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Abstract Given an arbitrary polytope P in the n-dimensional Euclidean

space Rn, the question is to determine whether P contains an integral

point or not. We propose a simplicial algorithm to answer this question

based on a speci�c integer labeling rule and a speci�c triangulation

of Rn. Starting from an arbitrary integral point of Rn, the algorithm

terminates within a �nite number of steps with either an integral point

in P or proving there is no integral point in P . One prominent feature

of the algorithm is that the structure of the algorithm is very simple and

it can be easily implemented on a computer. Moreover, the algorithm

is computationally very simple, 
exible and stable.

Keywords: Polytope, integral point, simplicial method, integer linear

programming.
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1 Introduction

Given a polytope P , for example, the convex hull of n + 1 a�nely independent

vectors of Rn, the question is to determine whether P contains an integral point

or not. We develop a simplicial algorithm to solve the problem. The algorithm

is based on a speci�c integer labeling rule and the well-known K1-triangulation of

Rn. The main feature of the algorithm can be described as follows: The algorithm

subdivides Rn into n-dimensional simplices such that all integral points of Rn are

vertices of the triangulation, and then assigns an integer to each integral point

of Rn according to the labeling rule. Starting from an arbitrary integral point,

the algorithm generates a sequence of adjacent simplices of varying dimension and

terminates with either the YES or (exclusively) NO answer within a �nite number

of steps. In the YES case, the algorithm �nds an integral point in P . The NO

answer shows that there is no integral point in P .

Our work was motivated by the works of Scarf [11] and of Dang and van

Maaren [1]. However, Scarf's algorithm is based on primitive sets. Although Dang

and van Maaren's algorithm is also based on simplices, it does not guarantee that the

polytope has no integral point if no integral point can be found by their algorithm.

The algorithm and the labeling rule in this paper are very di�erent from Dang and

van Maaren theirs. We would also like to point out that our algorithm could date

back to the work of van der Laan and Talman [5], although their algorithm was

introduced to compute a �xed point of a continuous function.

The remainder of the paper is summarized next. In Section 2 the labeling

rule and basic theorems are introduced. Section 3 gives a full description of the

algorithm in case the polytope is a full-dimensional simplex in some standard form.

In Section 4 we shall demonstrate how to transform the problem of an arbitrary full-

dimensional simplex into the standard form. In Section 5 we apply the algorithm

to general full-dimensional polytopes. In Section 6 we deal with lower-dimensional
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polytopes. Concluding remarks are found in Section 7.

2 Integer labeling Rule

The problem in this section is to test the integral property of an n-dimensional

simplex P given by

P = fx 2 Rn jAx � b g;

where ai
> = (ai1; :::; ain) is the i-th row of the n + 1 by n matrix A for i = 1, � � �,

n + 1, and b = (b1; � � � ; bn+1)
> is a vector of Rn+1. Without loss of generality we

shall assume throughout the paper that a1, � � �, an+1 are integral vectors of R
n, and

b = (b1; � � � ; bn+1)
> is an integral vector of Rn+1. Notice that since the simplex P

is full-dimensional, the origin of Rn is contained in the interior of the convex hull

of the vectors a1, � � �, an+1. As usual, Zn denotes the set of all integral points in

Rn. Let N denote the set f 1; :::; n+1 g and N�i the set N without the index i, for

i 2 N . Now we introduce the following labeling rule.

Labeling Rule: To x 2 Zn the label l(x) = i is assigned if i is the smallest index

for which

a>i x� bi = maxf a>j x� bj j a
>
j x� bj > 0; j 2 N g:

If a>i x � bi for all i = 1,...,n+ 1, then the label l(x) = 0 is assigned to x.

Notice that if l(x) = 0, then P contains at least one integral point. Let T

be the K1-triangulation of Rn to be described in the next section. This simplicial

subdivision of Rn is such that the collection of the vertices of simplices in T is the

set of all integral points of Rn. We denote a simplex with vertices x1,...,xn+1 by

�(x1; :::; xn+1). Given an n-dimensional simplex �(x1; :::; xn+1) in T , let

L(�) = f l(x1); :::; l(xn+1) g:
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An n-simplex � is called a completely labeled simplex if jL(�)j = n+1. Speci�cally,

an n-simplex � is called a completely labeled simplex of type I if L(�) = f 0 g
S
N�i

for an index i 2 N . Whereas an n-simplex � is called a completely labeled simplex

of type II if L(�) = N . Observe that a completely labeled simplex of type I has a

vertex being an integral point in P .

Now we state our basic results.

Theorem 2.1 The Labeling Rule results in at least one completely labeled sim-

plex.

Proof: It can be derived by induction. We omit the details. 2

Furthermore, one can derive the following sharper and more important results.

Theorem 2.2 If P does not contain any integral point, then the Labeling Rule

results in a unique completely labeled simplex.

Clearly, the unique completely labeled simplex must be of type II. A proof of the

above theorem is deferred to Section 4. This theorem can be seen as a generalization

of the following lemma (see van der Laan [4] and Talman [14]).

Lemma 2.3 Choose an arbitrary point c 2 Rn. We assign x 2 Zn with the label

l(x) = i if i is the smallest index for which

xi � ci = maxfxj � cj jxj � cj > 0; j 2 N g:

If xi � ci for all i = 1, � � �, n, we assign x with the label l(x) = n + 1. Then there

exists a unique completely labeled simplex.

