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Abstract

Parameters in ARMA models are only locally identi¯ed. It is shown
that the use of di®use priors in these models leads to a preference for lo-
cally nonidenti¯ed parameter values. We therefore suggest to use likelihood
based priors like the Je®reys' priors which overcome these problems. An
algorithm involving Importance Sampling for calculating the posteriors of
ARMA parameters using Je®reys' priors is constructed. This algorithm is
based on the implied AR speci¯cation of ARMA models and shows good
performance in our applications. As a byproduct the algorithm allows for
the computation of the posteriors of diagnostic parameters which show the
identi¯ability of the MA parameters. As a general to speci¯c modeling
approach to ARMA models su®ers heavily from the previous mentioned
identi¯cation problems, we derive posterior odds ratios which are suited
for comparing (nonnested) parsimonious (low order) ARMAmodels. These
procedures are applied to two datasets, the (extended) Nelson-Plosser data
and monthly observations of US 3-month and 10 year interest rates. For
approximately 50% of the series in these two datasets an ARMA model is
favored above an AR model which has important consequences for espe-
cially the long run parameters.

1 Introduction

Auto Regressive Moving Average (ARMA) models form the basis of time series

analysis, see a.o. [7], and are commonly used in applied work. They do possess

some well known problems, however, which result from the possibility to explain

autocovariances both from an autoregressive as a moving average perspective. It
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is important to be able to distinguish between these two though as they lead to

di®erent kinds of long run behavior. As the covariances can be explained using

both kind of polynomials, ARMA models contain parameters which do not a®ect

the analyzed model for certain speci¯c values of the other parameters. These

parameters are said to be locally nonidenti¯ed and are common to a lot of mod-

els used in econometrics, for example the Simultaneous Equations Model. In the

classical statistical literature the behavior of these locally nonidenti¯ed param-

eters has led to a substantial literature covering this subject in detail, see a.o.

[15]. The literature on Bayesian analysis of the posteriors of locally nonidenti¯ed

parameters is still quite small though, see [11]. The consequences of the locally

nonidenti¯cation on the posteriors can be quite dramatic, however, leading to

a strong favor of this local nonidenti¯cation when di®use priors are used. To

overcome this implicit favor when using di®use priors, in [11] the Je®reys' prior

is investigated and it is shown there that this type of prior functionalizes the

classical statistical manner of conducting inference in these kind of models, i.e.

conduct inference on the locally nonidenti¯ed parameters conditional on a test

for identi¯cation of these parameters. The use of Je®reys' priors in models con-

taining lagged dependent variables is not entirely clearcut, however, see [16] and

[9]. This results from the expectations which have to be constructed to obtain the

Je®reys' prior. Two di®erent manners for constructing these expectations exist.

The ¯rst one constructs the expectations such that they become a function of the

model parameters, for an example see [16]. The second one considers the data as

given and takes the expectations as equal to their realizations, see [9]. Since we

are also confronted with this problem we brie°y discuss it and our interpretation

in the third section.

As mentioned before, the Bayesian literature on locally nonidenti¯ed param-

eters is still quite small but this refers also to the literature on Bayesian analysis

of ARMA models, see a.o. [13] and [1]. We di®er from this literature as we use a

di®erent Monte Carlo posterior simulator (Importance Sampling instead of Gibbs

as in [1]) and our analysis explicitly focuses on the modeling problems involved

when using ARMA models. We are therefore able to construct statistics which

show whether these problems are appearing. Since the Gibbs Sampling approach

pursued in [1] does not use priors exploiting the a priori knowledge, regarding

the identi¯cation of the di®erent parameters, its performance will be less than

that of the Importance Sampling approach involving priors which do exploit this

a priori knowledge.

The paper is organized as follows. Section 2 explains the local identi¯ca-

tion problem existing in ARMA(1,1) models and shows how it generalizes to

ARMA(p; q) models. In section 3, Je®reys' type priors for ARMA models are

discussed and a prior is constructed which is °at in the implicit AR speci¯ca-

tion. Section 4 contains the Monte Carlo Posterior Simulator for ARMA models.

This simulator is straightforward and allows for the construction of diagnostic

parameters indicating the identi¯cation of the di®erent ARMA parameters. In
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this section also Posterior Odds Ratios for comparing di®erent (parsimonious)

ARMA models, with equal combined AR and MA lengths, are constructed. As

a general to speci¯c approach is, because of the identi¯cation problems involved,

not applicable to ARMA models this procedure allows for a comparison of small

parsimonious models. The ¯fth section contains an application of the developed

procedures to two data sets, i.e. the (extended) Nelson-Plosser data and monthly

observations of U.S. 3-month and 10-year interest rates. For almost 50% of these

series an ARMA model is favored above an AR model and for some series the

favor is pronounced. The MA components are shown to strongly in°uence the

long run components of the AR components in some cases leading to di®erent

conclusions about the long run behavior of these series. Finally, the sixth section

concludes.

2 Identi¯cation consequences for the posteriors

in ARMA models

The local nonidenti¯cation problems arising in ARMA models are the result of

so-called root cancellation, i.e. the AR and MA polynomials have common roots.

We show this phenomenon for the simplest ARMA model, an ARMA(1; 1) model,

(1 ¡ ½L)yt = (1 ¡ ®L)"t; (1)

where L is the lag-operator, Ljyt = yt¡j: The local identi¯cation problem becomes

obvious when we consider a reparameterization of the model,

(1¡ (®+ ±)L)yt = (1 ¡ ®L)"t; (2)

where ± = ½ ¡ ®: When the parameter ± = 0; which corresponds to ® = ½;

® disappears from the model as the same kind of operator (1 ¡ ®L) is used

on both sides of equation (2) such that it simpli¯es to yt = "t; a white noise

model. So, when ± = 0 (® = ½); we cannot learn anything about ® and the

likelihood of the model will be °at (nonzero) in the direction of ®: When we

use a di®use prior such that the joint posterior of the parameters is proportional

to the likelihood, the conditional posterior of ® given ± is °at and nonzero at

± = 0: Consequently, the integral over this conditional posterior, which is part of

the marginal posterior of ±; is in¯nite. So, the marginal posterior of ± is in¯nite

at ± = 0: These arguments are similar to those in [9] and [11] where similar

phenomena are analyzed for cointegration and Simultaneous Equations Models.

In section 4.3, the consequences of the use of a di®use prior on the posterior of

the parameters of an ARMA(1,1) model are illustrated. These posteriors are also

compared with the posteriors using the priors derived in the following sections.

In general ARMA(p; q) models the local identi¯cation problem previously dis-

cussed for the ARMA(1,1), is known as the problem of root cancellation. Consider
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a general ARMA(p; q) model;

½(L)yt = ®(L)"t; (3)

where ½(z) = 1 ¡
pP

j=1

½jz
j and ®(z) = 1 ¡

qP
j=1

®jz
j: Both polynomials can be

represented using their roots, ½(z) =
pQ

j=1

(1¡ ¸jz); ®(z) =
qQ

j=1

(1¡ µjz): Consider

µ1; every AR root ¸j can be speci¯ed as ¸j = µ1 + aj + bji: When both aj and bj
are 0, the parameter µ1 drops out of the model and is consequently not identi¯ed.

A similar kind of reasoning can be performed for the other MA roots and a

complicated nonlinear region for the AR parameters results where MA parameters

are nonidenti¯ed. In section 4.1 a procedure for testing the identi¯cation of the

MA parameters is constructed.

Note that the autocorrelations of noninvertible MA models, i.e. models with

roots of the MA polynomial which lie within the unit circle, cannot be distin-

guished from the autocorrelations of invertible MA models. Consequently, MA

parameters have to be restricted leading to invertible polynomials to be identi-

¯able from the autocorrelations. Invertible and noninvertible MA polynomials

with identical autocorrelations lead to di®erent values of the likelihood function,

however, such that they can be identi¯ed from the likelihood. As we de¯ne identi-

¯cation from a likelihood perspective, see also [8], we allow for noninvertible MA

parameters and explosive AR parameters, such that the MA and AR parameters

range from ¡1 to 1.

