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Abstract

This paper describes and implements a simple approach to the most common problem in

applied microeconometrics: estimating a linear causal effect when the explanatory variable of

interest might be correlated with relevant unobserved variables. The main idea is to place re-

strictions on the correlation between the variable of interest and relevant unobserved variables

relative to the correlation between the variable of interest and observed control variables. These

relative correlation restrictions allow a researcher to construct informative bounds on parameter

estimates, and to assess the sensitivity of conventional estimates to plausible deviations from

the identifying assumptions. The estimation method and its properties are described, and two

empirical applications are demonstrated.
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1 Introduction

This paper describes a simple approach to the most common problem in applied microecono-

metrics: estimating a linear causal effect when the variable of interest might be correlated with

relevant unobserved variables. The microeconometrician’s standard methods - natural experi-

ments, instrumental variables, fixed effects, and simply adding control variables - are all designed

to solve this problem. However, there are many cases where the assumptions needed to identify

the effect of interest are plausible but not necessarily exactly true. In this case it is useful to

have a means of determining how sensitive one’s results are to small or moderate deviations

from the identifying assumptions.

This paper provides a simple means of performing such a sensitivity analysis when the causal

effect is estimated by OLS regression of the outcome of interest on the explanatory variable of

interest and a set of control variables. The validity of doing so depends on the strong assumption

of conditional exogeneity, i.e., that the explanatory variable of interest is uncorrelated with the

unobservable factors in the regression. This paper models deviations from conditional exogeneity

in terms of a single parameter that measures the correlation between the explanatory variable

of interest and the unobservable factors, relative to the correlation between the explanatory

variable of interest and the control variables. In this framework, the conditional exogeneity

assumption can be interpreted as a point restriction on the relative correlation parameter (i.e.,

that it is exactly zero) that yields consistent point estimates of the effect. When this point

restriction is replaced by a weaker interval restriction, the effect is partially identified and one

can construct consistent bounds on its true value. Hypothesis tests and confidence intervals can

also be constructed and have the usual interpretation.

Two example applications show the potential usefulness of the methods developed here. The

first application is to data from a natural or designed experiment in which there are small

deviations from true random assignment. It is based on Krueger’s (1999) analysis of data from

Project STAR, a well-known study of the effect of smaller class size on student outcomes. The

second application is to an observational study in which the claim of conditional exogeneity is

controversial, but the usual tricks of applied microeconometrics are equally unappealing. It is

based on Subramanian and Kawachi’s (2003) study using CPS data to measure the effect of

income inequality on individual health.

The methods developed in this paper find that the experimental Project STAR results are
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much more robust than the observational results on inequality and health. While this finding

is not surprising, what matters here is that the difference is found entirely in the data, and can

be quantified in a relatively straightforward manner. For example, the positive effect of smaller

classes on kindergarten test scores remains even if the correlation between class size and unob-

servables is as much as ten times the correlation observed between class size and the observed

control variables. In contrast, the positive relationship between state-level income inequality

and an individual’s probability of being in fair to poor health disappears if the correlation be-

tween inequality and unobservables is as much as 23% of the correlation between inequality and

the observed control variables.

1.1 Related literature

Empirical researchers in economics have long augmented their main results with some form

of informal sensitivity analysis. Leamer (1978) was an early and forceful proponent of for-

malizing and expanding the use of sensitivity analysis in parametric models, and developed

Bayesian-influenced methods for systematic sensitivity analysis of measurement error (Klepper

and Leamer, 1984), model selection (Leamer, 1978), and other common empirical problems.

Manksi (1994; 2003) adopts a mostly nonparametric frequentist approach, and recasts sensitiv-

ity analysis as estimation and inference under assumptions that yield only partial identification

of the parameter of interest. Manski’s research has also led to an extensive theoretical literature

on inference under partial identification.

The particular type of sensitivity parameter used in this paper is similar in spirit to those

seen in a number of recent papers, in that it characterizes the unmeasurable deviation from

conditional exogeneity in terms that are proportional to some related measurable quantity.

Rosenbaum (2002), following a tradition of sensitivity analysis in the statistics literature dating

back to Cornfield et al. (1959), develops a treatment-effects framework in which there is an

unobserved binary variable affecting both outcomes and selection into treatment. The sensi-

tivity parameter is defined as the maximum odds ratio of (unobserved) treatment probabilities

among pairs of cases that have been matched on observed characteristics. Imbens (2003) uses as

a sensitivity parameter the proportion of otherwise unexplained variation in the outcome that

could be explained by the unobserved term in a treatment selection equation. Altonji, Elder,

and Taber (2005) evaluate the sensitivity of the estimated Catholic school effect to endogenous

school selection by incorporating a parametric selection model in which the degree of selection
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on unobservables is proportional to the degree of selection on observables. Krauth (2007) eval-

uates the sensitivity of estimated peer effects in youth smoking to nonrandom peer selection by

modeling the within-group correlation in unobservables as a proportion of the within-group cor-

relation in observables. Lewbel (2011) exploits a cross-equation covariance restriction to bound

the parameters of a heteroskedastic simultaneous equations model without using instruments.

Conley, Hansen and Rossi (2010), Kraay (2010), and Nevo and Rosen (2010) develop systematic

methods of sensitivity analysis in instrumental variables regression in which the conventional IV

exclusion restriction is “almost” true. Like these earlier studies, this paper models deviations

from the standard approach in relative terms. Unlike those earlier papers, the analysis here is

applicable to a simple OLS-based research design.

2 Methodology

2.1 Model

Let D ≡ [x y z], where y is a scalar outcome, z is a scalar explanatory variable of interest, and

x is a k-length row vector of additional control variables including an intercept. Our goal is to

measure the effect of z on y, where the causal model assumes this effect is constant and linear.

That is:

Assumption 1: y = y(z) = θ0z + u

where the random function y(.) is a potential outcome function giving the outcome associated

with each possible value of z, the parameter of interest θ0 represents the effect of z on y, and

the unobserved random variable u represents the effect of all other factors. These other factors

are not affected by z but may be correlated with it. Section 3.1 considers an extension in which

the effect of z on y is heterogeneous across individuals.

The control variables do not enter into the causal model, and are only of interest to the

extent they aid in the estimation of θ0. Let up = xβ0 be the best linear predictor of u given x,
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i.e.:

β0 ≡ E(x′x)−1E(x′u) (1)

= E(x′x)−1E(x′y)− θ0E(x′x)−1E(x′z)

xβ0︸︷︷︸
up

= xE(x′x)−1E(x′y)︸ ︷︷ ︸
yp

−θ0 xE(x′x)−1E(x′z)︸ ︷︷ ︸
zp

(where yp and zp are the best linear predictors of y and z, respectively, given x) and let v be

the corresponding residual:

v ≡ u− xβ0 (2)

Note that these are just definitions and that β0 has no particular causal interpretation. Putting

(1) and (2) together, we get:

y = θ0z + xβ0 + v where E(x′v) = 0 (3)

which looks like the usual OLS regression equation, but is missing the necessary assumption

that E(zv) = 0, or equivalently that corr(z, v) = 0.

Instead of the conventional practice of assuming this correlation is exactly zero, we impose a

weaker relative correlation restriction. A relative correlation restriction is defined as a nonempty

and closed interval Λ that is known by the econometrician to satisfy:

Assumption 2: cov(z, v)
√
var(xβ0) = λ0cov(z,xβ0)

√
var(v)

for some λ0 ∈ Λ

As long as both cov(z,xβ0) and var(v) are nonzero, Assumption 2 is equivalent to a simpler

and more intuitive condition:

λ0 =
corr(z, v)

corr(z,xβ0)
∈ Λ (4)

That is, we are assuming that the correlation of the variable of interest (z) with unobservables

(v) relative to its correlation with observables (xβ0) can be restricted to lie within some known

range (Λ). That range can be very wide (Λ = R) in which case Assumption 2 implies almost no
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restrictions on the model, or it can be vary narrow (e.g. conditional exogeneity, which can be

written as Λ = {0}). Section 2.2 discusses the interpretation of relative correlation restrictions,

and the considerations relevant to selecting an appropriate relative correlation restriction for

empirical work. In this section, Λ is taken as given.