Theorem 2.4 If P has an integral point, then the Labeling Rule results in at

least two completely labeled simplices. Moreover, there exists at most one completely

labeled simplex of type II.
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Proof: The �rst part can be derived by induction. The second part follows from

the same line of the proof of Theorem 2:2. 2

We point out that all theorems above will be constructively demonstrated by

the algorithm to be presented in the next section. Let us give some examples.

Example 1. We are given

P = fx 2 R2 j ai
>x � bi; i = 1; 2; 3 g

where a1 = (3;2)>, a2 = (1;�1)> and a3 = (�3;�1)>, b1 = 1, b2 = �1 and

b3 = 1. This example is shown in Figure 1 where there are three completely labeled

simplices. One of them is of type II. The other two are of type I.

Example 2. We are given

P = fx 2 R2 j ai
>x � bi; i = 1; 2; 3 g

where a1 = (2;�1)>, a2 = (3; 1)> and a3 = (�3; 0)>, b1 = 1, b2 = 2 and b3 = �1.

This example is illustrated in Figure 2 where there is a unique completely labeled

simplex of type II.

3 The algorithm

In this section we shall discuss how to operate the algorithm to �nd a completely

labeled simplex within a �nite number of steps. In the rest of the section we assume

that the simplex P associated with matrix A is given such that

a. a(n+1)j � 0 for j = 1, � � �, n;

b. aii > 0 for i = 1, � � �, n;

c. aij � 0 and jaijj < aii for i 6= j, i, j = 1, � � �, n.
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Such a formulation of the polytope P is referred to as the standard form. Observe

that the standard form is rather similar to the well-known Hermite normal form (see

e.g., Section 6). In the next section we shall show that any n-dimensional simplex

P can be restructured into the standard form. We �rst derive the following lemma.

Lemma 3.1 Let a simplex P be given in standard form. If P contains two

integral points x1 and x2, it also contains the integral point

�x = (maxfx1
1
; x2

1
g; � � � ;maxfx1n; x

2

ng)
>:

Proof: Since P contains two integral points x1 and x2, it implies that Ax1 � b and

Ax2 � b. Notice that
nX

j=1

a(n+1)jx
1

j � bn+1;

and
nX

j=1

a(n+1)jx
2

j � bn+1:

Since a(n+1)j � 0 for j = 1, � � �, n, it follows that

nX

j=1

a(n+1)j maxfx1j ; x
2

jg � bn+1;

i.e.,
Pn

j=1 a(n+1)j�xj � bn+1. Moreover, for h = 1, 2, it holds that

nX

j=1

aijx
h
j � bi; i = 1; � � � ; n:

Since aij � 0 for j 6= i, it is easy to see that

aiix
h
i � bi �

P
j 6=i aijx

h
j

� bi �
P

j 6=i aij maxfx1j ; x
2

jg

= bi �
P

j 6=i aij�xj

for i = 1,...,n. It means that

aii�xi � bi �
X

j 6=i

aij �xj
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for i = 1,..., n. Hence
nX

j=1

aij�xj � bi

for i = 1,...,n. In summary, we have A�x � b. 2

Now we introduce the K1-triangulation of Rn (see [4, 14, 15]) which underlies

the algorithm. We de�ne a set of n+ 1 vectors of Rn by

q(i) = �e(i); i = 1; :::; n

and

q(n + 1) =
nX

i=1

e(i);

where e(i) denotes the i-th unit vector of Rn, i = 1,..., n. For a given integer t,

0 � t � n, a t-dimensional simplex or t-simplex, denoted by �, is de�ned as the

convex hull of t + 1 a�nely independent vectors x1, � � �, xt+1 of Zn. We usually

write � = �(x1; � � � ; xt+1) and call x1, � � �, xt+1 the vertices of �. A (t� 1)-simplex

being the convex hull of t vertices of �(x1; � � � ; xt+1) is said to be a facet of �.

If x1 2 Zn and � = (�(1); � � � ; �(n)) is a permutation of the elements of the set

f 1; 2; :::; n g, then denote by �(x1; �) the n-simplex with vertices x1,..., xn+1 where

xi+1 = xi + e(�(i)) for each i = 1,...,n. The K1-triangulation of Rn is the collection

of all such simplices.

Let v be an integral point of Rn. The point v will be the starting point of the

algorithm. De�ne for T being a proper subset of N the regions A(T ) by

A(T ) = fx 2 Rn jx = v +
X

j2T

�jq(j); �j � 0; j 2 T g:

Notice that the dimension of A(T ) equals t with t = jT j. The K1-triangulation

subdivides any set A(T ) into t-simplices �(x1; �(T )) with vertices x1, � � �, xt+1,

where x1 is a vertex in A(T ) , �(T ) = (�(1); � � � ; �(t)) is a permutation of the

elements of the set T , and xi+1 = xi + q(�(i)), i = 1, � � �, t. For a proper subset T

of N a (t� 1)-simplex �(x1; :::; xt), 1 � t � n, is called T -complete if the t vertices
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of � carry all labels of the set T . Note that every vertex y as a zero-dimensional

simplex f y g is f l(y) g-complete in case l(y) 6= 0.

Now the algorithm generates a sequence of adjacent t-simplices in A(T ) having

T -complete common facets. Formally the steps of the algorithm can be described

as follows.

Step 0. Set t = 0, x1 = v, T = ;, �(T ) = ;, � = fx1 g, �x = x1, Ri = 0, i = 1, ...,

n+ 1, and b = 1.

