg out-
come and that converges to it as the noise vanishes. Furthermore, we show that there
may be other equilibria as well. Hence, Bagwell’s game raises the issue of equilibrium
selection: If the leader’s commitment can only be imperfectly observed, will players coor-
dinate on a pure equilibrium of the simultaneous move game (and, if they do, on which

one?) or will they coordinate on the noisy Stackelberg equilibrium? We address this



issue in Section 4. We argue that, starting from an original situation in which there is
uncertainty about which strategies will be played, players will reason themselves to the
noisy Stackelberg equilibrium. The argument in this section is motivated by elements
from the equilibrium selection theories of Harsanyi and Selten (1988) and from Harsanyi
(1993), but the theory that we develop is different from each of these. As we show in Sec-
tion 5, neither the theory of Harsanyi and Selten (1988), nor the theory from Harsanyi
(1993) selects the noisy Stackelberg equilibrium in general. The comparison of these
various theories gives interesting insights in each of them. Hence, although the main
message of this paper is that there is no immediate need to reconsider the literature that
applies the idea of a “first-mover advantage”, the paper may also be read as an exercise

in equilibrium selection.

2 The Noisy Commitment Game

Let ¢ be a (finite) 2-person game in strategic form. Since below we will mainly be
interested in what happens when the players move sequentially rather than simultanc-
ously, we label the players as L (for leader) and F' (for follower). Z (resp. J) denotes
the set of pure strategies of player L (resp. player F') in g and u;; (resp. v;;) denotes
this player’s payoff when the strategy pair (i,7) is played. We write Z = {1,...,I}
and J = {1,...,J}. Throughout this paper we assume that g satisfies the following

regularity condition':

if (l,]) # (k, 1), then U;j 76 Ukl and Vij # Ukt (21)

This assumption implies that F has a unique best response against each pure strategy

i of L. This best response will be denoted by b; and we write

Uy = Ugp,- (22)

Without further loss of generality we assume that



u; > r{l:lx u;. (2.3)

llence, in the sequential move game in which I, moves before F' and in which F is
perfectly informed about the pure action that L has chosen, the unique subgame perfect
equilibrium is (1, 4) with outcome (1,b;). (We use b to denote the strategy of F' in this
game that responds to i with 4;(z € T).) \

We focus our attention on the noisy version of the sequential move game in which
F is only imperfectly informed about which action has been chosen by L. To that end,
let P be a stochastic matrix defined on the state space Z. Hence, P = (pix)iker With
pix > 0 and 3, pie = | for all 2. The interpretation is that F' receives the signal “L
played k” with a probability pi in case L actually plays ;. Emphasis will be on the
situation where the noise, i.e. the probability of receiving the “wrong” signal is small
but positive. Writing P° for the identity matrix on Z (i.e. pf; = 1 for all ) we will
measure the absolute level of the noise by the distance between P and P° and we will

write

|P| = max{|Py — PS| : i,k € T}. (2.4)

We will restrict ourselves to the case where any signal can result from any action, i.e.

pix >0 forall i,k €. (2.5)
Formally then, we consider the extensive form game g” given by the following rules:
1. player L chooses an action i € Z,
2. chance chooses k € 7 with probability pi,
3. player F learns k and chooses j € J,

4. player L receives the payoff u,; and F receives v;;.



This game g” is referred to as the noisy commitment game. Note that the messages
(the signals that F receives) are payoff irrelevant. We will denote a (behavioral) strategy
of player L (resp. F) in g” by s (resp. f) and we write 0 = (s, f) for a strategy
combination. Hence, s is a probability distribution on Z,s € A(Z), and f is a map that
assigns a probability distribution on J to each element of Z, i.e. f € A(J)Y. We let
s; denote the probability that L chooses i while fi; is the probability that F' chooses j
in response to the message k. We write fi = j il fi; = 1 and use similar conventions
throughout the text. The outcome of the strategy pair o = (s, f) in g” is the probability

P

distribution z¥ = 2P(0) that o induces on I x J. Hence, we have that

I
F(0)ii =8 pafsi (2.6)
k=1

Note that z” may involve nontrivial correlation of the players’ actions. Player L’s

expected) payoff in g” is written as uP() and F’s payoff is denoted by v”(c), hence
I P

uP(0) = E(u| 2P(0)), v"(0) = E(v | 2"(0)) (2.7)

A pair 0 = (s, f) is a Nash equilibrium of g* if s is a best reply against f and f is
a best reply against s. Note that because of (2.5) there are no unreached information
sets in the (extensive form of the) game g¥, hence, any Nash equilibrium is a sequential
equilibrium, and in order for f to be a best response against s, it is necessary that fi
is a best response against the posterior beliefs at k induced by s for every message k.
By Bayes’ rule, this posterior belief that F' associates to i € I after having received the

message k is given by

pl° = piksi| Y PakSar (2.8)
so that, for all s with s, > 0
1 if i=k

lim ph* = (2.9)
P="* T o it itk



Hence, if the noise is small and F expects L to choose k with positive probability, then
he will attach high probability to the event that L actually played k& when he receives
the message “k”. Assumption (2.1) thus implies that /' will respond to k with b in this

case. Lemma 1 proves a slightly stronger statement.

Lemma 1 . There ezists € > 0 such that for all P with 0 < |P| < &°, all strategy
combinations T = (s, f) and alli € I: If s; > \[|P| and f is a best reply against s in
g”, then f; = b;.

