
~l~lu!~!~ L1JLUJJlul1
-~~Re~~. paper

36 IInINIIVII IIIIII IIII~l llllllllll~~ll~



No. 9236

STRATEGIC BARGAINING FOR THE
CONTROL OF A DYNAMIC SYSTEM

IN STATE-SPACE FORM

by Harold Houba
and Aart de Zeeuw

October 1992

ISSN 0924-7815



Strategic Bargaining for the Control of a
Dynamic System in State-Space Form~`

Harold Houbat
Free University, Amsterdam, and Tilburg University, the Netherlandsx

Aa.rt de Zeeuw
Tilburg University, the Netherlands

October 27, 1992

Abstract

The partition of a pie model is integrated into a two-player difference game in
state-space form with a finite horizon in order to derive strategic bargaining
oulromos in thc framowork of diFfcrenrc Ramcs. It is axsutncd that aRrcements
are binding. !n contrast with the model for the partition o[ a pie the outcomes
are not necessarily Pareto efficient. For one-dimensional linear-quadratic differ-
ence games the subgame perfect bargaining outcome is unique, Pazeto efficient
and analytically tractable. However, for higher dimensions the linear-quadratic
structure breaks down and one has to resort to numerical methods.

Keywords: Difference games, strategic bargaining, subgame perfectness.

'The authors thank Joeeph Plasmans for valuable auggeatione.

t A large part of this research is financed by the Dutch Organisation for Scientific ResearcL, grant
450-228-018.

1 Department of Econometrics, Tilburg Univeroity, P.O. Box 90153, 5000 LE Tilburg, the
Netherlands.



-1-

1 Introduction

The framework of differential and difference games has proved to be very useful

for the analysis of a variety of economic problems. When economic agenta can be

considered to have intertemporal objective functionals which depend on the use of

their instruments and the state o[ the economy, and when the dynamics of the state

of the economy can be described by a dynamic system in atate-space form which is

driven by the use of these instruments, this framework is appmpriate. For example,

the atate of the economy can be the capital stock which accumulates by inveatments in

fiscal policy games (Fischer, 1980), in capacity investment games (Reynolda, 1987),

or in the Lancaster (1973) game of capitaliam. Other examples are the aluggish

price level which changes due to excess demand or supply in dynamic duopoliatic

competition (Fershtman and Kamien, 1987), the atock of reaources which is depleted

in resource extraction games (Reinganum and Stokey, 1985), and the concentration

level of pollutants which increases due to emiasions in the game of transboundazy

pollution control (van der Plceg and de Zeeuw, 1992).

In most analyses of this kind first the respective control problems are solved and

then noncooperative equilibria are derived in the resulting strategiea. Depending on

whether the decisions are taken simultaneously or sequentially, the Nash ot Stackel-

berg equilibrium concept is employed. Because of the correspondence with control

techniques such as Pontryagin's maximum principle and Bellman's dynamic program-

ming, the focus is mostly on open-loop outcomes and feedback outcomes. In the first

decision model it is assumed that the playera only have initial atate information

and are committed to the initially chosen strategies, whereas in the second decision

model it is assumed that the playera only have current state information and are free
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to choose their actions at the time of play (see, e.g., Basar and Olsder, 1982). All

these outcomes are generally not Pareto efficient. To put it differently, if the players

would cooperate, which means that they jointly decide on all the available controls,

Lhoy generally can reach a Pareto improvement over the noncooperative outcome. 'I'o

be able to evaluate the incentives to cooperate one of the Pareto efficient outcomes

can be selected and compared with the noncooperative outcome. The selection can be

done on the basis of axiomatic bargaining theory (see, e.g., Roth, 1979) and leads to,

for cxamplc, Lhe Nash or Kalai-Smorodinski bargaining solution. Tliis approacl~ was

chosen to evaluate the incentives to cooperate in a linked macrceconometric model

for two Common Market countries (de Zeeuw, 1984).

Axioniat.ic Largaining 1,h~Yiry is unsat.isfactory hPCause thc bargaining process is

not described and because one would like to have a noncooperative under-pinning of

the cooperative outcome. For this purpose the alternating offer model was developed,

where the players propose in turn how to partition a pie (Rubinstein, 1982). This

approach is called strategic bargaining theory. In the context of a difference game a

proposal consists of a joint strategy from a certain point in time onwards. One player

makes a proposal and the other player accepts or rejects the proposal. In the case

of rejection the players choose their disagreement action and the game proceeds to

the next period in which it is the other player's turn to make a proposal for a joint

strategy from that period in time onwards. As in the strategic bargaining model for

the partition of a pie these proposals have to be subgame perfect. Strategic bargaining

in the context of a difference game has already been suggested and analysed (Stefanski

and Cichocki, 1986; Houba and de Zeeuw, 1991). However, in these papers it is

assumed that the disagreement actions are exogenously prescribed by, for example,

the feedback or open-loop Nash equilibrium of the difference game. In this paper

subgame perfectness is not only required for the proposals in the bargaining process
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but also for the disagreement actions, which are therefore endogenously determined

in the unravelling of the optimal proposals.

Time is valuable in this model, because the possible gains of cooperation shrink

as time passes by: there is a clear incentive for an early agreement. Each proposal

for the partition of a pie is necessarily Pareto ef5cient. It will be ahown in thia

paper, however, that a subgame-perfect equilibrium proposal for a joint atrategy may

be Pareto inefficient. The reason ia that it is possible to have two aubgame-perfect

equilibrium proposals such that the reacting player atrictly prefers one proposal to

the othcr whcreas the proposing player is indifferent between the two.

Section 2 of the paper is concerned with the formalisation of the subgame per-

fect equilibrium proposals with subgame-perfect disagreement controls in a difference

game with a finite horizon. It ie ehown that a proposal can be Pareto inefficient and

an example is given. Section 3 of the paper deals with the strictly convex linear-

quadratic case. If the dimenaion of the atate-space is one, it is possible to solve

for the subgame-perfect equilibrium proposala analytically, backwards in time. The

equilibrium is unique and, therefore, in this model also Pareto efficient. An exam-

ple is worked out. However, in section 4 it is shown that, if the dimenaion of the

state-space is higher than one, the linear-quadratic atructure breaks down and the

subgame-perfect equilibrium proposals are not analytically tractable anymore. Sec-

tion 5 concludes the paper.
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2 The Bargaining Model

The starting point is a standard difference game with two players and a finite

time horizon t~ ( e.g., Ba~ar and Olsder, 1982). Difference games are dynamic games

in discrete time in wliich the objectives depend on the values of the state variables

and the chosen controls, and in which these state variables change over time under

influence of the controls of the players. For instance, investments change the capital

stock, output decisions change the market price, depletion changes the resource stock,

emissions change the stock of pollution and budget deficits change the government's

dcbt position.

The control vector of player i, i - 1, 2, at time t, t E T:- {0,1, .. , ff- 1}, is

denoted by u;(t), which is an element of the set of feasible control vectors U;(t) C Rm'.

The state vector at time t E T U{t~} is denoted by x(t), which is an element of the

set of feasible state vectors X(t) C R", and the state transition is given by

x(t.} 1) - f(x(t), u(t), t), t E T, x(0) - xo,

where u(t) :- (ul(t),u~(t)). The preferences of player i, i- 1,2, are represented by

a cost function J;, whicli is a rcal-valuc~d function on the cartesian product of thc sets

of feasible state vectors and control vectors.