3 Priors for ARMA models

As we know a priori that ARMA models contain parameters that are locally non-

identi¯ed for speci¯c values of the other parameters, it is possible to construct the

prior such that it re°ects that certain parameters need to be analyzed conditional

on the other parameters. Likelihood based priors like the Je®reys' prior, which

is proportional to the square root of the determinant of the information matrix,

possess this property. In the following sections we discuss how Je®reys' priors for

ARMA models can be constructed.

3.1 Information matrix priors for the AR(1) model

In time series models, the curvature of the likelihood strongly depends on the val-

ues of the parameters of the model which generated the data. In AR(1) models for

example, we know that the curvature of the likelihood is much more pronounced

when the analyzed data is generated by a unit root value of the AR(1) parameter

than for a stationary value of the AR(1) parameter. As this curvature of the

likelihood strongly depends on the value of the parameters generating the data
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also the information matrix measuring this curvature strongly depends on these

parameter values. When we use priors depending on this information matrix,

like the Je®reys' prior, these priors will strongly vary over the model parameters,

see a.o. [16], [9], [19] and [20]. Consequently, when using Je®reys' priors, certain

speci¯c parameters values get more weight a priori. It is arguable whether this

leads to sensible inference as it can bias the posteriors quite strongly since large

a priori weight is attached to parameter values leading to a strong curvature of

the likelihood (unit root and explosive parameter values). It can be shown, see

[9], that the value of these kind of priors crucially depends on how certain expec-

tations are taken in the construction of the prior. If in the construction of the

prior the data is considered as given, the resulting Je®reys' prior is °at in AR(1)

models and does not depend on the value of the AR(1) parameter. To show this,

consider the AR(1) model,

yt = ½yt¡1 + "t: (4)

Assuming (T + 1) observations, t = 0; :::; T; and i.i.d. disturbances with a

normal distribution with mean 0 and variance ¾2; the Je®reys' prior for this

model reads,

p(½; ¾2) /
¯̄̄
¯̄¾¡3E( TX

t=1

y2t¡1)

¯̄̄
¯̄
1

2

: (5)

When the expectation is taken the prior reads, see [16],

p(½; ¾2) /
¯̄̄
¯̄¾¡3

Ã
T¾2

1¡ ½2
+
1 ¡ ½2T

1¡ ½2

Ã
E(y20)¡

¾2

1¡ ½2

!!¯̄̄
¯̄
1

2

: (6)

As shown by equation (6), the value of the prior crucially depends on the

value of ½ and gives a lot of a priori weight to large values of ½: It can be argued

that taking the expectation over the yt¡1's in equation (5) is not necessary as

the posterior is conditional on the data and the realized values of the yt¡1's can

therefore be used instead of their expectations. Use of a prior which shows that

the data contain more information for larger values of ½ is therefore misleading

as the amount of information in the data does not change for a di®erent value of

½ as the data does not change. The resulting prior then reads,

p(½; ¾2) /
¯̄̄
¯̄¾¡3 TX

t=1

y2t¡1

¯̄̄
¯̄
1

2

: (7)

The prior in equation (7) is uniform in the parameter ½ and does therefore

give di®erent values of ½ equal a priori weight. The reason why we stress this phe-

nomenon is that similar di±culties arise in the construction of the Je®reys' prior

in ARMA models and we show this in the following section for the ARMA(1,1)

model.
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3.2 Information matrix priors for the ARMA(1,1) model

As speci¯cation for the ARMA(1; 1) model, we use, see equation (1),

yt = ½yt¡1 ¡ ®"t¡1 + "t; t = 1; :::; T; (8)

where we assume (T + 2) observations yt, t = ¡1; 0; :::; T; and the disturbances,

"t; t = 1; :::; T; are i.i.d. with a normal distribution with mean 0 and variance

¾2: The resulting AR and MA polynomials are ½(z) = 1¡ ½z and ®(z) = 1¡ ®z

such that ½(L)yt = ®(L)"t and L is the usual lag operator. By inverting the MA

polynomial, the speci¯cation of the disturbances results,

"t = yt ¡
t+1X
i=1

®i¡1(½¡ ®)yt¡i = yt ¡
t+1X
i=1

ciyt¡i; (9)

where c1 = ½¡®; c2 = ®(½¡®); ci = c2(c2=c1)
i¡2; i = 3; :::; T +1: Note that the

construction of the disturbances as in equation (9) allows for noninvertible MA

parameters as we explicitly assume that T is ¯nite. This manner of constructing

the disturbances will be used throughout the whole paper. Using the disturbances

from equation (9), the information matrix can be derived,

p(µ; ¾2) / jI(µ; ¾2)j 12 / ¾¡(2+k)
¯̄̄
¯̄E
Ã

TX
t=1

Ã
@"t

@µ

!Ã
@"t

@µ

!
0
!¯̄̄
¯̄
1

2

; (10)

where µ : k £ 1: So, for the construction of the information matrix we need to

construct the derivative @"t
@µ
; where µ =

Ã
½

®

!
; k = 2;

@"t

@µ
= ¡

0
BB@

tP
i=0

®iyt¡i¡1

tP
i=0

®i¡1(i½¡ (i+ 1)®)yt¡i¡1

1
CCA : (11)

Conditioning on the observed values of the observations yt; t = ¡1; 0; :::; T;
such that E(yt¡i) = yt¡i, the speci¯cation of the Je®reys' prior reads,

p(½; ®; ¾2) / ¾¡4¯̄̄
¯̄̄
¯̄̄
TX
t=1

0
BB@

tP
i=0

®iyt¡i¡1

tP
i=0

®i¡1(i½¡ (i+ 1)®)yt¡i¡1

1
CCA
0
BB@

tP
i=0

®iyt¡i¡1

tP
i=0

®i¡1(i½¡ (i+ 1)®)yt¡i¡1

1
CCA
0
¯̄̄
¯̄̄
¯̄̄
1

2

:

(12)

The Je®reys' prior in equation (12) is increasing in the value of the MA

parameter ®: So, parameter points with relatively large values of ® get more a

priori weight than parameter points with a relatively small value of ®: This is
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comparable to the Je®reys' prior in equation (6) where large values of the AR

parameter get more a weight than smaller values. For both cases it holds that

the resulting posteriors have a (unplausibly) large amount of probability mass

at large values of the MA resp. AR parameter. For both cases we ¯nd this

unplausible and we therefore choose a prior which only takes into account the

¯rst (p+ q) lags of the implicit AR polynomial in equation (9). This prior is °at

in the implicit AR parameters (which are properly identi¯ed) which explains why

we choose for this speci¯cation.