Proof. The regularity assumption (2.1) implies that there exists § < 1 such that for all
¢ € I: If player F' assigns at least probability é to L playing 7 in g, then b; is the unique
best response of I in g. Let €* be such that (1 4+ v&*)™! > 6.

Now, let P be such that 0 < |P| = € < ¢* and let s € A(Z) and 7 € T be such that
s; > \/e. Then we obtain from (2.8)

I“,‘)" PiiSi
" (1 = s;) + puis;
(14 e(1 = si)/pasi] ™'

> (1 +E)™
> (14 )

If f is a best reply against s, then f is necessarily a best reply against the posterior
beliefs p; for all 7. It, hence, follows from the above inequalities, and the choice of &*,
that f,‘ = b.'. (m]
3 Equilibria in the Noisy Commitment Game

For the sake of completeness we start by stating (and proving) Bagwell’s main result.

Proposition 1 (Bagwell (1992)). The set of pure strategy equilibrium outcomes of g

and g” coincide.



Proof. Assume (,7) is a pure strategy Nash equilibrium in g. Then j = b; and if f is
the strategy of F in g¥ defined by fi = bi(k € I), then (i, f) is an equilibrium of g”.
It obviously produces the same outcome as (z,7) does. Assume (i, f) is a pure strategy
Nash equilibrium in g¥. Since us‘" =1 for all k, we must have f; = b; for all k. Hence,
i is a best reply against b; in g and (¢,b;) is an equilibrium of g with the same outcome

as (1, f). (=]

Proposition | gives a sufficient condition for an outcome to be an equilibrium outcome
of the game g”. We now give a necessary condition for the case where the noise is small.

Write
N ={(z,b;): u; > m’?xmin ug;} (3.1)
)

for the set of Nash equilibriumn outcomes of the game in which player L’s commitment
is perfectly observed by F. (Note that because of (2.1) any Nash outcome has to be
pure.) We have that the Nash equilibrium outcome correspondence of g” is upper hemi

continuous at P = p°.

Proposition 2 Let zF be an equilibrium outcome of g*. If z = limp|_o2" ezists, then

zeN.

Proof. The proof follows from regularity assumption (2.1) and Lemma 1. Let €* be as
in Lemma | and for P with 0 < |P| < €, let (s”, ") be an equilibrium of g with
outcome z”. Assume the limit outcome z to exist. If i # k,s > (/|P| and sf > /|P|,

then [ = b; and f} = by, hence

lim|p|_.oup(i,fp) = Uy, Iim|p|_,oup(k,fp) = Uk.

But (2.1) implies that u; # u, hence that sFsf = 0 for | P| sufficienty small. The contra-



diction shows that, for |P| sufficiently small there is at most one i € T with s¥ > /|P|.
Consequently, we have that z = (z,4;) for this particular value of 7. It is obvious that
the incqualities in (3.1) must be satisfied. If there would exist k£ # 1 with u; < min; uy;,

then L would strictly prefer choosing k above choosing i in g” for sufficiently small |P|. O

Proposition 2 implies that, when the noise is small, any equilibrium outcome of g” is
almost pure. This in turn implies that, il g has only mixed equilibria, the equilibrium
outcomes of g are disjoint from the limit equilibrium outcomes of the noisy commitment,
game when the noise vanishes. This shows that a result similar to Proposition 1 cannot
be proved for a “satisfactory” solution concept, i.e. there does not exist a refinement of
the Nash equilibrium concept that generates a nonempty set of solutions for every game
for which the equilibrium outcomes of the simultancous move game coincide with those

of the noisy commitment game when the noise vanishes.

It is not true that any Nash equilibrium outcome of the commitment game with per-
fect observability can be approximated by Nash equilibrium outcomes of games with
slight noise: the Nash equilibrium correspondence is not lower hemi continuous. In the
game of Figure 1, (B,W) is a Nash outcome of the non-noisy game: It is optimal for
L to commit to B if F responds to T' with F. However, noise forces I to choose W in
response to any signal since W is a dominant strategy. Consequently, only (T, W) can
be approximated by equilibrium outcomes of noisy games. (More generally, it follows

that ¢” has a unique equilibrium outcome in case I’ has a dominant strategy in g.)

W E
T|33/00
Bl22]|1,1

Figure 1.
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In this paper we take the position that there is no a priori reason to discriminate
against cquilibria that are not in pure strategies. Consequently, we have to take mixed
strategy equilibria into account and Proposition 2 raises the question of which outcomes
of the base game g can be approximated by equilibrium outcomes of the game g© when
the noise vanishes. Proposition 3 gives part of the answer: If the noise P is small, there
is always an equilibrium that produces an outcome that is close to the Stackelberg out-
come, i.e. that is close to the subgame perfect equilibrium outcome of the sequential
move game without noise. We will refer to such an equilibrium as a noisy Stackelberg
equilibrium.

Proposition 3 . The game g© has an equilibrium o = (s¥, f¥) with an outcome 2"

that converges to (1,b,) as |P| — 0.