Step 1. Calculate l(�x) and set L = l(�x). If L = 0, an integral point is found and the

algorithm terminates. If L is not an element of T , go to Step 3. Otherwise

L = l(xs) for exactly one vertex xs 6= �x of �.

Step 2. If s = t + 1 and R�(t) = 0, go to Step 4. Otherwise � and R are adapted

according to Table 1 by replacing xs. Set b = b+ 1. Return to Step 1 with �x

equal to the new vertex of �.

Step 3. If t = n, a completely labeled simplex of type II is found and the algorithm

terminates. Otherwise, a (T
S
fL g)-complete simplex is found and T be-

comes T
S
fL g, �(T ) becomes (�(1); :::; �(t); L), � becomes �(x1; �(T )), and

t becomes t+ 1. Set b = b+ 1. Return to Step 1 with �x equal to xt+1.

Step 4. Let, for some k, k � t, xk be the vertex of � with label �(t). Then T becomes

Tnf�(t) g, �(T ) becomes (�(1); :::; �(t�1)), � becomes �(x1; �(T )), t becomes

t� 1, and return to Step 2 with s = k and b = b+ 1.

In Table 1 the vector E(i) denotes the i-th unit vector of Rn+1, i 2 N .

Table 1. Pivot rules if the vertex xs of �(x1; �) is replaced.
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x1 becomes �(T ) becomes R becomes

s = 1 x1 + q(�(1)) (�(2); :::; �(t); �(1)) R+ E(�(1))

1 < s < t+ 1 x1 (�(1); :::; �(s); �(s� 1); :::; �(t)) R

s = t+ 1 x1 � q(�(t)) (�(t); �(1); :::; �(t� 1)) R� E(�(t))

Without loss of generality we may assume that the algorithm is initiated at an

infeasible integral point v. Notice that every simplex �(x1; �(T )) generated by

the algorithm lies in A(T ) and is a t-simplex of the simplicial subdivision of A(T )

induced by the K1-triangulation of Rn. Now in order to prove the convergence of

the algorithm, we need to borrow some notions from graph theory. First, let us

de�ne a graph consisting of nodes and edges, denoted by �. We say a simplex � is

a node if and only if it satis�es one of the following conditions:

(1) � = f v g;

(2) � is a t-simplex in A(T ) for some proper subset T of N with t = jT j � 1 and

at least one facet of � is T -complete.

We say two nodes �1 and �2 in the graph � are adjacent and therefore connected

by an edge if and only if both �1 and �2 are in A(T ) for some proper subset T of

N , and one of the following cases occurs:

(1) �1 and �2 are both t-simplices and share a common T -complete facet;

(2) either �1 is a T -complete facet of �2 and �2 is a t-simplex or �2 is a T -complete

facet of �1 and �1 is a t-simplex.

Observe that since the above relationship is symmetric, the edges are not necessarily

ordered. Finally, we de�ne the degree of a node � in the graph by the number of

nodes being connected by an edge to �, denoted by deg(�). By adopting the

standard argument in van der Laan and Talman [5, 6], we come to the following

observation.
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Lemma 3.2 Let � be a node in the graph �. Then

(1) deg(�) = 1 when � = f v g;

(2) deg(�) is either zero or one when � is a completely labeled simplex;

(3) deg(�) is either one or two in all other cases.

Lemma 3.2 implies that the sequence of adjacent simplices of varying dimension

starting from the 0-dimensional simplex f v g generated by the algorithm may lead

to a completely labeled simplex, or may terminate with an integral point in P , or

may go to in�nity. We will prove that the latter case can be excluded.

As norm we use the Euclidean norm in Rn. We now de�ne an open ball of radius


 centered at v by

B(
) = f x 2 Rn j jjx� vjj � 
 g:

We have the following lemma.

Lemma 3.3 For any proper subset T of N , there is no T -complete (t � 1)-

simplex in A(T )nB(
) provided that 
 is chosen to be a su�ciently large number.

Proof: It is a straightforward consequence of the fact that when operating in Rn,

the algorithm always moves into the direction in which for some j 2 N , the function

a>j x� bj is strictly decreasing because of q(i)>ai < 0 for all i 2 N . 2

Now it is easy to obtain the following result by noticing that the number of nodes

in the graph � is �nite and the algorithm can never return to a node previously

visited.

Lemma 3.4 Let an n-simplex P be given in standard form. Then the algorithm

will terminate with either an integral point in P or a completely labeled simplex of

type II, within a �nite number of steps.



10

The geometric context of the next theorem can be easily understood in two

dimension.

Theorem 3.5 Exclusion Theorem

Let a simplex P be given in standard form with the additional condition that
P

j 6=i jaijj < aii holds for all i = 1, � � �, n. Then the Labeling Rule precludes the

possibility of the coexistence of a completely labeled simplex of type I and a com-

pletely labeled simplex of type II. If P contains an integral point, then there exists

no completely labeled simplex of type II.

