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1 Introduction

The framework of differential and difference games has proved to be very useful
for the analysis of a variety of economic problems. When economic agents can be
considered to have intertemporal objective functionals which depend on the use of
their instruments and the state of the economy, and when the dynamics of the state
of the economy can be described by a dynamic system in state-space form which is
driven by the use of these instruments, this framework is appropriate. For example,
the state of the economy can be the capital stock which accumulates by investments in
fiscal policy games (Fischer, 1980), in capacity investment games (Reynolds, 1987),
or in the Lancaster (1973) game of capitalism. Other examples are the sluggish
price level which changes due to excess demand or supply in dynamic duopolistic
competition (Fershtman and Kamien, 1987), the stock of resources which is depleted
in resource extraction games (Reinganum and Stokey, 1985), and the concentration
level of pollutants which increases due to emissions in the game of transboundary
pollution control (van der Ploeg and de Zeeuw, 1992).

In most analyses of this kind first the respective control problems are solved and
then noncooperative equilibria are derived in the resulting strategies. Depending on
whether the decisions are taken simultaneously or sequentially, the Nash or Stackel-
berg equilibrium concept is employed. Because of the correspondence with control
techniques such as Pontryagin’s maximum principle and Bellman’s dynamic program-
ming, the focus is mostly on open-loop outcomes and feedback outcomes. In the first
decision model it is assumed that the players only have initial state information
and are committed to the initially chosen strategies, whereas in the second decision

model it is assumed that the players only have current state information and are free



to choose their actions at the time of play (see, e.g., Basar and Olsder, 1982). All
these outcomes are generally not Pareto efficient. To put it differently, if the players
would cooperate, which means that they jointly decide on all the available controls,
they generally can reach a Pareto improvement over the noncooperative outcome. To
be able to evaluate the incentives to cooperate one of the Pareto efficient outcomes
can be selected and compared with the noncooperative outcome. The selection can be
done on the basis of axiomatic bargaining theory (see, e.g., Roth, 1979) and leads to,
for example, the Nash or Kalai-Smorodinski bargaining solution. This approach was
chosen to evaluate the incentives to cooperate in a linked macroeconometric model
for two Common Market countries (de Zeeuw, 1984).

Axiomatic bargaining theory is unsatisfactory because the bargaining process is
not described and because one would like to have a noncooperative under-pinning of
the cooperative outcome. For this purpose the alternating offer model was developed,
where the players propose in turn how to partition a pie (Rubinstein, 1982). This
approach is called strategic bargaining theory. In the context of a difference game a
proposal consists of a joint strategy from a certain point in time onwards. One player
makes a proposal and the other player accepts or rejects the proposal. In the case
of rejection the players choose their disagreement action and the game proceeds to
the next period in which it is the other player’s turn to make a proposal for a joint
strategy from that period in time onwards. As in the strategic bargaining model for
the partition of a pie these proposals have to be subgame perfect. Strategic bargaining
in the context of a difference game has already been suggested and analysed (Stefanski
and Cichocki, 1986; Houba and de Zeeuw, 1991). However, in these papers it is
assumed that the disagreement actions are exogenously prescribed by, for example,
the feedback or open-loop Nash equilibrium of the difference game. In this paper

subgame perfectness is not only required for the proposals in the bargaining process



but also for the disagreement actions, which are therefore endogenously determined
in the unravelling of the optimal proposals.

Time is valuable in this model, because the possible gains of cooperation shrink
as time passes by: there is a clear incentive for an early agreement. Each proposal
for the partition of a pie is necessarily Pareto efficient. It will be shown in this
paper, however, that a subgame-perfect equilibrium proposal for a joint strategy may
be Pareto inefficient. The reason is that it is possible to have two subgame-perfect
equilibrium proposals such that the reacting player strictly prefers one proposal to
the other whereas the proposing player is indifferent between the two.

Section 2 of the paper is concerned with the formalisation of the subgame per-
fect equilibrium proposals with subgame-perfect disagreement controls in a difference
game with a finite horizon. It is shown that a proposal can be Pareto inefficient and
an example is given. Section 3 of the paper deals with the strictly convex linear-
quadratic case. If the dimension of the state-space is one, it is possible to solve
for the subgame-perfect equilibrium proposals analytically, backwards in time. The
equilibrium is unique and, therefore, in this model also Pareto efficient. An exam-
ple is worked out. However, in section 4 it is shown that, if the dimension of the
state-space is higher than one, the linear-quadratic structure breaks down and the
subgame-perfect equilibrium proposals are not analytically tractable anymore. Sec-

tion 5 concludes the paper.



2 The Bargaining Model

The starting point is a standard difference game with two players and a finite
time horizon t; (e.g., Bagar and Olsder, 1982). Difference games are dynamic games
in discrete time in which the objectives depend on the values of the state variables
and the chosen controls, and in which these state variables change over time under
influence of the controls of the players. For instance, investments change the capital
stock, output decisions change the market price, depletion changes the resource stock,
emissions change the stock of pollution and budget deficits change the government’s
debt position.

The control vector of player i, : = 1,2, at time ¢, t € T := {0,1,..,t; — 1}, is
denoted by u;(t), which is an element of the set of feasible control vectors U;(t) C R™.
The state vector at time ¢ € T'U {t;} is denoted by z(t), which is an element of the

set of feasible state vectors X (t) C R", and the state transition is given by
z(t+1) = f(z(t), u(t), t), teT, z(0) = =,

where u(t) := (u1(t),ua(t)). The preferences of player i, ¢ = 1,2, are represented by
a cost function J;, which is a real-valued function on the cartesian product of the sets
of feasible state vectors and control vectors.

The bargaining process is modelled in a similar fashion as the alternating bid
model for the partition of a pie (Rubinstein, 1982). It is assumed that in each pe-
riod of time first one round of bargaining takes place before the players choose their
controls. Therefore the number of bargaining rounds is equal to the number of time
periods, ty, in which the players can try to control the system. In each round of bar-
gaining one of the players makes a proposal to the other player on how to use their

control vectors from that period of time t onwards. The other player either accepts or



rejects the proposal. If the proposal is accepted, the agreement is binding and both
players continue the game by implementing the contract, i.e. each player uses his/her
control variables as prescribed in the contract. If the proposal is rejected, both players
choose their controls for one period in a non-cooperative way and in the next period
of time ¢ 4 1 it is the other player’s turn to make a proposal. The disagreement
control vector of player i, i = 1,2, at time ¢, t € T, is denoted by ul(t) € Ui(t). In
the alternating offer model (Rubinstein, 1982) and in earlier attempts to incorporate
strategic bargaining into difference games (Cichocki and Stefanski, 1986, Houba and
de Zeeuw, 1991) the disagreement controls were exogenously given. However, in the
model of this paper the disagreement controls form an integral part of the subgame

perfect equilibria of the bargaining game.

teven stage 1 Player 1 proposes a joint strategy.
stage 2 Player 2 accepts/rejects.
stage 3 Both players use their controls.

todd stagel Player 2 proposes a joint strategy.
stage 2 Player 1 accepts/rejects.
stage 3 Both players use their controls.