Proof. Consider the reduced strategic form g” that results from the strategic form of
g” by eliminating all pure strategies of F' that do not prescribe to play b, after the
signal “1”. In this reduced game, player L’s expected payoff resulting from playing “1”
is approximately u, if the noise is small, no matter what F' plays. Let o = (=" 1)
be an equilibrium of g¥. If s¥ > /|P| for some i # 1, then Lemma 1 guarantees that
fP = b; provided that |P| < *. However, in this case L’s payoff resulting from “i” is

approximately u;, hence, u” (i, f7) < uP(1, fF), so that player L wants to choose i with

probability zero. The contradiction shows that, if | P| is sufficiently small

sF < \/|P| foralli#1. (3.2)

The inequalities (3.2) in turn imply that s¥ — 1 as |P| — 0, hence, (by Lemma 1)
that at the signal “1” only b, is a best response of player F'. This shows that oF is an
equilibrium of g” if | P| is small. Obviously, the outcome 2” of o converges to (1, 5,) as

|P| — 0. o



11

We have seen two sufficient conditions for limit equilibrium outcomes (Propositions
1 and 3) and one necessary condition (Proposition 2). The necessary condition is not
sufficient (Figure 1) and the sufficient conditions are not necessary: Also outcomes that
are not pure Nash equilibria, nor Stackelberg equilibria of g may be approximated. Con-
sider the game of Figure 2 in which L has M as a dominant strategy, so that (M,C) is
the unique Nash equilibrium. The Stackelberg equilibrium is (7', W). Consider the noisy
commitment game with uniform noise, i.e. p;; = €if i # j and p;; = 1 — 2¢. It is easily

seen that the following strategy combination is an equilibrium of this game: Player L

commits to M with probability 13‘? and to B with the remaining probability "f:; player

F responds to signals T' and B with E, after signal M he plays C' with probability T—ZIT

—1lle
—1lle

and /7 with probability 2=H<. The corresponding limit outcome is (B, E).

W C E
T 4,400 |00
M|50](1,1 (50
B|00/00|33

Figure 2.

We will not attempt to describe exactly which outcomes can be obtained as limits of
equilibrium outcomes of the noisy game as the noise tends to zero. Rather we conclude
from the Propositions 1 and 3 that typically there exist multiple limits and, hence, that
there exists an equilibrium sclection problem. We will attempt to address this selection
problem directly and we will propose an argument (an equilibrium sclection theory)
that actually selects a noisy Stackelberg equilibrium. Our theory incorporates elements
from the theory proposed by Harsanyi and Selten (1988) as well as clements from the
theory proposed in Harsanyi (1993), however, it differs from these and it may select
different outcomes. In particular, neither the theory of Harsanyi and Selten (1988) nor
that of Harsanyi (1993) need to select a noisy Stackelberg equilibrium. The next section
describes our theory and proves the main result of this paper, while Section 5 discusses

the theories of Harsanyi/Selten and Harsanyi.



12

4 Equilibrium Selection

The strategy b of player I that prescribes to play the best response by against action
k € T for any signal k is a (weakly) dominant strategy in the (strategic form of) the
game where L’s commitment is observed perfectly. If there is a slight amount of noise
(i.e. P # P°), then b is no longer dominant, however, as long as the noise is small, it is
quite likely that b is a best response. Specifically, as Lemma 1 has shown, if |P| < &*
and s > \/|F| for all k, then b is the unique best response against s in g”. To put
it differently, b is a best response to a set of mixed strategies of player L in g” that
converges to the set of all strategies as |P| — 0. On the basis of these considerations it
would seem that L should assign a large (prior) probability to F' playing b and, hence, he
will be tempted to play his Stackelberg leader strategy “1”. However, if P # P° and b,
is not a dominant strategy in g, then (1,b) is not an equilibrium of ¢g”, so that a theory
that tells player L to play “1” and that tells F' to play b is self-destroying. The simple
point. we make in this section is that, if the players’ reasoning process corresponds to
the tracing procedure (Harsanyi (1975), Harsanyi and Selten (1988)), then players will
finally coordinate on a noisy Stackelberg equilibrium if they start from a prior that as-

signs sufficient weight to F' playing b.

The tracing procedure is a process that gradually adjusts players’ plans and expecta-
tions until they are in equilibrium. We only describe the mechanics of this procedure, for
the motivation and heuristic description of the process we refer to the original sources.
Let 0” = (5%, /°) be a mixed strategy combination? in g”’. We interpret o° a the players’
prior expectations, hence, a priori player F believes that L will play : with probability
s while L believes that F* will play the pure strategy f with probability f°(f)- For
t € [0,1] consider the strategic form gPt° defined by

uPte (i, f) = tuP (3, ) + (1 = )u" (G, f°) (4.1)
vP (4, f) = 0P (i, f) + (1 = )P (s, f) (4.2)

Hence, for ¢ = 1 this game coincides with g, while for £ = 0 we have a trivial game
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in which each player’s payoff depends only on his prior expectations. Write I'"(¢°) for

the graph of the equilibrium correspondence, i.e.

I'P(6°) = {(t;s, f) : t € [0,1], (s, f) is equilibrium of g™*°} (4.3)

It can be shown that in nondegenerate cases this graph ' (¢°) contains a unique dis-
tinguished curve that connects the unique equilibrium of gP9° to an equilibrium (s!, f!)
of g¥. (See Schanuel et al. (1991) for details.) The (linear) tracing procedure consists of
following this curve until its endpoint, and the endpoint T (c°) = (s', f!) is called the
linear trace of ¢° in g¥. The interpretation is that players eventually reason themselves
to the equilibrium T7(0°) if they start from the prior 6°. Write 2(o°) for the outcome
of this linear trace TF(c°) in gP. We have that this outcome is close to the Stackelberg

outcome (1,b,) of g if |P| is small. Formally

Lemma 2 . If the prior o° = (5% f°) is such that f°(b) is sufficiently close to one, then

Iimm_‘(, z')(a°) = (1, b]).