The derivative @"t
@µ

then becomes,

@"t

@µ
= ¡

0
BB@

1P
i=0

®iyt¡i¡1

1P
i=0

®i¡1(i½¡ (i+ 1)®)yt¡i¡1

1
CCA (13)

= ¡
Ã

yt¡1 + ®yt¡2
yt¡1 + (½ ¡ 2®)yt¡2

!
= ¡

Ã
1 ®

¡1 ½ ¡ 2®

!Ã
yt¡1
yt¡2

!
:

Using this speci¯cation of the derivative @"t
@µ
; the resulting "Je®reys' prior"

becomes,

p(½; ®; ¾2) / ¾¡4
¯̄̄
¯̄
Ã

1 ®

¡1 ½¡ 2®

!
TP
t=1

(

Ã
yt¡1
yt¡2

!Ã
yt¡1
yt¡2

!
0

)

Ã
1 ®

¡1 ½¡ 2®

!
0
¯̄̄
¯̄
1

2

/ ¾¡4
¯̄̄
¯̄
Ã

1 ®

¡1 ½¡ 2®

!¯̄̄
¯̄
¯̄̄
¯̄̄ TP
t=1

ÃÃ
yt¡1
yt¡2

!Ã
yt¡1
yt¡2

!
0
!0 ¯̄̄¯̄̄

1

2

/ ¾¡4j½¡ ®j
¯̄̄
¯̄̄ TP
t=1

ÃÃ
yt¡1
yt¡2

!Ã
yt¡1
yt¡2

!
0
!0 ¯̄̄¯̄̄

1

2

:

(14)

Although the Je®reys' prior, when using the derivative in equation (13), is still

increasing in the MA parameter ®; it is °at for the parameters of the implicit AR

model shown in equation (9) when this model is speci¯ed in terms of the param-

eters c1 and c2. The matrix

Ã
1 ®

¡1 ½¡ 2®

!
is namely the jacobian of the trans-

formation of c (= (c1 c2)
0) to µ (= (½ ®)0) such that dc =

¯̄̄
¯̄
Ã

1 ®

¡1 ½ ¡ 2®

!¯̄̄
¯̄ dµ:

So, in the speci¯cation of the parameters (c; ¾2); the prior reads,

p(c1; c2; ¾
2) / ¾¡4

¯̄̄
¯̄̄ TX
t=1

ÃÃ
yt¡1
yt¡2

!Ã
yt¡1
yt¡2

!
0
!0 ¯̄̄¯̄̄

1

2

: (15)

This prior is clearly °at in the parameters (c1; c2) as it does not depend on

these parameters. In the implicit AR model from equation (9) all parameters are
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properly identi¯ed and there are no local identi¯cation issues as in the original

ARMA model from equation (8). The implicit AR model can therefore be con-

sidered to be the implicit reduced form model of the (structural) ARMA model.

This is comparable to the Simultaneous Equations Model (SEM) where also local

identi¯cation issues arise in the structural form speci¯cation while the parame-

ters of the reduced form are properly identi¯ed, see a.o. [11] and [15]. By using

a °at prior in the speci¯cation where the parameters are properly identi¯ed, we

penalize the points were the identi¯cation issues documented in the previous sec-

tion appear. The implicit posterior favor for the points of local nonidenti¯cation

therefore disappears, see also [9] and [11] for a discussion of Bayesian analyses of

other kind of models with locally nonidenti¯ed parameters.

The use of the prior from equation (14) can be generalized in a natural manner

to ARMA models of any speci¯c order and also allows for a straightforward

importance sampling scheme. These issues are discussed in the following sections.

3.3 Noninformative Priors for general ARMA(p,q) mod-

els

To derive \Je®reys' type priors" for general univariate ARMA(p; q) model includ-

ing exogenous variables, we consider three di®erent speci¯cations of the exogenous

variables within an ARMA model: a speci¯cation incorporating the exogenous

variables within the ARMA polynomial, a speci¯cation incorporating the exoge-

nous variables within the MA polynomial and a speci¯cation where the exoge-

nous variables directly in°uence the disturbances without the intervenience of a

speci¯c lag polynomial. In the following, we discus each of the three di®erent

speci¯cations and the \Je®reys' priors" and posteriors resulting from them.

The ¯rst speci¯cation incorporates the exogenous variables within the ARMA

polynomial,
yt = x0t¯ + "t;

½(L)"t = ®(L)ut;
(16)

where xt : k£ 1; is generated independently from the variables yt (weakly exoge-

nous), t = ¡(p + q ¡ 1); :::; 0; :::; T ; and ½(z) = 1 ¡
pP

i=1

½iz
i; ®(z) = 1 ¡

qP
i=1

®iz
i:

The model in equation (16) is identical to the model,

½(L)(yt ¡ x0t¯) = ®(L)ut: (17)

The in¯nite order AR speci¯cation of the model in equation (17) reads,

®(L)¡1½(L)yt = ®(L)¡1½(L)x0t¯ + ut ,
c(L)yt = c(L)x0t¯ + ut;

(18)

where c(z) = 1 ¡
1P
i=1

ciz
i; cp+q+j = fj(c1; :::; cp+q); j = 1; :::;1: Note that as in

the previous section, we construct the inverses of the MA polynomials such that
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we allow for \noninvertible MA polynomials". When we multiply the inverted

MA polynomial, ®(L)¡1; by a certain observation, say yt; resulting in ®(L)¡1yt;

we assume that ®(L)¡1yt =
t+p+qP
i=0

ciyt¡i is such that even in case of a noninvertible

MA polynomial we can still construct ®(L)¡1yt as we only use elements of ci with

a ¯nite i; implying ¯nite ci's in the construction of ®(L)¡1yt:

Equation (18) allows us to decompose the \Je®reys' prior" when assuming

i.i.d. normal disturbances with mean 0 and variance ¾2 into \conditional and

marginal priors", see also [10]. This results from the dependence of ¯ on the

ARMA parameters ®i; i = 1; :::; q; ½j ; j = 1; :::; p: The conditional Je®reys'

prior of ¯ given ®i; i = 1; :::; q; ½j; j = 1; :::; p; therefore becomes,

p(¯j®; ½; ¾2) / ¾¡k
¯̄̄
¯̄ TX
t=1

(®(L)¡1½(L)xtx
0

t½(L)®(L)
¡1)

¯̄̄
¯̄
1

2

(19)

/ ¾¡kj(Xc(L))0(Xc(L))j 12 ;

where Xc(L) = (x1c(L):::xT c(L))
0; while the marginal prior for (®;½;¾2) reads,

p(®; ½; ¾2) / ¾¡(p+q+2)
¯̄̄
¯̄ @(c1; :::; cp+q)

@(®1; :::; ®q; ½1; :::; ½p)

¯̄̄
¯̄ jY 0MXc(L)Y j

1

2 ; (20)

where Y = (

0
B@ y0

:

y¡p¡q+1

1
CA
0

:::

0
B@ yT¡1

:

yT¡p¡q

1
CA
0

); MZ = IT ¡Z(Z 0Z)¡1Z 0; Z = Xc(L):

The prior in equation (20) shows that a prior is used for the parameters of the

implicit AR(p+q) model which is proportional to jY 0MXc(L)Y j
1

2 . The conditional

prior for ¯ given (®; ½; ¾2) contains part of the scaling factor of the multivariate t

conditional posterior of ¯ given (®; ½): The conditional posterior of ¯ given (®; ½)

therefore reads,

p(¯j®; ½; data) /
¯̄̄
¯̄ TP
t=1

c(L)xtx
0

tc(L)

¯̄̄
¯̄
1

2

¯̄̄
¯̄(yc(L))0MXc(L)(yc(L)) + (¯ ¡ ^̄)0

Ã
TP
t=1

c(L)xtx
0

tc(L)

!
(¯ ¡ ^̄)

¯̄̄
¯̄¡

1

2
(T+k)

(21)

and the marginal posterior of (®; ½) reads,

p(®; ½jdata) /
¯̄̄

@(c1;:::;cp+q)

@(®1;:::;®q ;½1;:::;½p)

¯̄̄
jY 0MXc(L)Y j

1

2

j(yc(L))0MXc(L)yc(L)j¡
1

2
(T+p+q)

(22)

such that the marginal posterior of c becomes,

p(cjdata) / jY 0MXc(L)Y j
1

2 j(yc(L))0MXc(L)yc(L)j¡
1

2
(T+p+q); (23)
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where yc(L) = (y1c(L):::yT c(L))
0; ^̄ = (

TP
t=1

c(L)xtx
0

tc(L))
¡1(

TP
t=1

c(L)xtytc(L)) =

((Xc(L))0Xc(L))¡1(Xc(L))0yc(L); c(L) = ®(L)¡1½(L): The functional expres-

sions in equations (16) to (23) are all based on the speci¯cation of the exogenous

variables from equation (16).