Proof: We only need to consider the case in which P contains an integral point,

say x0, i.e., Ax0 � b. Let us suppose to the contrary that there is a completely

labeled simplex of type II, say �(x1; �) with vertices x1, � � �, xn+1, where � =

(�(1); � � � ; �(n+ 1)) is a permutation of the n+ 1 elments of N , and

xi+1 = xi + q(�(i)); i = 1; � � � ; n;

x1 = xn+1 + q(�(n + 1)):

Now it is easy to see that there exist nonnegative integers k11, � � �, k
1
n+1 such that

x1 = x0 +
X

i2N

k1i q(i);

and

min
h2N

k1h = 0:

Let

l = argminf��1(h) j k1h = max
j2N

k1j g:

Then there exist nonnegative integers ki1, � � �, k
i
n+1 such that

xi = x0 +
X

j2N

kijq(j)



11

for i = 2, � � �, n+ 1. Notice that

kil = max
j2N

kij

for any i 2 N .

The following cases need to be addressed:

(1). If 1 � l � n, we have that for any i 2 N , it holds

a>l x
i � bl = a>l x

0 � bl +
Pn+1

h=1 k
i
ha
>

l q(h)

� �kilall �
Pn

h=1;h 6=l k
i
halh + kin+1

Pn
h=1 alh

� �kilall �
Pn

h=1;h 6=l k
i
lalh + kin+1

Pn
h=1 alh

� (kin+1 � kil)
Pn

h=1 alh

� 0:

It implies that l(xi) 6= l for i = 1, � � �, n+ 1.

(2). If l = n+ 1, we have that for any i 2 N , it holds

a>n+1x
i � bn+1 = a>n+1x

0 � bn+1 +
Pn+1

h=1 k
i
ha
>

n+1q(h)

�
Pn+1

h=1 k
i
ha
>

n+1q(h)

� �
Pn

h=1 k
i
ha(n+1)h + kin+1

Pn
h=1 a(n+1)h

� �
Pn

h=1 k
i
n+1a(n+1)h + kin+1

Pn
h=1 a(n+1)h

� (kin+1 � kin+1)
Pn

h=1 a(n+1)h

= 0:

It implies that l(xi) 6= n+ 1 for all i = 1, � � �, n+ 1. We conclude from (1) and

(2) with a contradiction. We are done. 2

Moreover, it is easy to derive the following lemma.

Lemma 3.6 Let a simplex P be given in standard form with the additional

condition that
P

j 6=i jaijj < aii holds for all i = 1, � � �, n. If P contains an integral

point, then the Labeling Rule results in at least n+1 completely labeled simplices of

type I and no completely labeled simplex of type II.
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Proof: Consider the simplest case in which P contains a single integral point, say

w. The general case can be shown in a similar way. Choose w to be the starting

point since it is allowed. Take an arbitrary index k from N and set l(w) = k

arti�cially. Then the algorithm will terminate with a completely labeled simplex,

say �k, within a �nite number of steps. If w is a vertex of �k, then restore the true

label of w, i.e., l(w) = 0. Hence �k is of type I. Otherwise, it must be of type

II. However, this can not happen according to Theorem 3.5. Hence repeat the

procedure over all indices of N . We complete the proof. 2

It is not clear whether the Exclusion Theorem also holds for the problems in

standard form without the additional condition. In order to provide a complete

answer in that case, let us de�ne for k 2 N a subset Ck of Z
n by

Ck = fx 2 Zn j aj
>x > bj for j 2 N�k g:

Now we establish the following procedure.

Step (1) Set k = 1.

Step (2) Choose any starting point vk 2 Ck and implement the algorithm. If an integral

point in P is found, then stop. Otherwise, k becomes k + 1.

Step (3) If k = n+ 2, then stop. Otherwise, go to Step (2).

We still have to discuss how to obtain a starting point vk 2 Ck for each k 2 N .

For each k 2 N , we de�ne

�q(k) = �q(k):

We adopt the following labeling rule.

Modi�ed Labeling Rule: To x 2 Zn, we assign x with the label

�l(x) = minf j 2 N�k j a
>

j x� bj = minfa>h x� bh; h 2 N�k j a
>

h x� bh � 0 g g:
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If a>h x� bh > 0 for all h 2 N�k, then the label �l(x) = 0 is assigned to x.

Now we can apply the algorithm by using �l(:) and �q(:) instead of l(:) and q(:). It

is easy to verify that the algorithm will �nd an integral point in Ck within a �nite

number of steps. We are led to the following result.

Theorem 3.7 Let a simplex P be given in standard form. The procedure ter-

minates with either an integral point in P or a completely labeled simplex of type II

which shows that there is no integral point in P , within a �nite number of iterations.

A proof of the above theorem will be given in the next section. Let us illustrate the

algorithm by some examples.

Example 3. The polytope is given by

P = fx 2 R2 j a>i x � bi; i = 1; 2; 3 g;

where a1 = (2;�1)>, a2 = (�1; 3)>, and a3 = (�1;�1)>, b1 = 1, b2 = �1,

and b3 = 1. The paths generated by the algorithm lead from v1 = (4;�4)> and

v2 = (4; 4)> to the integral point (0;�1)> in P , respectively, and are shown in

Figure 3.

Example 4. The polytope is given by

P = fx 2 R2 j a>i x � bi; i = 1; 2; 3 g;

where a1 = (5;�1)>, a2 = (0; 1)>, and a3 = (�3; 0)>, b1 = 1, b2 = 2, and b3 =

�1. The path generated by the algorithm leads from v = (4;�4)> to the unique

completely labeled simplex of type II and is demonstrated in Figure 4.

4 Reformulation

In order to conform to the standard form, let us come back to the original problem.

We are given an n-dimensional simplex

P = fx 2 Rn jAx � b g;
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where a>i = (ai1; :::; ain) is the i-th row of A for i 2 N , and b = (b1; :::; bn+1)
>.