Figure 2.1 The game tree of the bargaining model in which player 1

proposes at all even time periods.

At time t € T the controls used until time ¢ are history and cannot be changed. This
simply means that players cannot undo the past. Therefore, the player whose turn it

is to make a proposal at time ¢ can propose a joint strategy u‘ from the set



U= U(t)xU(t+1) x..x Uty — 1),

where U(s) := Ui(s) x Uz(s). In what follows Ji(z,u?), ¢ = 1,2, denotes player 1’s
costs associated with the proposed joint strategy u* € W*, given the state z at time ¢.

In the partition of a pie model (Rubinstein, 1982) both players have an incentive
to reach an early agreement because time has value. In the bargaining game in this
paper there is also an incentive to reach an early agreement. This incentive is different
from the time preference in the partition of a pie model, although this type of time
preference can also be included. As time goes by, the set of available control vectors

shrinks, because forallt € T
¥ D { ut | u(r) = ui(r), 7 = t} HeuD { ut | u(r) = ud(r), 7 =t,..,t;— 1 }

The intuition behind this result is that the sooner the players start with the joint use
of available instruments the more they can control the system to their joint benefit.

In order to obtain analytical results attention is focused on convex linear quadratic
(LQ) games. LQ games arc difference games with quadratic cost functions and a lincar
state transition. Because these games are analytically tractable and can be considered
as approximations to general difference games, applications generally resort to LQ
games (see e.g. Fershtman and Kamien, 1987, van der Ploeg and de Zeeuw, 1991).

Formally, for ¢ = 1,2, convex LQ games are defined as

iy i) = miln 12'(0)Qiz(0) + Zeer 3| wi(t)Row(t) +'(t + 1)Qiz(t +1) ],
with state transition

z(t+1) = Az(t) + Biui(t) + Baua(t), t€T, z(0)=zo,

where R; is positive definite and Q; is semi-positive definite. All matrices can be

time-dependent but for simplicity detailed notation will be omitted.



Note that LQ games have cost functions J; with the property that the remaining
costs at time ¢ do not depend directly upon u(0), ..., u(¢ — 1), but may depend indi-
rectly on these controls through the state variable z(t). In other words the past is
sunk with respect to direct costs of used controls in the past, but not indirectly be-
cause the past controls determine the current state. Furthermore, the cost functions
from period ¢t onwards will be the same for different histories which result in the same
state vector z(t).

A difference game will be called one-dimensionalif the vector with state variables
has a dimension of one. Similarly, a difference game will be called n-dimensional if
the state vector has dimension n, n > 1.

It is assumed that both players have current state information and are free to
choose their actions at the time of play. Consider the game that starts in state z
at time t. Since z can be the result of different histories, z can be an ”information
set” in the terminology of game theory, so that this game is not a proper subgame.
However, the continuation from each node in this "information set” is the same, so
that sequential rationality can be applied without worries about beliefs. Therefore,
the equilibrium concept is very close to subgame perfectness (SPE) (Selten, 1978)
and will be referred to as such. Another way out is to require that the matrices B;
and B; have full column rank and that the players have perfect recall. That means
that the players remember the states before time t and their own actions, so that they
can reconstruct the history that has led to the state z at time t. Subgame perfect
equilibria can be found by backwards induction.

The bargaining model is rich enough to analyse renegotiation of agreements. Rene-
gotiation means that the players are allowed to continue the bargaining process in
order to reach a new agreement that will replace the existing agreement. Renego-

tiation has to be considered, because it is unlikely that players will refrain from



bargaining after they have agreed upon a joint strategy that is not Pareto efficient.
However, for explanatory reasons it is first assumed that no renegotiation takes place.
At the end of section 3 it is shown that for convex LQ difference games renegotiation
does not change the results.

Before the class of convex LQ games is analysed in the next two sections it is useful
to consider first an example to illustrate how equilibria are computed. The example
also shows that in general more than one subgame-perfect equilibrium proposal for a
joint strategy exist and that equilibria can be Pareto inefficient. The reason is that
for the case in which player 2 is the proposing player in the first period this player is
indifferent between two subgame-perfect equilibrium proposals whereas player 1, the

reacting player, strictly prefers one proposal to the other.

Example 2.1 [Starr and Ho, 1969]

INSERT FIGURE 2.2 HERE

Consider the two-player two-period tree game in figure 2.2, in which player i,
1 = 1,2, has to choose between L; (left) and R; (right) in each period. Furthermore,
only pure strategies are allowed.! The nmbers between brackets represent costs
which the players try to minimise.

The first step in computing SPE’s is to determine what the equilibrium disagree-

ment actions are in the last period in case the players end up in a situation in which

!When mixed strategies are allowed the results of this example break down, but other examples
HHR

can be constructed with subg; perfect eq ia which are not Pareto efficient.




they have failed to reach an agreement. For each state variable z(1) in period 1 the
players have to play a bi-matrix game. Subgame perfectness requires that the dis-
agreement actions in this period, given the state z(1), are Nash equilibrium actions

of the bi-matrix game. This yields the following result:

(RlyH2)1 if't=2$
W O [ F e T
(B s T =0

Note that the equilibrium disagreement outcomes in states 0 and 1 are Pareto efficient.

The next step consists of deriving the optimal behaviour of the responding player
in each state z(1) to a proposed joint strategy u! € W'. If this player rejects the
proposed joint strategy both players will use the equilibrium disagreement actions.
The responding player will certainly accept any proposed joint strategy that is strictly
better for him/her than the disagreement outcome and will certainly reject it if the
proposed joint strategy is strictly worse for him/her than the disagreement outcome.
If the responding player is indifferent between the proposed joint strategy and the
disagreement outcome accepting and rejecting are both optimal for this player.? In
what follows emphasis will be on the derivation of equilibria in which the responding
player accepts whenever this player is indifferent.

The proposing player’s best joint strategy that will be accepted by the responding
player minimises the proposing player’s costs for the remainder of the game given the
constraint that the responding player’s costs are at most this last player’s disagree-
ment costs. It is possible that the proposing player is indifferent between this best
joint strategy and a proposal that will be rejected, which implies that both kinds of
behaviour are optimal for this player in this situation. In what follows equilibria will
be computed in which the proposing player proposes the best joint strategy if the

corresponding costs are at most the disagreement costs.

2Without loss of generality it is assumed that the responding player does not use mixed strategies
to determine whether or not to accept.
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The set of joint strategies that will be accepted by the responding player contains
the equilibrium disagreement actions u?(1,z) and, thus, this set is not empty. Fur-
thermore, this set consists of a finite number of joint strategies. Hence, the proposing
player’s best joint strategy exists and will be at least as good as the equilibrium
disagreement actions for both players.