Proof. Let f°(b) be large enough such that

u (1, £0) < (1, 1), (4.4)

i.e. if player L’s commitment is perfectly observed by F, then L strictly prefers to play
“1” when F responds with f°. Note that the regularity condition (2.1) implies that (4.4)
holds whenever f°(b) is sufficiently close to 1. Condition (4.4) in turn implies that there

exist € > 0 and t* > 0 such that

“17 is strictly dominant for L in ¢P*° if { < t* and |P] < ¢ (4.5)

Furthermore, by choosing ¢ sufficiently small we can guarantee that for all 7 # 1:
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if |P| <€, then u” (i, f) < uP(1, f) for all f with f; =b; and f; = b, (4.6)

We will restrict ourselves to stochastic matrices P with

VIPI < /2l (4.7)

Finally, with €* as in Lemma 1, we assume that

|P| < €. (4.8)

Let P be such that (4.5) - (4.8) hold and denote by o™t = (sP*, fP'*) an equilibrium
on the distinguished curve in I'"(6°) that connects the unique equilibrium of gP%" with

TP(0°). We claim that

sPt < 1/21 forall i # 1 and all t. (4.9)

Assume, to the contrary, that there exist some ¢ # 1 and t such that sPt > 1/2I and
let 7 be the smallest ¢ for which an equilibrium of this type can be found. Then 7 > t*
in view of (4.5). Hence, at ¢ = 7, the total probability that F' assigns to L playing ¢ in
gP4° is at least t*/21, so that (4.7), (4.8) and Lemma 1 guarantee that f" = b;. At

the same time we have that

P = 1= P s 1-1/21 = 1/22 /||

i#1

so that f/ = b, by the same argument. But now (4.5) and (4.6) imply that

uP,-r,n°(l-’fP.‘r) < uP,‘r.a"(l’fP,‘r),
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hence, s¥'" = 0. The contradiction shows that (4.9) holds. In particular, we have that
s{"' > 1/2, hence f,P" = b, in view of Lemma 1. Applying Lemma 1 and (4.6) once more

we see that, therefore, s©' < \/|P| for all i # 1, hence, that

lim s/ = 1.
|P|—0

This completes the proof. ]

To complete our argument that players will (or should) coordinate on a noisy Stack-
elberg equilibrium, we have to give an argument why player L should attach a high prior
probability to I’ playing b. We will borrow such an idea from Harsanyi (1993). Harsanyi
proposes that the prior should be based on (should be proportional to) the structural
incentive that a player has to use this strategy and he suggests to measure this structural

incentive by the size of the stability set.

Formally, Harsanyi proceeds as follows. Let ¢ =< A;, A3, u;,u; > be a 2-person game
and let S; = A(A;) be player ¢’s set of mixed strategies. The stability set of s; € S; is the
set S5(s;) of all mixed strategics of player j against which s; is a best response. At first it
seems natural to measure the structural incentives of a pure strategy a; by the Lebesgue
measure of S;(a;), but Harsanyi (1993) shows that this definition would violate certain
desirable properties. To circumvent these, Harsanyi first transforms the strategy simplex
S; by the so-called inversion mapping w; and he then takes the Lebesgue measure of the
transformed set. Formally, w; is the mapping from the interior of S; to the interior of

S; that maps s; into 5; defined by

5i(a;) = 55'(a;)/ X s7'(a). (4.10)

a€A,

Hence, Harsanyi measures the structural incentives of player ¢ to use the pure strategy
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a; € A; by number p(a;) = AMw;(S5;(a;))) where A denotes Lebesgue measure. The prior
probability that player j then assigns to 2 playing «; is proportional to these incentives,

hence,

pi(ai) = plai)/ 3 pla). (4.11)

a€A,

In the special case of our noisy commitment game, we have that the stability set of
the strategy b of player F' converges to the entire strategy simplex of player L as |P| — 0
and, hence, that the stability set of any other pure strategy converges to a set of measure
zero. It follows that the prior of player L, as constructed by using (4.10) and (4.11) puts
almost all weight on the strategy b of player F' when |P| is small. Hence, from Lemma
2 we can conclude that players will end up in the Stackelberg equilibrium in the limit.

Formally, we have proved

Proposition 4 . If players construct their prior beliefs by using Harsanyi’s (1993) the-
ory of structural incentives and if they update their priors by using the tracing procedure
of Harsanyi (1975) to obtain an equilibrium, then, in the limit when the noise vanishes,

they will play the Stackelberg equiltbrium.