A linear transformation U is called a unimodular transformation if U is bijective

on Zn. U is unimodular if and only if the entries of U are integral and the deter-

minant of U is equal to 1 or �1. Let �A be the product AU . If U is unimodular,

it is readily seen that given an integral point x and y = Ux, Ay � b if and only if

�Ax � b.

One may wonder how to get a unimodular matrix. Clearly, the identity In is

unimodular. In order to obtain a non-trivial unimodular matrix, however, we need

to study some other examples and their e�ect when they postmultiply a matrix A

and premultiply a vector x:

(i) Interchange: U is equal to In except that the k-th column of U is e(l) and the

l-th column of U is e(k). This transformation switches columns k and l of A

and switches the k-th and l-th components of x.

(ii) Reversal of sign: U is equal to In except that the k-th column of U is equal

to �e(k). U changes the sign of the entries of the k-th column of A and of

the k-th component of x.

(iii) Addition: U is equal to In except that the (k; l)-th entry of U , k 6= l, is equal to

one. This transformation replaces the l-th column of A by the sum of columns

k and l and replaces the k-th component of x by the sum of components k

and l.

The following result can be found in Newman [9].

Theorem 4.1 Every unimodular matrix can be expressed as a �nite product of

unimodular matrices of type (i), (ii) and (iii).

The next basic result says that every simplex can be brought into the standard form

by a unimodular transformation.



15

Theorem 4.2 Transformation Theorem

For any given n-dimensional simplex

P = fx 2 Rn jAx � b g;

there exists a unimodular matrix U such that �A = AU has the standard form.

Proof: We shall �rst prove by induction that there is a unimodular matrix V such

that

AV =

2
6666666666664

+ � � � � � �

� + � � � � �

...
...

...
...

� � � � � � +

� � � � � � �

3
7777777777775

where " + " stands for a positive entry, and "� " for a zero or negative entry. The

above result is basically equivalent to an example given by White [16] on page 51.

For completeness, we shall give a proof of it. Let us consider the last row of A.

By applying reversals of sign, we may assume that each entry of the last row is

less than or equal to zero. Take any two negative entries a(n+1)k and a(n+1)l such

that a(n+1)k � a(n+1)l. Replace column l by column l minus column k. Repeat this

simple transformation. We can reduce all entries of the last row but one to zero.

By an interchange we may assume that this element is the last entry of the last row.

So after a �nite number of steps we end with the last row having the sign pattern

(0; 0; � � � ; 0;�). Notice that the submatrix obtained by deleting the last row and

the last column of A must also have the property that the zero row vector in Rn�1

is in the interior of the convex hull of all rows of this submatrix. Then by induction

on n, there exists a unimodular matrix which transforms A into the form:
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2
6666666666666664

+ � � � � � ?

� + � � � � ?
...

...
...

...

� � � � � + ?

� � � � � � ?

0 0 � � � 0 �

3
7777777777777775

:

The submatrix of A, which is obtained by deleting the last column and the last row,

is a productive Leontief matrix. Thus there exists a positive integral combination

of columns one through n � 1 for which the last element is zero, the n-th element

is strictly negative and the other elements are strictly positive. We can therefore

transform A to the matrix B = AV by subtracting a large positive integral multiple

of this combination from the last column.

Next we shall give a procedure to transform the matrix B = (bij) to the standard

form. The procedure is described as follows:

Step (a) If there are indices i and j (i 6= j) for some 1 � i; j � n with bii � jbijj, we

can �nd a positive integer c and an integer d 2 f 0; 1; :::; bii � 1 g such that

jbij j = cbii+d, where c is the lower integer part of
jbijj

bii
, and then add c multiple

of column i to column j.

Step (b) Repeat Step (a) until there are no indices i and j (i 6= j) for 1 � i; j � n with

bii � jbijj.

It is obvious that the above operation is a unimodular transformation. We still

have to demonstrate that the procedure is feasible. Recall that the origin of Rn is

in the interior of the convex hull of the vectors a1,...,an+1. It implies that there are

n+ 1 strictly positive convex combination coe�cients �1,..., �n+1 such that

n+1X
i=1

�iai = 0: (4:1)
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We shall show that bii � jbij j implies jbjij < bjj . System ( 4:1) also implies that

n+1X
i=1

�ibih = 0; h = 1; � � � ; n:

It is easily derived that

�ibii � �j jbjij

and

�ijbij j � �jbjj:

Notice that at least one of the above inequalities holds with strict inequality, say,

�ibii > �j jbij j. Moreover, it holds that �ibii � �ijbij j. All of this together implies

that

�j jbjij < �ibii � �ijbijj � �jbjj:

It follows that

jbjij < bjj :

We are now ready to prove that the new generated column j, denoted by

(�b1j; � � � ;�b(n+1)j)
>, preserves the same sign pattern as before. Note that

�bhj = bhj + cbhi; h = 1; � � � ; n + 1:

It is readily seen that

�bij = �d � 0 and j�bij j < bii

�bhj � 0 for all h, h 6= i; j:

Observe that

�ibii � �ijbij j

= �i(cbii + d)

� �jbjj

= �j(�bjj + cjbjij):
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It follows that

�j
�bjj � �icbii + �id� �jcjbjij

= c(�ibii � �jjbjij) + �id

> �id

� 0:

Hence we have

�bjj > 0:

On the other hand, it is not di�cult to see that the procedure will terminate

within a �nite number of iterations since each entry bij is �nite. Hence the procedure

produces the matrix �A = AU in standard form where U is a unimodular matrix.