Suppose the proposing player is player 1 in period 1, then this player’s best joint
strategy u*!(z) € ¥! in period 1 is given by

(Ly, Lg), ifz=2,
ul(z) = { (L1, L), ifz=1,
(L1, Rp), ifz=0.
However, the proposing player’s best joint strategy need not be unique. Suppose
the proposing player is player 2 in period 1, then this player’s best joint strategy
u**!(z) € ¥! in period 1 is given by

{(Rl,Rl)y (leLZ)}a ’ft = 27
ﬂ“l(I) € {(L],Lg)}, lf r = l,
{(Ll’ RZ)}’ ifz=0.

Note that the equilibrium in state 2 in which player 2 proposes the joint strategy
(Ry, R;) is not Pareto efficient, because the joint strategy (L;, L;) is strictly better
for player 1 and not worse for player 2. Hence, a subgame-perfect equilibrium proposal
need not be Pareto efficient. The reason for this result is that the proposing player
is indifferent between the two joint strategies and that the responding player strictly
prefers one joint strategy to the other but accepts both.

The analysis above shows that several equilibria exist for each subgame starting at
period 1. However, when the equilibrium costs are compared with each other it follows
that the states z(1) = 0 and z(1) = 1 always have the same equilibrium costs, namely
(4,1) and (0,3) respectively. These equilibrium costs are also independent of whether
player 1 or player 2 is the proposing player because the equilibrium disagreement

actions are Pareto efficient. The equilibrium actions in state z(1) = 2 are not unique
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and in this case it also matters which player is the proposing player. However, all
equilibria in state z(1) = 2 have either costs (0,2) or costs (2,2). Define the value
functions V(1,z) and V(1,z) as follows

(0,2), ifz=2, X (2;2), ifz=2.
V(l,z) e (0,3), ifz=1, and V(1,z)€{ (0,3), ifz =1,
(4,1); fz=0; (4,1), fz=0.

The equilibrium disagreement actions in period 0 are derived from a reduced-form
bi-matrix game, which is the bi-matrix game of the first period augmented with the
equilibrium costs in the resulting state z(1). Subgame perfectness requires that the
disagreement actions in the first period, given the state z(0), are Nash equilibria of
this reduced-form bi-matrix game. Independent of V/(1,z) and V/(1, z) it follows that

the equilibrium disagreement actions in period 0 are
u(0,z) = (R, Ls).

If these disagreement actions are played then the state (1) = 2 results. This means
that the disagreement costs from the first period onwards are either (2,4) or (4,4).
Similar to the analysis of period 1 it follows that subgame perfectness requires that
the responding player accepts every proposed joint strategy u® € W° if the associated
costs are at most this player’s disagreement costs. The set of joint strategies that
will be accepted by the responding player is finite and contains the joint strategy
(u"(O,x), u"(z)). Therefore, the proposing player’s best joint strategy exists and is
at least as good as the equilibrium disagreement outcome for the proposing player.
Suppose the proposing player is player 1 in period 0, then this player’s best joint
strategy u*®(z) € W° in period 1, independent of whether (2,4) or (4,4) are the

disagreement costs, is given by

u*(z) = ((L1, Ra), (Ra, La)),
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with total costs (1,4). Suppose the proposing player is player 2 in period 0, then each
subgame has a unique equilibrium and the disagreement costs from the first period

onwards are (2,4). Player 2’s best joint strategy u**°(z) € ¥° in period 0 is given by
uo-O(z) € { ((Rlv LZ)v (Ll’ L?))v ((le Rz), (Rh Lz)) } '

with total costs (1,4) and (2,4) respectively. Note that the equilibrium joint strategy
need not be unique and need not be Pareto efficient.

Beside the equilibria found above many other equilibria exist in this example.
The equilibrium strategies of these other equilibria can only differ from the equi-
librium strategies derived above when the optimal behaviour for a specific player is
not uniquely determined. For instance, when the responding player is indifferent be-
tween a proposed joint strategy and the disagreement outcome then accepting and
rejecting are both optimal. Above it was imposed that the responding player accepts
whenever indifferent. Consider the optimal strategy in which the responding player
accepts whenever the proposed joint strategy yields strictly lower costs than the dis-
agreement costs and rejects otherwise. Then the pair of costs (3,2) can be supported
as an equilibrium outcome in the bargaining game in which player 2 is the propos-
ing player in period 0. The disagreement actions in the last period are the same
as before, while for every state z(1) no joint strategy exists that gives player 1 at
most this player’s disagreement costs and player 2 strictly less than this last player’s
disagreement costs. Hence, disagreement will result in all subgames and V(1,z) is
the corresponding value function. It will be clear that this leads to the same dis-
agreement actions in period 0 as before with total costs (4,4). Player 2’s best joint
strategy u**°(z) € WP from the set of joint strategies that will be accepted by player 1

is given by

u**%(z) = ((L1, R2), (L1, R2)).
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with total costs (3,2). Note that the equilibrium in which player 2 rejects when
indifferent is strictly better for this player than the equilibria derived above in which
this player accepts when indifferent.

It may also be the case that the proposing player is indifferent between this player’s
best joint strategy and disagreement. For instance, this occurs for all subgames of
the bargaining game in which player 2 is the proposing player in period 1. Above
it was imposed that the proposing player proposes this player’s best joint strategy
whenever indifferent. It is also possible to derive equilibria in which the proposing
player proposes a best joint strategy whenever this joint strategy yields strictly less
costs than the disagreement costs and proposes some unacceptable joint strategy
otherwise. These equilibria yield equilibrium costs which are the same as before and
will therefore be omitted.

It should be noted that the tie-breaking assumption that the proposing player al-
ways proposes this player’s best joint strategy and the responding player accepts when
indifferent lead to a simple procedure to derive equilibria. The proposing player’s best
joint strategy minimises the proposing player’s costs on the set of all joint strategies
that will be accepted by the responding player. Finally, the existence of equilibria
in which either the responding player rejects whenever indifferent or the proposing
player does not propose this player’s best joint strategy whenever indifferent is due

to the fact that the set of joint strategies, given the state z at time t, is finite.
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3 One-Dimensional Games

Each period ¢, t € T, of the bargaining game can be divided into a bargaining
phase and a disagreement phase. For each phase in each period quadratic value
functions in the one-dimensional state vector of that period are postulated, which
represent the continuation costs of the SPE. It will be shown that indeed an equilib-
rium for quadratic value functions exists, that the equilibrium costs are unique and
Pareto efficient, that the equilibrium is analytically tractable and that both the pro-
posed joint strategy and the disagreement controls are contingent upon the state of
the system. Player ¢’s value function, given state = at time ¢, is denoted by V;(t, z),
1 = 1,2. Superscripts b and d denote the value function in the bargaining phase
respectively the disagreement phase of that period. Formally,

VA(t,z) = LK!(t)2* and V{(t,z)=1KE(t)2?, i=1,2.
Note that the matrices K¥(t), K#(t), Q: and A are 1 x 1 matrices and can be treated
as scalars. However, R; and B; are not scalars, unless player ¢ has only one control
variable. In order to distinguish between scalars and matrices, scalars will be written
in lower case letters k!(t), k%(t), ¢; and a. Without loss of generality it is assumed
that ¢; > 0.

