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Abstract

In this paper it is shown that in a general equilibrium model with price rigidities there
exists a connected set of constrained equilibria containing both trivial equilibria. The
proof of this theorem combines results in the areas of mathematical programming with
those in topology. This result is proved without using differentiability assumptions and is
also extended to the case with upper semi-continuous demand correspondences. All known
existence results for the model discussed follow as easy corollaries from these results.



1 Introduction

In cconomic models with fixed prices and quantity rationing many existence results have
been given in the past. In Dréze (1975) the existence of a constrained equilibrium without
rationing on the market of the numeraire commodity was shown. In van der Laan (1980b)
it was remarked that there exist two trivial equilibria which also satisfy the conditions
for a constrained equilibrium given by Dréze (1975). In one of these trivial equilibria the
prices of all commodities are set equal to their lower bound and supply of all commodities
is completely rationed, while the demand of every commodity is not rationed. The second
trivial equilibrium is obtained by setting all prices equal to their upper bound, rationing the
demand of all commodities completely and not rationing the supply of any commodity. Van
der Laan (1980b) and, in a somewhat different model, Kurz (1982) showed the existence
of non-trivial equilibria without rationing on the demands, while van der Laan (1982)
showed the existence of a non-trivial equilibrium without rationing on the demands and
without rationing on at least one market. This constrained equilibrium is called a real
unemployment equilibrium. Similar results have been obtained in Dehez and Dréze (1984),
van der Laan (1984), and Weddepohl (1987), for models with a different set of admissible
prices. In van der Laan and Talman (1990) and Herings (1992) more equilibrium existence
results are given.

Van der Laan (1982) states a theorem that there is a connected set of constrained
equilibria containing both the trivial equilibrium with complete supply rationing and a
real unemployment equilibrium. The proof is based on properties of points generated
by a simplicial algorithm applied to a model with price rigidities and quantity rationing.
However, the proof is not complete since it assumes that a certain sequence of connected 1-
manifolds has a subsequence that converges to some connected 1-manifold. This reasoning
is not valid in general. Nevertheless, the basic idea of the proof, the use of the properties
of the path of points generated by a simplicial algorithm in order to obtain insight into
the structure of the set of constrained equilibria, will turn out to be very useful. This idea
will be used to show the existence of a connected set of constrained equilibria containing
the two trivial equilibria, which is a generalization of the result in van der Laan (1982).
No differentiability assumptions will be made on demand functions in order to derive this
result. In fact it will be shown that it is possible to obtain the same result in the case with
upper semi-continuous excess demand correspondences.

In Section 2 the model and equilibrium concept used is briefly discussed. In Section 3 the
algorithm used in van der Laan (1982) is presented. It is applied on a function derived from
the excess demand function of an economy with price rigidities and quantity constraints. It
is shown that the algorithm generates a path of points connecting the two trivial equilibria.
In Section 4 it is shown that the set of constrained equilibria has a component, i.c. a



maximally connected subset, which contains the two trivial equilibria. In Section 5 it
is shown that the results of Section 4 remain valid if weaker assumptions are made with
respect to the economy, guaranteeing only that the excess demand correspondence is upper
semi-continuous instead of being a continuous function. In Section 6 it is shown that all the
earlier mentioned equilibrium existence results can be proved by a one line argument using
the results of Sections 4 and 5. In Section 7 the main conclusions are briefly summarized.

2 The Model

In the following, for k € N, define I, = {1,...,k}, Q* = {z € R* | Vj € I, 0 <
z; < 1}, let 0% be a k—dimensional vector of zeros, and let 1% be a k—dimensional vec-
tor of ones. Consider an exchange economy with price rigidities and a rationing system,
Ei= ({X",t",w‘};’;l ,P(z',;),(l,L)) . There are m consumers indexed i = 1,...,m and n
commodities indexed j = 1,...,n. A consumer is defined by a consumption set X*, a pref-
erence ordering > on X*, and a vector of initial endowments w'. The set of admissible
prices is denoted by Py 5). Here p denotes a lower bound and p an upper bound on the set
of admissible prices. The rationing system (I, L) is a pair of functions, each function having
mn components. Function values describe rationing schemes permitted in the economy.
For every i € I, and for every j € I, component (i —1)n + j of [ is denoted by I} and
component (i —1)n + j of L is denoted by L. This description of the possible rationing
schemes is very general and includes special cases as uniform rationing (Dréze (1975)), ra-
tioning determined by initial endowments (Kurz (1982)), rationing determined by market
shares (Weddepohl (1983)), rationing determined by priority (Weddepohl (1987)), or no
constraints on the admissible rationing schemes (Herings (1992)).

With respect to the economy £ the following assumptions are made:

Al. For every i € In, X' is a convex, closed, non-empty subset of R*, X* C R}, and
Xi 4+ R} C X',

A2. Foreveryi € I, the preference ordering >=* on X' is transitive, complete, continuous,

weakly monotonic, and convex.
A3. For every i € I, the initial endowments w' are an element of Int (X*).
A4. The set of admissible prices is equal to
Pon ={peR;|Vi€ I, p; <P < Bi},

for some given p,p € RY such that for every j € 1y, 0 < ?; < p;.