In order to discuss identification, estimation and inference, suppose we have a sample of size

n on D that can be used to construct a consistent and asymtpotically normal estimator of its

first two moments. That is, we have a random vector m̂n such that:

Assumption 3:
√
n (m̂n −m0)

D→ N(0,Σ)

where:

m0 ≡ vech(E(D′D))

and vech(.) is the half-vectorization function (i.e., given a symmetric matrix it returns a column

vector of its unique elements). Since m0 is just a vector of first and second moments, Assumption

3 is satisfied by the corresponding sample average from a random sample.

Finally, a few convenient and easily-verified conditions are imposed on m0. First, all variables

exhibit nontrivial variation:

Assumption 4: E(D′D) is finite and positive definite

Positive-definiteness of E(D′D) is easily verified in data, and guarantees for example that β0 is

well-defined.

Next, at least one of the control variables is useful in forecasting y:

Assumption 5: var(yp) > 0

Assumption 5 can be tested by an ordinary coefficient significance test.

The final assumption, made primarily for convenience, is that at least one of the control

variables is useful in forecasting z:

Assumption 6: var(zp) > 0
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Assumption 6 allows for a simple description of the estimation method and its properties in

the remainder of Section 2. It is easily testable by an ordinary coefficient significance test, and

is likely to hold in most cases of interest. However, Assumption 6 is violated in an important

special case: when z is assigned completely at random. Section 3.1 covers this special case, and

shows that the results are similar to those presented in Section 2.

2.2 Interpreting relative correlation restrictions

The relative correlation restriction Λ is the primary identifying assumption in this model. As

a result, the usefulness of the model in applied work depends on whether one can construct

plausible relative correlation restrictions. This section discusses that issue.

The model presented in Section 2.1 could be parameterized in terms of the absolute correla-

tion, i.e., the value of corr(z, v). Instead, it is parameterized in terms of relative correlation, i.e.,

the ratio of corr(z, v) to corr(z,xβ0). This is done to reflect the common practice of using pat-

terns in observed explanatory variables as evidence in favor of ultimately untestable assumptions

about unobserved variables.

The clearest example of this is the standard practice in experimental studies of demonstrating

covariate balance. Most economics papers using an experimental design present a table showing

that pre-treatment variables are roughly balanced between treatment and control groups. This

evidence of covariate balance is often cited in support of the identification scheme. Yet balance

in observed covariates has no direct consequences for identification: any imbalance in observed

covariates can be addressed in principle by regression, matching, and/or weighting. In contrast,

balance in unobserved pretreatment covariates is a necessary and untestable condition for iden-

tification. In other words, the researcher is using the joint distribution of observed covariates to

make inferences about the joint distribution of unobserved covariates.

In observational studies using control variables, a related common procedure is to report

a simple regression, a “preferred specification” that includes the researcher’s preferred control

variables, and then some “robustness check” specifications that include additional control vari-

ables. The researcher then shows that the effect estimate changes substantially from the simple

regression to the preferred specification, but does not change much between the preferred spec-

ification and the robustness checks. This is then used to argue that the identification problem

has been solved, i.e., the researcher has found the exact set of control variables such that the

remaining omitted variables are uncorrelated with the explanatory variable of interest.
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In other words, it is common in both experimental and observational studies to informally

use low correlation between the explanatory variable of interest and the control variables as

evidence in support of the identifying assumption of zero correlation between the explanatory

variable of interest and the regression error term. This inference is usually implicit, and takes

an “all or nothing” form: if the observed correlation is low enough, then it is assumed that

the unobserved correlation can be taken as exactly zero. By making this inference explicit, this

implicit decision rule can be replaced with a more plausible one: a low observable correlation

suggests a low (but not necessarily zero) unobservable correlation, while a higher observable

correlation suggests a higher unobservable correlation.

To interpret the sign and scale of λ0 it is useful to consider the omitted variables bias formula

for the simple linear regression of y on z with no control variables:

cov(y, z)

var(z)
=
cov(θ0z + xβ + v, z)

var(z)

= θ0 +
cov(z,xβ)

var(z)
+
cov(z, v)

var(z)

= θ0 + corr(z,xβ)

√
var(xβ)

var(z)︸ ︷︷ ︸
bias from omitting x

+λ0corr(z,xβ)

√
var(v)

var(z)︸ ︷︷ ︸
bias from omitting v

This implies that:

• If λ0 = 0, then corr(z, v) is also zero. That is, there is no omitted variables bias in the

OLS regression once we control for x.

• If λ0 > 0, then corr(z, v) has the same sign as corr(z,xβ0). That is, controlling for x

reduces but does not eliminate bias.

• If λ0 < 0, then corr(z, v) has the oppposite sign of corr(z,xβ0). That is, controlling for x

may reduce or increase bias.

• If λ0 = 1, then corr(z, v) is of both the same sign and magnitude as corr(z,xβ0).

We can thus interpret λ0 as an index of how well-selected the control variables are for reducing

the bias in OLS estimation. In a slightly different setting, Altonji, Elder and Taber (2005) make

the argument that equal correlation (λ0 = 1 here) is what one would expect on average if the

control variables were chosen randomly from a large set of plausible explanatory variables. This

argument has clear limitations – few researchers would select control variables at random – but

it at least suggests that λ0 = 1 is something of a benchmark value. Presumably, researchers
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would attempt to select precisely those available control variables that are most likely to reduce

bias, and so a value of λ0 between zero and one can be interpreted as somewhere between a

perfectly chosen set of control variables and a randomly chosen set of control variables.

It may also be useful to answer the reverse question: what value of λ0 would overturn the

OLS results? For example, if the OLS estimate is positive, we may want to know how big λ0

would have to be in order to imply that the true effect is zero or negative. Alternatively, one

might be interested in how big a relative correlation would be needed to reduce the implied

effect by some percentage or amount relative to the OLS estimate, as in Imbens (2003).

2.3 Identification

In general, it is not possible in this setting to identify the true value of θ0 but it is possible to

identify a nontrivial set Θ0 that must contain θ0. This set is known as the identified set for the

true effect, and includes ordinary point identification (Θ0 = {θ0}), partial identification (Θ0 is a

proper subset of R), and nonidentification (Θ0 = R) as special cases. This section characterizes

the identified set for θ0 and how it can be constructed.

First, note that the linear structure of the model implies that identification can be discussed

entirely in terms of the relative correlation restriction Λ and the vector of second moments m0.

Estimation will then be based on a plug-in estimator that substitutes m̂n for the unknown m0.

Let an allowable second moment vector be defined as an arbitrary vector m the same length as

m0 such that:

Em(D′D) is finite and positive definite (5)

varm(yp) > 0 (6)

varm(zp) > 0 (7)

where the subscript m indicates that the expected values in question are calculated as if the

unknown vector of second moments m0 were equal to m (i.e., Em(D′D) = vech−1(m)). This

notation will be useful in describing estimators for the parameters of interest that are based

on m̂n, which in sufficiently large sample will be close to m0 but not identical. The model’s

assumptions described in Section 2.1 imply that m0 satisfies (5)-(7) and is thus an allowable

second moment vector. Since Em(D′D) is a continuous function of m, these conditions are also

satisfied by any m sufficiently close to m0. This will in turn imply that since m̂n
p→ m0, the
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probability that m̂n satisfies these conditions will be going to one as n goes to infinity.

Next, note that both β0 and λ0 would be identified if θ0 were known. Ignoring for the

moment the possibility of singular matrices or division by zero, let:

β(θ;m) ≡ Em(x′x)−1Em(x′y)− θEm(x′x)−1Em(x′z) (8)

and:

λ(θ;m) ≡ corrm(z, y − θz − xβ(θ;m))

corrm(z,xβ(θ;m))
(9)

Equations (8) and (9) can be used to express the unknown parameters β0 and λ0 as known

functions of the unknown structural parameter and vector of second moments, i.e.:

β(θ0;m0) = E(x′x)−1E(x′y)− θ0E(x′x)−1E(x′z)

= β0

λ(θ0;m0) =
corr(z, y − θ0z − xβ0)

corr(z,xβ0)

=
corr(z, v)

corr(z,xβ0)

= λ0

Figure 1 shows a typical example of what the λ(θ;m) function looks like. Proposition 1 below

describes its most important features more formally.