Backwards induction implies that the analysis has to be split into two steps.
Firstly, given state  at t and the value functions V*(t+1, f(z,u,t)) one period later,
the equilibrium disagreement controls u?(t,z) € U(t) are derived. Secondly, given
state z at time ¢ and the value functions V?(t, z), the equilibrium proposal u(z) € ¥t
at time ¢ is derived. The first step is essentially the same as in the derivation of the
feedback Nash (or Markov perfect) equilibrium in ordinary difference games without

bargaining.
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Proposition 3.1 The equilibrium disagreement controls at time t, t € T, for state =

are given by

ud(t,z) = —ki(t+ 1)e(t)'az R7'B;, i=1,2,
where

e(t) =1+ kb(t+ 1)ByR;' B, + kb(t + 1)B, R; ' B, > 0.
Furthermore,

k() = ¢i + e(t)2a®[k2(t + 1)’ BiR;7'B; + k}(t +1)] >0, i=1,2
and

z(t+1) = e(t) az(t).

Proof.

The optimisation problem min,er Vi(¢,z) for player ¢, i = 1,2 is given by
'1‘1.1&1% 1 u;Riu; + qiz® + k(t + 1)(az + Biwy + Baup)? .
The first order condition is
Riu; + k2(t + 1)(az + Byu; + Byuy)B; = 0. (%)

To obtain the following equation, first premultiply both sides by B; R, then sum up

over i = 1,2 and add az to both sides, and finally rewrite the equation. This yields
az + Byu; + Byup = e(t) az,
where

e(t) :=[1+ k(t + 1)By Ry By + kb(t + 1)B2R;' By].
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The term on the left hand side is equal to z(¢+1) and, therefore, z(t+1) = e(¢) az(t).
Substitution of these results into (*) and premultiplying by R;' yields the expres-
sions for u¢(t,z). Finally, substitution of u¢(t,z) and z(t + 1) into the value function
Vi(t,z) above yields the expression for k#(t). Given k(¢ + 1) > 0, it is easy to show
that e(t), k#(t) > 0. o

The second step in deriving the equilibrium consists of solving the bargaining
phase. Subgame perfectness requires that the responding player in period ¢ accepts
every proposed joint strategy that yields strictly less costs than the equilibrium dis-
agreement outcome, while the responding player rejects if the proposed joint strategy
yields strictly higher costs. When the responding player is indifferent accepting and
rejecting are both optimal. In what follows it is assumed that the responding player
also accepts in case of indifference in order to break this tie. Thus, the responding
player, denoted by subscript R, accepts the proposed joint strategy u‘ € ¥¢, given
state = at time ¢, if Jr(z,u') < V(t, ) and rejects otherwise.

The proposing player, denoted by the subscript P, can always secure this player’s
disagreement costs Vi(t,z) by proposing an unacceptable joint strategy or a joint
strategy that prescribes the actions that will lead to those costs. The proposing
player’s best joint strategy that will be accepted by the responding player minimises
the proposing player’s costs for the remainder of the game given the constraint that
the responding player’s costs are at most this last player’s disagreement costs. Hence,

this best joint strategy u‘(z) is found by the following optimization problem.
u'(z) = arg melg Jp(z,ut), st. Jp(z,u') < VE(t, ).
utewt

Let ut4(z) € ¥* denote the path of controls, given state = at time ¢, that will result if

both players follow the equilibrium strategies in case of disagreement. By definition
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Ji(z,ut¥(z)) = V4(t,z), i = P, R, and, therefore, u"¥(z) belongs to the set of joint
strategies that will be accepted by the responding player. It follows that the proposing
player’s best joint strategy u'(z) yields costs that are at most V3(¢, z). It is assumed
that in order to break ties in case of indifference the best joint strategy u'(z) is
proposed and not some strategy that will be rejected by the responding player.

The next lemma states that the constraint in the optimisation problem to derive

the proposing player’s best joint strategy is always binding.
Lemma 3.1 The constraint Jp(z,u') < V(t,z) is binding.

Proof.
Suppose the constraint is not binding. Then u'(z) = (u*(t,z),...,u*(t; — 1,z)) satis-

fies
up(t,z) =0, Brug(t,z)=—az and uj(s,z)=0, i=PR, s=t+1,.,t—1

The corresponding costs are Vi(t,z) = 1qpz? and Vij(t,z) = } [qmv:2 + u;,f(t,x)Rnu;;(t,z)].
The control uj(t, z) may not be unique and in order to derive the contradiction that
all these controls yield higher costs than the disagreement outcome it is sufficient to

consider the responding player’s best control that satisfies this relation. Solving

min Vi(t,z), st. Bru(t,z) = —az
ug(t,z)

yields
up(t,z) = —f'azRz'By and Vj(t,z) = Yqr+a®f7")2?,

where B = BrRR'Bp > 0. This leads to the contradiction Jgr(z,ut) > Vi(t,z),
because substitution of the expression for k%(t) derived in proposition 3.1 yields the

following equivalence
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qr+a* 8 > k(1) & (1+a)’+(1+2a)kk(t+1)8>0,

where a = kb(t + 1)BpRp' Bp > 0. Hence, the constraint is binding. o

The next proposition states the proposing player’s best joint strategy u'(z) in

period t, given state z at time ¢ and the value functions V¥(t,z), i = P, R.

Proposition 3.2 The proposing player’s best contract at time t, t € T, for state z is

given by u'(z) = (u*(t,z),...,u*(ty — 1,x)), where u*(s,z), s = t,...,t; — 1, is given

by

ul(s,2) = —Gi(s)I= [a — BG(r)|z, i=P,R,
with

B=[Bp,Br] and G(s)= [ 2‘28 ] .

The matrices Gi(s), i = P,R, s =1,...,t;— 1, are found by solving backwards recur-

sively the system of equations

G(s)

a(kp(s + 1) + Mkp(s + 1))[R+ (kp(s + 1) + Mkr(s + 1))B'B]"'B’,

ki(s)

4 + Gi(s)RiGi(s) + ki(s + 1)[a — BG(s)]*, ki(ty) =g¢:, i= PR,

for a parameter A > 0, with R = [ }BP ,\%R ] and requiring that A is such that

the resulting kp(t) is equal to k}(t). The resulting total costs are 1ki(t)z?, i = P, R,
which will be denoted as Lk} (t)z?.
Proof.