We complete the proof. 2

We remark that the origin of Rn is still contained in the interior of the convex

hull of the vectors �a1,..., �an+1. Moreover, the corresponding convex combination

coe�cients remain unchanged. It is also easy to show that the volume of the simplex

does not change under unimodular transformation. For n = 2, we can construct

such unimodular matrices by adapting Scarf's method in [10]. The procedure now

can be applied.

Let us give some examples.

Example 5. We are given

A =

2
666664

0 �1

1 1

�1 0

3
777775
:

Then

U =

2
64

1 1

�1 0

3
75
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such that

�A =

2
666664

1 0

0 1

�1 �1

3
777775
:

Example 6. We are given

A =

2
666664

3 2

1 �1

�3 �1

3
777775
:

Then

U =

2
64
0 1

1 �2

3
75

such that

�A =

2
666664

2 �1

�1 3

�1 �1

3
777775
:

Observe that this example is taken from Examples 1 and 3. The matrix A corre-

sponds to Example 1 and the matrix �A to Example 3. See Figure 3 for Example

3 where there are three completely labeled simplices of type I after having been

transformed. In this case there is no completely labeled simplex of type II. The

reader should compare Figure 1 with Figure 3.

Example 7. We are given

A =

2
666664

2 �1

3 1

�3 0

3
777775
:
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Then

U =

2
64

1 0

�3 1

3
75

such that

�A =

2
666664

5 �1

0 1

�3 0

3
777775
:

Let b1 = 1, b2 = 2 and b3 = �1. Then A and �A correspond to Example 2 and

Example 4, respectively. See Figure 2 and Figure 4.

Example 8. We are given

P = fx 2 R2 j ai
>x � bi; i = 1; 2; 3 g

where a1 = (3;�1)>, a2 = (�3; 2)> and a3 = (�1;�1)>, b1 = 2, b2 = �1 and

b3 = 0. See Figure 5 where there are three completely labeled simplices. One of

them is of type II. The other two are of type I. We use the following unimodular

transformation

U =

2
64
1 0

1 1

3
75

such that

�A =

2
666664

2 �1

�1 2

�2 �1

3
777775
:

Now it is easy to check that the resulting polytope generates no completely labeled

simplex of type II. In fact the Labeling Rule results in three completely labeled

simplices of type I in this case, see Figure 6. Compare Figure 5 with Figure 6.
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Example 9. We are given

A =

2
666666664

�1 �1 �1

3 1 1

1 3 1

1 1 3

3
777777775
:

Then

U =

2
666664

0 1 0

0 0 1

�1 �1 �1

3
777775

such that

�A =

2
666666664

1 0 0

�1 2 0

�1 0 2

�3 �2 �2

3
777777775
:

Now let us give a proof of Theorem 2:2. We are given a polytope which has the

standard form. Since P contains no integral point, the algorithm terminates with

a completely labeled simplex of type II, say, �1(x
1; �), within a �nite number of

steps. Suppose to the contrary that there is another completely labeled simplex of

tpye II, say, �2(y
1; �). Without loss of generality we may assume that � is equal to

(1; :::; n), l(xi) = i for any i 2 N , and xi = yi for all i 2 N except for some index k,

1 � k � n + 1. It implies that l(xi) = l(yi) = i for all i 2 N . We have to consider

the following cases:

(1). If k = 1, then y1 = xn+1 + q(1). Since l(xn+1) = n + 1, we have

a>
n+1x

n+1 � bn+1 > a>
i
xn+1 � bi; i = 1; � � � ; n:
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Further, we have

a>
n+1

y1 � bn+1 = a>
n+1

(xn+1 + q(1))� bn+1

� a>
n+1

xn+1 � bn+1

> a>1 x
n+1 � b1

> a>
1
(xn+1 + q(1))� b1

= a>1 y
1 � b1:

It means that l(y1) 6= 1. It is a contradiction.

(2). If 1 < k < n + 1, then yk = xk�1 + q(k). Since l(xk�1) = k � 1, it implies

that

a>
k�1x

k�1 � bk�1 � a>
k
xk�1 � bk:

Hence we have

a>
k�1y

k � bk�1 = a>
k�1(x

k�1 + q(k))� bk�1

= a>
k�1x

k�1 � bk�1 + a>
k�1q(k)

� a>
k
xk�1 � bk + a>

k
q(k)

� a>
k
(xk�1 + q(k))� bk

= a>
k
yk � bk:

It means that l(yk) 6= k. It is again a contradiction.