Finally, let Θ0(Λ;m) be defined as the set of all θ satisfying:

covm(z, y − θz − xβ(θ;m))
√
varm(xβ(θ;m))

= λcovm(z,xβ(θ;m))
√
varm(y − θz − xβ(θ;m)) (10)

for some λ ∈ Λ. By construction, Θ0(Λ;m0) is the set of all θ0 satisfying Assumption 2, i.e., the

identified set for the true effect. Figure 1 shows how Θ0(Λ;m0) can be found from λ(θ;m0).

Proposition 1 (Properties of λ(.)) Let m satisfy (5)-(7). Then the function λ(.;m) has the

following properties:

10



−
5
0

0
5
0

R
e
la

ti
v
e
 c

o
rr

e
la

ti
o
n
 (

λ
)

−50 0 50
Effect (θ)

λ(θ) function  

λ* θ*

[λL,λH] [θL,θH]

Figure 1: A typical λ(θ;m) function giving the relative corrrelation (λ) as a function of the assumed
value θ for the effect of interest. The function exists and is differentiable in θ everywhere but at θ∗

(the value of θ at which corr(z,xβ(θ)) = 0). Its limit as θ approaches positive or negative infinity
is λ∗. Near θ∗, the function goes towards positive or negative infinity. Both θ∗ and λ∗ are easily
identified from the data. The identified set Θ0 = [θL, θH ] given the relative correlation restriction
Λ = [λL, λH ] can be found by inverting λ(θ;m).
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1. λ(θ;m) exists and is differentiable for all θ 6= θ∗(m), where:

θ∗(m) ≡ covm(zp, yp)

varm(zp)

2. Let:

λ∗(m) ≡

√
varm(z)

varm(zp)
− 1

Then λ∗(m) ≥ 0 and:

lim
θ→∞

λ(θ;m) = lim
θ→−∞

λ(θ;m) = λ∗(m)

3. For any λ 6= λ∗(m) there exists at least one θ satisfying (10).

4. Let:

Θ̃0(Λ;m) = {θ : λ(θ;m) ∈ Λ}

Then:

Θ̃0(Λ;m) ⊂ Θ0(Λ;m) ⊂ Θ̃0(Λ;m) ∪ {θ∗(m)}

Proof: See Appendix A.1.

The identified set is not necessarily convex, so it will usually be more convenient to work

with its upper and lower bounds:

θL(Λ;m) = inf Θ0(Λ;m) (11)

θH(Λ;m) = sup Θ0(Λ;m) (12)

Proposition 2 is the primary identification result of the paper, and describes conditions under

which the identified set is both nonempty and bounded. Under these conditions, data can be

used to estimate nontrivial bounds on the true effect.

Proposition 2 (Size of the identified set) The identified set Θ0(Λ;m0) is nonempty and

bounded if λ∗(m0) /∈ Λ.
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Proof: See Appendix A.2.

2.4 Estimation

The identified features of the model can be estimated by substituting m̂n for m0 in the quantities

defined in Section 2.3. Let:

λ̂(θ) ≡ λ(θ; m̂n) (13)

λ̂∗ ≡ λ∗(m̂n)

θ̂∗ ≡ θ∗(m̂n)

θ̂L(Λ) ≡ inf {θ : λ(θ; m̂n) ∈ Λ}

θ̂H(Λ) ≡ sup {θ : λ(θ; m̂n) ∈ Λ}

An important complication in characterizing the asymptotic properties of these estimators is the

possibility of nonidentification. That is, if the identified set is unbounded, a good estimator for

the identified set should also be unbounded with high probability for a sufficiently large sample

size. Proposition 3 below shows this to be the case.

Proposition 3 (Consistency) The estimators defined in (13) are consistent. That is:

θ̂∗
p→ θ∗(m0)

λ̂∗
p→ λ∗(m0)

λ̂(θ)
p→ λ(θ;m0) for all θ 6= θ∗(m0)

If Θ0(Λ;m0) is bounded then:

θ̂L(Λ)
p→ θL(Λ;m0) if

dλ(θ;m0)

dθ
|θ=θL(Λ;m0) 6= 0

θ̂H(Λ)
p→ θH(Λ;m0) if

dλ(θ;m0)

dθ
|θ=θH(Λ;m0) 6= 0

and if Θ0(Λ;m0) = R then for any B:

lim
n→∞

Pr((θ̂H(Λ) > B) = lim
n→∞

Pr((θ̂L(Λ) < B) = 1

Proof: See Appendix A.3.
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Note that consistency of θ̂L(Λ) (for example) requires two conditions to be satisfied: that

θL(Λ;m0) 6= θ∗(m0) (guaranteeing existence of the derivative ∂λ(θ;m)/∂θ when evaluated at

θL(Λ;m0)), and that ∂λ(θ;m)/∂θ is nonzero when evaluated at θL(Λ;m0). By analogy, θ̂L(Λ)

is likely to be a noisy estimator when either θL(Λ;m0) is close to θ∗(m0), or when λ∗(m0) is

close to Λ (since result 2 of Proposition 1 implies that ∂λ(θ;m)/∂θ → 0 as |θ| → ∞).

2.5 Inference

Hypothesis tests and confidence intervals can be constructed for partially identified parameters,

with no change in interpretation.

The quantities to be estimated are in most cases differentiable functions of m0, so they will be

asymptotically normal with a covariance matrix that can be obtained through straightforward

application of the delta method. Proposition 4 below states this more explicitly for the endpoints

of the identified set.

Proposition 4 (Asymptotic distribution for estimated bounds) Let:

A ≡ −


∇mλ(θ;m)

∂λ(θ;m)/∂θ

∣∣∣∣
θ=θL(Λ;m0),m=m0

∇mλ(θ;m)

∂λ(θ;m)/∂θ

∣∣∣∣
θ=θH(Λ;m0),m=m0


where the row vector ∇mλ(θ,m) is the gradient of λ(θ,m) with respect to m. If A exists, then:

√
n

 θ̂L(Λ)− θL(Λ;m0)

θ̂H(Λ)− θH(Λ;m0)

 D→ N (0, AΣA′)

Proof: See Appendix A.4.

Note that existence of A requires two conditions to be satisfied: that neither θL nor θH is

identical to θ∗(m0) (guaranteeing existence of the derivatives), and that ∂λ(θ;m)/∂θ is nonzero

when evaluated at θL or θH . By analogy, the asymptotic distribution is likely to provide a poor

approximation to the finite sample distribution when either θL or θH is close to θ∗, or when λ∗

is close to Λ.

The asymptotic distribution described in Proposition 4 can be used to construct Wald-type

hypothesis tests and confidence intervals for θ0. In constructing confidence intervals under

partial identification, Imbens and Manski (2004) note the necessity of distinguishing between a
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confidence interval for the identified set:

lim
n→∞

Pr(Θ0(Λ) ⊂ CIset) = 1− α

and a confidence interval for the true parameter value:

lim
n→∞

inf
θ∈Θ0(Λ)

Pr(θ ∈ CIpar) = 1− α

A confidence interval for the identified set can be constructed using the lower and upper bounds,

respectively, of the ordinary confidence intervals for θ̂L(Λ) and θ̂H(Λ).

A confidence interval for the true parameter value is generally narrower than one for the

identified set. Imbens and Manski describe a method of constructing such a confidence interval

by reducing the critical values to account for the width of the identified set. Stoye (2009) notes

that validity of the Imbens-Manski procedure requires a strong assumption of superefficient

estimation for the width of the identified set. However, he also shows that superefficiency

will hold if the estimators of the bounds are jointly asymptotically normal and ordered by

construction (Stoye, 2009, Lemma 3). These criteria are satisfied in the setting of this paper,

and so Stoye’s more elaborate procedure is not required.