A5. The functions [ : Q* — —RT" and L : Q" — RI" specifying the rationing system
are continuous on Q" and satisfy for every i € I, j € I, ¢ € Q™,

li(q) = Li(r)ifreQ™andg; =r;

li(g) = 0ifg;=0, and j(q) < ~wjifg; =1,
L; (q) = L; (T) ifre Q" and q; =Tj,
L;(q) 5. E w;.'iqu=0, andLj«(q):Oifq_.,-:l.

h€lm\{s}
AB. The preference ordering >* on X' is strongly convex. !
A preference relation =* on X* is weakly monotonic if z',y* € X* and Vj € I, z} > v}
implies z > y'. For z',y* € X', let z' >' y* be defined as z' >' y' and not y* >=* z'.
A preference relation >* on X' is convex if z,y° € X* and z' > y' implies for every
0 <A<, A +(1=X)y* ' y*. A preference relation >* on X' is strongly convex if
oyt € X', 2 # ¢, and 2 =' y' implies for every 0 < A <1, Az + (1 = )y > y'.
Given p € Py, I € —R}, and L' € R}, the constrained budget set of consumer

i € I, at price p and rationing scheme (I*, L?) is defined by

B(P.L )= {z‘ € X‘|p-z‘ <p v, F<z—w'< Z‘},
and the constrained demand set of consumer i € I, at price p and rationing scheme (I, L)
is defined by

§(F, Li,p) = {z* € B(F, I',p) Wy’ € B(F, L, p), " =* o' }.

Definition 2.1 (Constrained Equilibrium)
A constrained equilibrium of the economy € = ({X‘, LT P (1, L)) is an element

[ 87 Pl B B B ) € [ X [[ R % .I:IIR: X Pps)

i=1 i=1

such that
1. Vi € I, : z% € 8 (I, L*, p*) ;
2. z‘z-i_zglwi=0n;

3.Vj € I : z}h — wh = Lj* for some h € In implies =i —wi > I, Vi € I, and

zh — wh = l;-" for some h € I, implies z}' — w} < L}, Vi € In;

4. Vj € I : p} < p; implies L} > z3' — w}, Vi € In, and p; > p; implies i<

z}' — wh, Vi€ In;

1This assumption will be dropped in Sections 5 and 6.



5. (I,...,1"™) € I(Q") and (L*Y,...,L"™) € L(Q").

For j € I, define the component p; of the function p: Q™ — P, 5 by
p; (q) = max {p,, min {(2 — 3¢;) p, + (3¢; — 1) 7, B3} } , Va € Q™.
Moreover, define the functions [ : Q" — —R}" and L:Qgn > RT" by

i(9) = I(min{1",3q}), Vg€ Q",
L(g) = L(max{0"3¢-21"}), Vg€ Q",
where the maximum and the minimum are taken componentwise. The components i; of I

and L; of L are defined in the same way as the components I} and L}. It can be shown, as
in Herings (1992), that there is no loss of generality in describing the prices and rationing

Il

schemes simultaneously using the function (p x I x l:) 1Q™ = Ppg X —RY" x RT™ if one
is interested in all the possible constrained equilibrium allocations and prices, or binding
rationing constraints. For every ¢ € Q™ define the set W (q) of vectors in R™ orthogonal on
p(q),s0 W(q) = {z € R" | p(q)-z = 0}, and define the total excess demand correspondence
(:Q"— R" by

= (56 (.1 a.500) - S {w}) W@, vee e

Using the results in Herings (1992) the following theorem can be shown.

Theorem 2.2
Let be given the economy £ = ({X‘,t‘,w‘}r;l ,P(N),(I,L)) and let the Assumptions Al-
A5 be satisfied. Then the correspondence ( : Q™ — R" satisfies the following conditions

1.  is a non-emply and conver valued correspondence;
2. ( is an upper semi-conlinuous correspondence;
3.VqeQ", Vz2€((q), Vi€ln, 2z; 20 ifq;=0;
{-VgeQ~, Vz€((q), Vi€, ;<0 ifgi=1;

5 VqeQr, Vze((q), plg)-2=0.

If in addition Assumption A6 is satisfied, then ( is a continuous function.

If for some g € Q™, 0 € ((g), then it is easily verified that ¢ induces a constrained equilib-
rium (z*1,...,z*™ i(q), I.(q), p(q)), where Vi € I,, z* € &'(I'(q), I(q), (q)). Condition 1



of Definition 2.1 is guaranteed by the definition of the correspondences 6 and ¢. Condition
2 is satisfied since 0 € ((g). Finally, Conditions 3, 4, and 5 are satisfied by the definition
of the function (p x I x L).

Let ¢ = 0. By Properties 3 and 5 of Theorem 2.2 it follows immediately that {(0") = 0.
Moreover, 0" induces a constrained equilibrium (w‘,...,w”‘,O’"",il(O“),g). This is the
trivial equilibrium with complete supply rationing.

Liet ¢ = 1". By Properties 4 and 5 of Theorem 2.2 it follows immediately that ((1*) =
0™. Morcover, 1™ induces a constrained equilibrium (w',... ,w"‘,i(l"),O""‘,ﬁ). This is the
trivial equilibrium with complete demand rationing.

3 The Algorithm

In Sections 3 and 4 it will always be assumed that the Assumptions A1-A6 are satisfied
for a given economy €. In this section an algorithm is discussed which computes a zero
point of (. First some preliminaries are given. Let z!,...,z'**! be t+1 affinely independent
points in R™. Then the t—simplex denoted by o (z',...,z'*!) is defined as the convex hull
of the sct with elements z',...,z'*!, so

o () = 0 s 2]

The points z',...,z'*! are called the vertices of o (z!,...,2'*!). A (t — 1) —simplex 7
being the convex hull of ¢ vertices of the simplex o (z?,...,z!*!) is called a facet of o.
There is exactly one vertex of o, say z* for some k € I 4;, which is not a vertex of a
facet 7 of o and therefore 7 is called the facet of o opposite the vertex z*. Two different
simplices o' and o are called adjacent if one of them is a facet of the other or if both

share a common facet.