(3). If k = n+ 1, then yn+1 = x1 � q(n). Notice that

a>
n
x1 � bn � a>

n+1x
1 � bn+1:

We have

a>
n
yn+1 � bn = a>

n
(x1 � q(n))� bn

� a>
n+1x

1 � bn+1 � a>
n
q(n)

> a>
n+1x

1 � bn+1 � a>
n+1q(n)

= a>
n+1(x

1 � q(n))� bn+1

= a>
n+1

yn+1 � bn+1:
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It means that l(yn+1) 6= n+ 1. It is also a contradiction. 2

We still have to prove Theorem 3.7. It su�ces to consider the case in which P

has an integral point x0, i.e., Ax0 � b. Following the same line of the proof of the

above theorem, we can show that there is at most one completely labeled simplex

of type II in this case. It is clear we only need to demonstrate that the procedure

will produce at least two di�erent completely labeled simplices. Let us suppose to

the contrary that the procedure only generates a completely labeled simplex, say,

�(x1; � � � ; xt+1), of type II. It is easy to see that for each k 2 N , the starting point

vk 2 Ck can be expressed as

vk = x0 �
X

h2N
�k

�k
h
q(h)

where �k
h
are positive integers for all h 2 N�k. Notice that in Step (2) the procedure

operates by only using q(h) for h 2 N�k for each k 2 N . Hence, starting from

vk 2 Ck, the vertices x
kj generated by the procedure can be written as

xkj = x0 +
X

h2N
�k

�
kj

h
q(h)

where �
kj

h
are integers for all h 2 N�k. Since starting from the n + 1 starting

points v1, � � �, vn+1, the procedure generates a unique completely labeled simplex

�(x1; � � � ; xn+1) of type II, it implies that for each k 2 N ,

xk = x0 +
P

h2N
�1
�
1j1

h
q(h)

= x0 +
P

h2N
�2
�
2j2

h
q(h)

...

= x0 +
P

h2N
�(n+1)

�
n+1jn+1

h
q(h)

(4.2)

where �
kjk

h
are integers for all h 2 N�k. It is not di�cult to derive that

�
kjk

h
= �

ljl

h
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for all k, l 2 N . Now it immediately follows from (4.2) that

�
kjk

h
= 0

for all h and k. Hence xk = x0 and l(xk) = 0. It is a contradiction. We complete

the proof. 2

Theorem 2:4 is a straightforward result of the above results.

5 Extension to general n-dimensional polytopes

Let M denote the set of integers f 1; � � � ;m g. The problem is to test the integral

property of a general n-dimensional polytope P given by

P = fx 2 Rn jAx � b g;

where ai
> = (ai1; :::; ain) is the i-th row of the m by n matrix A for i = 1, ..., m,

and b = (b1; � � � ; bm)
> is a vector of Rm. It is clear that m � n + 1. As usual we

may assume that a1,..., am are integral vectors of Rn, and b = (b1; � � � ; bm)
> is an

integral vector of Rm. Finally we assume that none of the constraints a>
i
x � bi,

i 2M , is redundant, and that there is a subset J, with cardinality n+1, of M such

that

fx 2 Rn j a>
i
x � bi; i 2 J g

is an n-dimensional simplex. In the sequel we take J = N for simplicity of notation.

Compared with the labeling rule in Section 2, we have the following generalized

labeling rule.

Generalized Labeling Rule: If there is an index i 2M for which a>
i
x� bi > 0,

we assign x 2 Zn with the label

l(x) = minf j 2 N j a>
j
x� bj = max

h2N

f a>
h
x� bhg g:
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If a>
h
x � bh for all h 2 M , then l(x) = 0.

As before, we have the following results.

Theorem 5.1 If P does not contain any integral point, then the Generalized

Labeling Rule results in a unique completely labeled simplex. Moreover, the unique

completely labeled simplex must be of type II.

Theorem 5.2 If P contains an integral point, then the Generalized Labeling

Rule results in at least two completely labeled simplices. Moreover, there exists at

most one completely labeled simplex of type II.

Correspondingly, we can reformulate any n-dimensional polytope P into the stan-

dard form, meaning that the �rst n+1 rows of the matrix A satisfy the conditions

(a), (b) and (c) as de�ned in Section 3. Observe that the standard form does not

impose any condition on the constraint vectors ai for i 2 MnN . This indicates

that if we transform the problems into the standard form, we only need to focus on

the �rst n + 1 constraint vectors and then postmultiply the remaining constraint

vectors by the resulting unimodular matrix U .

Now we can directly apply the procedure to polytopes. Let us give some exam-

ples.

Example 10. We are given

P = fx 2 R2 j a>
i
x � bi; i = 1; � � � ; 5 g

where a1 = (2;�1)>, a2 = (�1; 3)>, a3 = (�1;�2)>, a4 = (2; 1)>, and a5 =

(�2; 0)>, b1 = 1, b2 = 3, b3 = 2, b4 = 2, and b5 = 3. This example is shown in

Figure 7 where there are three completely labeled simplices of type I.

Example 11. We are given

P = fx 2 R2 j a>
i
x � bi; i = 1; � � � ; 5 g
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where a1 = (3;�2)>, a2 = (�1; 4)>, a3 = (�5;�8)>, a4 = (3; 2)>, and a5 =

(0;�4)>, b1 = 2, b2 = 3, b3 = �4, b4 = 4, and b5 = �1. This example is illustrated

in Figure 8 where there is a unique completely labeled simplex of type II.

Example 12. We are given

P = fx 2 R2 j a>
i
x � bi; i = 1; � � � ; 5 g

where a1 = (3;�2)>, a2 = (�1; 2)>, a3 = (�1;�2)>, a4 = (0; 5)>, and a5 =

(0;�5)>, b1 = 6, b2 = 2, b3 = 0, b4 = 4, and b5 = �1. This example is depicted in

Figure 9 where there is a unique completely labeled simplex of type II.