3 Extensions

3.1 Perfect experiments

Assumption 6 of the model says that the explanatory variable of interest is at least slightly

correlated with the control variables. This assumption is made strictly for convenience in pre-

senting the results in Sections 2.3 - 2.5, as it guarantees existence of the intermediate quantities

λ(θ,m0), λ∗(m0), and θ∗(m0), and avoids the need to discuss various exceptions and special

cases. While Assumption 6 is likely to hold in most cases of interest, it will not hold in the

special case of pure random assignment. That is, if the treatment z really is independent of the

pretreatment control variables x it will also be uncorrelated with those variables, and Assump-

tion 6 will not hold. This section considers the implications of replacing Assumption 6 with its
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opposite:

Assumption 6′: var(zp) = 0

Assumption 6′ implies that λ(θ,m0), λ∗(m0), and θ∗(m0) are undefined. However, Proposi-

tions 5 and 6 below show that the identified set is still well-defined, and can be estimated

consistently by the estimators described in Section 2.4.

Proposition 5 (Size of the identified set) The identified set Θ0(Λ;m0) is nonempty and

bounded. In particular, Θ0(Λ;m0) =
{
cov(z,y)
var(z)

}
= {θ0}.

Proof: See Appendix A.5.

Proposition 6 (Consistency) Suppose that Λ is bounded and includes zero. Then: θ̂L(Λ)
p→

θ0 and θ̂H(Λ)
p→ θ0.

Proof: See Appendix A.6.

3.2 Heterogeneity in response

The model presented in Section 2 assumes a constant marginal effect of z on y. This section

describes how the estimation method would apply to the case of heterogeneous response.

Replace Assumption 1 with:

Assumption 1′: y = y(z) = tz + u where E(t) = θ0

where t is the individual-specific marginal effect of z on y and θ0 is a parameter representing the

average marginal effect in the population. If z is a binary treatment indicator, then Assumption

1′ fits the standard treatment effects framework, with u the untreated outcome, t + u the

treated outcome, t the individual-specific treatment effect, and θ0 the average treatment effect.

For notational simplicity, normalize y, z, and x to mean zero so that x does not need to have

an intercept.

The average marginal effect θ0 is point-identified if the potential outcomes are mean-independent

of z conditional on x, i.e., if E(t|z,x) = E(t|x) and E(u|z,x) = E(u|x). If these conditional

expectation functions happen to be linear in x, then θ0 is consistently estimated by the OLS
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regression of y on (z,x, zx). Note that conditional mean independence is the important as-

sumption here, as one can always choose x to make the conditional expectations linear (e.g. by

making x binary).

Next we derive a version of equation (14) that replaces the mean-independence and linear

CEF assumptions with relative correlation restrictions. Without loss of generality, let zxΓ0+xβ0

be the best linear predictor of y − θ0z given (zx,x). Let v ≡ y − θ0z − zxΓ0 − xβ0 be the

corresponding residual. Then

y = θ0z + zxΓ0 + xβ0 + v where E(zx′v) = E(x′v) = 0. (14)

Consistent OLS estimation of equation (14) requires the additional assumption that E(zv) = 0 or

equivalently corr(z, v) = 0. This condition would hold under the conditional mean-independence

and linear CEF assumptions, but the goal here is to relax those assumptions. As in Section 2.1,

this is done by replacing the absolute correlation restriction corr(z, v) = 0 with a relative

correlation restriction Λ such that:

λ0 =
corr(z, v)

corr(z, zxΓ0 + xβ0)
∈ Λ (15)

In this version of the model, the relative correlation parameter λ0 can be interpreted as the

correlation between the treatment and unobserved heterogeneity (in both untreated outcome and

treatment response) relative to the correlation between the treatment and observed heterogeneity

(in both untreated outcome and treated response).

Equations (14) and (15) are identical to equations (3) and (4) in Section 2.1, with (zx,x)

as the control variables instead of just x. Therefore this model can be fit into the framework of

Section 2.1, and the results from Section 2 apply directly.

4 Applications

The two applications described in this section have been chosen to illustrate the two primary

settings in which OLS regression is used to estimate causal effects: random-assignment experi-

ments, and observational studies using control variables.
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4.1 Application #1: Project STAR

Project STAR (Student/Teacher Achievement Ratio) is an influential class size experiment im-

plemented in Tennessee in the late 1980’s. Class size reductions are a common and expen-

sive initiative for improving schools, but their effect on academic achievement is controversial

(Hanushek, 1986). As is often the case with field experiments involving human subjects, Project

STAR’s implementation deviated slightly from the original random-assignment design. The ap-

plication here shows that relative correlation restrictions are useful for analyzing such deviations.

4.1.1 Background

The analysis here is based on Krueger (1999). A total of 79 schools were nonrandomly selected

for participation in Project STAR. Within each school, students entering kindergarten in 1985

were randomly assigned to the small class (S) group, the regular class (R) group, or the regular

class with full-time teacher aide (RA) group. Each school had at least one class of each type.

Students in group S were organized into classes with 13 to 17 students, while students in the R

and RA groups were organized into classes with 22-25 students. Teachers were also randomly

assigned. The experimental treatment continued through grade 3, and students were given

achievement tests each year. The most important deviations from the experimental design

were:

1. Between grades, some students were moved between the small and regular class groups as

a result of behavioral issues and/or possibly pressure by parents.

2. New students entered Project STAR schools during the experiment, and were randomly

assigned to one of the experimental groups.

3. Some students moved out of their original schools. Krueger notes that there is some

evidence that students in the small class treatment are less likely to change schools.

Krueger’s approach to the problem of imperfect randomization is similar to that described in

Section 2.2. That is, he shows that observed pretreatment variables are similar (within-school)

in the treated and control groups, and uses this observation to argue that this provides evidence

for random assignment:

“None of the three background variables displays a statistically significant as-

sociation with class-type assignment at the 10 percent level, which suggests that

random assignment produced relatively similar groups in each class size, on average.
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As an overall test of random assignment, I regressed a dummy variable indicating

assignment to a small class on the three background measures in rows 1-3 and school

dummies. For each wave, the student characteristics had no more than a chance

association with class-type assignment.” (Krueger, 1999, page 504)

While Krueger presents these results as a test of the null hypothesis of random assignment, the

deviations from the experimental design described above already imply that this null is false.

Krueger says as much earlier in the paper: “As in any experiment, there were deviations from

the ideal experimental design in the actual implementation of Project STAR.” (Krueger, 1999,

p. 499). Failure to reject this null is in some sense simply a matter of insufficient sample size.

An alternative interpretation of this procedure is that it aims to show that deviations from

random assignment produce small (if nonzero) differences in observable pre-treatment charac-

teristics between treated and control groups, and therefore can plausibly be assumed to produce

small differences in unobservable pre-treatment characteristics. This interpretation can be made

more explicitly and quantitatively by using relative correlation restrictions.

4.1.2 Data

The data are from Finn et al. (2007). Table 1 reports summary statistics and is a partial recon-

struction of the table in the appendix of Krueger (1999). Most table entries are self-explanatory,

with the exception of the test score variables. The test score variables are constructed according

to the procedure described by Krueger: raw scores on each of the individual subject tests in

a given year are converted into percentiles based on the distribution of scores among students

in the control group. Each student’s percentile scores are then averaged across subjects. The

resulting score thus has a potential range of zero to 100, has a mean and median close to 50,

and can be roughly though not exactly interpreted in percentile units. Krueger leaves out some

details in describing how the test score variable was constructed (e.g., how ties were broken in

calculating percentiles), so the average test scores reported in Table 1 differ by up to 0.3 of a

percentage point from those reported by Krueger.

Krueger’s regressions include school-level fixed effects to account for the fact that class

size was randomly assigned within schools, but assignment probabilities differed across schools.