The previous lemma implies that u’(z) has to minimize the Lagrange function
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L(z,u',A) = Jp(z,u') + A [JR(z., u') — V,‘{(t,:r)] 2
with A > 0. Dynamic programming requires the following optimization

(oo 3 [We)R() + (ap + Aar)"(s,2)+

(kp(s +1) + Mkr(s + 1))(az" (s, z) + Bu(s))?] ,

where kp(s+ 1)+ Akgr(s+1) is the parameter of the quadratic value function of this

problem and u is the stacked vector [up,ug]". This yields
u’(s) = —G(s)z*(s), i=PR,

with state transition z*(s + 1) = [a — BG(s)]z*(s). Substitution of these results into
the dynamic programming equation yields the backwards recursive equations in k;,
it = P,R. The resulting total costs are -;-k.-(t):r’, 1 = P, R. Finally, the value of the
Lagrange parameter A can be found because the constraint Jg(z, u!(z))—V@(t,z) =0

has to be satisfied, which leads to the requirement kg(t) = k§(t). o

Corollary 3.1 The proposing player’s best joint strategy u'(z) is unique and Pareto
efficient and the responding player is indifferent between this best joint strategy and

the equilibrium disagreement outcome.

Proof.

Since R;, i = P, R, are positive definite, A\ > 0 and k;(s + 1) > 0, : = P, R, it follows
that [R + (kp(s + 1) + Mkgr(s + 1))B'B] is positive definite, so that u*(z) is unique.
Suppose u'(z) is not Pareto efficient, then there exists a vi(z) € ¥* such that

Ji(z,v!(z)) < Ji(z,u!(z)) < VE(t,z), i = P, R, and either i) the < for the proposing
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player is strict, or ii) the < for the responding player is strict. Case i) contradicts
the fact that u(z) solves the minimisation problem and case ii) contradicts the fact

that u'(z) is the unique joint strategy that solves the optimisation problem. u]

The optimisation problem to find the proposing player’s best joint strategy can
be explained graphically in the two-dimensional cost space at time ¢, given state = at

t. The Pareto frontier can be derived by solving the following optimisation problems
min Jp(z,u') + AJr(z,u’), X € [0,00).
utewt

The shaded area in figure 3.1 satisfies the constraint Jg(z,ut) < V@(¢,z) and the
proposing player’s best joint strategy has to lie in this shaded area. It follows
immediately that the best joint strategy is found at the intersection of the line

Jr(z,u') = V&(t,z) with the Pareto frontier.

A

Vi -

Figure 3.1 The proposing player’s optimisation problem.
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The constraint in the optimisation problem is binding and, thus, the respond-
ing player is indifferent between accepting and rejecting the proposed joint strategy
u‘(z). The equilibrium derived above is supported by equilibrium strategies in which
the responding player accepts when this player is indifferent. It can be shown that
no equilibrium exists in which the responding player rejects when this player is indif-
ferent. In that case the proposing player’s best joint strategy is found by minimising
this player’s costs given the restriction Jg(z,u') < V@(t,z). No best joint strategy
exists in the latter optimisation problem because the set of joint strategies that will
be accepted by the responding player is open and no interior solution exist.

Suppose, however, that the disagreement outcome is Pareto efficient. In that case
the proposing player’s best joint strategy u'(z) is equal to the disagreement outcome
and both players are indifferent between this best joint strategy and the disagreement
outcome. From the equilibrium strategies above it follows that both players agree
on u'(z). However, many other equilibrium strategies exist. For instance, proposing
a joint strategy that will be rejected, or rejecting when indifferent. Although many
equilibrium strategies exist all equilibrium costs coincide with the disagreement costs
and the bargaining behaviour of the two players is irrelevant for the equilibrium
costs. An equilibrium is called essentially unique iff the equilibrium costs are unique,
although several SPE strategies may exist which support these equilibrium costs. The

following theorem formulates the main result of this section.

Theorem 3.1 There ezists an essentially unique subgame perfect equilibrium that is
supported by the following equilibrium strategies. The proposing player in period t,
given state = at t, proposes this player’s best joint strategy u'(z) of proposition 8.2
and the responding player accepts this proposed joint strategy. If both players fail to

reach an agreement the disagreement controls u?(z) of proposition 3.1 will be used.
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All value functions are quadratic.

Renegotiation of agreements can be easily incorporated into the bargaining model.
In case the two players have agreed upon a joint strategy the bargaining continues
as before, but the assumption of binding agreements means that as long as they do
not agree upon a new joint strategy both players have to implement the controls
specified by the existing agreement. It should be noted that the assumption of one
bargaining round per period means that if players agree upon a joint strategy in
period t, t € T, then the first opportunity to replace this agreement is in period ¢ +1,
and therefore the existing agreement’s controls for period t have to be implemented
in this period. Similar as in the analysis above the value functions V?(s,z,u’) and
Va(s,z,u'), i = 1,2, s =t + 1,...,1y — 1, are defined for the subgame in which the
two players renegotiate an existing agreement u* € W, t € T. Renegotiation of the
agreement u' € W, t € T, is as if the two players are bargaining in a model with
exogenously given disagreement controls and state trajectory from period ¢ onwards,

given state z at t. Therefore,
Vi(s,z,u') = Yaiz(s)® + ui(s) Riui(s)) + V(s + 1, 2z, u),

fori =1,2,s=1t+1,...,t; — 1. Subgame perfectness requires that proposition 3.2
is applied recursively in each period in order to determine V(s,z,u!), 1 = 1,2,
s =t+1,..,t; — 1, starting with the bargaining phase of period ¢;_; and working
backwards to the bargaining phase of period ¢ + 1. Hence, every Pareto inefficient
agreement u' € U* reached at period t, t € T, will be replaced in period ¢ + 1 by a
new agreement. This new agreement is unique and Pareto efficient, have quadratic
value functions and is individually rational with respect to the existing agreement u*

from period t 4+ 1 onwards. Player i’s total costs of an agreement u' € ¥*, taking
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into account renegotiation, are equal to Ji(z,u') = [qiz(t)? + ui(t) Riui(t)] + V(¢ +
1,az + Bu(t),u'), 1 = 1,2, given state = at ¢.

The proof that renegotiation of agreements does not change the result of the-
orem 3.1 uses backwards induction. Similar as in the analysis of the bargaining
model without renegotiation the value functions V?(t,z) and V3(t,z), i = 1,2, are
defined for the bargaining game in which agreements can be renegotiated. It is triv-
ial that V(t;,z) = ¢ = V¥(i5,2), i = 1,2. Suppose V}(s,z) = Vi(s,z), i = 1,2,
8 =1t+1,..,t; — 1, then proposition 3.1 implies that V4(t,z) = V¥(t,z), i = 1,2.
Subgame perfectness requires that the responding player accepts every proposed joint
strategy u € W' iff Jp(z,u') < V3(t,z) and the proposing player proposes the joint
strategy u' € W' that minimises Jp(z,u') subject to this constraint. Let u* € W*
denote this optimal joint strategy, then Ji(z,u*) < Ji(z,u!(z)) < V4(t,z), i = 1,2,
where u'(z) € ¥* denotes the best joint strategy of proposition 3.1. Because u‘(z)
is Pareto efficient it follows that Ji(z,u*) = Ji(z,u!(z)), ¢ = 1,2, and therefore
u!(z) is also an optimal joint strategy u** in the bargaining model with renegotiation.
It should be noted that u** may not be unique, but all u** yield the same pair of
equilibrium costs. Consequently, V,-"(t,z) = V2(t,z), i = 1,2. Hence, introducing
renegotiation does not-change the results of the bargaining model.