Definition 3.1 (Triangulation)
Let S be a t—dimensional convez subset of R*. A collection G of t—simplices is a simplicial

subdivision or triangulation of S if
1. Yseco =S;

2. The intersection of two simplices in G is either empty or the conver hull of s <t+1

common vertices;

3. If a facet T of a simplez o' € G lies in the boundary of S then there is no 0? € G
such that 0% # o' and 7 is a facet of 0, and if T does not lie in the boundary of S
then there is ezactly one 0 € G such that 0® # o' and 7 is a facet of o2.



In this section the set Q™ will be triangulated. It is possible to show that the triangulation
of a compact set S contains a finite number of simplices. Hence all triangulations considered
in this section contain a finite number of simplices. If G is a triangulation of a compact,
convex subset of R* then the mesh size of the triangulation G, denoted mesh (G) , is given
by

mesh (G) = max {||z — ||« |3o € G such that z,y € o'} .

For the existence of a triangulation of Q™ with arbitrarily chosen positive mesh size, see
van der Laan and Talman (1987).

An essential part of the algorithm is that to each point in Q™ a label in the set I,.4; is
assigned. For every ¢ € Q™ let /(q) be defined by

I(q)= {J" € In |g;» # 1 and (j (q) = max(; (q)}~

Define the labelling function ¢ : Q™ — I.41 by

¢ (q) il e l(q) andVy € I(q), j° <7,
$(q) = n+1ilI(q)=0. )

Definition 3.2 (Proper Labelling Function)
The labelling function ¢ : Q™ — Inyy is proper if for every j € I, and z € Q", ¢; = 1
implics ¢ (q) # j and q; = 0 implies ¢ (q) #n + 1.

It will be shown that the labelling function ¢ given in (1) is proper, if the Assumptions
A1-A6 are satisfied.

The algorithm which will be used to compute an approximation of a set of zero points
of the function ¢ is identical to the one in van der Laan (1982) which is a special case of
the algorithm in Chapter 5 of van der Laan (1980a) and van der Laan and Talman (1981).
For the sake of completeness the steps of the algorithm are given below. If the labelling
function is proper, then it can be shown (van der Laan (1980a)) that each step described
in the algorithm is feasible. Define for J C I, the sets

A(J) = {zeQ"Vjel.\J, z; =0},
G(J) = {enA(J)|e e anddim(enNA(J)) =|J]}.

I'rom ‘Theorem 2.3 in Todd (1976) it follows immediately that G'(J) is a triangulation
of A(J). In the description of the algorithm given below, o' will denote a simplex and
77 a verlex generated by the algorithm. J* is a subset of I, generated by the algorithm
and determines a set A(J*) and a triangulation G(J*) in which the algorithm generates
simplices. Let a triangulation G of Q™ and a proper labelling function ¢ : Q® — Iy, be
given. Then the algorithm operates as follows.



Algorithm
Step 0. Let t =0, 2°=0", 0® =0 (2°), J°=0, i =j =k =0. Go to Step 1.

Step 1. If ¢ (z') = n+ 1 then stop. If ¢(z*) ¢ J* then go to Step 3. Otherwise there is a
unique vertex z* of ¢’ such that z* # z* and ¢ (z*) = ¢(z*). Go to Step 2.

Step 2. Let 7 be the facet of a7 opposite z*. If there exists € J* such that 7 C A(J*\{k})
then go to Step 4. Otherwise there is a unique point z**' € A(J*) such that o7+! =
co(7 U {z*+'}) is a t—simplex of G(J*) and ¢7+! # ¢7. Increase the values of i and j
by 1. Go to Step 1.

Step 3. Define J¥*! = J¥ U {¢(z")}. There is a unique point zi+! € A(J*+!) such
that 0/+! = co(o? U {z*+'}) is a (t + 1) —simplex of G(J**!). Increase the values of
i, 7, k, t by 1. Go to Step 1.

Step 4. Let z' be the unique vertex of o7 such that ¢(Z') = h and ' # z'. Define
JE+1 = Jk\ {h}. Define 07+! = 7. Increase the values of j and k by 1 and decrease
the value of ¢ by 1. Let ' be the element 7. Go to Step 2.

In Step 1 the algorithm is initiated. In Step 2 a simplex is replaced by another simplex of
the same dimension, which is possible by the properness of the labelling function. In Step
3 a new simplex is generated which contains the old simplex as a facet and in Step 4 the
new simplex generated is a facet of the old simplex.

Definition 3.3 (J—completeness)
Let J C Iy, be given where |J| = t. A (t —1)—simplez o (z',...,2') in Q™ is J—complete
if o ({2, ., })=d.

The simplices generated have the property that they are an element of G (J) for some
J C I, with t = |J|. Furthermore, let two adjacent simplices 7, o7*! generated by the
algorithm be given and let o7 € G(J), o’*' € G(J). Then ¢’ N ¢/*! is a J U J—complete
simplex in A(J N J).

Theorem 3.4

Lel G be a triangulation of Q™ and ¢ : Q™ — I.4y a proper labelling function. Then the
algorithm lerminates in a finite number of steps with an Inyy—complete n—simplez in Q™.
Proof

A detailed proof is given in Chapter 5 of van der Laan (1980a). There it is shown that Step
2 in the algorithm is feasible due to the proper labelling, and the number of steps of the
algorithm is finite due to the fact that cycling is impossible by using the “door-in door-out”



argument of Lemke and Howson (1964) and the finiteness of the number of simplices in the
collection Uycy, G(J). Hence the algorithm stops in a finite number of steps with a simplex
having a vertex with label n+1. This simplex has to be n—dimensional and I,,;—complete
since ¢(q) # n + 1 if gj = 0 for some j € I,.