5 Alternative Methods of Equilibrium Selection

5.1 Evolutionary and Eductive Theories

In this section we show that the theories proposed in Harsanyi and Selten (1988) and in
Harsanyi (1993) do not necessarily select a noisy Stackelberg equilibrium as the solution
of the game with imperfectly observable commitment. The basic reason is that these
theories do not consider all equilibria of a game to be eligible as solution candidates.
Both theories start by eliminating certain Nash equilibria as candidates. Specifically,
equilibria that are considered to have poor stability properties are eliminated. Harsanyi
and Sclten (1988) first eliminate all primitive equilibria, i.e. equilibria that do not be-

long to a primitive formation. A formation is a set of strategy pairs that is closed with
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respect to taking best responses and a formation is said to be primitive if it does not
properly contain any other formation. Harsanyi (1993) only considers equilibria that are
both proper (Myerson (1978)) and persistent (Kalai and Samet (1984)) as eligible. For
generic 2-person games every Nash equilibrium is proper and an equilibrium is persistent
if and only if it belongs to a primitive formation.®> Hence, for generic 2-person games,

both theories start from the same set of initial candidates.

The game displayed in Figure 3 may show that the restriction to primitive (persis-
tent) equilibria may eliminate any noisy Stackelberg equilibrium. The game g¥ has three
equilibria: one corresponds to Proposition 1 (with outcome (1,1)), another corresponds
to Proposition 3 (with outcome close to (3,3)), and there is a third mixed strategy equi-
librium. Action B (i.e. the dominant strategy of L in g) is used with positive probability
in all three equilibria and the unique best response of player F' against B in g* is to
always respond with E. Consequently, {(B, EE)} is the unique primitive formation in
g”, hence (B, EE) is the unique persistent equilibrium of this game. Therefore, the the-
ories of Harsanyi/Selten and Harsanyi select the pure equilibrium of g as the solution of
g%. These theories confirm Bagwell’s claim that slight noise eliminates the commitment

power.

W E
T133(02
B|l40 |1,
Figure 3.

The argument used in the above example can be generalised. If one accepts persis-
tency as a selection criterion, one is led to the conclusion that in any game in which the
leader has a dominant strategy, slight noise eliminates the benefits of the leader being

able to commit himself:

Proposition 5 . If player I, has a dominant stralegy in g, then g” has a unique prim-

itive formation (resp. persistent retract), viz. the singleton sel in which L plays this
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dominant strategy i and in which F' responds with b; Lo any signal k.

Proof. Let R = 12, x Ry be a persistent retract (resp. primitive formation) and let j
be a pure strategy of player L in Rj,. Then I has a unique best response against j in
g", viz. the strategy f with fy = b; for all k. Hence, f € Rp. The unique best response
of L against f is to play his dominant strategy i from g, hence i € R. Let fi = b; for
all k. Then the strict equilibrium (i, f) belongs to R. Consequently, if R is primitive

(persistent), then R = {(i, f)}. O

The basic reason why Harsanyi and Selten climinate equilibria that are not primitive
is that such equilibria may have very poor stability properties (cf. llarsanyi and Selten
(1988, p. 201) and Harsanyi (1993, footnote 12)). Requiring persistency favors the se-
lection of equilibria that have similar stability properties as strict equilibria, hence, the
solution theories of Harsanyi and Selten are biased in favor of the selection of pure equi-
libria. However, one may very well wonder whether such a bias is justified: The stability
property captured by persistency may be relevant in an evolutionary context — where
the game is repeatedly played by a large population of players who receive feedback
about evolution of the play during the game (see, for example, Hurkens (1994)) — but
it is not clear that it has any relevance in the case where the game is played only once
and players rely exclusively on deductive personal reflection in order to figure out what
to play. At the same time, the theories of Harsanyi/Seclten and Harsanyi rely strongly on
arguments (such as the tracing procedure) that scem to be particularly relevant in this
latter case and that seem irrelevant in the former. Ience, these theories may be criti-
cized for the fact that they mix arguments that are relevant in an evolutionary context
with arguments that are relevant in an eductive context. In the following subsections we

return to the purely deductive perspective.
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5.2 Harsanyi’s (1993) Theory

In this subsection we show that, even in the case where the Stackelberg cquilibrium is
a strict cquilibrium of ¢ and, hence, satisfies all of Harsanyi’s (1993) cligibility crite-
ria, Harsanyi’s theory need not select this Stackelberg equilibrium. The reason is that
Harsanyi'’s theory does not invoke the tracing procedure. Rather, Harsanyi proposes to
select as the solution of the game that equilibrium that has the highest prior probability.
With the prior probability of a pure strategy as in (4.11), the prior probability of a pure

strategy pair a is simply given by

p(a) = pr(a)pr(ar) (5.1)

and in the case where only pure cquilibria are eligible, Harsanyi selects that equilibrium
a* for which p(a*) is largest. (At least this is the solution in case the argmax is unique.)
The game from Figure 4 (in which K is some real positive number) may show that this

procedure need not select the Stackelberg equilibrium.

W E ww WE EE

T 211 00 T| 21 |21-¢),l—€ |00

B|30|1,K B| 00 |1—-¢K(1-¢)|1,K
Figure 4.

The game g from the left panel of Figure 4 is a unanimity game with Stackelberg
outcome (2,1). The panel on the right displays (a reduced form of) the game g” where
P involves uniform noise (p;; = € if ¢ # j). We have eliminated the strategy EW for
player I" in g (i.e. the strategy in which /" responds to T by F and to B by W)
since this is a dominated strategy. Harsanyi indeed suggests to eliminate all dominated
strategies before computing the players’ structural incentives. The game g* has three
equilibria (T,WW), (B, EFE) and a mixed equilibrium. Only the former two satisfy
Harsanyi’s eligibility criteria, hence, to compute the Harsanyi solution of the game, we

have to compare the prior probabilities of these equilibria. Note that although player
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L’s prior assigns almost all weight to the strategy W E of player F, this prior probability

plays no role in this comparison.