The second speci¯cation of the exogenous variables we consider allows for

lagged in°uence of the exogenous variables on the disturbances through the MA

polynomial,

½(L)yt = x0t¯ + ®(L)"t: (24)

This property becomes clearer when we construct the in¯nite AR speci¯cation,

®(L)¡1½(L)yt ¡ ®(L)¡1x0t¯ = "t: (25)

The in¯nite AR speci¯cation shows that there is lagged in°uence of the exoge-

nous variables on the disturbances through the MA polynomial. The \Je®reys'

prior" for the parameters of the model in equation (24) can again be decomposed

in a conditional prior for ¯ given (®; ½; ¾2) and a marginal prior of (®; ½; ¾2): The

conditional prior of ¯ given (®; ½; ¾2) then reads,

p(¯j®; ½; ¾2) / ¾¡k
¯̄̄
¯̄ TX
t=1

(®(L)¡1xtx
0

t®(L)
¡1)

¯̄̄
¯̄
1

2

(26)

/ ¾¡kj(X®(L)¡1)0(X®(L)¡1)j12 ;

where X®(L)¡1 = (x1®(L)
¡1:::xT®(L)

¡1)0; while the marginal prior for (®; ½; ¾2)

reads,

p(®;½;¾2) / ¾¡(p+q+2)
¯̄̄
¯̄ @(c1; :::; cp+q)

@(®1; :::; ®q; ½1; :::; ½p)

¯̄̄
¯̄ jY 0MX®(L)¡1Y j

1

2 : (27)

For the implicit AR parameters, the prior in equation (27) shows that we have

used an implicit prior for these parameters which is proportional to jY 0MX®(L)¡1Y j
1

2 :

The conditional prior for ¯ given (®; ½; ¾2) contains part of the scaling factor of

the multivariate t conditional posterior of ¯ given (®; ½): The conditional poste-

rior of ¯ given (®; ½) therefore reads,

p(¯j®;½; data) /
¯̄̄
¯̄ TP
t=1

®(L)¡1xtx
0

t®(L)
¡1

¯̄̄
¯̄
1

2

¯̄̄
¯̄(yc(L))0MX®(L)¡1(yc(L)) + (¯ ¡ ^̄)0

Ã
TP
t=1

®(L)¡1xtx
0

t®(L)
¡1

!
(¯ ¡ ^̄)

¯̄̄
¯̄¡

1

2
(T+k)

(28)

and the marginal posterior of (®; ½) reads,

p(®; ½jdata) /
¯̄̄

@(c1;:::;cp+q)

@(®1 ;:::;®q ;½1 ;:::;½p)

¯̄̄
jY 0MX®(L)¡1Y j

1

2

j(yc(L))0MX®(L)¡1yc(L)j¡
1

2
(T+p+q)

(29)

10



such that the marginal posterior of c becomes,

p(cjdata) / jY 0MX®(L)¡1Y j
1

2 j(yc(L))0MX®(L)¡1yc(L)j¡
1

2
(T+p+q): (30)

For our third speci¯cation of the exogenous variables, it holds that the exoge-

nous variables directly in°uence the disturbances without the intervenience of a

lag polynomial. The speci¯cation of this model reads,

½(L)yt = ®(L)(x0t¯ + "t): (31)

The direct in°uence becomes again clearer when the implicit AR model is

constructed,

®(L)¡1½(L)yt ¡ x0t¯ = "t; (32)

which clearly shows the direct in°uence. As the exogenous variables in°uence the

disturbances instantaneously, the parameters of the exogenous variables can be

estimated by means of regression. Essentially, the speci¯cation of the exogenous

variables in equation (31) is the most general one since by adding lagged exoge-

nous variables, the other speci¯cations can also be obtained. This speci¯cation

also allows for other kind of dynamic in°uence of the exogenous variables on the

dependent variables compared to the dynamic in°uence of the dependent vari-

ables on itselves. The speci¯cation in equation (31) is therefore also more general

in this respect. The prior can again be decomposed into a conditional prior of ¯

given (®; ½; ¾2) and a marginal prior of (®; ½; ¾2) but there is an important di®er-

ence between the priors for this speci¯cation of the exogenous variables and the

priors in the previous speci¯cations, as the conditional prior of ¯ given (®; ½; ¾2)

is not in°uenced by ® and ½: The conditional prior of ¯ given (®; ½; ¾2) reads,

p(¯j®; ½; ¾2) / ¾¡k
¯̄̄
¯̄ TX
t=1

xtx
0

t

¯̄̄
¯̄
1

2

(33)

/ ¾¡kjX 0Xj 12 ;
where X = (x1:::xT )

0; while the marginal prior for (®; ½; ¾2) reads,

p(®; ½; ¾2) / ¾¡(p+q+2)
¯̄̄
¯̄ @(c1; :::; cp+q)

@(®1; :::; ®q; ½1; :::; ½p)

¯̄̄
¯̄ jY 0MXY j

1

2 ; (34)

The prior in equation (34) shows that a °at prior is used for the parameters of

the implicit AR(p+ q) model which does not depend on the value of ® or ½: The

conditional prior for ¯ given (®; ½; ¾2) contains part of the scaling factor of the

multivariate t conditional posterior of ¯ given (®;½): The conditional posterior

of ¯ given (®; ½) therefore reads,

p(¯j®; ½; data) /
¯̄̄
¯̄ TP
t=1

xtx
0

t

¯̄̄
¯̄
1

2

¯̄̄
¯̄(yc(L))0MX(yc(L)) + (¯ ¡ ^̄)0

Ã
TP
t=1

xtx
0

t

!
(¯ ¡ ^̄)

¯̄̄
¯̄¡

1

2
(T+k)

(35)

11



and the marginal posterior of (®; ½) reads,

p(®; ½jdata) /
¯̄̄

@(c1 ;:::;cp+q)

@(®1;:::;®q ;½1;:::;½p)

¯̄̄
jY 0MXY j

1

2

j(yc(L))0MXyc(L)j¡
1

2
(T+p+q);

(36)

such that the marginal posterior of c becomes,

p(cjdata) / jY 0MXY j
1

2 j(yc(L))0MXyc(L)j¡
1

2
(T+p+q): (37)

The marginal posteriors of ® and ½ di®er over the speci¯cations of the exoge-

nous variables depending on whether the disturbances of the model are in°uenced

by the exogenous variables through a certain lag polynomial or directly. For cer-

tain speci¯c choices of the exogenous variables, the marginal posterior of the

ARMA parameters is identical regardless of what speci¯cation is chosen. A nec-

essary and su±cient condition to achieve this irrelevance of speci¯cation of the

exogenous variables is that xt = Axt¡1; where A is a k£k matrix, and invertibil-

ity of the MA polynomial. The marginal posteriors of the ARMA parameters of

ARMA Models containing only constant terms, linear trends (quadratic trends,

etc.) are therefore not a®ected by the choice of the speci¯cation of these exoge-

nous variables. In the ¯fth section, we calculate the marginal posteriors of ARMA

parameters of ARMA models only containing a constant term and a linear trend

and these posteriors are as a consequence not a®ected by the way in which these

deterministic components are incorporated in the model.

As the marginal posteriors in the di®erent equations in this section, like (22),

(29) and (36) do not belong to a known class of probability density functions,

in the next sections Monte Carlo simulation procedures for the calculation of

moments of these posteriors are constructed. Furthermore, also the posterior odds

ratios to test for the lag length of the AR and MA polynomials are constructed.