The next proposition states that the sequence of disagreement controls for the bar-
gaining game found by applying proposition 3.1 in general differs from the sequence
of feedback Nash (or Markov perfect) equilibrium controls of the ordinary difference
game (without the bargaining procedure). The reason is that in the bargaining game
both players anticipate the proposing player’s best joint strategy that will be reached
in the next period, while in the ordinary difference game such a best joint strategy
is not anticipated. Hence, assuming that the equilibrium disagreement controls are

the feedback Nash (or Markov perfect) equilibrium controls of the ordinary difference
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game (Houba and de Zeeuw, 1991) will in general imply that the disagreement con-
trols are not subgame perfect and that the bargaining outcome is different from the

bargaining outcome as derived in this section.

Proposition 3.3 The disagreement controls in periodt, given state z at t, differ from
the feedback Nash (or Markov perfect) equilibrium controls for ordinary LQ difference
games without bargaining, ezcept for period t; — 1 and in case the feedback Nash (or

Markov perfect) equilibrium is Pareto efficient.

Proof.

The quadratic value functions corresponding to the feedback Nash equilibrium are
denoted by VN(t,z) = 1kN(t)z?, i = 1,2, and the equilibrium controls u (¢, z) and
parameters kN (t) satisfy the same relations as uf(t,z) and k¢(t) in proposition 3.1,
where k(t + 1) is replaced by kN(t +1).

For period t; — 1 it follows that k¥(t;) = kN(t;) = ¢: and, hence, ud(t; — 1,z) =
uMN(t; — 1,z). Suppose that the disagreement outcome is Pareto efficient in period ¢,
then kb(t) = kg(t), because both players can secure their disagreement costs. If the
feedback Nash equilibrium is Pareto efficient, then it can be shown by induction that
k3t +1) = kN(t + 1) and, thus, kb(t + 1) = kN(t + 1) for all ¢ € T'. Consequently,
uf(t,z) = ulM(t,z) forallt € T.

In case the feedback Nash equilibrium is not Pareto efficient it is no longer true that
kb(t+1) = k#(t+1) for each i = 1,2, and therefore k(t+1) # kN (t+1),t € T\{t;—1}

for at least one player. Hence, ul(t,z) # uMN(t,z) for all t € T\ {t; — 1}. o

This section is concluded with an example in which the unique equilibrium of the

bargaining game is computed.
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Example 3.1 Consider the convex linear-quadratic difference game with 7' = {0,1},

J(u) = Bi=opjui(t)+ 2 (t+ 1)+ -}32(0),

Ja(u) Te=o13[uj(t) + 22%(t + 1)] + 2%(0),

with state transition

z(t+1)==z(t) + wi(t) + ux(t), teT, z(0)=1
and no restrictions on the set of controls:

ui(t)eR, 1=1,2, teT.

The disagreement controls and the equilibrium proposals for the corresponding bar-
gaining games are presented in tables 3.1 and 3.2. Corollary 3.1 states that the

equilibrium is unique and Pareto efficient.

Table 3.3 contains the feedback Nash (or Markov perfect) equilibrium controls of
the ordinary difference game without bargaining and the sequence of disagreement
controls of the bargaining games. Table 3.3 shows that the state variable z(1) has a
higher value in the bargaining game (independent of who proposes first) than in the
ordinary difference game. Furthermore, the control variable u#(0,z), i = 1,2, that
player i will use in case of disagreement is lower in the bargaining game where this
player is the second proposing player than in the bargaining game where this player
is the first proposing player.

The example shows that for one of the two players the bargaining outcome may be

worse than the feedback Nash equilibrium of the ordinary difference game. This is the



- 96 -

u?(1, z) ul(z) (v(0,z),ul(z)) u°(z)
u1(0) — = 20.2528 -0.2800
u3(0) = - -0.5225 -0.5937
(1) - - +0.2247  +0.1262
w(l)| -025z(1) -0.3221 z(1) -0.0724 -0.0347
up(1)| 0.5 z(1)  -0.5322 z(1) -0.1196 -0.0736
z(2) | +0.25 z(1) +40.1457 z(1) +0.0327 +0.0179
J1() | 0.5625 z(1)F  0.5625 z(1)° 0.5603 0.5479
Ja(.) | 1.1875 z(1)* 1.1628 z(1)? 1.1952 1.1952

Table 3.1 Player 1 has the initiative to propose in period 0.

) 0@ [0,0,0@) k)
u1(0) = = 20.2455 -0.3110
u3(0) = - -0.5309 -0.5603
z(1) — — +0.2236 +0.1287
w(l)| -0.252z(1) -0.2794 z(1) -0.0625 -0.0393
u(1) | 05 z(1)  -0.5784 z(1) -0.1293 -0.0708
2(2) | 40.252(1) +0.1421z(1) |  +0.0318  +0.0186
L() [0.5625 (1) 0.5491 (1) 0.5576 0.5576
Jo(.) [ 1.1875 2(1)* 1.1875 z(1)? 1.2003 1.1764

Table 3.2 Player 2 has the initiative to propose in period 0.

difference game | bargaining game | bargaining game
player 1 first player 2 first

u;(0) -0.2632 -0.2528 -0.2455
u3(0) -0.5263 -0.5225 -0.5309
z(1) +0.2105 +0.2247 +0.2236
u(1) -0.0526 -0.0562 -0.0559
uz(1) -0.1053 -0.1123 -0.1118
z(2) +0.0526 +0.0562 +0.0559
Ji(l) 0.5596 0.5603 0.5583

Ja(.) 1.1911 1.1965 1.2003

Table 3.3 The first column presents the unique SPE of the ordinary difference game
and the other two columns present the disagreement controls of the bargaining game
with the resulting state trajectory and total costs.
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case for the bargaining game in which player 1 has the initiative to propose in period 0
(see table 3.1). The equilibrium outcome of this bargaining game yields higher costs
for player 2 than the feedback Nash outcome of the ordinary difference game (see table
3.3, first column). Although the bargaining outcome in any subgame is individually
rational with respect to the disagreement outcome, this result is due to the fact that
the disagreement controls differ from the feedback Nash equilibrium controls of the
ordinary difference game. Player 2 cannot secure the feedback Nash equilibrium costs
of the ordinary difference game by announcing, for instance, the following strategy
"reject any proposed joint strategy in period 0, propose a joint strategy in period 1
that will be rejected by player 1 and use the disagreement strategies in both periods
according to the feedback Nash equilibrium of the ordinary difference game”. This
announcement is not credible, because for every state z at period 1 it is advantageous
for player 2 to propose this player’s best joint strategy u'(z) in period 1. Therefore,
rational expectations imply that both players will not use the disagreement controls
according to the feedback Nash equilibrium of the ordinary difference game, but
instead both players will use the disagreement controls u#(0,z), i = 1,2, according
to table 3.1. Hence, the fact that player 2 lacks a credible commitment to refrain
from bargaining in period 1 makes this player worse off than in the game without
bargaining. Only if player 2 is able to disconnect all communication channels forever
before the bargaining game starts, then this player could secure the feedback Nash
equilibrium costs of the ordinary difference game. This example shows that the
introduction of binding contracts and communication in the form of the bargaining

process described in this paper may not be beneficial for both players.