The bargaining process is modelled in a similar fashion as the alternating bid

model for the partition of a pie (Rubinstein, 1982). It is assumed that in each pe-

riod of time first one round of bargaining takes place before the players choose theír

controls. Therefore the aumber of bargaining rounds is equal to the number of time

periods, t~, in which the players can try to control the system. In each tound of bar-

gaining one of the players makes a proposa] to the other player on how to use their

control vectors from that period of time t onwards. The other player either accepts or
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rejects the proposal. If the proposal is accepted, the agreement ia binding and both

players continue the game by implementing the contract, i.e. each player uaea his~her

control variables as prescribed in the contract. If the proposal ie rejected, both playera

choose their controla for one period in a non-cooperative way and in the next period

of time t t 1 it is the other player's turn to make a proposal. The disagreement

control vector of player i, i- 1,2, at time t, t E T, is denoted by ud(t) E U;(f). In

the alt~rnating offer model (Rubinstein, 1982) and in eatlier attempta to incorporate

strategic bargaining into difference gamea (Cichocki and Stefanaki, 1986, Houba and

de Zeeuw, 1991) the disagreement controle were exogenoualy given. However, in the

model of this paper the disagreement controla form an integral part of the subgame

perfect equilibria of the bargaining game.

t even stage 1 Player 1 pmpoaea a joint atrategy.
stage 2 Player 2 accepta~rejects.
atage 3 Both players uae their controla.

t odd atage 1 Player 2 propoaea a joint strategy.
stage 2 Player 1 accepts~rejecta.
atage 3 Both players use their controls.

Figure 2.1 The game tree of the bargaining model in which player 1

proposes at all even time periods.

At time t E T the controla used until time t are history and cannot be changed. Thia

simply means that players cannot undo the past. Therefore, the player whose turn it

is Lo make a pro~iosal at time t can propose a joint atrategy u~ from the set
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~` :- U(t) x U(t f 1) x... x U(t~ - 1),

where U(s) :- Ui(s) x Uz(s). In what followa J;(x, u'), i - 1, 2, denotes player i's

costs associated with the proposed joint strategy u' E lt't, given the state x at time t.

In the partition of a pie model (Rubinstein, 1982) both players have an incentive

to reach an early agreement because time has value. In the bargaining game in this

paper there is also an incentive to reach an early agreement. This incentive is different

from the time preference in the partition of a pie model, although this type of time

preference can also be included. As time goes by, the set of available control vectors

shrinks, because for all t E T

~~ ~ { u~ I ulT) - ud(T),T - t~ ~ ... ~ { 1!t I u(T) - ud(T),T - t,...,t~ - 1 ~ .

The intuition behind this result is that the sooner the players start with the joint use

of available instruments the more they can control the system to their joint benefit.

In order to obtain analytical results attention is focused on convex linear quadratic

( LQ) games. LQ gamcs arc diffcrence games with quadratic cost functions and a lincar

state transition. Because these games are analytically tractable and can be considered

as approximations to general difference games, applications generally resort to LQ

games (see e.g. Fershtman and Kamien, 1987, van der Plceg and de Zeeuw, 1991).

Formally, for i- 1, 2, convex LQ games are defined as

min J;(.) - min ~x~(0)Q;x (O) f EtET j [ u;(t)R;u;(t) t x~(t t 1)Q;x(t t 1) ~,
~~G) w(J

with state transition

x(t f 1) - Ax(t) ~ B,u,(t) f B~uz(t), t E T, x(0) - xo,

where R; is positive definite and Q; ia semi-positive definite. All matrices can be

time-dependent but for simplicity detailed notation will be omitted.
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Note that LQ games have coat functiona J; with the property that the remaining

costa at time t do not depend directly upon u(0), ..., u(t - 1), but may depend indi-

rectly on thc~se controls through the atate variable x(t). In other worda the past ie

sunk with respect to direct coats of used controla in the past, but not indirectly be-

cause the past controls determine the current atate. Furthermore, the cost functiona

from period f onwards will be the same for different hiatoriee which result in the eame

state vector x(t).

A difference game will be called one-dimensional if the vector with state variablea

has a dimension of one. Similarly, a difference game will be called n-dimensional if

the state vector has dimension n, n 1 1.

It is assumed that both playera have current state information and are free to

choose their actione at the time oí play. Consider the game that atarts in atate x

at time t. Since x can be the result of different hiatoriea, x can be an "information

set" in the terminology of game theory, so that this game ia not a proper aubgame.

However, the continuation from each node in this Tinformation aet" is the same, so

that sequential rationality can be applied without worries about beliefa. Therefore,

the equilibrium concept is very cloae to aubgame perfectneas (SPE) (Selten, 1978)

and will be referre.d to as auch. Another way out is to require that the matrices 91

and l3s have full column rank and that the players have perfect recall. That meana

that the players remember the atatea before time t and their own actions, so that they

can reconstruct the hiatory that has led to the atate x at time t. Subgame perfect

equilibria can be found by backwards induction.

The bargaining model is rich enough to analyse renegotiation ofagreements. Rene-

gotiation means that the players are allowed to continue the bargaining procesa in

order to reach a new agreement that will replace the e~cisting agreement. Renego-

tiation has to be considered, because it is unlikely that players will refrain from
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bargaining after they have agreed upon a joint strategy that is not Pareto efficient.

However, for explanatory reasons it is first assumed that no renegotiation takes place.

At the end of section 3 it is shown that for convex LQ difference games renegotiation

does not change the results.

13efore the class of convex LQ games is analysed in the next two sections it is useful

to consider first an example to illustrate how equilibria are computed. The example

also shows that in general more than one subgame-perfect equilibrium proposal for a

joint strategy exist and that equilibria can be Pareto inefficient. The reason is that

for the case in which player 2 is the proposing player in the first period this player is

indifferent between two subgame-perfect equilibrium proposals whereas player 1, the

reacting player, strictly prefers one proposal to the other.

Example 2.1 (Starr and Ho, 1969]

INSERT FIGURE 2.2 HERE

Consider the two-player two-period tree game in figure 2.2, in which player i,

i- 1,2, ha.g to choose between L; (left) and R; (right) in each period. Furthermore,

only pure strategies are allowed.~ The m~mbers between brackets represent costs

which the players try Lo minimise.

The first step in computing SPE's is to determine what the equilibrium disagree-

ment actions are in the last period in case the players end up in a situation in which

~ When mized strategies are a(lowed the reaulte of this example brealc down, but other examples
can be tonstructed with subgame per[ect equilibria which are not Pareto effitient.
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they have failed to reach an agreement. For each state variable x(1) in period 1 the

players have to play a bi-matrix game. Subgame perfectneea requires that the dis-

agreement actions in this period, given the state x(1), are Nash equilibrium actiona

of the bi-matrix game. This yields the following result:

(R~, Rz), ií x - 2,
ud(l,x) - (Lr,Ls), if x - 1,

(L~, Rz), if x - 0.

Note that the equilibrium disagreement outcomes in statea 0 and 1 are Pareto efficient.

The next step consists of deriving the optimal behaviour of the reaponding player

in each state x(1) to a proposed joint strategy u' E`Y~. If this player rejects the

proposed joint strategy both players will use the equilibrium disagreement actions.

The responding player will certainly accept any proposed joint atrategy that is atrictly

better for him~her than the disagreement outcome and will certainly reject it if the

proposed joint strategy is strictly worae for him~her than the disagreement outcome.