4 Numerical analysis of the posteriors of param-

eters of ARMA models

4.1 E±cient Generation of Model Parameters

As the posteriors in equations (22), (29) and (36) do not belong to a standard

class of probability density functions, the moments of these probability density

functions are unknown. We therefore calculate these moments using Monte Carlo

Integration. Direct simulation from the posterior is, however, not feasible and we

use other simulation techniques. In [1], the marginal posteriors of the parameters

of ARMA models are calculated using Gibbs sampling. The priors involved in

that analysis are of the natural conjugate type while the posteriors in equations

(22), (29) and (36) involve \Je®reys' type priors". Consequently, we cannot apply

the Gibbs Sampling algorithm developed in [1]. We use Importance Sampling,

12



see [12] and [5], to calculate the marginal posteriors of parameters of ARMA

models. As the Importance Function involved is often a good approximation of

the posterior, it can also be used to simulate directly from the posterior using

acceptance-rejection sampling.

The Importance function used to approximate the posterior in equation (23)

is a (p+q) dimensional multivariate t density initially based on the (least squares)

estimates of an AR(p+q) model. The following simulation scheme for generating

the parameters of the ARMA(p; q) model is used. In this scheme, n shows the

a priori chosen number of random drawings from the Importance Function, ¸

shows the degrees of freedom of the t Importance Function and ft(cjĉ; cov(ĉ); ¸)
is the probability density function of a (p + q)¡ variate t density with kernel,

j¸+ (c¡ ĉ)0(cov(ĉ))¡1(c¡ ĉ)j¡ 1

2
(¸+p+q):

Importance Sampling Scheme for ARMA parameters

0. Choose degrees of freedom Importance function, ¸; and number of drawings,

n:

1. Estimate c; ¯: yt =
p+qP
i=1

ciyt¡i + x0t¯ + ut

2. Construct ĉ; cov(ĉ)

3. Generate ci; i = 1; :::; n; from ft(cjĉ; cov(ĉ); ¸)

4. Solve for ®; ½ using :

³
1 ¡®1 ::: ¡®q

´
0
BBBBBB@

1 ¡c1 : : : ¡cp+q
0 : : :

: : : : :

: : : : :

0 : : 0 1 ¡c1 ::: ¡cp

1
CCCCCCA
=

³
1 ¡½1 ::: ¡½p 0 ::: 0

´

5. Construct weight : wi(®; ½) =
j(yc(L))0MXyc(L)j

¡
1

2
(T+p+q)

j¸+(c¡ĉ)0(cov(ĉ))¡1(c¡ĉ)j
¡
1

2
(¸+p+q)

6. Construct E(g(®; ½)) =

nP
i=1

wi(®;½)gi(®;½)

nP
i=1

wi(®;½)

7. Update ĉ and cov(ĉ) using E(g(®; ½))'s and go to step 3.

13



Note that through the transformation from c to (®; ½); we implicitly took

account of the jacobian of this transformation such that this jacobian, which

appears in the posterior in equation (22), does not appear in the weight function,

w(®;½): The above Importance Sampling scheme is intended for the model in

equation (31), the model where the exogenous variables directly in°uence the

disturbances. When we use the Importance Sampling scheme for the speci¯cation

of the exogenous variables as in equation (16), the weights change to,

wi(®; ½) =
jY 0MXC(L)Y j

1

2 j(yc(L))0MXc(L)yc(L)j¡
1

2
(T+p+q)

j¸+ (c¡ ĉ)0(cov(ĉ))¡1(c ¡ ĉ)j¡ 1

2
(¸+p+q)

; (38)

if instead the model in equation (24) is used, the weights change to,

wi(®; ½) =
jY 0MX®(L)¡1Y j

1

2 j(yc(L))0MX®(L)¡1yc(L)j¡
1

2
(T+p+q)

j¸+ (c¡ ĉ)0(cov(ĉ))¡1(c ¡ ĉ)j¡ 1

2
(¸+p+q)

: (39)

Sampling ¯ can be done from the conditional posteriors from equations (21),

(28) and (35) given a value of ® and ½: The generated values of ¯ get the same

weight as the values of ® and ½:

Generating the ARMA parameters ® and ½ from the AR parameters c enables

us to calculate some interesting diagnostic parameters which are helpful in the

determination of the lag length of the MA polynomial. In the next section also

a posterior odds procedure for determining this lag length is presented but here

we a use matrix decomposition to investigate it. This decomposition involves

a TÄoplitz matrix which is used to construct the MA parameters as (it is here

assumed that p ¸ q but p < q follows trivially),

³
®1 ::: ®q

´0B@ cp ::: cp+q¡1
: : :

cp¡q ::: cp

1
CA =

³
cp+1 ::: cp+q

´
, ®0¤C = '0c; (40)

where ¤c =

0
B@ cp ::: cp+q¡1

: : :

cp¡q+1 ::: cp

1
CA and 'c=

³
cp+1 ::: cp+q

´
0

: When eigen-

values of the TÄoplitz matrix ¤c lie in the neighborhood of 0, the lag length q

exceeds the MA lag length of the model which generated the analyzed data and

elements of ® are consequently nearly nonidenti¯ed. The parameters contained

in ® and ½ can be large in that case as an inversion of a near singular matrix is

involved. It is therefore important to construct the eigenvalues of the matrix ¤c

to obtain information about the rank of ¤c: Instead of constructing the eigenval-

ues we decompose the matrix ¤c into a product of two triangular matrices, see

also [9] and [11] where triangular matrices are used to determine the rank of the

long run multiplier in cointegration models, to avoid the identi¯cation problems
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which appear when the eigenvalues need to be ordered in increasing values. This

decomposition reads,

¤c =

0
BBB@

µ11 0 : 0

: : : :

: : 0

µq1 : : µqq

1
CCCA
0
BBB@

1 Ã12 : Ã1q

0 : : :

: : : Ãq¡1q

0 : 0 1

1
CCCA, ¤c = £cªc; (41)

where £c =

0
BBB@

µ11 0 : 0

: : : :

: : 0

µq1 : : µqq

1
CCCA and ªc =

0
BBB@

1 Ã12 : Ã1q

0 : : :

: : : Ãq¡1q

0 : 0 1

1
CCCA : The number of

diagonal elements of £c; µii; i = 1; :::; q; di®ering from 0 show the lag length of the

MA polynomial. These parameters show the identi¯ability of the MA parameters

and they can be used to test for the identi¯cation of these. The diagonal elements

in the neighborhood of 0 lead to fat tailed (Cauchy type) posteriors of the ARMA

parameters such that we prefer to have no diagonal elements close to 0. Although

the diagonal elements of ¤c are indicative about the lag length, they should always

be analyzed jointly with the MA parameters, ®: Consider for example an AR(1)

model which is estimated using an ARMA(1,1). In this model ¤c = ½ 6= 0 but

® = 0 showing that both ® and ¤c have to be analyzed. In [4], the speci¯cation

in equation (40) is used to derive classical statistical tests for identi¯cation of the

parameters in ARMA models.

The use of the ¤c parameter matrix and the MA coe±cients ® allows us to

conduct inference regarding the orders of the AR and MA polynomials. It remains

troublesome, however, to conduct inference regarding both orders simultaneously.

The AR and MA parameters are namely up to a large extent determined by the

autocovariances of low order. So, if a general to speci¯c approach is conducted to

determine the di®erent orders of the polynomials, it is di±cult to do so as both

AR and MA parameters can explain these autocovariances. In the next section, a

posterior odds approach is developed which compares (low order) ARMA models

with an equal number of ARMA parameters, p+ q: In this manner, identi¯cation

problems resulting from the problem whether the low order autocovariances are

explained by MA or AR polynomials are circumvented. As these ARMA models

with equal an equal ARMA order, p+ q; are not nested in one another, it is hard

to compare these models using classical statistical analysis.