Q.E.D.

Hence, if the labelling function is proper the algorithm generates a finite sequence of
adjacent simplices, say 0%, ..., o7. The dimension of the simplices is varying from t = 0 at

% tot=natol.

Theorem 3.5

Let the Assumptions A1-A6 be satisfied for an economy E. Then the labelling function
¢: Q" — I,y defined in (1) is proper.

Proof

Let g € Q" be given and let g; = 0 for some j € I,. By Property 3 of Theorem 2.2 it holds
that ¢; (¢) > 0. If for some k € I, q« = 1, then by Property 4 of Theorem 2.2 (i (¢) < 0.
Hence I (g) # @ and so ¢(g) # n + 1. Let ¢ € Q" be given and let ¢; = 1 for some j € I,.
Then by definition j ¢ I(g) and hence ¢ (q) # j.

Q.E.D.

Theorem 3.6

Let the Assumptions A1-A6 be satisfied for an economy E. Let o be a simplez generated
by the algorithm using a triangulation G of Q™. Then for every € > 0 there ezists a § > 0
such that if mesh(G) < § then for all g € o, ||{(q) || < €.

Proof

Assume that o is the j—th simplex generated by the algorithm and therefore it will be
denoted by oi. If j = 0 then ¢ = 0" which implies by Property 3 of Theorem 2.2 that
Vj € I, ¢; (g) > 0. Hence by Property 5 of Theorem 2.2 and since Vj € In, p;(q) >0, it
follows that ¢ (¢) = 0™. So consider the case where j > 0. By the remarks above Theorem
3.4, 0°-'No’ is a J—complete simplex in A(J) for some J C I,.. Hence, for all g € o/~ No?
it holds that A € I, \ J implies g, = 0 and therefore by Property 3 of Theorem 2.2 that
Ch(g) > 0. Let k € J and let z be the vertex of the simplex ¢=! N o/ such that ¢(z) = k.
Then ((z) = maxer, (a(2) > 0. So for every k € I, there is a vertex z € 07~ N o such
that ¢k (z) > 0. By Theorem 2.2, ( is a continuous function. Define

mingep, {2,.} b @)

E= =
Lhel, Ph



and choose § > 0 such that z,y € Q" and ||z — y||co < 6 implies || (z) — ¢ (¥) [|oo < €. Let
g € o’. Then mesh (G) < & implies Vk € I, (k(g) > —&. Using Property 5 of Theorem
2.2,p(q) - ¢ (q) =0. Hence

r@G@ = - 3 m@h@<e 3 mlg.

heln\{k} heln\{k}

So Ck(q)<g&yﬁ%”_") Sg.z_h.ﬂ;:mﬂ'.se_

Q.E.D.

So the total excess demand corresponding with all points in the simplices generated can
be made less than an arbitrarily specified € > 0. Moreover the first simplex generated is
{0"}. Now it will be shown that 1™ is a vertex of the last simplex generated.

Theorem 3.7

Let the Assumptions A1-A6 be satisfied for an economy €. Then ¢(1") = n + 1 and there
is no other point ¢ € Q™ such that $(qg) =n+ 1.

Proof

Ifg 1" then I(q) = @ and hence ¢(q) = n+ 1. Now let ¢ € Q™ be such that ¢ # 1™.
Properties 4 and 5 of Theorem 2.2 guarantee that (j(g) > 0 for some j € I, for which
¢; <1 while gx = 1 implies that (i(g) < 0. Consequently I(g) # @ and ¢(q) # n + 1.

Q.E.D.

Therefore the algorithm generates a finite sequence of adjacent simplices such that 0" is a
vertex of the first simplex generated and 1™ is a vertex of the last simplex generated. This
result combined with Theorem 3.6 will be used extensively in the next section to prove the
existence of a connected set containing the two trivial equilibria.

4 The Existence of a Connected Set Containing the
Two Trivial Equilibria

In this section the properties of the points in the simplices generated by the algorithm will
be used to prove the existence of a connected set C in Q" such that 0*,1" € C and for
each element ¢ in C it holds that {(q) = 0. Theorem 4.1 first gives an interesting result for
approximate constrained equilibria.

Theorem 4.1
Let the Assumptions A1-A6 be satisfied for an economy E. Then for every r € N there
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ezisls a conlinuous function f7 : [0,1] — Q" satisfying f7(0) = 0", fr(1) = 1", and
vee [0,1], 1I¢ (S () llo <

Proof

Consider the simplices ¢2,...,07 generated by the algorithm for a triangulation G with
mesh (G) < & where § is chosen such that Theorem 3.6 holds for ¢ = 1. Define for j €
{0}U; the elements ¢/ € Q™ as follows. For 0 < j < j—1, ¢/ is the barycentre of 0/ Noi+1,
and ¢ = 1*. Clearly ¢° = 0. By Theorem 3.7 it holds that 1* € o3. Moreover, for every
Jj € I it holds that ¢~! and ¢’ are elements of o’. For z € R let |z] denote the greatest
integer which is less than or equal to z. By the convexity of simplices and Theorem 3.6, it
is easily verified that the function f7 : [0,1] — Q" defined by

() = (1=5t+[5t) " + Gt - [t)) g9, 0< t < 1,
f' (t) q;i t= lv

satisfies all conditions of Theorem 4.1.

Q.E.D.

Define
E={¢"€Q"|((¢)=0"}.