If the cesponding player is indifferent between the proposed joint atrategy and the

disagreement outcome accepting and rejecting are both optimal for this player.~ In

what follows emphasis will be on the derivation of equilibria in which the reaponding

player accepts whenever this player is indifferent.

The proposing player's best joint atrategy that will be accepted by the responding

player minimisca the proposing player's costa for the remainder of the game given the

constraínt that the responding player's costa are at most this last player's disagree-

ment costs. It is posaible that the proposing player is indifferent between this beat

joint strategy and a proposal that will be rejected, which implies that both kinda of

behaviour are optimal for this player in this situation. In what follows equilibria will

be computed in which the proposing player proposea the beat joint atrategy if the

corresponding costs are at most the disagreement costs.

~ W ithout loes of generality it is assumed that the reeponding player doea not usc mixed strategies
to detrrmine whether or not to accept.
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The set of joint strategies that will be accepted by the responding player contains

the equilibrium disagreement actions ud(l,x) and, thus, thia set is not empty. Fur-

thcrmore, this set consists of a finite number of joint strategies. Hence, the proposing

player's best joint strategy exists and will be at least as good as the equilibrium

disagreement actions for both playere.

Suppose the propoaing player is player 1 in period 1, then this player's best joint

strategy u'~(x) E~Y~ in period 1 is given by

- ( (Li, La), if x - 2,

u~l(x) !Il (Li, La), if x- 1,
(Ll, Ra), if x - 0.

However, the proposing player's best joint strategy need not be unique. Suppose

the proposing player is player 2 in period I, then this player's best joint strategy

u'"~(x) E~~ in period 1 is given by

{(Rl, Ra), (L~, La)}, if x- 2,
u"1(x) E {(L~,La)}, if x- 1,

{(Ll, Ra)}, if x - 0.

Note that the equilibrium in state 2 in which player 2 proposes the joint strategy

(Rl, Ra) is not Pareto efficient, because the joint strategy (L~, La) is strictly better

for player 1 and not worse for player 2. Hence, a subgame-perfect equilibrium proposal

need not be Pareto efficient. The reason for this result is that the proposing player

is indifferent between the two joint strategies and that the responding player strictly

prefers one joint strategy to the other but accepts both.

The analysis above shows that several equilibria exist for each subgame starting at

period 1. }iowever, wl~en the equilibrium costs are compared with each other it follows

that the states x(1) - 0 and x(1) - 1 always have the same equilibrium costs, namely

(4,1) and (0,3) respectively. These equilibrium costs are also independent of whether

player 1 or player 2 is the proposing player because the equilibrium disagreement

actions are Pareto ef5cient. The equilibrium actions in atate x(1) - 2 are not unique
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and in this case it also matters whicó player is the proposing player. However, all

equilibria in state x(1) - 2 have either costs (0,2) or costs (2,2). Define the value

functions V(l,x) and V(l,x) as follows

(0, 2), if x- 2, ( (2, 2), if x- 2.
V(l,x) E (0,3), if x- 1, and V(l,x) E S (0,3), if x- 1,

(4,1), if x- 0, l(4,1), if x- 0.

The equilibrium disagreement actiona in period 0 are derived from a reduced-form

bi-matrix game, which is the bi-matrix game of the first period augmented with the

equilibrium costs in the resulting state x(1). Subgame perfectness requirea that the

disagreement actions in the first period, given the state x(0), are Nash equilibria of

this reduced-form bi-matrix game. Independent of V(1, x) and V(1, x) it follows that

the equilibrium disagreement actions in period 0 are

u'(D,x) - (R~,Lx).

If these disagrecment actions are played then the state x(1) - 2 results. This means

that the disagreement costs from the first period onwards are either (2,4) or (4,4).

Similar to the analysis of period 1 it follows that subgame perfectness requires that

the responding player accepts every proposed joint strategy uo E~o if the associated

costs are at most this player's disagreement costs. The set of joint sttategies that

will be aCfeptcd by thc responding player is finitc~ and contains the joint strategy

~ud(0, x), u''(x)~. Therefore, the proposing player's best joint strategy exists and is

at least as good as the equilibrium disagreement outcome for the proposing player.

Suppose the proposing player is player 1 in period 0, then this player's best joint

strateqy u'o(x) E~Yo in period 1, independent of whether (2,4) or (4,4) are the

disagreement costs, is given by

u'o(x) - ((Li, Rs), (Ri, L~))~
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with total costs (1,4). Suppose the proposing player is player 2 in period 0, then each

subgame has a unique equilibrium and the disagreement coata from the firat period

onwards are (2,4). Player 2's best joint strategy u'A(x) E~Yo in period 0 is given by

u..o(x) E { ((R~, Lx), (L i, Lx)), (( Li, Rs), (Ri, Ls)) }.

with total costs (1,4) and (2,4) respectively. Note that the equilibrium joint strategy

need not be unique and need not be Pareto efficient.

Beside the equilíbria found above many other equilibria exist in this example.

The equilibrium strategies of these other equilibria can only differ from the equi-

librium strategies derived above when the optimal behaviour for a specific player is

not uniquely determined. For instance, when the reaponding player is indifferent be-

tween a proposed joint strategy and the disagreement outcome then accepting and

rejecting are both optimal. Above it was imposed that the responding player accepts

whenever indifferent. Consider the optimal strategy in which the reaponding player

accepts whenever the proposed joint strategy yields strictly lower costs than the dis-

agreement costa and rejecta otherwise. Then the pair of costs (3,2) can be supported

as an equilibrium outcome in the bargaining game in which player 2 is the propos-

ing player in period 0. The disagreement actions in the last period are the same

as before, while for every state x(1) no joint strategy exists that gives player 1 at

most this player's disagreement costs and player 2 strictly less than this last player's

disagreement costs. Hence, disagreement will result in all subgames and V(l,x) is

the corresponding value function. It will be clear that this leads to the same dis-

agreement actions in period 0 as before with total costs (4,4). Player 2's best joint

strategy u"o(x) E~Yo from the set of joint strategiea that will be accepted by player 1

is given by

u'w(x) - ((Li, Rz), (Li, Rs)).



-13-

with total costs (3,2). Note that the equilibrium in which player 2 rejects when

indifferent is strictly better for this player than the equilibria derived above in which

this player accepts when indifferent.

It may also be the case that the proposing player is indifferent between this playet's

best joint strategy and disagreement. For inatance, thia occurs for all aubgamea of

the bargaining game in which player 2 is the proposing player in period 1. Above

it was imposed that the proposing player propoaes this player's best joint strategy

whenever indifferent. It is also possible to derive equilibría in which the proposing

playPr proposes a best joint strategy whenever this joint strategy yields strictly lesa

costs than the disagreement costs and proposes some unacceptable joint strategy

otherwise. These equilibria yield equilibrium costs which are the same as before and

will therefore be omitted.

It should be noted that the tie-breaking assumption that the proposing playet al-

ways proposes this player's best joint strategy and the responding player accepts when

indifferent lead to a simple procedure to derive equilibria. The proposing player's best

joint strategy minimises the proposing player's costs on the set of all joint strategiea

that will be accepted by the responding player. Finally, the existence of equilibria

in which either the responding player rejects whenever indifferent or the proposing

player dces not propose this player's best joint strategy whenever indifferent ia due

to the fact tbat the set of joint strategies, givPn the atate x at time i, is finite.