4.2 AR and MA lag lengths comparison using Posterior

Odds Ratios

Di±culties in a general to speci¯c approach in ARMA modeling arise as autoco-

variances can both be explained using MA and AR polynomials. We therefore

propose to perform model selection using posteriors odds ratios of parsimonious
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models. In this approach models with an equal number of ARMA parameters,

p+q; are compared. As the number of ARMA parameters does not di®er between

the models, we specify identical uniform priors and prior odds for the parame-

ters, c; contained in the implicit AR model such that the priors cancel out in

the posterior odds ratios (Note that these parameters c lead to di®erent kind of

implicit AR models). By comparing parsimonious models (models for which all

parameters are more or less di®erent from 0) the di±culties arising in the general

to speci¯c approach can be avoided. We compare for example ARMA(2,1) and

ARMA(1,2) models with each other and/or AR(3), MA(3) models since these

models are all equally capable in explaining the ¯rst three autocovariances but

are di®erent for higher order autocovariances. If instead a general to speci¯c

approach is conducted which starts from an ARMA(3,3) model encompassing all

four di®erent models individually, and then afterwards tests for the restrictions

imposed by the di®erent models are conducted, it is typically hard to identify

especially the MA parameters as the AR parameters can explain part of (short

run) behavior resulting from a MA polynomial.

The posterior odds ratios used for comparing the di®erent models can be

calculated using Importance Sampling, see [6]. In [5], it is proved that the weights

used in the Importance Sampling procedure converge to the ratio of the integral

of the posterior and the Importance function and that the limiting distribution

is normal,
p
n

Ã
1

n

nX
i=1

wi(®; ½)¡
R
p(cjdata)dcR
I(c)dc

!
) n(0; !); (42)

where I(c) = j¸+(c¡ĉ)0(cov(ĉ))¡1(c¡ĉ)j¡ 1

2
(¸+p+q); is the importance function,)

indicates weak asymptotic convergence; ! = E(w(®; ½)¡E(w(®; ½)))2; 1
n

nP
i=1

wi(®; ½)
2¡

( 1
n

nP
i=1

wi(®; ½))
2 ) !; and p(cjdata) = j(yc(L))0MXyc(L)j¡

1

2
(T+p+q); is the kernel

of the posterior, see also equations (36) and (37). As the Importance function is

a multivariate t density, the integral
R
I(c)dc is analytically known, see [21],

Z
I(c)dc = ¼

1

2

¡(1
2
¸)

¡(1
2
(¸+ p+ q))

jcov(ĉ)j 12¸¡ 1

2
¸: (43)

Sofar, we represented the kernel of the posterior without its normalizing con-

stants. In the construction of the posterior odds we exactly need to know these

normalizing constants. In the construction of the kernel used in the Importance

sampling scheme, two analytical integration steps were conducted beforehand.

First, the variance of the disturbances ¾2 is integrated out using the normaliz-

ing constants of an inverted-Wishart probability density function and second the

parameters of the exogenous variables, ¯; are integrated out using the normaliz-

ing constants of a multivariate t probability density function. In the following,

these di®erent integration steps are conducted separately, such that we obtain

the constants present in the marginal posterior of the ARMA parameters.

16



Initially, the joint posterior including constants reads,

p(®; ¯; ½; ¾2jdata) = (2¼)¡
1

2
T¾¡(T+k+p+q+2)

¯̄̄
@(c1 ;:::;cp+q)

@(®1;:::;®q ;½1;:::;½p)

¯̄̄
jY 0MXY j j

TP
t=1

xtx
0

tj
1

2 exp

"
¡ 1

2¾2

TP
t=1

"2t

#
:

(44)

By transforming the parameters ® and ½ to c; the jacobian appearing in

the posterior in equation (44) disappears. Integrating out ¾2 using an inverted-

Wishart probability density function results in the joint posterior of c and ¯;

p(c; ¯jdata) = 2
1

2
(k+p+q)¼¡

1

2
T¡(1

2
(T + k + p+ q))

jY 0MXY j
1

2 j
TP
t=1

xtxt
0j 12 j

TP
t=1

"2t j¡
1

2
(T+k+p+q):

(45)

If we further integrate out ¯ from the joint posterior in equation (45) using the

conditional posterior of ¯ given c shown in equation (35), which is a multivariate

t; the marginal posterior of c is obtained including its normalizing constants,

p(cjdata) = 2
1

2
(k+p+q)¼¡

1

2
(T¡k)¡(1

2
(T + p+ q))

jY 0MXY j
1

2 j(yc(L))0MXyc(L)j¡
1

2
(T+p+q):

(46)

The posteriors in the previous equations are all assuming a di®use (Je®reys')

prior for the implicit AR parameters; c; and Je®reys' type priors for ¯ and ¾2:

For the construction of posterior odds ratios proper priors are needed. We use

the posterior odds ratios for comparing models, say H1 and H2; with similar

exogenous variable structures, kH1
= kH2

; and with an equal number of ARMA

parameters, pH1
+ qH1

= pH2
+ qH2

: Assuming identical priors, prior odds and pa-

rameter regions for the implicit AR parameters, c, under the di®erent hypotheses,

the posterior odds ratios do not depend on the choice of the prior. The posterior

odds ratio then reads,

PH1jH2
=

R
p(cjdata;H1)dcR
p(cjdata;H2)dc

: (47)

Using the limiting behavior of the weight factors, this posterior odds ratio can

be approximated by,

1

n1

n1P
i=1

wi(®; ½;H1)

1

n2

n2P
i=1

wi(®; ½;H2)

¡(1
2
(¸2 + p+ q))¡(1

2
¸1)¸

1

2
¸2

2

¡(1
2
(¸1 + p+ q))¡(1

2
¸2)¸

1

2
¸1

1

Ã
jcov(ĉ1)j
jcov(ĉ2)j

! 1

2

) PH1 jH2
; (48)

where wi(®; ½;Hj) are the weights for model j; n1; n2 are the number of Impor-

tance Sampling drawings from model 1 resp.2; ¸1; ¸2 are the degrees of freedom

of the Importance functions used for model 1 resp.2; cov(ĉ1); cov(ĉ2) are the co-

variance functions of the Importance functions used for model 1 resp. 2. When
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the degrees of freedom of the Importance Functions are equal to one another, the

weight ratio approximating the posterior odds ratio simpli¯es to,

1

n1

n1P
i=1

wi(®; ½;H1)

1

n2

n2P
i=1

wi(®; ½;H2)

Ã
jcov(ĉ1)j
jcov(ĉ2)j

! 1

2

) PH1jH2
: (49)

When the model in the denominator is an AR model, such that pH2
= pH1

+

qH1
; the weight ratio approximating the posterior odds ratio further simpli¯es

as the integral in the denominator can be constructed analytically. In section 5,

these posterior odds ratios are used to compare ARMA models for the (extended)

Nelson-Plosser data, see [14], [18] and [3], and monthly observations of the 3-

month and 10 year US interest rates.

4.3 Example

To show the consequences of the use of a di®use or Je®reys' prior, we compare

the posteriors of the parameters for an arti¯cial time series, generated from an

ARMA(1,1) model, see equation (8), with ½ = 0:6; ® = 0:4; ¾2 = 0:005; T =

200 (µ = ½ ¡ ® = 0:2): We calculated the posteriors for the parameters of an

ARMA(1,1) model both using a di®use and a Je®reys' prior. For the di®use

prior, the posteriors are calculated using the analytical expression of the bivariate

posterior of (®; ½); which is proportional to the conditional likelihood: For the

Je®reys' prior, the Importance Sampling Algorithm from section 4.1 is used.