These fixed effects can be incorporated into the framework of this paper by applying the standard

within transformation and defining y, z and x in terms of deviations from the corresponding

school-level averages.
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Grade
Variable K 1 2 3

Average class size 20.3 21.0 21.1 21.3
(std. dev.) (4.0) (4.0) (4.1) (4.4)

Average percentile score, SAT 51.4 51.8 51.3 51.3
(std. dev.) (26.7) (26.9) (26.5) (27.0)

% Free lunch 48 52 51 51
% White/Asian 67 67 65 67
% Female 49 48 48 48
Average Age on September 1st 5.43 6.58 7.66 8.70

(std. dev.) (0.35) (0.49) (0.56) (0.59)
% Exited sample 29 26 21
% of teachers with MA+ degree 35 35 37 44
% of teachers who are White 84 83 80 79
% of teachers who are male 0 0 1 3
Teacher experience, years 9.26 11.63 13.14 13.93

(std. dev.) (5.81) (8.94) (8.65) (8.61)
# schools 79 76 75 75
# students 6325 6829 6840 6802
# small classes 127 124 133 140
# regular classes 99 115 100 89
# reg./aide classes 99 100 107 107

Table 1: Summary statistics, Project STAR data.

20



4.1.3 OLS results

Table 2 shows OLS regression results, and is a partial reconstruction of Table 5 in Krueger (1999).

For each grade, two specifications are reported. Specification (1) corresponds to specification

(4) in Krueger’s Table 5, while specification (2) omits the regular/aide class indicator. This is

done because the approach described in this paper is designed to evaluate the effect of a single

explanatory variable. Both Krueger and the original Project STAR research team found that

the regular-aide treatment was nearly irrelevant to student outcomes. The results in Table 2

suggest that the small-class treatment increases test scores by five to seven percentile points.

Explanatory Kindergarten Grade 1 Grade 2 Grade 3
Variable (1) (2) (1) (2) (1) (2) (1) (2)

Small class 5.33 5.20 7.55 6.72 5.76 4.97 5.01 5.30
(1.20) (1.04) (1.17) (1.05) (1.22) (1.05) (1.22) (1.05)

Regular/aide class 0.26 1.77 1.54 -0.51
(1.07) (0.97) (1.06) (1.10)

White/Asian 8.39 8.39 6.94 6.98 6.45 6.48 6.05 6.05
(1.36) (1.36) (1.19) (1.19) (1.19) (1.19) (1.44) (1.44)

Girl 4.38 4.38 3.83 3.82 3.42 3.41 4.19 4.20
(0.63) (0.63) (0.56) (0.56) (0.60) (0.60) (0.66) (0.66)

Free lunch -13.08 -13.08 -13.55 -13.55 -13.62 -13.64 -12.95 -12.94
(0.77) (0.77) (0.88) (0.88) (0.72) (0.72) (0.81) (0.81)

White teacher -1.13 -1.09 -4.02 -4.23 0.43 0.61 0.28 0.27
(2.17) (2.18) (1.95) (1.96) (1.75) (1.75) (1.80) (1.80)

Teacher experience 0.26 0.27 0.06 0.07 0.10 0.11 0.05 0.05
(0.11) (0.10) (0.06) (0.06) (0.06) (0.07) (0.06) (0.06)

Master’s degree -0.59 -0.60 0.44 0.55 -1.06 -0.92 0.93 0.89
(1.05) (1.05) (1.07) (1.08) (1.06) (1.04) (1.18) (1.18)

School fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
# of observations 5,839 5,839 6,452 6,452 5,953 5,953 6,100 6,100

Table 2: OLS estimates of effect of class sizes on average percentile rank on Stanford Achievement
Test. Standard errors (robust to clustering by teacher) are in parentheses.

4.1.4 RCR results

Table 3 reports the results from estimating the treatment effect under a series of relative corre-

lation restrictions. As in the OLS results, the outcome variable y is the average percentile SAT

score, the explanatory variable of interest z is the small class treatment, and the set of control
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variables x are those teacher and student background variables included in specification (2) of

Table 2. To account for school fixed effects, each variable is expressed in terms of deviation from

the corresponding school-level average. The point estimates of θL(Λ) and θH(Λ) are reported

in square brackets, while the 95% asymptotic confidence intervals for θ0 are reported in round

brackets. Confidence intervals are calculated based on the method described in Imbens and

Manski (2004), and are robust to clustering by teacher. For the relative correlation restriction

Λ = (−∞, 0.0], the function λ̂(θ) does not exist at θ̂H(Λ) = θ̂∗ and so the confidence intervals

reported are one-tailed confidence intervals for θL(Λ) only.

The results in Table 3 suggest that Krueger’s original findings are quite robust. The esti-

mated effect of small classes in kindergarten remains similar in magnitude even if the correlation

between the treatment and unobservables is as much as ten times as large as the correlation

between the treatment and observables. The results are slightly less robust for the later grades.

The range of grade 1 treatment effects consistent with the data is strictly positive as long as

the correlation between treatment and unobservables is somewhat less than three times as large

as the correlation between the treatment and unobservables. For the grade 2 and 3 data, the

range of estimated treatment effects is positive for a relative correlation of slightly more than

three, but not for a relative correlation of 3.5 or above.

4.2 Application #2: Inequality and health

The second type of application of the RCR approach is to studies using observational data in

which causal effects are estimated by OLS regression using a carefully selected set of control

variables. Despite the increased use of methods like natural experiments, instrumental variables,

regression discontinuity, and difference-in-differences, the OLS-with-controls regression remains

a staple of applied work. The reason for this is simple: there are many interesting questions

for which there exists no credible source of exogenous variation in the explanatory variable of

interest. One example of such a question is the relationship between inequality and health.

4.2.1 Background

The relationship between economic inequality and health is the subject of an extensive literature

in public health, surveyed by Deaton (2003), Subramanian and Kawachi (2004), and Wilkinson

and Pickett (2006). The typical finding in this literature is that a higher level of income inequal-

ity has a substantial negative impact on individual health outcomes in industrialized countries,
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Relative Bounds on class size effect by grade

correlation [θ̂L(Λ), θ̂H(Λ)]
restriction (Λ) K 1 2 3

{0.00} 5.20 6.72 4.97 5.30
(3.17, 7.24) (4.66, 8.78) (2.90, 7.04) (3.24, 7.36)

[0.00, 1.00] [5.14, 5.20] [4.50, 6.72] [3.55, 4.97] [4.08, 5.30]
(2.49, 7.21) (2.27, 8.46) (1.58, 6.73) (1.30, 7.10)

[0.00, 3.00] [4.99, 5.20] [−0.15, 6.72] [0.57, 4.97] [0.44, 5.30]
(−1.00, 7.20) (−5.11, 8.45) (−3.49, 6.71) (−7.27, 7.06)

[0.00, 5.00] [4.84, 5.20] [−5.19, 6.72] [−2.61, 4.97] [−6.87, 5.30]
(−5.31, 7.20) (−14.22, 8.45) (−9.74, 6.71) (−29.38, 7.07)

[0.00, 10.00] [4.37, 5.20] [−21.58, 6.72] [−12.04, 4.97] (−∞,∞)
(−18.48, 7.20) (−53.46, 8.46) (−31.78, 6.72) (−∞,∞)

[0.00, 15.00] (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞)
(−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞)

[0.00,∞) (−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞)
(−∞,∞) (−∞,∞) (−∞,∞) (−∞,∞)

(−∞, 0.00] [5.20, 8.17] [6.72, 134.57] [4.97, 96.33] [5.30, 15.12]
(3.37,∞) (4.83,∞) (2.90,∞) (3.27,∞)

Other parameter estimates:

λ̂∗ 12.31 13.85 14.88 5.79

θ̂∗ 8.17 134.57 96.33 15.12

λ̂(0) 28.94 2.94 3.37 3.18

Table 3: Bounds on the effect of class sizes on average percentile rank on Stanford Achievement
Test, given relative correlation restrictions. Intervals in square brackets are the bounds themselves,
while the intervals in the round brackets are 95% cluster-robust asymptotic confidence intervals.
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even after accounting for the individual’s own income. Wilkinson and Pickett (2009) argue

that the key mechanism for this effect is that the low social status associated with low relative

income leads to increased stress, which has both a direct negative impact on health and an

indirect effect through depression and unhealthy behaviors. In wealthy societies with extensive

public healthcare systems, health behavior may be more important than health expenditures in

explaining cross-sectional variation in health outcomes. Wilkinson and Pickett (2009), among

others, use these findings to argue in favor of large-scale income redistribution in industrialized

countries.