3 One-Dimensional Games

Each period t, t E T, of the bargaining game can be divided into a bargaining

phase and a disagreement phase. For each phase in each period quadratic value

functions in the one-dimensional state vector of that period are postulated, which

represent the continuation costs of the SPE. It will be shown that indeed an equilib-

rium for quadratic value functíons exists, that the equilibrium costs are unique and

Pareto efficient, that the equilibrit~m is analytically tractable and that both the pro-

posed joint strategy and the disagreement controls are contingent upon the state of

the system. Player i's value function, given state x at time t, is denoted by Y(t,x),

i- 1, 2. Superscripts b and d denote the value function in the bargaining phase

reapectively the disagreement phase of that period. Formally,

Y6(t,x) -~K6(t)x~ and Vd(t,x) - zKd(t)x~, i- 1,2.

Note that the matrices K;(t), Kd(t), Q; and A are 1 x 1 matrices and can be treated

as scalars. However, R; and B; are not scalars, unless player i has only one control

variable. fn order to distinguish between scalars and matrices, scalara will be written

in lower case letters k;(t), kd(t), q; and a. Without loss of generality it is assumed

thatq;~0.

Backwards induction implies that the analysis has to be split into two steps.

Firstly, given state x at t and the value functions V"(t f 1, f(x, u, t)) one period later,

the equilibrium disagreement controls ud(t,x) E U(t) are derived. Secondly, given

state x at time t and the value functions Vd(t, x), the equilibrium proposal u'(x) E~'

at time t is derived. The first step is essentially the same as in the derivation of the

feedback Nash (or Markov perfect) equilibrium in ordinary difference games without

bargaining.
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Propoaition 3.1 The equilibrium disagreement controls at time t, t E T, for state x

are giroen 6y

ud(t,x) - -kb(t t 1)e(t)-'ax R~'B;, i- 1,2,

where

e(t) - 1 f k~(t f 1)B,R,'Bí f kz(t f 1)BzR~'B~ ~ 0.

Furlhermore,

kd(t) - q; f e(t)-~a~[k;(t t 1)'B;R;'B; f k;(t -}. 1)] , 0, i- 1,2

and

x(t -F. 1) - e(t)-'ax(t).

Proof.

The optimisation problem min,,,ER Y(t, x) for player i, i- 1,2 is given by

mÉR z[ u~R;u; -~ q;x~ ~ kb(t ~ 1)(ax .} B~u~ ~ Bzuz)~ ].

The first order condition is

R;u; f kb(f ~ 1)(ax .} Blu~ f Bzu~)B; - 0. (')

To obtain the following cyuation, first premultiply both sides by B;R; ~, then sum up

over i- 1, 2 and add ax to both sides, and finally rewríte the equation. Thia yielda

ax t Blut-~ Bzu2 - e(t)-lax,

where

e(t) :- [1 f ki(t -f- 1)B~RÍ'B~ -~ k~(t ~ 1)BsR~1Bz].
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The term on the left hand side is equal to x(t-} 1) and, therefore, x(t ~1) - e(t)-lax(t).

Substitution of these results into ( ~) and premultiplying by R;' yields the expres-

sions for ud(t, x). Finally, substitution of ud(t, x) and x(t -F 1) into the value function

[;(t,x) above yields the expression for kd(t). Given k;(t -} 1) ~ 0, it is easy to show

that e(t), kd(t) ~ 0. o

The second step in deriving the equilibrium consists of solving the bargaining

phase. Subgame perfectness requires that the responding player in period t accepts

every proposed joint strategy that yields strictly less costs than the equilibrium dis-

agreement outcome, while the responding player rejects if the proposed joint strategy

yields st.rictly hiqher costs. When the msponding player is indifferent accepting and

n.jccting xrc Luth uptimal. ]n what fullows it ia asswned Lhat the respunding play~r

also accepts in case of indifference in order to break this tie. Thus, the responding

player, denoted by subscript R, accepts the proposed joint strategy u` E~t, given

state x at time t, if JR(x, u`) C VR(t, x) and rejects otherwise.

The proposing player, denoted by the subscript P, can always secure this player's

disagreement costs VP(t,x) by proposing an unacceptable joint strategy or a joint

strategy that prescribes the actions that will lead to those costs. The proposing

player's best joint strategy that will be accepted by the responding player minimises

the proposing player's costs for the remainder of the game given the constraint that

the responding player's costs are at most this last player's disagreement costs. Hence,

this best joint strategy u`(x) is found by the following optimization problem.

t~`(x) - arg mÍ~ Jp(x, u`), s.t. JR(x, u`) G VR(t, x).

Let u`~d(x) E ~` denote the path of controls, given state x at time t, that will result if

both players follow the equilibrium strategies in case of disagreement. By definition
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J;(x,u~~d(x)) - Vd(t,x), i- P,R, and, therefore, u'.d(x) belongs to the aet of joint

strategies that will be accepted by the responding player. It followa that the propoaing

player's best joint strategy u~(x) yields costs that are at most VP(t, x). It is assumed

that in order to break ties in case of indifference the beat joint strategy u'(x) is

proposed and not some strategy that will be rejected by the responding player.

The next lemma states that the conatraint in the optimisation problem to derive

the proposing player's best joint strategy is always binding.

Lemma 3.1 The constmint JR(x, u~) G VR(t, x) is binding.

Proof.

Supposc thc constraint is not binding. Then ut(x) -(u'(t, x), ..., u'(t~ - 1, x)) satis-

fies

uP(t, x) - 0, BRUR(t, x) --ax and u; ( s, x) - 0, i- P, R, s- t~ 1, ..., t~ - 1.

The corresponding costs are Vp(t, x) -~qPx~ and VR(t, x) -~~qRx~ f uR(t, x)RRUR(t, x)~.

The control uR(t, x) may not be unique and in order to derive the contradiction that

all these controls yield higher costs than the disagreement outcome it is sufficient to

consider the responding player's best control that satisfies this relation. Solving

min VR(t, x), 9.t. BRt{R(t, 2) --ax
uR(e.r)

yields

uR(t,x) --A-~axRR'BR and VR(t,x) - ~[qR f a~Q-1]x~,

where Q- BRRR'BR ~ 0. This leads to the contradiction JR(x,u') ~ VR(t,x),

because substitution of the expression fot kR(t) derived in proposition 3.1 yields the

following equivalence
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qR .} a~~-~ 7 kR(t) q (1 f a)~ f ( I t 2a)kR(t f 1)~ ~ U,

where a- kP(t .} I)BPRP1BP ~ 0. Hence, the constraint is binding. ~

The next proposition states the proposing player's best joint strategy u~(x) in

period t, given state x at time t and the value functions Vd(t, x), i- P, R.

Proposition 3.2 The proposing player's óest contract at time t, t E T, for state x is

,qiven by u~(x) -(u'(t, x), . . , u'(f~ - 1, x)), where u"(s, x), s- t, ..., t~ - 1, is given

6y

u~ (s, x) - -C;(s)IIr-i(a - BG(r)]x, i- P, R,

with

B-(BP, BR] and G(s) - I GR~s~ J.

The matrices G;(s), i- P, R, s- t,.L..,t~: 1, are found 6y solving óackwards recur-

sively the system of equations

G(s) - a(kr(s -4- I) f akR(s ~ I))(R t(kP(s f 1) f akR(s f I))B~B]-'B~,

k;(s) - q, t G,(s)R;c;(9) t k;(s t I)[a - BG(s)]~, k,(t,) - q„ i- P, R,

for a parameter a ~ 0, with R-~ ~P ~~R
J

and requiring that a is such that

the resulting kft(t) is equal to k~(t). The resulting total costs are zk;(t)x~, i- P, R,

which will be denoted as 2k6(t)x2.