Clearly 0" and 1™ are elements of E and therefore E # 0. Moreover E is a closed set by the
continuity of the function {. As is argued below Theorem 2.2 each element ¢ € E induces
a constrained equilibrium

(610 (9), £ (@), (@) -, 8™( (0), E™ (2) B (@) F @), L (@), B () -
For a non-empty, compact set S C R" define the function ds : R® — R by

ds (z) = min {||z - yll | y € S}
By the theorem of Weierstrass, the function ds is well-defined. Let S,T be non-empty,
compact subsets of R". Define e (S, T) by

e(S,1)=min{||lz -yl |z €S, yeT}.

Using the theorem of Weierstrass it follows immediately that e(S,T') is well-defined.
Clearly, if S and T are disjoint, non-empty, compact subsets of R", then e (S,T) > 0.

Proposition 4.2
Let z,y € R™ and a non-empty, compact set S C R" be given. Then |ds(z) —ds(y)| <

Iz = yllo-
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Proof
By definition of ds there exist Z, § € S such that ||z —Z||ec = ds (z) and ||ly—§|lc = ds (¥) -
So it has to be shown that |||z — Z||e — ||y — Fllec| £ ||z — ¥]|cc OF equivalently

=llz = yllo < llz = Zlleo = Iy = Flloo and ||z = Zl|oo — |y — Flleo < Iz — Yllco-

This holds since ||y — §lloo < [|¥ = Zlloo < [y = Zlloo + |2 — Z|eo 20d ||z —Z[leo < ||Z = oo <
lz = ylloo + lly — Flloo-

Q.E.D.

Proposition 4.3

Let be given a non-empty compact set S C R". Then the function ds is continuous. Proof
Let be given a sequence (z7), ¢y in R such that z7 — z. Clearly by Proposition 4.2
0<|ds(z") —ds(z)| < ||lz" — 2|l = 0. So ds (z") — ds (z).

Q.E.D.

The following theorem shows that the approximate constrained equilibria given by the
function f are uniformly close to the set of constrained equilibria.

Theorem 4.4

Let the Assumptions A1-A6 be satisfied for an economy £ and for every r € N let f* :
[0,1] = Q™ be a continuous function satisfying the properties given in Theorem 4.1. Then
Ve >0, 3R € N such that Vr > R, Vt € [0,1], dg (f7 (t)) <e.

Proof

Suppose 3¢ > 0 such that YR € N, 3rR > R, 3tR € [0,1] satisfying de(fT7(tR)) >
e. Consider the sequence (f7"(t?))ren in Q™. There exists a convergent subsequence
(f"™ (t”")).en with limit, say, ¢ € @". It holds that

ds () = d (lim /™ (7)) = lim ds (£ (t¥)) 2 «.
However,

02 6@ = ¢ (Jim ™ (%)) = Jtime (7 ()

00

I < lim . =0
00
So ¢ € E and therefore dg (¢) = 0, which is a contradiction.
Q.E.D.
Before proving the main theorem a few definitions and properties are given first. Loosely

speaking, a topological space is connected if it is of one piece. The following formal defi-
nitions of connectedness can be found for example in Dugundji (1965).
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Definition 4.5 (Connectedness)
A topological space X is connected if it is not the union of two non-empty, disjoint, closed
sets.

A subset of a topological space is connected if it becomes a connected space when given
the induced topology.

Definition 4.6 (Component)
The component of a point z in a topological space X is the union of all connected subsets
of X containing z.

It is casily scen that cach component is connected and therefore the component of an cle-
ment z is the largest connected subset containing z.

Definition 4.7 (Quasicomponent)
The quasicomponent of an element z in a topological space X is the intersection of all
subsets of X which are both open and closed and contain z.

Following Dugundji (1965) it is not difficult to show that the collection of all components
partitions X. Similarly the collection of all quasicomponents partitions X. In general topo-
logical spaces, components and quasicomponents need not coincide. However, it is easily
seen that the component of a point is a subset of the quasicomponent of this point. The
following example illustrates the fact that it is possible that the component of a point is
a proper subset of the quasicomponent of this point. It is a modified version of Example
115 in Steen and Seebach Jr. (1970).

Example 4.8

Let
R = {(fh,th) €Q g = 0},
R' = {(‘Inqa) €Qq = 1}.
s = {mwe@|lmn -Gyl - 55} wen

For every r € N, S is a square with center (%, %) and diameter ;I7. Consider the set
T = R°U R' U (U,¢nS") . Give T the topology induced by the topology of the Euclidean
space R2. Since Yk € N the set U¥_,S" is open and closed in T, it holds that the quasi-
component of 0? is a subset of R® U R'. Clearly R is the component of 0?. Hence R® is
a subset of the quasicomponent of 0. Since every open and closed set in T containing R°
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has to contain R! it has to hold that the quasicomponent of 0% is R° U R!.

Example 4.8 makes clear that the quasicomponent of a point is not necessarily connected.
Fortunately, the set T’ of Example 4.8 cannot result as a set of elements ¢ € Q? for which
0% € ((q), since the set T in Example 4.8 is not closed. The following theorem gives
sufficient conditions guaranteeing that the component and the quasicomponent of a point

coincide.

Theorem 4.9

Let E be a compact subset of the Euclidean space R". Then the component and the quasi-
component of each point of the set E coincide. ?