Most recent empirical work in this literature regresses individual health on regional or state-

level income inequality, controlling for the respondent’s own income and background character-

istics. Although many of these studies exhibit a great deal of methodological sophistication and

complexity, including the deployment of elaborate multilevel models, almost none have done

much to address the issue of endogenous community selection. For example, none of the 21

studies cited in the review article by Subramanian and Kawachi (2004) have a research design

aimed at addressing endogenous community selection. Researchers in this literature are aware

of the issue, but this question is particularly ill-suited for the typical methods microeconome-

tricians use to deal with endogeneity. The inequality-health relationship has several relevant

features:

1. Most commonly hypothesized mechanisms by which inequality affects health (e.g., stress,

depression, increased smoking, drinking, and drug use) operate with long and variable lags.

2. Inequality changes slowly over time, and is measured with a great deal of noise.

3. Government policies that affect the income distribution are also likely to affect relative

prices, allocations, and other variables relevant to health outcomes.1

The first two features make the use of panel data with cross-sectional fixed effects particularly

unappealing, while the third feature implies that suitable instrumental variables or natural

experiments will be difficult to find.

1One can also argue that the “effect” of inequality on health is not clearly defined because inequality is not a
policy but rather an outcome of policy. For the purposes of this example, the causal model in which inequality has
a well-defined (if zero) effect on health will be taken as given.
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4.2.2 Data

The primary data source is the pooled 1996 and 1998 Current Population Survey (CPS) March

supplement (US Department of Labour, 1998). The sample consists of all CPS respondents

at least 18 years of age, and the outcome variable is a binary indicator of self-reported poor

health. Specifically, respondents were asked “Would you say your health in general is . . . ” and

are coded as y = 1 if they reported “Fair” or “Poor” and y = 0 if they reported “Good,”

“Very Good,” or “Excellent.” This particular data source and outcome variable have been

used extensively in the inequality and health literature (Blakely et al., 2000, 2002; Mellor and

Milyo, 2002, 2003; Subramanian and Kawachi, 2003, 2004), and so have been selected for ease

of comparison. Individual-level explanatory variables include age, sex, race, education, log

equivalized household income (total household income divided by the square root of household

size), employment status, and health insurance status. The community-level variable is the

state-level Gini coefficient for equivalized household income, as calculated by the Census Bureau

from the 1990 Census (US Census Bureau, 2000).

The pooled CPS sample includes 188,785 over-18 respondents, of which 1,015 reported zero

or negative household income. In order to use log household income as an explanatory variable,

these cases are dropped yielding 187,760 respondents in the sample. Table 4 reports summary

statistics. All estimates using the CPS data are unweighted. Weighted results are similar.

4.2.3 OLS and related results

Table 5 shows regression results based on the standard assumption that inequality is condi-

tionally exogenous. The first set of estimates are for a linear model, and are estimated using

OLS. Standard errors are robust to clustering by state. The second set of estimates are for a

logistic model with a state-level random effect, and are estimated by maximizing the restricted

penalized quasi-likelihood.

In general, Table 5 shows a statistically significant association between measured state-level

inequality and the probability of self-rated fair/poor health. To put the coefficient magnitudes

in perspective, the linear regression with specification (2) implies that a one-standard-deviation

increase in inequality is associated with an increase in the probability of fair/poor health of 0.6

percentage points. This is roughly the same predictive effect as a 20% increase in one’s own

income.
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Unweighted mean
Variable (std. dev.)

Individual-level characteristics:
Self-reported fair or poor health 0.15
Log equivalized household income 10.03

(0.88)
Age, years 44.9

(17.49)
Female 0.53
Black 0.09
Asian/other 0.05
Education, years 12.73

(2.71)
Not employed 0.36
No health insurance 0.21

State-level characteristics:
Income inequality (Gini coefficient) 0.43

(0.02)
# of individuals 187,760
# of states (including DC) 51

Table 4: Summary statistics, linked CPS-Census data.

The logistic model estimates in Table 5 can be compared to those seen in previous research

using this data source. The logistic coefficient estimate of 4.608 corresponds to an odds ratio

of 1.26 associated with an increase in the state-level Gini coefficient of 0.05. This is similar

in magnitude to the odds ratios of 1.31 to 1.39 reported by Subramanian and Kawachi (2003)

also using CPS data. The corresponding odds ratio for the linear model would vary across

individuals. For a representative individual whose characteristics imply a probability of self-

rated fair/poor health of 15% (the average in the data), the odds ratio would be 1.12.

4.2.4 RCR results

Table 6 reports the results from estimating the effect of inequality on health under a series

of relative correlation restrictions. As the table shows, increases in λ from the benchmark

case of exogeneity are generally associated with decreases in the estimated marginal effect of

inequality. A relative correlation of 23% or greater (i.e., λ > 0.23) implies that the range of

point estimates for θ consistent with the data includes zero. That is, in order to interpret this

data as demonstrating a positive causal relationship between inequality and poor health, one
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Explanatory Linear Logistic
Variable (1) (2) (1) (2)

Income inequality (Gini coef.) 0.903 0.299 8.564 4.608
(0.160) (0.124) (1.226) (1.173)

Log equivalized household income -0.031 -0.254
(0.001) (0.009)

Age, years 0.005 0.036
(<0.001) (<0.001)

Female -0.007 -0.082
(0.001) (0.015)

Black 0.050 0.437
(0.007) (0.024)

Asian/other 0.010 0.174
(0.006) (0.038)

Education, years -0.013 -0.093
(0.001) (0.003)

Not employed 0.129 1.089
(0.003) (0.017)

No health insurance 0.066 0.529
(0.005) (0.018)

# of observations 187,760 187,760 187,760 187,760

Table 5: Estimated effect of inequality on self-reported fair or poor health under assumption of
exogeneity. Linear model estimated using OLS, with standard errors robust to clustering by state.
Logistic model estimated as random-intercept multilevel model with maximum likelihood.
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would need to claim that the correlation between inequality and unobserved factors affecting

health is no greater than 23% as large as the correlation between inequality and the observed

factors that affect health.

Relative correlation Bounds on effect of income inequality

restriction (Λ) [θ̂L(Λ), θ̂H(Λ)] 95% CI

{0.00} 0.30 (0.06, 0.54)
[0.00, 0.10] [0.17, 0.30] (−0.03, 0.51)
[0.00, 0.20] [0.04, 0.30] (−0.16, 0.50)
[0.00, 0.30] [−0.10, 0.30] (−0.29, 0.50)
[0.00, 0.50] [−0.37, 0.30] (−0.58, 0.50)
[0.00, 1.00] [−1.09, 0.30] (−1.37, 0.50)
[0.00, 3.00] [−4.70, 0.30] (−6.00, 0.50)
[0.00, 5.00] [−11.83, 0.30] (−20.69, 0.50)
[0.00,∞) (−∞,∞) (−∞,∞)
(−∞, 0.00] [0.30, 17.04] (0.06,∞)

Other parameter estimates:

λ̂∗ 5.17

θ̂∗ 17.04

λ̂(0) 0.23

Table 6: Bounds on the effect of income inequality on health. Bounds for the true effect are
reported in square brackets, and 95% cluster-robust asymptotic confidence intervals are reported
in parentheses.

5 Conclusion

The methodology developed in this paper provides a simple means of providing bounds on causal

parameters under relative correlation restrictions. In the application using the experimental

Project STAR data, the bounds on the class size effect are narrow and the lower bound is

strictly positive even if class size is several times more strongly correlated with unobserved

factors than with the observed control variables. In the application using the observational CPS

data, the bounds on the effect of income inequality on the prevalence of fair/poor health are

much wider, and the lower bound is negative as long as the upper bound on the correlation

between inequality and unobserved factors is at least 23% of the correlation between inequality

and the observed control variables.
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These two applications have been selected in part to represent two extremes. One would ex-

pect to find the Project STAR findings are more robust than the inequality-and-health findings,

given the unavoidable differences in research design. The important thing to note here is that

this finding of greater robustness comes entirely from the data. While the method described in

this paper is no substitute for careful evaluation of research design, it provides a systematic and

straightforward means for that evaluation to be informed by the data.