Proof.

The previous lemma implies that u~(x) has to minimize the Lagrange function
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~ (x, u`, ~) - JP(x, u' ) i' ~ (.IR(x, tl`) - VR(t, x)] ,

with a~ 0. Dynamic programming requires the following optimization

min z~u~(s)Ru(s) t(9P f aQR)x'(s,x)2i'
u(i)EU(a)

(kP(9 ~ 1 ) ~ ~kn(9 -l- 1 ))(ax'(s, 2) -F BiL(s))~l ,

where kP(s ~ 1) .} ~kR(s t 1) is the parameter of the quadratic value function of thia

problem and u is the stacked vector [llP,uR]~. This yields

u'(s) - -G(s)x'(s), i - P, R,

with state transition x'(s ~ 1) - (a - BG(s)]x'(s). Substitution of these results into

the dynamic programming equation yields the backwards recursive equations in k;,

i- P, R. The resulting total costs are zk;(t)x~, i- P, R. Finally, the value of the

Lagrange parameter a can be found because the constraint JR(x, u`(x)) -VR(t, x) - 0

has to be satisfied, which leads to the requirement kR(t) - kR(t). O

Corollary 3.1 The proposing player's best joint strategy u`(x) is unique and Pareto

e~cienl and the respondéng player is indifferent between this best joint strategy and

the equilibrium disagreement outcome.

Proof.

Since R;, i- P, R, are positive definite, a) 0 and k;(s -F 1) ~ 0, i - P, R, it follows

that [R f (kP(s f 1) f~kR(s ~ 1))B~B] is positive definite, so that u'(x) is unique.

Suppose u`(x) is not Pareto efficient, then there exists a v`(x) E~` such that

J;(x, v`(x)) C J;(x, u'(x)) C Yd(t, x), i- P, R, and either iJ the C for the proposing
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player is strict, or ii) the G for the responding player is strict. Case iJ contradicta

the fact that ut(x) solves the minimisation problem and case iéJ contradicts the fact

that u`(x) is the unique joint strategy that solves the optimisation problem. o

The optimisation problem to find the proposing player's best joint strategy can

be explained graphically in the two-dimensional cost space at time t, given state x at

t. The Pareto frontier can be derived by solving the following optimisation problems

min JP(x, u`) f aJR(x, u`), a E[0, oo).
o'Ey~

The shaded area in figure 3.1 satisfies the constraint JR(x, u`) C VR(t, x) and the

proposing player's best joint strategy has to lie in this shaded area. It follows

immediately that the best joint strategy is found at the intersection of the line

JR(x, u`) - VR(t, x) with the Pareto frontier.

)

Figure 3.1 Thc proposing player's optimisation problem.
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The constraint in the optimisation problem is binding and, thus, the respond-

ing player is indifferent between accepting and rejecting the proposed joint strategy

u`(x). The equilibrium derived above is supported by equilibrium strategies in which

the responding player accepts when thia player is indifferent. It can be shown that

no equilibrium exists in which the responding player rejects when this player is indif-

ferent. In that case the proposing player's beat joint atrategy is found by minimising

this player's costs given the restriction JR(x, u`) G VR(t, x). No beat joint strategy

exists in the latter optimisation problem because the set of joint strategies that will

be accepted by the responding player is open and no interior solution exist.

Suppose, however, that the disagreement outcome is Pareto efficient. In that case

the proposing player's best joint strategy u`(x) is equal to the disagreement outcome

and both players are indifferent between this best joint strategy and the disagreement

outcome. From the equilibrium strategies above it follows that both players agree

on u`(x). However, many other equilibrium strategies exist. For instance, proposing

a joint strategy that will be rejected, or rejecting when indifferent. Although many

equilibrium strategies exist all equilibrium costs coincide with the disagreement costs

and the bargaining behaviour of the two players is irrelevant for the equilibrium

costs. An equilibrium is called essentially unique iff the equilibrium costs are unique,

although several SPE strategies may exist which support these equilibrium costs. The

following theorem formulates the main result of this section.

Theorem 3.1 There exists an essentiaAy unique subgame perfect equilibrium that is

supported by the following equilibrium strategies. The proposing player in period t,

given state x at t, proposes this player's óest joint strategy u`(x) of propositéon 3.2

and the responding player accepts this proposed joint strategy. Ij óoth players fail to

reach an agreement the disagreement contrbls ud(x) oj proposition 3.1 will be used.
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All value functions are quadratic.

Renegotiation of agreements can be easily incorporated into the bargaining model.

ln case the two playera have agreed upon a joint strategy the bargaining continues

as before, but the assumption of binding agreements means that as long as they do

not agree upon a new joint strategy both players have to implement the controls

specified by the existing agreement. It should be noted that the assumption of one

bargaining round per period means that if players agree upon a joint strategy in

period t, t E T, then the first opportunity to replace this agreement is in period t~ 1,

and therefore the existing agreement's controls for period t have to be implemented

in this period. Similar as in the analysis above the value functions Y6(s, x, u') and

Vd(s,x,u`), i- 1,2, s- t~ 1,...,t~ - 1, are defined for the subgame in which the

two players renegotiate an existing agrePment u` E~`, t E T. Renegotiation of the

agreement u' E~I'`, t E T, is as if the two players are bargaining in a model with

exogenously given disagreement controls and state trajectory from period t onwards,

given state x at t. Therefore,

Vd(s, x, ut) - j~~Íix(9)~ } ui(s).NU~(s)~ ~ V6(9 f I, 2, u`),

for i- 1, 2, s- t f 1, ..., t~ - 1. Subgame perfectness requires that proposition 3.2

is applied recursively in each period in ordet to determine V;6(s, x, u`), i- I, 2,

s- t f 1,...,t~ - 1, starting with the bargaining phase of period t~-1 and working

backwards to the bargaining phase of period t f 1. Hence, every Pareto inefficient

agreement ut E~` reached at period t, t E T, will be replaced in period t~ 1 by a

new agreement. 'I'his new agreement is unique and Pareto efficient, have quadratic

value functions and is individually rational with respect to the existing agreement u`

[rom period 2 f 1 onwards. Player i's total costs of an agreement u` E iI'', taking
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into account renegotiation, are equal to J;(x, u`) - z [q;x(t)~ .} u;(t)R;u;(t)] ~ V6(t -~

1, ax f Bu(t), u`), i- 1, 2, given state x at t.

The proof that renegotiation of agreements does not change the result of the-

orem 3.1 uses backwards induction. Similar as in the analysis of the bargaining

model without renegotiation the value functions V6(t,x) and Vd(t,x), i- 1,2, are

defined for the bargaining game in which agreements can be renegotiated. It is triv-

ial that V6(f~,x) - q; - V6(t~,x), i- 1,2. Suppose V6(s,x) - V6(s,x), i- 1,2,

s- L f 1,...,1~ - 1, theu proposition 3.1 iuiplies that V~(t,x) - Vd(t,x), ti- 1,'l.

Subgame perfectness requires that the responding player accepts every proposed joint

strategy u` E~` iff JR(x, u`) G VR(t, x) and the proposing player proposes the joint

strategy u` E iY` that minimises JP(x, u`) subject to this constraint. Let u'` E~Y`

denote this optimal joint strategy, then J,(x, u"`) G J;(x, u`(x)) G Yd(t, x), i- 1, 2,

where u`(x) E~` denotes the best joint strategy of proposition 3.1. Because u`(x)

is Paceto efficient it follows that J;(x, u'`) - J;(x, u`(x)), i- 1, 2, and therefore

u`(x) is also an optimal joint strategy u'` in the bargaining model with renegotiation.