Figures 1 to 7 contain the marginal posteriors of the parameters of an AR-

MA(1,1) model for the arti¯cially generated time-series. Table 1 contains the

posterior means and standard deviations of the di®erent marginal posteriors. The

bivariate posterior of µ and ® and its contourlines are shown in ¯gures 1,2 (di®use

prior) and 3,4 (Je®reys' prior). The bivariate posterior and its contourlines show

that the bivariate posterior using the di®use prior is constant in the direction of ®

around µ = 0: So, the posterior using the di®use prior has much more probability

mass at µ = 0 compared to the posterior using a Je®reys' prior. The marginal

posteriors of µ shown in ¯gure 5 con¯rm this as the marginal posterior using the

di®use prior has a secondary mode at µ = 0 such that this posterior has more

probability mass at µ = 0. In theory the value at µ = 0 of this posterior is in¯nite

as we have integrated over a parameter, ®; which does not in°uence the nonzero

joint posterior of (µ; ®) at µ = 0: We have chosen a ¯nite parameter region of

® (¡1:3; 1:3); however, such that the posterior in ¯gure 5 is ¯nite at µ = 0 as

the integral of a constant function over a ¯nite region is ¯nite. Note the direct

linkage between the size of the parameter region and the posterior value at µ = 0:

So, when using a di®use prior there is a implicit favor for µ = 0. The larger

probability mass at µ = 0 also re°ects itselves in the marginal posterior of ® and

½; shown in ¯gures 6 and 7. For both ¯gures, it holds that the marginal posterior
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priornparameter ½ ® µ

di®use 0:32
0:49

0:19
0:49

0:12
0:068

Je®reys' 0:38
0:37

0:22
0:36

0:16
0:062

Table 1: Posterior moments ARMA(1,1) parameters arti¯cial time-series

using the di®use prior has much fatter tails and also shows some irregularities at

the boundary of the stationary (invertible) parameter region, see also [2] and [17].

The posteriors using the Je®reys' prior have a more regular behavior though.

Figure 1: Bivariate posterior (®; µ), arti¯cial time series, di®use prior
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Figure 2: Contourlines bivariate posterior (®; µ), arti¯cial time series, di®use

prior

Figure 3: Bivariate posterior (®; µ), arti¯cial time series, Je®reys' prior
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Figure 4: Contourlines bivariate posterior (®; µ), arti¯cial time series, Je®reys'

prior

Figure 5: Marginal posterior µ, arti¯cial time series, di®use (- -) and Je®reys'

(|) prior
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Figure 6: Marginal posterior ®, arti¯cial time series, di®use (- -) and Je®reys'

(|) prior

Figure 7: Marginal posterior ½, arti¯cial time series, di®use (- -) and Je®reys'

(|) prior
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5 Applications

To show the applicability of the derived theory and simulation procedures, we

applied them to two data sets. The ¯rst data set consists of yearly observations

of 14 Macro-Economic time series and is investigated by Nelson and Plosser, see

[14]. This data set originally only contained data until 1970 but is later extended

until 1988, see [18]. We use this extended data set. The second data set consists

of monthly observations from January 1957 to April 1989 of the U.S. three month

treasury bill rate and of interest rates having a maturity of ten years. We start

by analyzing the ¯rst data set.

We model the (extended) Nelson-Plosser series using ARMA models with

three ARMA parameters (p + q = 3) and these models contain a constant term

and a linear trend. In section 3.3, we argued that for these kind of exogenous

variables, the marginal posteriors of the ARMA paramters are not a®ected by the

chosen speci¯cation of the exogenous variables. So, we choose the simplest model,

the model with direct in°uence of the exogenous variables on the disturbances,

½(L)yt = ®(L)(¹ + ±t+ "t); (50)

where ½(z) = 1 ¡
pP
i=1

½iz
i; ®(z) = 1 ¡

qP
i=1

®iz
i; p+ q = 3: Using the priors from

equations (33) and (34) for the di®erent parameters in these models, we con-

structed the posterior odds ratios from the weights resulting from the Importance

Sampling Algorithm using the expression from equation (48). The Importance

Sampling Algorithm converges very fast and because of the good approximation

of the posterior by the Importance function, the Importance function could even

be used for direct acceptance-rejection sampling from the posterior. We per-

formed this exercise for all ARMA models containing three ARMA parameters

and all contain a constant and linear time trend. So, posterior odds ratios are

calculated for ARMA(3,0) (=AR(3)), ARMA(2,1), ARMA(1,2) and ARMA(0,3)

(=MA(3)) models. The resulting ratios are listed in table 2.

The Posterior Odds Ratios from table 2 are quite surprising as for almost all

series, an ARMA(2,1) model is more likely than an AR(3). For some series, the

ARMA(2,1) is de¯nitely preferable to an AR(3) given the value of the posterior

odds, like Industrial Production, Employment, Unemployment, Consumer Price

Index, Interest and the Standard and Poor 500, but for other series the odds

indicate that both models are more or less equally likely. The ARMA(2,1) model

can also be approximated by a high order AR model but an important di®erence

between AR and MA lies in their consequences for the long run behavior of the

series, MA components lead to exponentially decaying correlations which can still

be signi¯cant over long horizons and can easily be misinterpreted as evidence for

unit root behavior of the AR polynomial. So, it is interesting to investigate the

in°uence of the MA parameters on the parameters re°ecting the long run be-
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SeriesnARMA order 3,0/2,1 3,0/1,2 0,3/3,0 2,1/1,2 0,3/2,1 0,3/1,2

Real GNP 0.969 1.082 0.003 1.117 0.003 0.003

Nominal GNP 1.019 1.422 0.000 1.395 0.000 0.000

GNP Capita 0.975 1.091 0.005 1.119 0.005 0.005

Indus. Prod. 0.638 0.842 0.000 1.320 0.000 0.000

Employment 0.549 0.844 0.000 1.537 0.000 0.000

Unemploy. 0.069 0.166 0.420 2.418 0.029 0.070

GNP Def. 1.682 6.821 0.000 4.055 0.000 0.000

Cons. Price Ind. 0.219 0.638 0.000 2.915 0.000 0.000

Wages 0.852 1.338 0.000 1.570 0.000 0.000

Real Wages 0.795 0.951 0.000 1.197 0.000 0.000

Money 0.923 14.73 0.000 15.96 0.000 0.000

Velocity 1.020 1.005 0.000 0.985 0.000 0.000

Interest 0.301 0.340 0.000 1.127 0.000 0.000

S&P 500 0.694 0.846 0.000 1.220 0.000 0.000

Table 2: Posterior Odds Ratios Extended Nelson-Plosser series

havior of the analyzed series, like the unit root parameter,
pP
i=1

½i: We performed

such an analysis and the results are listed in table 3, which contains the posterior

means and standard deviations (below the posterior means) of the ARMA model

that is preferred by the posterior odds ratios from table 2. Note that a MA(3)

model is implausible for all series since this model leads to a very restricted type

of long run behavior of the analyzed series.

For all series, except the Consumer Price Index (CPI), the MA parameter,

®1; has a positive correlation with the unit root parameter. The posterior mean

of the unit root parameter of the ARMA(2,1) is therefore for all series, except

CPI, smaller than the posterior mean of the unit root parameter of the AR(3)

model. Depending on the size of the MA parameter, this decrease of the MA

parameter can be quite large and it is most pronounced for the unemployment

series, whose unit root parameter decreases from 0.74 to 0.56. For the other

series, which contain signi¯cant MA components, the decrease is also relatively

large: Industrial Production (0.06), Employment (0.05), Interest (0.03), S&P 500

(0.04) but for all series the posterior standard deviations increase slightly from

AR(3) to ARMA(2,1). It is typical that the series which vary a lot, like CPI and

Interest, contain large MA components. These MA components also explain the

long run memory in the ¯rst di®erences of these series, like in°ation.