Proof

If S is a subset. of E then cl(S) and bhd (S) will denote respectively the closure of S in E
and the boundary of S in K. Let an element g of E be given. Clearly the component of
q is contained in the quasicomponent of q. Now the converse will be shown. Let C be the
quasicomponent of some ¢ € E. Since C is an intersection of sets closed in E it is closed
in E itself. It has to be shown that C is connected. Suppose C is not connected. Then
there exist two non-empty disjoint sets A and B such that AUB = C and A and B are
both closed in C, hence in R™. Without loss of generality it can be assumed that ¢ € A.
Clearly, A and B are compact sets. Therefore the set D defined by

= {q € EIdA (q) < %:(A, B)} =d;! ((.— %e(A,B))) NE

is well-defined. It follows immediately that D is open in E, A C D, and BNcl(D) = 0.
Moreover, these three properties imply

CNbd(D)=(AUB)Nbd(D) = 0. 3)

Let ¢ € B. In the following step of the proof a set which is both open and closed in E and
which contains ¢ but which does not contain § is constructed. This yields a contradiction
since C is the quasicomponent of ¢ and ¢ is an element of C. If bd (D) = @ then the
set /) satisfies the requirements mentioned above and the proof is finished. So assume
bd (D) # 0. For every r € bd (D) it holds by (3) that r ¢ C. Hence, since C is the
quasicomponent of g, for every r € bd (D) there exists a set F'* which is open and closed
in E and which is such that ¢ € F" and r ¢ F". The collection {E \ F" |r € bd (D)} is an
open cover of bd (D) in E and since bd (D) is compact, there exists a finite subcover, say
{E\F",...,E\ F™"} of bd (D). The set Nies, P is open and closed in E and contains
the element g. Moreover, bd (D) N (f'l,-e;, Fr i) = 0. Finally consider the set F' defined by

2|4, is possible to verify that the proof given is valid whenever E is a compact metric space.
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F=Dn (n.-g, F") . Clearly,q € F and g ¢ F. F is an open set in E as an intersection of
finitely many open sets. Furthermore,

d(F) c (D) N (Nien, F™') = (DN (Mier, F7°)) U (bd (D) N (Nier, F™)) = F.
QED.

The next theorem finally gives the desired result. It states that there is a component, i.e.
a maximally connected subset of E, containing 0" and 1".

Theorem 4.10

Let the Assumptions A1-A6 be satisfied for an economy E. Then the set E contains a
component C such that 0" € C and 1" € C.

Proof

Suppose E does not contain a component such that 0" and 1" are in it. Then by Theorem
4.9 the quasicomponent of 0" does not contain 1™. Hence there exists a set E° which is both
open and closed in E, contains 0", but does not contain 1. Define E! = E \ E°. Clearly
E! is both open and closed in E and contains 1*. Since E is a closed subset of R", E° and
E! are compact sets in R". Since E° N E! = @ this implies that for some € > 0 it holds
that e (E°, E') > e. By Theorem 4.4 there is an r such that for all ¢ € [0,1] it holds that
dg (7 (t)) < le. It will be shown that for some t* € [0,1] it holds that dgo (f7 (t*)) < 3¢
and dg (f7 (t*)) < 1e. Define the function h : [0,1] = R by

h(t) = dgo (f7 (t)) — dg2 (f7 (2)), VE € [0,1].

By the continuity of the functions f", dgo, and dg:, the function A is continuous. Moreover
h(0) < — and k(1) > €. Hence there exists a t* € [0, 1] such that  (¢*) = 0, and therefore

dis (J7 (1)) = dips (7 (1)) = d& (J7 (1)) < %s.

Consequently there exists ¢° € E° and ¢' € E' such that ||f"(t*) — ¢°ll < 3¢ and
/7 (t*) — 'l < €. Hence

e<e(E%E") < 1¢° = a'lloo < I (") = lloo + I (*) — @'l <&,
which is a contradiction.

Q.E.D.
Corollary 4.11

Let the Assumptions A1-A6 be satisfied for an economy E. Then there ezists a connected
set of constrained equilibria, containing the trivial equilibria (w',...,w™,0™", L(om), p) and
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(wl) S50y wm, i(ln), Omn' i’)
Proof
Define the continuous function ¥ : Q® — R¥™"+" by

v(q) = (&' (" (9), L' (9),$(a)) .-, 8™ (I (9), L™ (9),$(9)) 0 (a) L (4) 5 (0)) , Vg € Q"

Let C be the component of Theorem 4.10, containing 0" and 1™. Since the image of a
connected set under a continuous function is a connected set, it follows that ¥(C) is a
connected set. Moreover, every element of ¥(C) is a constrained equilibrium, ¢ (0") =
(w',...,w™,0m, L (0"),p) and % (1") = (w',...,w™, [(1"),0™, ).

Q.E.D.

5 The Case of Upper Semi-Continuous Correspon-

dences

In Sections 5 and 6 the Assumptions A1-A5 are made, so Assumption A6 is dropped. Now
( is an upper semi-continuous correspondence. Let the set E be defined by

E={qeqQ"|0"€((q)}.

This could also be denoted by E = (~*({0"}), where {~! is the strong inverse of the
correspondence (. So again, E is the set of all elements ¢ € Q™ inducing a constrained
equilibrium. It is easily seen that 0",1" € E if Assumptions A1-A5 are satisfied for an
economy €. In this section it will be shown that Theorem 4.10 and Corollary 4.11 are still
true if Assumption A6 is not made. However, it is possible to construct examples which
show that Theorem 4.1 need not be true. The way Theorem 4.10 and Corollary 4.11 are
shown to be true if Assumption A6 is not made, uses many of the ideas of Sections 3
and 4. Again it is based on a simplicial algorithm which generates a path of points with
interesting properties. However, the integer labelling algorithm given in Section 3 does not
yield the properties needed if we are working with upper semi-continuous excess demand
correspondences instead of continuous excess demand functions. In Herings, Talman, and
Yang (1993) an algorithm is introduced which generates a path of points with the prop-
erties given in Theorem 5.2. In order to make these properties clear a definition is given
first.