It should be noted that u"` may not be unique, but all u`` yield the same pair of

equilibrium costs. Consequently, V"(t, x) - V6(t, x), i- 1, 2. Hence, introducing

renegotiation dcea not change the results of the bargaining model.

The next proposition states that the sequence of disagreement controls for the bar-

gaining game found by applying proposition 3.1 in general differs from the sequence

of feedback Nash (or Markov perfect) equilibrium controls of the ordinary difference

game (without the bargaining procedure). The reason is that in the bargaining game

both players anticipate the proposing player's best joint strategy that will be reached

in the next period, while in the ordinary difference game such a best joint strategy

is not anticipated. Hence, asauming that the equilibrium disagreement controla are

the feedback Nash (or Markov perfect) equilibrium controls of the ordinary difference
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game (Houba and de Zeeuw, 1991) will in general imply that the disagreement con-

trols arc not subgamc perfect and that Lhe bargaining outcome is different from the

bargaíning outcome as derived in this section.

Propoaition 3.3 The disagreement controls in period f, given state x at t, differ Jrom

the jeedback Nash (or Markov perject~ equiliórium controls jor ordinary LQ difference

games without bargaining, except for period t~ - 1 and in case the jeedback Nash (or

Markov perfectf equilibrium is Pareto e,~cient.

Proof.

The quadratic value functions corresponding to the feedback Nash equilibrium are

denoted by VN(t,x) - 2 k;'~(t)x2, i- 1,2, and the equilibrium controls uN(t,x) and

parameters kN(t) satisfy the same relations as ud(t,x) and kd(t) in proposition 3.1,

where kb(t f 1) is replaced by k;~(t t 1).

For period t~ - 1 it follows that k;(t~) - kN(t~) - q; and, hence, ud(t~ - 1, x) -

u;Y(t~ - 1, x). Suppose that the disagreement outcome is Pareto efficient in period t,

then k;(t) - kd(t), because both players can secure their disagreement costs. If the

feedback Nash equilibrium is Pareto efficient, then it can be shown by induction that

kd(t f 1) - kN(t f 1) and, thus, k4(t f 1) - kN(t ~ 1) for all t E T. Consequently,

ua(t, z) - u;'~(t, x) for all t E T.

In case the feedback Nash equilibrium is not Pareto efficient it is no longer true that

k;(t~-1) - kd(tfl) foreach i- 1,2, and therefore k;(t-~1) ~ k;~`(t-fl), t E T`{tt-1}

for at least one player. Hence, ud(t,x) ~ uN(t,x) for all t E T`{tt - 1}. O

This section is concluded with an example in which the unique equilibrium of the

bargaining game is computed.
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Example 3.1 Consider the convex linear-quadratic difference game with T-{0, 1},

Ji(t~) - Ei-o,i ~~ui(t) -~ x~(t f 1)~ f zz'(~),

J~(u) - Ei-o,r?~ui(t) f 2x~(t f 1)~ f x~(0),

with state transition

x(t f 1) - x(t) ~- u~(t) f uz(t), t E T, x(0) - 1

and no restrictions on the set of controls:

u;(t)ER, i-1,2, tET.

The disagreement controls and the equilibrium proposals for the corresponding bar-

gaining games are presented in tables 3.1 and 3.2. Corollary 3.1 states that the

equilibrium is unique and Pareto efficient.

Table 3.3 contains the feedback Nash (or Markov perfect) equilibrium controls of

the ordinary difference game without bargaining and the sequence of disagreement

controls of the bargaining games. Table 3.3 shows that the state variable x(1) has a

higher value in the bargaining game (independent of who proposes first) than in the

ordinary difference game. Furthermore, the control variable ua(0, x), i- 1, 2, that

player i will use in case of disagreement is lower in the bargaining game where this

player is the second proposing player than in the bargaining game where this player

is the first proposing player.

The example shows that for one of the two players the bargaining outcome may be

worse than the feedback Nash equilibrium of the ordinary difference game. This is the
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u (l,x) u'(x) (u ( O,x),u'(x)) uo(x)
u,(0) - - -0.2528 -0.2800
u~(0) -0.5225 -0.5937
x(1) f0.2247 -~0.1262
ul(1) -0.25 x(1) -0.3221 x(1) -0.0724 -0.0347
u2(1) -0.5 x(1) -0.5322 x(1) -0.1196 -0.0736
x 2) t0.25 x(1) t0.1457 x(1) f0.0327 -}.0.0179
J,(.) 0.5625 x(1)z 0.5625 x(1)~ 0.5603 0.5479
Jz(. 1.1875 r(1)~ 1.162i; r(])? ~ 1.19.52 1.1952

Table 3.1 Player 1 has the initiative to propose in period 0.

u (l,x) u'(x) ( u (O,x),u'(x)) uo(x)
u,(0) - - -0.2455 -0.3110
uz(0) -0.5309 -0.5603
x(1) t0.2236 f0.1287
ul(1) -0.25 x(1) -0.2794 x(1) -0.0625 -0.0393
uz(1) -0.5 x(1) -0.5784 x(1) -0.1293 -0.0708
x 2) t0.25 x(1) t0.1421 x(1) f0.0318 f0.0186
J,(.) 0.5625x(1)' 0.5991 r(I)~ 0.5576 0..5576
Jz(. 1.1875 x(1)~ 1.1875 x(1)~ 1.2003 1.1 ~ t;-1

Table 3.2 Player 2 has the initiative to propose in period 0.

difference game bargaining game
player 1 first

bargaining game
player 2 first

u,(0) -0.2632 -0.2528 -0.2455
u2(0) -0.5263 -0.5225 -0.5309
x(1) f0.2105 ~0.2247 f0.2236
u, (1) -0.0526 -0.0562 -0.0559
uz(1) -0.1053 -0.1123 -0.1118
x(2) f0.0526 f0.0562 f0.0559
J,(.) 0.5596 0.5603 0.5583
J2(.) 1.1911 1.1965 1.2003

Table 3.3 The first column presents the unique SPE of the ordinary difference game
and the other two columns present the disagreement controls of the bargaining game
with the resulting state trajectory and total costs.
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case for the bargaining game in which player 1 has the initiative to propose in period 0

(see table 3.1). The equilibrium outcome of this bargaining game yielda higher coata

for player 2 than the feedback Nash outcome of the ordinary difference game (sce table

3.3, first column). Although the bargaining outcome in any subgame is individually

rational with respect to the disagreement outcome, this reault is due to the fact that

the disagreement controls differ from the feedback Nash equilibrium controls of the

ordinary di(frrence game. Player 2 cannot secure the [eedback Nash equilibrium coats

of the ordinary difference game by announcing, for instance, the following strategy

"reject any proposed joint strategy in period 0, propose a joint strategy in period 1

that will be rejected by player 1 and use the disagreement strategiea in both periods

according to the feedback Nash equilibrium of the ordinary difference gamer. Thia

announcement is not credible, because for every state x at period 1 it is advantageous

for player 2 to propose this player's best joint strategy u~(x) in period 1. Thetefore,

rational expectations imply that both players will not use the disagreement controls

according to the feedback Nash equilibrium of the ordinary difference game, but

inatcad both playera will use the disagreement controls ud(O,x), i - 1,2, according

to table 3.1. Hence, the fact that player 2 lacks a credible commitment to refrain

from bargaining in period 1 makes this player worse off than in the game without

bargaining. Only if player 2 is able to disconnect all communication channels forever

before the bargaining game starts, then this player could secure the feedback Nash

equilibrium costs of the ordinary difference game. This example shows that the

introduction of binding contracts and communication in the form of the bargaining

process described in this paper may not be beneficial for both players.
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4 n-Dimensional Games

Dynamic programming has proved to be very powerful in characterising the unique

subgame perfect equilibrium of the one-dimensional bargaining problem and this

technique can, in principle, be applied to solve the n-dimensional bargaining prob-

lem. Given the value functions V6(t f 1, f(x,u,t)), i- 1,2, and state x at time t,

the equilibrium disagreement controls ud(t, x) and the corresponding value functions

Vd(t,x) for each player can be derived. Given the latter value functions, the propos-

ing player's best joint strategy u'(x) and the corresponding value functions VD(t, x),

i- 1, 2, can be derived by solving the same optimisation problem as in section 3.