The parameter µ11; see equation (41) for an interpretation of this parameter,

shows that for the series for which an ARMA(2,1) model is preferred, the MA

parameter, ®1, is properly identi¯ed as the posterior mean lies more than two

posterior standard deviations from 0. Exceptions are Industrial Production and
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seriesnARMA par. ½1 ½2 ½3 ®1 µ11
pP

i=1

½i

Real GNP 1:18
0:23

¡0:37
0:21

¡0:07
0:22

0:46
0:15

0:81
0:062

Nominal GNP 1:45
0:12

¡0:57
0:20

0:063
0:12

0:94
0:032

GNP Capita 1:17
0:24

¡0:37
0:21

¡0:062
0:23

0:45
0:14

0:80
0:06

Ind. Prod. 0:69
0:32

0:075
0:27

¡0:29
0:30

0:21
0:10

0:77
0:08

Employment 0:97
0:22

¡0:14
0:21

¡0:33
0:21

0:57
0:16

0:82
0:061

Unemploy. 0:41
0:18

0:15
0:16

¡0:66
0:16

0:55
0:14

0:56
0:10

GNP Def. 1:43
0:11

¡0:38
0:18

¡0:09
0:11

0:97
0:02

Cons. Price Ind. 1:36
0:12

¡0:38
0:12

¡0:47
0:12

1:24
0:18

0:99
0:015

Wages 1:27
0:20

¡0:35
0:19

¡0:23
0:19

0:70
0:18

0:93
0:035

Real Wages 0:93
0:34

¡0:018
0:33

¡0:30
0:30

0:38
0:14

0:91
0:056

Money 1:50
0:14

¡0:56
0:14

¡0:19
0:16

0:89
0:20

0:93
0:027

Velocity 1:09
0:094

¡0:15
0:14

0:026
0:093

0:97
0:025

Interest 0:72
0:22

0:20
0:21

¡0:54
0:19

0:47
0:16

0:92
0:052

S&P 500 0:80
0:22

0:094
0:21

¡0:42
0:20

0:42
0:13

0:89
0:05

Table 3: Posterior Moments ARMA parameters Nelson-Plosser series
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seriesnodds 2,0/1,1

Real GNP 5.212

Nominal GNP 3.105

Indus. Prod. 0.770

Employ. 0.741

Wages 3.819

Real Wages 0.942

Money 671.3

S&P 500 0.306

Table 4: Posterior Odds for AR(2) vs. ARMA(1,1) Nelson-Plosser series

seriesnparameter ½1 ®1 µ11
Ind. Prod. 0:79

0:06
¡0:18
0:11

¡0:97
0:09

Employ. 0:82
0:06

¡0:43
0:09

¡1:25
0:09

Real Wages 0:92
0:05

¡0:28
0:12

¡1:18
0:11

S&P 500 0:89
0:05

¡0:31
0:14

¡1:21
0:10

Table 5: Posterior moments of ARMA(1,1) model for Nelson-Plosser series

Velocity, for which an AR(3) is preferred. For Industrial Production holds that

there is some posterior probability for zero values of µ11 leading to fat tailed be-

havior of the posteriors. This behavior is lost when we choose an ARMA(1,1)

model which is sensible since the posterior mean of ½2 lies close to 0. In the

resulting ARMA(1,1), ®1 is properly identi¯ed, see table 5. If the posteriors of

an ARMA(2,1) model for velocity are calculated, the posterior of µ11 has a con-

siderable amount of probability mass close to zero leading to fat tailed posteriors

of the other parameters. This also indicates that an ARMA(2,1) is not the ap-

propriate model for velocity which can also be concluded from the posterior odds

ratios from table 2.

Since for a lot of series contained in table 2, the posterior means indicate that

either ½2 or/and ®1 lies close to zero, we calculated the posterior odds ratios of

an AR(2) compared to an ARMA(1,1) for these series. The resulting posterior

odds ratios are listed in table 4.

Table 4 shows that the series Industrial Production, Employment, Real Wages

and S&P 500 are better characterized by an ARMA(1,1) than a AR(2) model ac-

cording to the Posterior Odds Ratios. The opposite holds for Real GNP, Nominal

GNP, Wages and Money. This accords with the results in tables 2 and 3 which

show that these series are either preferred to be AR(3) or the MA parameter ®1

lies relatively closer to 0 than the AR parameter ½2: Table 5 shows the posterior

moments of the parameters of the resulting ARMA(1,1) models.

Table 5 shows that the summed posterior mean changes of ½1 and ®1 of the
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seriesnARMA order 3,0/2,1 3,0/1,2 0,3/3,0 2,1/1,2 0,3/1,2 0,3/2,1

short (3 month) 5.1023 0.9976 0.0000 0.1943 0.0000 0.0000

long (10 year) 0.6637 0.3606 0.0000 0.5434 0.0000 0.0000

Table 6: Posterior Odds Ratios Interest Rate Series

seriesnARMA par. ½1 ½2 ½3 ®1 ®2 µ11 µ22
pP

i=1

½i

short (3 month) 0:99
0:051

¡0:16
0:072

0:13
0:051

0:976
0:012

short (3 month) 0:978
0:011

¡0:032
0:052

0:13
0:052

¡0:85
0:051

¡1:01
0:051

0:978
0:011

long (10 year) 0:99
0:006

¡0:41
0:05

0:14
0:05

¡0:89
0:04

¡1:4
0:05

0:99
0:006

Table 7: Posterior Moments ARMA models interest rates

ARMA(1,1) model compared to ARMA(2,1) model approximately equal the pos-

terior mean of ½2 in the ARMA(2,1) model. Since the identi¯cation parameter µ11
di®ers much more from 0 than in the ARMA(2,1) model, the posterior standard

deviations of the parameters are much smaller than in the ARMA(2,1) model.

It is typical that the posterior standard deviation of the unit root parameter is

similar though between both models, indicating that the long run behavior is not

much a®ected by the deletion of ½2:

We also calculated the posteriors of the parameters of ARMA models for U.S.

short and long term interest rates. Again the orders of the ARMA models, p+ q;

are supposed to equal 3. The di®erence with the model in equation (50) therefore

solely results from the deterministic components as the model for the interest

rates only contains a constant term while the model for the (extended) Nelson-

Plosser data both contains a constant term and a linear time trend. To determine

the favored univariate ARMA model for both interest rates we calculated the

posterior odds ratios for all models with ARMA order, p+ q; equal to 3. These

posterior odds ratios are listed in table 6.

The posterior odds ratios show that an ARMA(1,2) model is equally likely

for the short term interest rates as an AR(3) model. This is rather typical as the

ARMA(2,1) model is less likely then these other two models. For the long term

interest rate an ARMA(1,2) model is favored. Table 7 lists the posterior means

and standard deviations of the parameters of the models which are preferred by

the posterior odds ratios.

The posterior moments in table 7 show that the ARMA(1,2) model for long

term interest rates has properly identi¯ed MA parameters as both identi¯cation

parameters µ11 and µ22 have almost no probability mass at 0 as indicated by the

posterior means and standard deviations of µ11 and µ22. As the MA parameters

of the ARMA model for the long term interest rates di®er strongly from 0, the

long run behavior of the long term interest rate will signi¯cantly di®er from an

standard random walk model. Furthermore since the AR parameter of the long
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term interest rate, ½1; lies close to 1, the long term interest rate can be very well

characterized by an IMA(2) model.

6 Conclusions

A Bayesian analysis of parameters of ARMA models using Je®reys' priors is

shown to be applicable quite straightforwardly. This analysis directly allows

for the construction of diagnostic parameters signaling the identi¯cation of the

MA parameters and does not lead to a favor for nonidenti¯ed parameter values

as is the case when a di®use prior is used. For all applications, the Importance

Sampling Algorithm converged rapidly. Quite surprisingly, in the applications we

found that a lot of series which are traditionally modeled using AR contain strong

MA components. These MA components can in°uence the long run parameters

such that the use of MA components are important for forecasting purposes, see

also [3].

In future work, we will extend the analysis to ARMA models containing sea-

sonal lags and Vector ARMA models. As the Importance Sampling Algorithm

performs very well, we will analyze the use of the Importance Function to gen-

erate parameters directly from the posterior using acception-rejection sampling.

This will allow for model extensions as the posterior using Je®reys' prior can then

be used in a Gibbs Sampling framework.
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