Example 13. We are given

P = fx 2 R2 j ai
>x � bi; i = 1; 2; 3; 4 g

where a1 = (2;�1)>, a2 = (�1; 2)> a3 = (0;�2)>, and a4 = (�10; 0)>, b1 = 4,

b2 = �2, b3 = 3, and b4 = 11. This example is shown in Figure 10 where there are

three completely labeled simplices. One of them is of type II. The other two are of

type I. The procedure is shown in Figure 10 where v1 2 C1, v
2 2 C2, and v3 2 C3.

The procedure leads to the integral point (2;0)>. Using the same example, we also

illustrate in Figure 11 how to �nd a starting point vk 2 Ck. Take for instance k = 3

and v = (�2;�3)>. The algorithm �nds an integral point in C3, namely, (3; 1)>.

We conclude with the following observation.

Theorem 5.3 Given a polytope P in standard form, the procedure terminates

either with an integral point in P or a completely labeled simplex of type II which

proves there is no integral point in P , within a �nite number of steps.

6 Extension to lower-dimensional polytopes

In the previous section we assumed that the polytope P in Rn is n-dimensional

and that none of the constraints a>
i
x � bi is redundant. If the set P is a lower-
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dimensional nonempty polytope in Rn we may assume under the same conditions

that P can be expressed as

P = fx 2 Rn j a>
i
x � bi; i = 1; � � � ;m; and c>

i
x = di; i = 1; � � � ;m1 g;

where dimP = n �m1, for some m1, 0 � m1 � n. As usual we assume that a1,...,

am, c1,..., cm1 are integral vectors of Rn, and b1, � � �, bm, d1,...,dm1 are integers. Let

A denote an m � n matrix whose rows are a>1 , � � �, a
>

m
, and let b = (b1; � � � ; bm)

>.

Moreover, let C be an m1 � n matrix whose rows are c>1 , � � �, c
>

m1 , and let d =

(d1; � � � ; dm1)>. We de�ne a set Q by

Q = fx 2 Zn jCx = d g:

It is clear that if Q is empty, then P has no integral point.

Now we can transform the polytope into a full-dimensional polytope in Rn�m1

by reducing the number of variables in polynomial time. To do so, we �rst introduce

matrices in Hermite normal form.

De�nition 6.1 An m1�m1 nonsingular integer matrix H is called in Hermite

normal form if it satis�es the following conditions:

(1) H is lower triangular and hij = 0 for i < j;

(2) hii > 0 for i = 1, � � �, m1;

(3) hij � 0 and jhijj < hii for i > j.

The following two results can be found in [8, 13].

Theorem 6.2 Given an m1 � n matrix C with rank(C) = m1, there exists an

n� n unimodular matrix U such that the following holds:

(i) CU = (H;0) where H is an m1 �m1 matrix in Hermite normal form and 0

is an m1 � (n�m1) zero matrix;
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(ii) H�1C is an integer matrix.

A polynomial-time algorithm for �nding U and H can be also found in [8, 13]. Now

let H and U = (U1; U2) be as in Theorem 6.2, with U1 an n�m1 matrix and U2 an

n� (n�m1) matrix.

Theorem 6.3

(i) Q is nonempty if and only if H�1d 2 Zm
1

.

(ii) If Q is nonempty, every point x of Q can be written as

x = U1H
�1d + U2z; for some z 2 Zn�m

1

:

When Q is nonempty, we have

P0 = f y 2 Rn j AUy � b; and CUy = d g

= f y 2 Rn j AUy � b; and [H;0]y = d g

= f y 2 Rn j y = ((H�1d)>; z>)>;

and AU ((H�1d)>; z>)> � b; z 2 Rn�m
1

g

= f y 2 Rn j y = ((H�1d)>; z>)>; and �Az � �b; z 2 Rn�m1

g:

Let

�P = f z 2 Rn�m1

j �Az � �b g:

Doing so leads to an (n�m1)-dimensional polytope �P in Rn�m1

. Now the remaining

discussions are the same as in the previous section. Let us demonstrate this by an

example. We are given a polytope

P = fx 2 R3 j a>
i
x � b

i
; i = 1; 2; 3; and c>

1
x = d1 g;

where a1 = (�1; 0; 0)>, a2 = (0;�1; 0)>, a3 = (0; 0;�1)>, c1 = (4; 12; 2)>, b1 = 0,

b2 = 0, b3 = 1, and d1 = 2. Then we have

C = [4 12 2];
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U =

2
666664

1 3 �7

0 �1 2

�1 0 2

3
777775
;

H = [2];

and

CU = [2 0 0]:

Moreover, we decompose U as U = (U1; U2) where

U1 =

2
666664

1

0

�1

3
777775

and

U2 =

2
666664

3 �7

�1 2

0 2

3
777775
:

Notice that y1 = 1. We get a 2-dimensional polytope

�P = fz 2 R2 j �Az � �b g

where

�A =

2
666664

�3 7

1 �2

0 �2

3
777775
;

and �b = (1; 0;0)>.
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7 Concluding remarks

Some preliminary numerical results indicate that the algorithm works remarkably

well. A large number of large-scale instances ( more than 100; 000 variables ) has

also been carried out. The instances can be easily created according to the standard

form. We shall report numerical results and the complexity analysis of the algorithm

in a next paper.

Here we do not discuss any index theory. In fact there can be built up an index

theory for the algorithm. The interested reader is referred to van der Laan [4] and

Scarf [11] for insightful discussions. Finally we conjecture that the number two both

in Theorem 2.4 and in Theorem 5.2 can be replaced by the number n+ 1.
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