However, the main point of this section is to show that the value functions Vb(t, x),

i- 1,'l, t E T, are not necessarily quadratic in contrast with the result of section 3.

The quadratic form will be the exception rather than the rule.

The fact that the value functions corresponding to the feedback Nash ( or Markov

perfect) equilibrium of ordinary LQ difference games are quadratic necessarily implies

that the breakdown of the quadratic structure in LQ bargaining games has to occur in

the proposing player's optimisation problem that determines this player's best joint

strategy. Therefore, this optimisation problem and the value function V6(t, x) will be

analysed in detail. In section 3 it was shown that the proposing player's best joint

strategy is found by solving the following optimisation problem

u~(x) - arg um~~ Jp(x, u~), s.t. JR(x, ut) G VR(f, x).

Without loss of generality assume that the value functions Vd(t,x) are quadratic,

thal. is Vd(t,:r) - ~.r.~k,`t(t)x, i- 1,23 The arguments of the proof of proposition

3Thie will always be the caee Cor t- t~ - 1, but when V~(t f 1, f(x, u, t)) ie not quadratic then
V4(t,x) will not be quadratic in general.
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3.2 can also be applied here. For s- t, ..., t~ - 1 and i- P, R this yielda

K;(s) - Q; f G~(s)R;G;(s) f [A- BG(s)]~K;(s f 1)[A- BG(s)], K;(t~) - Q;

and

.` - ~ Or 2~ [Kjt(t) - KR(t)] x- ~,

where

G(9) -[R f B (KP(9 t 1) t.`KR(9 f 1))B]-'B (KP(9 f 1) ~- aKR(9 f 1))A,

GÍs) f GP(s) B-[Br, BR] and R--
l GR(") '

RP 0
0 aRR ] '

Furthermore, V6(t,x) - zx~K;(t)x, i- P,R. If for each state x at time t the same

a results, then the value functions V6(t, x) are quadratic. However, if a dependa on

state x at time t, then K;(t) depends on state x at time t and the value functions

V6(t, x) are not quadratic. In the next lemma a property of the matrices K;(.) and

G;(.) as functions of a will be proved.

Lemma 4.1 Each element oj the matrices K;(s), K;(t~) and G;(s), i- P, R, s-

t, ..., t~ - 1, can be written as a fraction of two polynomials in ~ with for each matrix

the same denominator.

Proof.

The prooí will use backwards induction.

Each element of K;(t~) - Q;, i- P, R, is a fraction of two polynomials in ~, which

are both of degree 0, and each element has the same denominator, namely 1.

Suppose that for i - P, R each element of K; (s -}~ 1) is the fraction of two polynomiala

in a and that all elements of K;(s t 1) have the same denominator. By definition,

C(s) -(R f B~(KP(s f 1) t aKR(s t 1))B]-'B~(Kp(s f 1) f aKR(s f 1))A.
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Each element of R-~ B~ (KP(s ~-1) ~ a KR(s .} 1) )B and B~ ( KP(s f 1) t aKR (s f 1) )A

is a fraction of two polynomials in a and the polynomial in the denominator is the

same for all elements of both matrices. Therefore, the denominator in B~(KP(s t 1) f

aKR(st 1))A cancels out against the denominator in RtB~(KP(s-~1)~aKR(sf 1))B

when the inverse oí the latter matrix is taken. Only the numerators of the elements of

RtB~(KP(stl)-F~KR(s~l))B and B~(KP(s-F1)faKR(stl))A remain. There are

several ways to compute the inverse of a matrix, but in what Collows the method which

makes use of cofactors will be applied ( e.g., paragraph 4.3 of Strang, 1980). Each

element of the inverse of R f B~(KP(s {-1)f aKR(s t 1))B is the fraction of the corre-

sponding cofactor divided by the determinant of this matrix and, thus, all elements of

the inverse have the same denominator. The determinant and each cofactor are poly-

nomials in a. Post-multiplication of this inverse with B~(Kp(s f 1) f aKR(s -~ 1))A

yields that each element is also a fraction of a polynomial in a divided by the deter-

minant of Rf B~(KP(s ~ 1) ~ aKR(s f 1))B. Thus, each element of G(s) is a fraction

oí two polynomials in ~ and all elements of G(s) have the same denominator. This

immediately implies that the elements of G;(s) and K;(s) have the same property. ~

TLe previous Iclnma implie~s that the elements of the matrix ~KR(t) - KR(t)~ can

be written as a fraction of two polynomials in a and that all elements have the same

denominator, namely the denominator oC each element of KR(t). Thus, rewriting of

x~ ~KR(t) - KR(t)~ x yields the symmetric matrix

all(~) " ' aln(~)

x, , . . x -o~

anl(~) ... ann(~)

where each a;~(a) is a polynomial in ~.

In case the constraint is binding 1~ 0 has to solve the equation x~ ~KR(t) - KR(t)~ x-
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0. In order to explain why a 1 0 dependa on atate x at t conaider the atates x- ek

and x - e~, k, l- 1, ..., n and k~ 1. Then, a~ 0 has to aolve akk(~) - 0 in case

x - ek and a~ 0 has to solve a~~(a) - 0 in case x- e~. In general ai~(~) ~ akk(a)

and, thus, the solution for a ~ 0 depends on whether x- e~ or x - ek. The next

proposition states necessary and sufficient conditions for ~ ~ 0 to be independent of

state x at time t.

Proposition 4.1 The solution a~ 0 is independent of state x at time t iff there

exists a a' 1 0 such that aki(a') - 0 for al! k,l - 1,...,n.

Proof.

Note that ~ 1 0 implies that R~ B~(Kp(s -} 1) ~ aKR(s -F 1))B is positive definite.

Hence, the solution u'(x) exists and is unique.

(G) Substitution of a' yields x~[0]x - 0 for all x. Hence, a- a' ~ 0 independent of

x.

(~) Suppose that there does not exiats a a' ~ 0 such that ak~(a') - 0 for all

k,1 - 1, ..., n. Define ~' ~ 0 such that all(a') - 0, then there exist k, l- 1, ...,n

such that aki(a') ~ 0. There are two cases that have to be considered.

Case 1: k- l 1 1.

Then x - e~ implies that ~- a' and x- ek implies that a~ a'. This contradicta

that a~ 0 is independent of x.

Case2: k~l.