Definition 5.1 (Piecewise Linear Approximation)

Let G be a triangulation of Q™ and ( : Q™ — R™ a (non-empty valued) correspondence.
For any poinl q of Q™ lel 2(q) be an clement of ((q). Then the piecewise linear approxri-
mation to ( with respect to G is given by the continuous function Z : Q" — R" defined
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by Z (q) = 72 Ajz(z7), where o(z',...,2™") is a simplez in G and Vj € Iny1, Aj >
0 E"+1A _1 q_2"+1/\1’

In Herings, Talman, and Yang (1993) the following theorem is shown.

Theorem 5.2

Let G be a triangulation of Q™ and let { : Q™ — R" be a correspondence satisfying Prop-
erties 1-5 of Theorem 2.2. Let Z : Q® — R" be a piecewise linear approzimation of
¢ with respect to G. Then there ezists a continuous function f : [0,1] — Q™ satisfying
J(0) = 0", f(1) = 1", and Vt € [0,1), it holds that for some B € R and p; > 0 for all
J € lIn,

Zi(f(t)) = B—w; if fi(1)=0,

Zi(f(t)) = BifO<fi(t)<],
Zi(J() = B+pif fi(t)=1
Theorem 5.3

Let the Assumptions A1-A5 be satisfied for an economy E. Then E contains a component
C such that 0™ € C and 1" € C.

Proof

By Proposition 1 on page 22 of Hildenbrand (1974) the set E is closed. Because it is a
subset of Q™ it therefore has to be compact. Suppose Theorem 5.3 is not true. Then
by Theorem 4.9 the quasicomponent of 0" does not contain 1*. Then, similarly to the
proof of Theorem 4.10, there exist two sets E° and E! which are both closed in E and
which are such that E°NE!' =0, E°CUE! = E, 0" € E°, and 1™ € E'. Hence for some
€ >0, e(E° E') > ¢. For every r € N let G" be a triangulation of Q" with mesh size
less than or equal to ! and denote the piecewise linear approximation of ¢ with respect
to " by Z7, and the function f given in Theorem 5.2 with respect to G™ by f". Define
hT:[0,1] = R by

h7(t) = dpo (f7 (t)) — d2 (f7 (1)), VL€ [0,1].

Clearly, by the continuity of the functions dgo, dg1, f, the function A" is continuous for
every r € N. Moreover, h7(0) < —¢ and A"(1) > €. Let " be such that A7(¢") = 0. Then

% 1
dio (f7 (1)) = dppr (J7 (1)) = d& (J7 (7)) 2 ¢ (4)
Let Af,..., AL, be non-negative reals satisfying ):_',‘:1‘ A =1,letz',...,z"*"", be vertices
of a simplex o(z'",...,z"*"") of G",
n+1

R = Z A':r:’ and Z'(f7(t")) = ZA':(:’ ).
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Consider the sequence

(35 ees Kegin 28" )i 05, 5™ ), S ELE (F (D)) -

This sequence remains in a compact set because for all ¢ € Q™, 2(q) € ((q) implies
Vj € I, -T2, wi < 2i(q) < —LL and, by taking a convergent subsequence, without

loss of generality it can be assumed that this sequence converges to an element, say
LR L R i o

Since the mesh size of G” is less than or equal to ! it holds that Vj € I.41, 27" — ¢*. Since
( is upper semi-continuous it holds that Vj € I...H, *3 € {(¢"). Since Z* = Y7} A3z,
where Vj € Iny1, A 2 0 and T2 A = 1, it holds that Z* € ((q") because ( is convex
valued according to Propert.y 1 of Theorem 2.2,

IfVj € I, 0 < ¢ < 1, then, using Theorem 5.2, it has to hold that Vj, k € I,,, Z; = Z}.
By Property 5 of Theorem 2.2 p(¢*) - Z* = 0, where Vj € I, p;j(¢*) > 0. Hence it has to
hold that Z* = 0™.

If 3j € I, such that ¢; = 0, then define I°(¢*) = {j € I | ¢; = 0}. If j € I°(q")
and k € I™\ I°(¢°) then by Theorem 5.2 and Property 3 of Theorem 2.2 it holds that
0 < Z; < Z;. Therefore by Property 5 of Theorem 2.2, Z* = 0".

If 3j € I, such that ¢; = 1, then define I'(¢*) = {j € I | ¢} = 1}. If j € I'(q")
and k € I"\ I'(¢*) then by Theorem 5.2 and Property 4 of Theorem 2.2 it holds that
0 > 77 > Z; which again implies Z* = 0.

Hence ¢* € I and dg(q°) = 0. However, by Proposition 4.3 and (4),

deld) = dx (rlm F (t')) = lim dg (f (")) 2 —e >0,
which is a contradiction.

Q.E.D.

Theorem 5.4

Let the Assumptions A1-A5 be satisfied for an economy E. Then there ezists a connected

set of constrained equilibria, containing the trivial equilibria (w', ..., w™ 0™ L(0"), p) and

(w!,...,w™,i(1"),0™, ).