The methodology can be advanced in future research along two main fronts. First, the

model is quite simple and might be usefully extended to accomodate common features like fixed

effects or simple forms of nonlinearity. Second, the inference in the current paper is based on

standard asymptotics. Because the underlying estimators are based on ratios/inverses, standard

asymptotics can provide a poor approximation in finite sample when a relevant denominator

is nearly zero. Alternative inference procedures may be more robust to this potential form of

weak identification.
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A Proofs of propositions

A.1 Proposition 1

Proof: To establish result 1, note that:

λ(θ;m) =
corrm (z, y − θz − (y − θz)p)

corrm (z, (y − θz)p)

=

covm(z,y−θz−(y−θz)p)√
varm(z)varm(y−θz−(y−θz)p)

covm(z,(y−θz)p)√
varm(z)varm((y−θz)p)

=

(
covm(z,y)−θvarm(z)

covm(z,yp)−θcovm(z,zp) − 1
)

√
varm(y−θz)
varm((y−θz)p) − 1

We can apply several properties of the best linear predictor, specifically that cov(z, yp) =

cov(zp, yp), cov(z, zp) = var(zp) and var(y − yp) = var(y)− var(yp), to further derive:

λ(θ;m) =

(
covm(z,y)−θvarm(z)

covm(zp,yp)−θvarm(zp) − 1
)

√
varm(y)−2θcovm(z,y)+θ2varm(z)

varm(yp)−2θcovm(zp,yp)+θ2varm(zp) − 1

=

(
p1
p2
− 1
)

√
p3
p4
− 1

(16)

where p1, p2, p3, and p4 are all polynomials (and thus differentiable) in θ. They are also differen-

tiable in m. Application of the quotient and product rules implies that λ(θ;m) is differentiable

provided that (a) p2 6= 0, (b) p4 6= 0, and (c) p3
p4
> 1. Condition (a) fails if and only if:

p2 = covm(zp, yp)− θvarm(zp) = 0

Since varm(zp) > 0 by equation (7), we can solve to get

θ =
covm(zp, yp)

varm(zp)
= θ∗(m)

Condition (b) fails if and only if:

p4 = varm(yp − θzp) = 0
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which implies that yp − θzp is constant. Since the covariance of any random variable with a

constant is zero, this in turn implies that cov(zp, yp − θzp) = cov(zp, yp)− θvar(zp) = 0. Again

we can solve for θ to get:

θ =
covm(zp, yp)

varm(zp)
= θ∗(m)

Condition (c) fails if and only if p3 ≤ p4, or equivalently:

varm(y − θz) ≤ varm(yp − θzp)

Note that yp − θzp is the best linear predictor of y − θz, so:

varm (y − θz) = varm (yp − θzp) + varm (y − θz − (yp − θzp))

This implies that varm (y − θz − (yp − θzp)) = 0, which also implies that:

y − θz − (yp − θzp) = 0

Rearranging, we get:

y = yp − θzp + θz

which implies that y is an exact linear function of (z,x) and equation (5) is violated. Therefore

condition (c) must hold. Since conditions (a), (b), and (c) hold for all θ 6= θ∗(m), λ(θ;m) is

differentiable at all θ 6= θ∗(m).

To establish result 2, note that varm(z) is strictly positive by (5) and varm(zp) is strictly

positive by (7). Therefore:

lim
θ→∞

(covm(z, y)− θvarm(z)) = −∞

lim
θ→∞

(covm(zp, yp)− θvarm(zp)) = −∞

So by L’Hospital’s rule:

lim
θ→∞

covm(z, y)− θvarm(z)

covm(zp, yp)− θvarm(zp)
=

varm(z)

varm(zp)
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By the same reasoning:

lim
θ→∞

(varm(y)− 2θcovm(z, y) + θ2varm(z)) =∞

lim
θ→∞

(varm(yp)− 2θcovm(zp, yp) + θ2varm(zp)) =∞

lim
θ→∞

(−2covm(z, y) + 2θvarm(z)) =∞

lim
θ→∞

(−2covm(zp, yp) + 2θvarm(zp)) =∞

So by two applications of L’Hospital’s rule:

lim
θ→∞

varm(y)− 2θcovm(z, y) + θ2varm(z)

varm(yp)− 2θcovm(zp, yp) + θ2varm(zp)
=

varm(z)

varm(zp)

Result 2 can then be derived by substitution, and the argument repeated for limθ→−∞.

To prove result 3 we first show how the behavior of λ(θ;m) near θ∗(m) depends on some

special cases:

Case A: Suppose that m implies an exact linear relationship between yp and zp, i.e.

Em

(
(yp − am − bmzp)2

)
= 0 (17)

for some am and bm. Then equation (10) is satisfied for all λ when θ = θ∗(m) = bm.

Proof: To show that θ∗(m) = bm:

θ∗(m) =
covm(zp, yp)

varm(zp)

=
covm(zp, am + bmz

p) + covm(zp, yp − am − bmzp)
varm(zp)

=
bm varm(zp) + 0

varm(zp)

= bm

To show that equation (10) is satisfied at θ∗(m) for all λ, note that xβ(θ;m) = yp − θzp.
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This implies that:

varm(xβ(θ∗(m);m)) = varm (yp − θ∗(m)zp)

= varm (yp − bmzp)

= varm (yp − bmzp)− 2covm (yp − bmzp, am) + varm(am)

= varm (yp − am − bmzp)

= 0

and by the same argument covm(z,xβ(θ∗(m);m)) = 0. Equation (10) thus reduces to

0 = λ0, a condition that is satisfied by any λ.

Case B: Suppose that m implies:

covm(y, z)

varm(z)
=
covm(yp, zp)

varm(zp)
(18)

Then equation (10) is satisfied for all λ when θ = θ∗(m).

Proof: First, note that in this case:

covm(z, y − θ∗(m)z − xβ(θ∗(m);m))

= covm(z, y − θ∗(m)z − yp + θ∗(m)zp)

= covm(z, y)− θ∗(m)varm(z)− covm(yp, zp) + θ∗(m)varm(zp)

= covm(z, y)− covm(z, y)

varm(z)
varm(z)− covm(yp, zp) +

cov(zp, yp)

var(zp)
var(zp)

= 0

and:

covm(z,xβ(θ∗(m);m)) = covm(z, yp − θ∗(m)zp)

= covm(zp, yp)− θ∗(m)varm(zp)

= covm(zp, yp)− covm(zp, yp)

varm(zp)
varm(zp)

= 0

Equation (10) thus reduces to 0 = λ0, which is satisfied for all λ.
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Case C: Suppose that neither (17) nor (18) hold. Then for any λ ∈ (−∞, λ∗(m)) ∪ (λ∗(m),∞) we

can find a θ such that λ(θ;m) = λ, i.e., that solves equation (10).

Proof: First, note that since covm(zp, yp)−θ∗(m)varm(zp) = 0, the existence of a solution

to equation (10) when θ = θ∗(m) requires that either varm(yp − θ∗(m)zp) = 0, implying

(17) holds, or covm(z, y) − θ∗(m)varm(z) = 0, implying (18) holds. Since neither holds,

there is no λ that satisfies equation (10) for θ = θ∗(m).