Renumber auch that k- 2 and I- 1. Asaume az~(a') - 0(if not, then case 1

applies). Then, x- e~ and x - ez imply that a- a'. Consider the state ~ with

il, ~z ~ 0 and ii - 0 for j - 3, ..., n. Then a has to solve

a~i(~)ii f 2asi(~)xixs -~ ass(~)xs - 0
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and a~ a', because 2az1(a')iliz ~ 0. Hence, a depends on x, which is a contradic-

tion. O

The necessary and sufficient conditions of the previous proposition are automat-

ically satisfied for one-dimensional LQ batgaining games. However, generally these

necessary and sufficient conditions are not satiafied for n-dimensional games. The

example below shows that even for relatively simple matricea R;, Q;, A and B; the

quadratic structure breaks down.

Example 4.1

Consider Lhe 2-dimensional convex linear-quadratic difference garne with T-

{0,1 },

~r(u) -,Er-o.r (uí(t) ( ó o ~ u,(t) f x'(t f 1)rx(t f 1)) t;x'(o)rx(o),
` ~

r ~
~z(u) - zEi-o.r I uz(t) ~ O uz(t) -~ x~(t f 1)Ix(t f 1)~ ~- zx~(0)Ix(0),

with state transition

x(t ~ 1) - Ix ~ Iu,(t) f Iuz(t), t E T, x(o) -[1,1]~

and no restrictions on the set of controls:

u;(t)ERz, i-1,2, tET.

i'urthermore, it is a.gsumed that player 2 is the proposing player in period 0, so that

player 1 is the proposing player in period 1. It will be shown that the value functions

V,6( l, x), i- 1, 2, are not quadratic in x, because a depends on state x in period 1.
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The first step consists of computing the matrix K2(1) in period 1. Each player i,

i- 1,2, solves the following minimisation problem

min lu~(1)'R~u;(1) f~[x(1) f ur(1) f us(1)1~[x(1) f ur(1) f u s(1)1.
u~(1)ER~ ~

Proceeding as in the proof of proposition 3.1 yields

K;(I) - 1 f E~'(1)E-'(1) t E-'(1)R;'E-'(1),

where E(1) - I t Ri' f Rz~. It follows that,

~(1) - [ 0 4, and Kz(1) - 1 aF~
400 0

0
450

In order to derive player 1's best joint strategy the following optimisation problem

has to be solved

uÉ~v~ ~ui(1)Riui(1) t~[x(1) f ui(1) f us(1)~ [x(1) f ui(1) f us(1)~

s.t. x'(1)Kz(1)x(1) ~ x'(1)x(1) ~ uz(1)Rzuz(1) f

[x(1) f ui(1) f us(1)]~[x(1) f ui(1) f u s(1)1.

Tedious calculations lead to

- r 3}(a~}SA}3 ~} 7}3a ~

Kp(1) I (~ }5~}3~
0 ,} ~a,},a}o ~}, ~}za ~ ~ .

4 }~A}1

The constraint J~(x,u') C Vd(l,x) has to be binding, because a- 0 implies that

is 0
J2(x,u') - x' ~ 6 x~ x'Kz(1)x.
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Therefore, a has to be solved from the equation x~[K2(1) - Kz(1)]x, which can be

rewritten as

(2a' f 4a f 1)` ~400[:3 -{- ('L f 3a)'] - 64(~' f 5a ~- 3)~~ xit

(a~ ~ 5a -~ 3)' ~400[1 -~ 4(1 f 2a)~J - 50(2a~ f 4a f 1)~~ xs - 0.

For x- el the equation in a becomes

4a' ~ 40~3 - 101~2 - 180a - 139 - 0,

which has one positive solution, namely J~ - 3.2204.

Similarly, for x- ez the equation in a becomes

4a' ~ 4a3 - 123a' - 126a - 39 - 0,

which has one positive solution, namely a- 5.5794. It follows that a depends on x

and the quadratic structure of the problem breaks down.
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5 Conclusion

This paper is a first step of integrating strategic bargaining into the framework of

difference games. The bargaining model introduced in this paper integrates the al-

ternating offer model (Rubinstein, 1982) into a difference game with a finite horizon.

Each period consists of two phases, namely a bargaining phase, in which one player

proposes a joint strategy and the other player responda to it, and a phase, in which

the playera either start to implement the contract (in case of an agreement) or unilat-

erally decide how to use their own controls in this period (in case of disagreement).

This bargaining model takes into account that in many economic situations the eco-

nomic agents have to make economic decisions even if they are still in the procesa of

negotiations with each other. For instance, all countries compete with each other on

the world market and at the same time negotiate at the GATT-meetings. To take

another example, wage bargaining between unions and employer's organisations doea

not stop the other processes in which workers and employera are involved.

The subgame perfect equilibrium strategies of the bargaining model are, in prin-

ciple, found by backwards induction. The disagreement actiona are not exogenously

given but endogenously derived in this process. An example is worked out in which

multiple equilibria exist and some of these equilibria are not Pareto efficient. How-

ever, for linear quadratic difference games with a state vector of dimension one the

equilibrium is unique and Pareto efficient, and both players immediately agree. Fur-

thermore, the equilibrium is analyticallytractable. It is then ahown that the quadratic

structure breaka down in case the linear quadratic difference game has a atate vec-

tor with a higher dimenaion. Therefore, the equilibrium ie not analytically tractable

in this case which means that one has to resort to numerical methods to solve the
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bargaining model.

It is known from non-cooperative game theory that equilibria are sensitive to

the precise specification of the game. For instance, the alternating offer model (Ru-

binatein, 1982) has a unique subgame perfect equilibrium, while the simultaneous

demand game (Nash, 1953) has infinitely many subgame perfect equilibria. There-

fore, it is important to investigate the robustness of the results obtained for linear

quadratic diffcrcncc gamcs. Adding morc bargaining rounds in cach period will not

alter the results, because for each bargaining round the best joint strategy is found

by recursively applying proposition 3.2 to each bargaining round, starting with the

last bargaining round and working backwards to the first bargaining round. The as-

sumption that players decide sequentially in each bargaining round is crucial for the

results obtained. If decisions in each bargaining round have to be taken according to

the simultaneous demand game (Nash, 1953), then multiple subgame perfect equilib-

ria exist because the demand gawe itu~lf has rnultiple equilibria. Thc disagrecnicnt

controls of these equilibria also differ from the feedback Nash (or Markov perfect)

equilibrium controls of the ordinary difference game. Furthermore, the arguments

used by Fernandez and Glazer (1991) and Haller and Holden (1991) can be easily

adapted to construct multiple other equilibria that may support Pareto inefficient

outcomes. An open qiiestion is how the bargaining outcomes relate to the axiomatic

bargaining outcomes that can be formulated for linear quadratic games.

The bargaining model of this paper is interesting because it can handle bargaining

situations in which a dynamic model in state-space form plays a role. This is often

the case and further research will be directed to show the value of this bargaining

model for economic analyses.
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x-1
Ri, Ls - ( 2,2)

~ Ri, Rs - ( 2,2)
LI, Lz - ( 5,0)
L,,R~ - (-i,l)

x-2

x-1

x-0

t-0 t-1

R,,L, - (1,3)
Ri, Rs - (2,2)
Li, Ls - (0,2)
L,, Rz - (4,1)

R1,L2 - (3,1)
Rl, Rs - (2,2)
Ll, L~ - (0,3)
Li, Rs - (2,4)

Ri, Ls - (2,3)
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L,, Rz - (4,1)

t-2

Figure 2.2: The game-tree of example 2.1.
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