Note that the structural incentives for player L to use any of his pure strategies
are independent of K: These incentives only depend on player L’s own payoff matrix.
Furthermore, note that both the prior of 7' and the prior of B remain bounded away from
zero as € lends to zero. Turning now to the structural incentives of player /7, we note
that the calculations are simple since, in the 1-dimensional case, the inversion mapping
is measure preserving. Hence, the prior probability of a strategy is just the Lebesgue

measure of the stability set of that strategy. Straightforward computations show that

PL(WW) =¢/(K — Ke +¢) (5.2)
and
P(EE) = Ke/(Ke + 1 —¢€), (5.3)
hence
lim pi(EE)/p{(WW) = K*. (5.4)

It follows that, if K is sufficiently large

li{lol (T, WW) < li{g p°(B, EE) (5.5)

and, hence, that Harsanyi’s theory selects the equilibrium (B, EE) in that case. For

large values of K, Harsanyi’s theory does not select the Stackelberg equilibrium.
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5.3 Risk Dominance and the Harsanyi/Selten Theory

An essential ingredient in the equilibrium selection theory from Harsanyi and Selten
(1988) is the notion of risk dominance. An equilibrium s is said to risk dominate an
equilibrium s if the tracing procedure, when started at a certain (bicentric) prior p(s, s")
ends up at the equilibrium s. (Below we describe how this bicentric prior has to be com-
puted.) Starting from an initial candidate set, Harsanyi and Selten repeatedly eliminate
equilibria that are cither payoff dominated or risk dominated until finally only one candi-
date - the solution — remains. We have already seen that the Stackelberg equilibrium
need not belong to the initial candidate set, hence, the Harsanyi/Selten theory need not
select it. However, in Section 5.1 we argued that this elimination step is not convincing.
Hence, the question remains whether the Stackelberg equilibrium can be eliminated by

considerations of payoff dominance or risk dominance.

Proposition 2 implies that the noisy Stackelberg cquilibrium cannot be payoff dom-
inated when the noise is small. Any Nash equilibrium outcome of the noisy game con-
verges to a Nash outcome of the game in which the commitment is observed perfectly
and among the latter the Stackelberg equilibrium is most preferred by player L. Conse-
quently, it remains to address the question of whether the Stackelberg cquilibrium can
be risk dominated. We have not been able to resolve the issue in its complete generality,
however, for two important subclasses of games -— 2 x 2 games and unanimity games -
we can show that the (noisy) Stackelberg equilibrium risk dominates any other equilib-

rium of ¢” when the noise P is small.

To formally define the risk dominance relation we have to describe how the bicentric
prior p(s,s') should be computed at which to start the tracing procedure. Harsanyi
and Selten have the situation in mind where it is common knowledge among the players
that ecither s or s’ is the solution of the game. Each player ¢ will initially assume that
his opponent j already knows which of the two is the solution. Player : will assign a
subjective probability z to the solution being s (and, hence, to j playing s;) and he

will assign the complementary probability z; = 1 — z to j playing s}. After having
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constructed these beliefs, ¢ will play a best response b;(z;) against z;s; + z/s}. Player j
does not know ’s beliefs z; and, according to the principle of insufficient reason, j will
assume that z; is uniformly distributed on the interval [0,1]. Hence, j will expect i to

play the strategy

pi(s,8") = /0l bi(z:)dz:. (5.6)

The mixed strategy of player i defined by (5.6) describes player j’s a priori beliefs which

are used to determine the risk dominance relation between s and s'.

Before being able to state the main result of this section, one more definition is needed.
We say that ¢ =< I, J,u,v > is a unanimity game if (a) T = J, (b) u;; = v;; = 0 for all
i # 7, and (c) u; > 0 and v; > 0 for all . We simplify notation by writing u; = u; and

“r N
2

v; = v; and recall from (2.3) that u; > u; for ¢ # 1. We also write for the strategy

of player I'in g that prescribes to respond to any signal k € T by playing : € Z.

Proposition 6 . Let g be a unanimity game. Then the Stackelberg equilibrium (1,1)

risk dominales any other equilibrium of g¥ when the noise P is small.

Proof. We first. show that (1,1) risk dominates any other pure Nash equilibrium of g”’
when | 2] is small. It suffices to show that (1,1) risk dominates (2,2). We first. compute
the bicentric prior that is used in the risk dominance comparison. Let us first compute

the prior pr of player F. If F plays z.1 + (1 — z).2 then the best response of L is

b (z) = 1 if 2> uy/(uy +up) (5.7)
2 if 2 < uyf(ug +us)

hence, the prior of F' is given by
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plF‘(i) _ { uy /(g + uy) ll z = | (5.8)
Ilg/('ll] +’Ug) if 1.=12

Next we compute the prior of player L. If L plays z.1 + (1 — z).2, then the best response
of F' depends on the message that F' receives and on the size of the noise. However,
since the posterior of F' puts positive weight only on the actions 1 and 2 of player L,
F will respond with either 1 or 2 at each possible message. Furthermore, if the noise is
small, then F' will respond to the message i = 1 (resp. ¢ = 2) with the action 1 (resp. 2)
for most. values of z. Hence,without doing any computations, we may state that player
I’s prior P} corresponds to a behavioral strategy f© of player I that is of the following

form:

&1 a=1 and k£ =1
fa=q=1if i=2 and k =2 (5.9)
0 if :¢{1,2} and k¢ {1,2}

(fS is the probability that F' responds to signal ¢ with action k.) Now, let the prior
o® = (ph,pF) = (b, f°) be as in (5.8), (5.9) and let the game gP+*° be as in (4.1), (4.2).
If ¢ is sufficiently small, then the unique equilibrium (s, f7*) of this game is the best

reply against the prior, hence
1 i a=l and k=1

Rr={1 i i=2 and k=2 (5.10)
0 if :¢{1,2} and k¢ {1,2}

and, provided that |P| is sufficiently small,

sPfay=1if i=1. (5.11)
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Hence, in particular, player L chooses the Stackelberg strategy with probability 1 for
small 1. We claim that, if we move along the distinguished curve in '’ (6") by increasing
t, then player I has to switch his strategy before player L does. The argument is
simply that, if F' does not switch from a strategy as in (5.10), then L is facing a convex
combination of strategies of type (5.9) and (5.10), hence, this is just a strategy of type
(5.9), against which the strategy from (5.11) is the unique best response. llence, as ¢
w»

increases, player [’s posterior beliefs put more and more weight on L playin and
s |

gradually /" switches to respond with “1” at more and more messages. Such changes in
behavior of I however, do not necessitate a change in behavior of L: The strategy from
(5.11) remains a best response. Consequently, if no equilibrium is reached yet, F will
have to change again. Eventually (when £ gets close to 1), F's posterior after the message
“2” will put so much weight on L playing “1” that I will respond to that message by
playing “1” as well. At that point in time we have obtained the equilibrium (1,1) from
g* and no further adjustments are necessary. Hence, starting at the prior (5.8) - (5.9),
the tracing procedure converges to (1, 1), so that (1,1) risk dominates (2,2). Hence, the
Stackelberg equilibrium risk dominates any pure equilibrium of ¢”.

Next, let s’ be a mixed strategy equilibrium of g¥. Proposition 2 implies that, if the
noise is small, there exists an action ¢ € Z such that player L plays : with a probability
very close to one. If ¢ = 1, then (1,1) is the unique equilibrium of Pt for all 1. If
2 # 1, then the proof follows exactly the same line as above: Player L plays “1” for each
value of ¢ and player I swiltches several times until he finally responds to all messages

by playing “1”. u]
Our final result is
Proposition 7 . If g is 2 x 2 game and |P| is small, then g* has one equilibrium

that risk dominates all other equilibria and the oulcome generated by this risk dominant

equilibrium converges to the Stackelberg outcome (1,b;) as |P| — 0.
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Proof. The result follows from Proposition 3 in case player I has a dominant strategy
in g (¢" has only one equilibrium in this case). Hence, assume that I does not have
a dominant strategy. Without loss of generality assume by = 1 and b, = 2. In case ¢
does not. have any pure equilibria, the result again follows from Proposition 3 since g”
has a unique equilibrium in this case. (The unique best response of F' against strategy
1 of player L is to respond with ¢ to any message, but then L’s best response is to play

j # 1.) There are three cases left to consider:

(i) (1,1) is the unique pure equilibrium of g.

(i1) (2,2) is the unique pure equilibrium of g.

(i11) both (1,1) and (2,2) are pure equilibria in g.
The first case is casy: It can be resolved by iterative elimination of strictly dominated
strategies. (It should be obvious from the description of risk dominance on the preceding
pages that strategies that are iteratively strictly dominated cannot influence the risk
dominance relationship.) The strategy “21” of player F' (play k # 7 in response to i for
1 = 1,2) is strictly dominated and once this strategy has been eliminated, the strategy
1 becomes strictly dominant for player L. (Note that action 1 is dominant for L in g
in case (1).) The third case is very much like the case considered in Proposition 6 and
the proof proceeds along the same lines. We leave the details to the reader. In case (i),
g” has three equilibria, viz. a mixed equilibrium with outcome close to (1,1), a mixed
cquilibrium with outcome close to (2,2), and the pure equilibrium (2,2). We have to
show that the first equilibrium risk dominates the latter two. The proof follows from
Lemma 2. Namely, consider the bicentric prior p of player L in game g” relevant for the
comparison between the noisy Stackelberg equilibrium and the pure equilibrium (2,2).

The reader easily verifies that
im pl(b) = 5.1
I,I,'ITOPL(b) 1 (5-12)

since the strategy b of player I# (with b; = 1 all 7 is a best response to the noisy Stack-

elberg equilibrium and is “almost” a best response to the pure equilibrium. Hence, it
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follows from Lemma 2 that the noisy Stackelberg equilibrium risk dominates the pure
Nash equilibrium. To show that this equilibrium also risk dominates the third mixed
equilibrium, we note that the strategy b of player 1€ is the unique best response against,
a strict convex combination of the two mixed equilibrinm strategies of player L in g'".
Hence, in this case the prior satisfies p} (12) = 1 and the conclusion again follows from

Lemma 2. o

Although we conjecture that the result from the Propositions 6 and 7 can be gencr-
alized to other classes of games, we have to admit that we have not been able to find
a general proof. (We do not have a counterexample either.) However, we note that
applying the tracing procedure can be rather complex, so that a multilateral procedure
as that in Section 4 - in which the tracing procedure is applied only once - might be
preferable to a theory in which one is forced to make a rather large number of bilateral
comparisons. Furthermore, in order to apply the Harsanyi/Selten theory one has to first
compute all (primitive) equilibria of the game. We were able to prove Propositon 4

without knowing this set of all equilibria.