=28 =

4 n-Dimensional Games

Dynamic programming has proved to be very powerful in characterising the unique
subgame perfect equilibrium of the one-dimensional bargaining problem and this
technique can, in principle, be applied to solve the n-dimensional bargaining prob-
lem. Given the value functions V2(¢ + 1, f(z,u,t)), i = 1,2, and state z at time t,
the equilibrium disagreement controls u%(¢,z) and the corresponding value functions
V3(t,z) for each player can be derived. Given the latter value functions, the propos-
ing player’s best joint strategy u'(z) and the corresponding value functions V2(t, z),
t = 1,2, can be derived by solving the same optimisation problem as in section 3.
However, the main point of this section is to show that the value functions V*(¢,z),
1= 1,2,t € T, are not necessarily quadratic in contrast with the result of section 3.
The quadratic form will be the exception rather than the rule.

The fact that the value functions corresponding to the feedback Nash (or Markov
perfect) equilibrium of ordinary LQ difference games are quadratic necessarily implies
that the breakdown of the quadratic structure in LQ bargaining games has to occur in
the proposing player’s optimisation problem that determines this player’s best joint
strategy. Therefore, this optimisation problem and the value function V}*(¢, z) will be
analysed in detail. In section 3 it was shown that the proposing player’s best joint

strategy is found by solving the following optimisation problem
u'(z) = arg r'réig' Jp(z,ut), st. Jr(z,u') < Vi, z).

Without loss of generality assume that the value functions V4(¢,z) are quadratic,

that is V4(t,z) = 1a'K@(t)z, i = 1,2 The arguments of the proof of proposition

3This will always be the case for ¢t = t; — 1, but when V(¢ + 1, f(z,u,t)) is not quadratic then
¥
VA(t,z) will not be quadratic in general.
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3.2 can also be applied here. For s = t,...,t; — 1 and i = P, R this yields
Ki(s) = Qi + Gi(s)RiGi(s) + [A— BG(s)] Ki(s + 1)[A — BG(5)], Ki(t) = Q
and
A=0 or 2 [Kr(t)- Kj(t)]z=0,
where

G(s)=[R+ B'(Kp(s+ 1)+ AKgr(s+1))B]'B'(Kp(s + 1) + AKgp(s + 1))A,

RPO]

G(s) = [ GP(-S) B= [BP,BR] and R = [ 0 ARg

Gr(s) |’
Furthermore, V?(t,z) = 12'K;(t)z, i = P, R. If for each state z at time ¢ the same
A results, then the value functions V?(¢, ) are quadratic. However, if A depends on
state z at time t, then K;(t) depends on state z at time ¢ and the value functions
V23(t,z) are not quadratic. In the next lemma a property of the matrices K;(.) and

G(.) as functions of A will be proved.

Lemma 4.1 Each element of the matrices K;(s), Ki(ty;) and Gi(s), i = PR, s =
t,....,ty— 1, can be written as a fraction of two polynomials in X with for each matriz

the same denominator.

Proof.

The proof will use backwards induction.

Each element of K;i(t;) = Qi, i = P, R, is a fraction of two polynomials in A, which
are both of degree 0, and each element has the same denominator, namely 1.
Suppose that for : = P, R each element of K;(s+1) is the fraction of two polynomials

in A and that all elements of K;(s + 1) have the same denominator. By definition,

G(s) = [R+ B'(Kp(s+1)+ AKr(s +1))B] ' B'(Kp(s + 1) + AKg(s + 1)) A.
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Each element of R+ B'(Kp(s+1)+ AKg(s+1))B and B'(Kp(s+ 1)+ AKg(s+1))A
is a fraction of two polynomials in A and the polynomial in the denominator is the
same for all elements of both matrices. Therefore, the denominator in B'(Kp(s+1)+
AKRg(s+1))A cancels out against the denominator in R+ B'(Kp(s+1)+)Kgr(s+1))B
when the inverse of the latter matrix is taken. Only the numerators of the elements of
R+B'(Kp(s+1)+AKgr(s+1))B and B (Kp(s+1)+AKg(s+1))A remain. There are
several ways to compute the inverse of a matrix, but in what follows the method which
makes use of cofactors will be applied (e.g., paragraph 4.3 of Strang, 1980). Each
element of the inverse of R+ B'(Kp(s+1)+AKgr(s+1))B is the fraction of the corre-
sponding cofactor divided by the determinant of this matrix and, thus, all elements of
the inverse have the same denominator. The determinant and each cofactor are poly-
nomials in A. Post-multiplication of this inverse with B'(Kp(s + 1) + AKg(s +1))A
yields that each element is also a fraction of a polynomial in A divided by the deter-
minant of R+ B'(Kp(s+1)+ AKr(s+1))B. Thus, each element of G(s) is a fraction
of two polynomials in A and all elements of G(s) have the same denominator. This

immediately implies that the elements of G;(s) and K;(s) have the same property. O

The previous lemma implies that the elements of the matrix [Kn(t) - K}z(t)] can
be written as a fraction of two polynomials in A and that all elements have the same
denominator, namely the denominator of each element of Kg(t). Thus, rewriting of

z [K r(t) — Kﬁ(t)] z yields the symmetric matrix

an(d) -+ a(A)

T I=01

T

where each a;;()) is a polynomial in A.

In case the constraint is binding A > 0 has to solve the equation z’ [Kn(t) - Kﬁ(t)] z=
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0. In order to explain why A > 0 depends on state  at ¢ consider the states z = ¢,
and z = ¢, k,l = 1,...,n and k # l. Then, A > 0 has to solve ark(A) = 0 in case
T = ex and A > 0 has to solve ay(A) = 0 in case z = ¢;. In general ay(\) # ark(A)
and, thus, the solution for A > 0 depends on whether z = ¢; or ¢ = e;. The next
proposition states necessary and sufficient conditions for A > 0 to be independent of

state z at time ¢.

Proposition 4.1 The solution A > 0 is independent of state x at time t iff there

erists a A* > 0 such that ay(2*) =0 for all k1 =1,...,n.

Proof.

Note that A > 0 implies that R + B'(Kp(s + 1) + AKr(s + 1))B is positive definite.
Hence, the solution u!(z) exists and is unique.

(<) Substitution of A\* yields z'[0]z = 0 for all z. Hence, A = A* > 0 independent of
T

(=) Suppose that there does not exists a A* > 0 such that ay(\*) = 0 for all
k,l = 1,...,n. Define A* > 0 such that a;;(A*) = 0, then there exist k,l = 1,...,n
such that ag(A*) # 0. There are two cases that have to be considered.