Proof

Let C be the component obtained in Theorem 5.3. Define the set M = {(z!,...,z™) €
R" | &, z' = &, w'}). Define the non-empty and convex valued upper semi-

conl,muons correspondence ¥ : C — R by

v(g) = ﬁs‘ (F(a), L (0),5(@) x {(I(2),L(q),5(9)} N (M x R*™+"), Vg € C.
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Theorem 5.4 is shown if it is proved that the set (C) = {z € R*"™*" | 3¢ € C such that z €
¥(q)} is connected, since the set ¥(C) contains only constrained equilibria, 0*, 1" € C,
¥(07) = {(v...,w™,0™,L(0"),p)}, and p(1") = {(w,...,w™,i(1"),0™,p)}.
Suppose the set $(C) is not connected, then it can be partitioned in non-empty, dis-
joint sets S§' and S2, which are both closed in the set 3 (C). Consider the non-empty
sets ~1(S") and ¢~'(S?). By Proposition 1 on page 22 of Hildenbrand (1974) both
¥='(S"') and ¥~'(S5?) are closed in C. Clearly ~1(S') U%~1(S?) = C. Hence if it can
be shown that $~'(S') N%~'(S?) = @ then a contradiction with the connectedness of
C is obtained and Theorem 5.4 has been proved. Suppose ¢ € %~1(S') N ¥~1(5?) and
z!, z? € ¥(q) where z! € S! and z? € S2. Since 9 is convex valued it holds that for every
A €[0,1], (1=X)z'+Az? € (q). Hence there exists a continuous function 4 : [0,1] — %(C)
such that h(0) = z' and A(1) = z%. By Theorem 5.3 of Dugundji (1965) this implies that z?
is contained in the component of z!, which is a contradiction. Hence ¢~1(5*)Ny~(S?) = 0.

6 Equilibrium Existence Results

The following definition gives a slight generalization of the equilibrium concept used in
Dréze (1975).

Definition 6.1 (Dréze Equilibrium)
A Dréze equilibrium with respect to commodity j € I, of an economy £ is a constrained
equilibrium (z*',...,z*™I*,... I*™ L*',... [*™,p") of the economy € satisfying Vi €

In, [} <z} —w} < L;'.

It is casily seen that the existence of a Dréze equilibrium with respect to commodity j € I,
is equivalent to the set EN{g € Q™ | 1 < ¢; < 2} being non-empty. It is also easily observed
that the two trivial equilibria do not satisfy the requirements of a Dréze equilibrium with
respect Lo some commodity j € I,,. In van der Laan and Talman (1990) it is shown that
for an economy with uniform rationing schemes it holds that

Vi€ I, VAE[0,1], EN{geQ"|gi=A}#0. (5)

In the following a constrained equilibrium induced by an element in the set given in (5) will
be called a Dréze equilibrium with respect to the pair (7, A). For the following definition
see van der Laan (1980, 1982) and Kurz (1982).

Definition 6.2 (Supply Constrained Equilibrium)
A real unemployment cquilibrium or a supply constrained equilibrium of an economy &
is a constrained equilibrium (z*!,...,z*™ I"',... '™ L*},...,L*™,p*) of the economy €
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salisfyingVi € I, V3 € Iy, z3' —wi < L3 and 3k € I, such thal Vi € I, i < z3' —wj <
Ly

It is easily seen that the existence of a supply constrained equilibrium is equivalent to the
set EN{q€ Q" |} < maxjer ¢ < 2} being non-empty. It is also easily observed that the
two trivial equilibria do not satisfy the requirements of a supply constrained equilibrium.
A demand constrained equilibrium could be defined analogously to a supply constrained
equilibrium. In Herings (1992) it is shown that

VGEQ", En{qeqnlvjelnv qjsajy akelny k=ak}¢o-

Corresponding equilibria are called extended supply constrained equilibria with respect to
the vector a in Q™. Moreover in Herings (1992) it is shown that

VReQ", EN{qe Q" |Vj€E I, ¢; > P, Ik € I, qx =P} #0.

Corresponding equilibria are called extended demand constrained equilibria with respect
to the vector 8 in Q™. Using Theorem 5.3 the existence of each of the constrained equilibria
mentioned above is very easily shown. The existence results follow as easy corollaries to

Theorem 6.3.

Theorem 6.3

Let the Assumptions A1-A5 be satisfied for an economyE. Let g : Q™ — R be a continuous
function satisfying g(0™) < 0 and g(1™) > 0. Then g~'({0}) N E # 0.

Proof

Let C be the connected component obtained in Theorem 5.3. Since g is continuous it
follows that g(C) is a connected subset of R. Since all connected subsets of R are intervals
and since 07, 1™ € C, g(0™) <0, and g(1™) > 0, it holds that 0 € g(C) C g(E).

Q.E.D.

Besides the existence of each one of the constrained equilibria defined above, Theorem 6.3
also immediately yields the existence of a component of the set of constrained equilibria,
which contains the two trivial equilibria and all the constrained equilibria defined above.

Now Vj € I,, VA € [0, 1], the existence of a Dréze equilibrium with respect to the pair
(j,A) follows by Theorem 6.3, where g : Q® — R is defined by

9(q) =g, — A, Vg€ Q"
Moreover, for each @ € Q™, the existence of an extended supply constrained equilibrium
with respect to a follows by Theorem 6.3, where g : Q™ — R is defined by

g(q) = max{g; —a; | j € I}, Vg€ Q"
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Finally, for each 8 € Q", the existence of an extended demand constrained equilibrium
with respect to J follows by Theorem 6.3, where g : Q* — R is defined by

g(q) =min{q; - B; | j € I.}, Vg € Q™.

7 Conclusions

Using concepts from mathematical programming and topology it is possible to show that
the set of constrained equilibria of an economy with some rationing system has a component
containing the two trivial equilibria. It is shown that this result is true if the demand
functions of this economy are continuous, or cven if the demand correspondences of this
economy are upper semi-continuous. Using these results all known equilibrium existence

results for these economies are very easily shown.
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