6 Conclusion

Irom the fact that any pure Nash cquilibrium of a 2-person simultancous move game
is also a pure Nash equilibrium outcome of the sequential move game in which the
follower can only observe imperfectly the action to which the leader committed himself
(Proposition 1 in this paper), Kyle Bagwell concluded in his 1992 paper that slight noise
eliminates any first mover advantages. In the concluding section of his paper, Bagwell

writes

“For applied theorists, the key message of the paper is that the many pre-
dictions derived from models with commitment may require reconsideration.
Apparently these predictions are valid only for settings in which the com-
mitted action is in fact perfectly observed by subsequent players. This re-

quirement is quite stringent, and it would seem to be violated in a number
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of real-world settings to which popular commitment models are thought to

apply” (Bagwell (1992, p. 9) emphasis in original).

While we agree with the observation that the assumption of perfect observability is
stringent, we disagree with the statement that this assumption is crucial. In fact, we
wottld claim that this paper shows that the assumption is inessential. Not only have we
shown that the noisy game analyzed by Bagwell has always an equilibrium outcome that
is close to the subgame perfect equilibrium of the game in which the commitment can be
observed perfectly (Proposition 3), we have also given several arguments for why players
should coordinate on this particular equilibrium (Propositions 4, 6 and 7). In addition,
we have remarked that the structure of the noise as assumed by Bagwell is somewhat
peculiar and that other specifications, which are, perhaps, more natural and which are
closer to Schelling’s original ideas (Schelling (1960, p. 149)) also allow the conclusion
that the assumption of perfect observability is inessential. Hence, we do not see any need
to reconsider the fundamental game theoretic insight that the power to commit onesell

may be beneficial.

References

Bagwell, K. (1992). “Commitment and observability in games”. Northwestern Univer-

sity DP 1014.

Balkenborg, D. (1992). “The Properties of Persistent Retracts and Related Concepts”.
Ph.D. Thesis, University of Bonn.

Chakravorti, B. and Y. Spiegel (1993). “Commitment Under Imperfect Observability:
Why it is better to have followers who know that they don’t know rather than

those who don’t know that they don’t know”. Bellcore Econommics DP 104.

Harsanyi, J. (1975). “The Tracing Procedure: A Bayesian approach to defining a solu-
tion for n-person noncooperative games”. International Journal of Game Theory

4, 61-94.



28

Harsanyi, J. and R. Selten (1988). A general theory of equilibrium selection in games.

Cambridge, Mass.: MIT Press.

Harsanyi, J. (1993). “A New Theory of Equilibrium Selection for Games with Complete

Information”. Mimeo University of California at Berkeley.

Hurkens, S. (1994). “Learning by Forgetful Players: From primitive formations to

persistent retracts”. CentlER DP 9437.

Kalai, I, and D. Samet (1984). “Persistent equilibria in strategic games”. Inlernational

Jouwrnal of Game Theory 13, 129-144.

Myerson, R.B. (1978). “Refinements of the Nash Equilibrium Concept”. International
Journal of Game Theory 7, 73-80.

Schanuel, S.11.; L.K. Simon and W.R. Zame (1991). “The Algebraic Geometry of Games
and the Tracing Procedure”, in: R. Selten (ed.), Game Equilibrium Models, Vol.

2: Mcthods, Morals and Markets, Springer Verlag, 9-43.

Schelling, 'I'. (1960). The Strategy of Conflict. Ilarvard University Press, Cambridge,
Mass.

Van Damme, E. (1987). Stability and Perfection of Nash Equilibria. Springer Verlag,
Berlin. Second edition 1991.

Von Stackelberg, H. (1934). Marktform und Gleichgewicht. Springer Verlag, Vienna

and Berlin.

Endnotes

1. Bagwell (1992) restricts himself to the case where player I' has a unique best re-
sponse to any pure action ¢ of player L. He writes that the basic results are most
casily reported in this case, from which the reader might be tempted to conclude
that his result (Proposition 1 in our paper) is also valid for games that do not

satisfy this condition. That conclusion, however, is unwarranted as the following
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example shows

W E
T |24 |04
B30 |12

Figure Al

The unique pure equilibrium of the game g of Figure Al is (B, E), however,
(T,WE) is also a pure Nash equilibrium of ¢” and this equilibrium results in
the outcome (7, W). The reader might object that the latter equilibrium is not
credible since it is not perfect (although it certainly is sequential). This deficiency
is casily eliminated by adding a third (dominated) strategy of player L to the game

against which W is the unique best response of player [,

2. We could equivalently work with behavioral strategies, cf. also (5.9).

3. Ior a proof of the first statement, see Van Damme (1987, Thm 2.6.2). The second

statement follows from the observation that in generic games, a pure strategy that
is a best response is a unique best response against an open set of strategies in the

neighborhood. See Balkenborg (1992) for further details about the proof.
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