Case l: k=1>1.

Then z = e, implies that A = A* and = = e, implies that A # A*. This contradicts
that A > 0 is independent of z.

Case 2: k # 1.

Renumber such that k = 2 and | = 1. Assume a3;(\*) = 0 (if not, then case 1
applies). Then, z = e; and z = e; imply that A = A\*. Consider the state £ with

%1,%2 # 0 and £; =0 for j = 3,...,n. Then ) has to solve

a”(,\):i'f + 202](A)i]£2 + dgq(A)i; =0
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and X # A*, because 2a;;(A*)Z12, # 0. Hence, ) depends on z, which is a contradic-

tion. (m]

The necessary and sufficient conditions of the previous proposition are automat-
ically satisfied for one-dimensional LQ bargaining games. However, generally these
necessary and sufficient conditions are not satisfied for n-dimensional games. The
example below shows that even for relatively simple matrices R;, Q;, A and B; the

quadratic structure breaks down.

Example 4.1

Consider the 2-dimensional convex linear-quadratic difference game with T =

{0,1},

Jl(u)

1Ze=0a (u'.(t) [ (1] 2 ] wy(t) + 2 (t+1)Iz(t + 1)) + 12'(0)12(0),
2

J3(u)

135=0n (u;(t) [ (5) ‘1’ ] uy(t) + z'(t+ 1) Iz(t + 1)) + 12'(0)12(0),

with state transition

z(t+1) = Iz + Tuy(t) 4 Tuy(t), t€T, z(0)=][1,1]
and no restrictions on the set of controls:

ui(t)eR?, i=1,2, teT.

Furthermore, it is assumed that player 2 is the proposing player in period 0, so that
player 1 is the proposing player in period 1. It will be shown that the value functions

V3(1,z), i = 1,2, are not quadratic in z, because A depends on state z in period 1.
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The first step consists of computing the matrix K¢(1) in period 1. Each player i,

i = 1,2, solves the following minimisation problem

u.{l;l)iE[IR’ Lui(1) Rowi(1) + 3z (1) + wa (1) + uz(1)] [2(1) + w1 (1) + u(1)].

Proceeding as in the proof of proposition 3.1 yields
Kj(1) =1+ ET'(1)E7'(1) + ET'(1)R;'E7 (1),

where E(1) = I + R{' + R3?. It follows that,

5 5 0 . 1 464 0
b(l)=[0 4] and A;(l):m[ 0 450].

In order to derive player 1’s best joint strategy the following optimisation problem

has to be solved

Jmin, (D Riw(1) + 3e(1) + w(1) + (D [2(1) + ui(1) + ua(1)]

st (K Dz(1) > z'(1)z(1) + uy(1)Rauz(1) +

[2(1) + (1) + uz(1)] [2(1) + ua (1) + us(1)].

Tedious calculations lead to

3+(,\'+5,\+3)?+;2+3)«)* 0

K(l)__ (A245)+43)2

APIE 0 my_’ﬁ;:_xﬁ%gﬂﬁ
FILETIES]

The constraint J;(z,u!) < V{(1,z) has to be binding, because A = 0 implies that

oolz

Sz, ul) =2 [ g z >z K3(1)z.
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Therefore, A has to be solved from the equation z'[K3(1) — K§(1)]z, which can be

rewritten as

(2X% 44X + 1)* (400[3 + (2 + 34)?] — 64(A* + 54 + 3)*) 23+

(A 45X +3)7 (100[1 + 4(1 + 20)?] — 50(2\* + 4X +1)*) 23 = .

For z = e, the equation in A becomes
4)% 4 40)3 — 1012% — 180A — 139 = 0,

which has one positive solution, namely A = 3.2204.

Similarly, for z = e; the equation in A becomes
42 4403 - 12302 — 1261 -39 =0,

which has one positive solution, namely A = 5.5794. It follows that A depends on z

and the quadratic structure of the problem breaks down.
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5 Conclusion

This paper is a first step of integrating strategic bargaining into the framework of
difference games. The bargaining model introduced in this paper integrates the al-
ternating offer model (Rubinstein, 1982) into a difference game with a finite horizon.
Each period consists of two phases, namely a bargaining phase, in which one player
proposes a joint strategy and the other player responds to it, and a phase, in which
the players either start to implement the contract (in case of an agreement) or unilat-
erally decide how to use their own controls in this period (in case of disagreement).
This bargaining model takes into account that in many economic situations the eco-
nomic agents have to make economic decisions even if they are still in the process of
negotiations with each other. For instance, all countries compete with each other on
the world market and at the same time negotiate at the GATT-meetings. To take
another example, wage bargaining between unions and employer’s organisations does
not stop the other processes in which workers and employers are involved.

The subgame perfect equilibrium strategies of the bargaining model are, in prin-
ciple, found by backwards induction. The disagreement actions are not exogenously
given but endogenously derived in this process. An example is worked out in which
multiple equilibria exist and some of these equilibria are not Pareto efficient. How-
ever, for linear quadratic difference games with a state vector of dimension one the
equilibrium is unique and Pareto efficient, and both players immediately agree. Fur-
thermore, the equilibrium is analytically tractable. It is then shown that the quadratic
structure breaks down in case the linear quadratic difference game has a state vec-
tor with a higher dimension. Therefore, the equilibrium is not analytically tractable

in this case which means that one has to resort to numerical methods to solve the
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bargaining model.

It is known from non-cooperative game theory that equilibria are sensitive to
the precise specification of the game. For instance, the alternating offer model (Ru-
binstein, 1982) has a unique subgame perfect equilibrium, while the simultaneous
demand game (Nash, 1953) has infinitely many subgame perfect equilibria. There-
fore, it is important to investigate the robustness of the results obtained for linear
quadratic difference games. Adding more bargaining rounds in each period will not
alter the results, because for each bargaining round the best joint strategy is found
by recursively applying proposition 3.2 to each bargaining round, starting with the
last bargaining round and working backwards to the first bargaining round. The as-
sumption that players decide sequentially in each bargaining round is crucial for the
results obtained. If decisions in each bargaining round have to be taken according to
the simultaneous demand game (Nash, 1953), then multiple subgame perfect equilib-
ria exist because the demand game itself has multiple equilibria. The disagreement
controls of these equilibria also differ from the feedback Nash (or Markov perfect)
equilibrium controls of the ordinary difference game. Furthermore, the arguments
used by Fernandez and Glazer (1991) and Haller and Holden (1991) can be easily
adapted to construct multiple other equilibria that may support Pareto inefficient
outcomes. An open question is how the bargaining outcomes relate to the axiomatic
bargaining outcomes that can be formulated for linear quadratic games.

The bargaining model of this paper is interesting because it can handle bargaining
situations in which a dynamic model in state-space form plays a role. This is often
the case and further research will be directed to show the value of this bargaining

model for economic analyses.
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