Next we characterize the behavior of λ(θ;m) near θ∗(m). Since varm(zp) > 0, p2 is

positive for θ < θ∗(m), negative for θ > θ∗(m), and zero when θ = θ∗(m). Also note that

covm(z, y) − θ∗(m)varm(z) = covm(z, y) − covm(zp,yp)
varm(zp) varm(z), so p1 is strictly positive

for all θ ≈ θ∗(m) if covm(z,y)
varm(z) > covm(zp,yp)

varm(zp) , and strictly negative for all θ ≈ θ∗(m) if

covm(z,y)
varm(z) < covm(zp,yp)

varm(zp) . This implies that:

lim
θ↑θ∗(m)

λ(θ;m) =

 ∞ if covm(y,z)
varm(z) > covm(yp,zp)

varm(zp)

−∞ if covm(y,z)
varm(z) < covm(yp,zp)

varm(zp)

and

lim
θ↓θ∗(m)

λ(θ;m) =

 −∞ if covm(y,z)
varm(z) > covm(yp,zp)

varm(zp)

∞ if covm(y,z)
varm(z) < covm(yp,zp)

varm(zp)

We have thus established that limθ→−∞ λ(θ;m) = λ∗(m), that limθ↑θ∗ λ(θ;m) is either

−∞ or ∞, and that λ(θ;m) is continuous on (−∞, θ∗(m)). Suppose for the moment that

limθ↑θ∗(m) λ(θ;m) = −∞. By the intermediate value theorem, for any λ ∈ (−∞, λ∗(m)),

there exists some θ ∈ (−∞, θ∗(m)) such that λ(θ;m) = λ. This is a sufficient condition

for θ to solve equation (10). Since limθ↑θ∗(m) = −∞, then limθ↓θ∗(m) λ(θ;m) =∞. Again,

since λ(θ;m) is continuous on (θ∗(m),∞), the intermediate value theorem implies that for

any λ ∈ (λ∗(m),∞) there exists some θ ∈ (θ∗(m),∞) such that λ(θ;m) = λ. Therefore, for

any λ ∈ (−∞, λ∗(m))∪ (λ∗(m),∞) we can find a θ such that λ(θ;m) = λ, i.e., that solves

equation (10). The same argument can be duplicated for the case limθ↑θ∗(m) λ(θ) = ∞.

Note that there may or may not be a θ such that λ(θ;m) = λ∗(m).

To prove result 4, pick any θ and consider two cases. First, suppose that θ = θ∗(m). Then

θ /∈ Θ̃0(Λ;m) since λ(θ;m) does not exist. Next, suppose that θ 6= θ∗(m). Then λ(θ;m) exists

(by result 1 of this proposition) and provides the unique λ that solves equation (10) for that λ.
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Therefore,

θ ∈ Θ̃0(Λ;m) if and only if θ ∈ Θ0(Λ;m) and θ 6= θ∗(m)

which is another way of stating the result. �

A.2 Proposition 2

Proof: Since Λ is nonempty, λ∗(m0) /∈ Λ implies that Λ must contain some λ 6= λ∗(m0). Result

3 of Proposition 1 says that there exists some θ such that (λ, θ) satisfy equation (10). Therefore

the identified set is nonempty.

Since Λ is closed, λ∗(m0) /∈ Λ implies that there is some ε > 0 such that (λ∗(m0)−ε, λ∗(m0)+

ε) is disjoint from Λ. Result 2 of Proposition 1 says that limθ→∞ λ(θ;m0) = limθ→−∞ λ(θ;m0) =

λ∗(m0). This means that given such an ε, there is some finite Bε such that Bε > θ∗(m0) and:

|θ| > Bε ⇒ λ(θ;m0) ∈ (λ∗(m0)− ε, λ∗(m0) + ε) (by result 2 of Proposition 1)

⇒ λ(θ;m0) /∈ Λ (since (λ∗(m0)− ε, λ∗(m0) + ε) is disjoint from Λ)

⇒ θ /∈ Θ̃0(Λ,m0) (by definition of Θ̃0)

⇒ θ /∈ Θ̃0(Λ,m0) ∪ {θ∗(m0)} (since Bε > θ∗(m0))

⇒ θ /∈ Θ0(Λ,m0) (by result 4 of Proposition 1)

Therefore, the identified set is bounded. �

A.3 Proposition 3

Proof: Both θ∗(m) and λ∗(m) are continuous in m by the quotient rule, given that varm(zp) >

0. Result 1 of Proposition 1 says that λ(θ;m) is continuous in m for all θ 6= θ∗(m)). So the first

set of results follows from the straightforward application of Slutsky’s theorem.

For the second result, note that the implicit function theorem implies that θL(Λ;m) is

continuously differentiable in m if dλ(θ;m)
dθ |θ=θL(Λ;m) 6= 0. In that case, consistency of θ̂L(Λ)

follows from Slutsky’s theorem. The same argument applies to θ̂H(Λ).

For the third result, note that if Θ0(Λ;m0) = R, then result 2 of Proposition 1 implies λ∗(m0)

is in the interior of Λ. Therefore, there exists an ε > 0 and B1 < B such that [λ(B1;m0) −
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ε, λ(B1;m0) + ε] ⊂ Λ. Since λ̂(B1)
p→ λ(B1;m0), we have:

lim
n→∞

Pr(θ̂L < B) ≥ lim
n→∞

Pr(λ̂(B1) ∈ Λ) = 1

The same argument applies to θ̂H(Λ), with a change of sign. �

A.4 Proposition 4

Proof: Both θL(Λ;m) and θH(Λ;m) are differentiable in m under these conditions, so the result

follows from direct application of the delta method, where:

A =

 ∇mθL(Λ;m)|m=m0

∇mθH(Λ;m)|m=m0

 (19)

The expression for A given in the proposition comes from applying the implicit function theorem:

∇mθL(Λ;m) = − ∇mλ(θ;m)

∂λ(θ;m)/∂θ

∣∣∣∣
θ=θL(Λ;m)

(20)

∇mθH(Λ;m) = − ∇mλ(θ;m)

∂λ(θ;m)/∂θ

∣∣∣∣
θ=θH(Λ;m)

and substituting. While mathematically unnecessary, this substitution is important computa-

tionally. Derivatives of λ(θ;m) – a closed form function with closed form derivatives – can be

calculated much more accurately than derivatives of θL(Λ;m) – an implicit function that must

be approximated by iterative methods. �

A.5 Proposition 5

Proof: If var(zp) = 0, then cov(z, yp − θzp) = 0 for all θ. This implies that (10) holds if and

only if cov(z, y − θz) = 0, i.e., if θ = cov(z, y)/var(z). �
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A.6 Proposition 6

Proof: First, we rewrite:

λ(θ;m) =
corrm(z, y − θz − yp + θzp)

corrm(z, yp − θzp)

=
covm(z, y − θz − yp + θzp)

corrm(z, yp − θzp)
√
varm(z)varm(y − θz − yp + θzp)

=
q1(θ;m)

q2(θ;m)

The numerator of λ(θ; m̂n) is:

q1(θ; m̂n)
p→ cov(z, y)− θvar(z)

while the denominator is

q2(θ; m̂n)
p→ 0

In a given finite sample, q2(θ; m̂n) will be nonzero with probability one if z or any of x is

continuously distributed, and probability approaching one as n → ∞ (WPA1) otherwise. So

λ(θ; m̂n) will exist even though λ(θ;m0) does not. Let θOLS(m) be the value of θ that implies

q1(θ;m) = 0, or equivalently:

θOLS(m) =
covm(z − zp, y − yp)

varm(z − zp)

Note that θOLS(m̂n) is just the coefficient on z from the OLS regression of y on z and x, and

that:

θOLS(m̂n)
p→ θOLS(m0) =

cov(z − zp, y − yp)
var(z − zp)

=
cov(z, y)

var(z)
= θ0 (21)

Since q1(θOLS(m̂n)) = 0 by construction and q2(θOLS(m̂n)) 6= 0 WPA1:

λ(θOLS(m̂n); m̂n) = 0 ∈ Λ WPA1
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Therefore:

θ̂L(Λ) ≤ θOLS(m̂n) ≤ θ̂H(Λ) WPA1 (22)

Pick any ε > 0. The event (|θOLS(m̂n) − θ0| < ε) clearly implies (θOLS(m̂n) > θ0 − ε), which

itself implies (θ̂H(Λ) > θ0 − ε) by equation (22). Therefore:

Pr(|θOLS(m̂n)− θ0| < ε) ≤ Pr(θ̂H(Λ) > θ0 − ε) ≤ 1

By (21), Pr(|θOLS(m̂n)− θ0| < ε)→ 1, so by the sandwich theorem:

Pr(θ̂H(Λ) > θ0 − ε)→ 1 (23)

Let λmax satisfy |λ| ≤ λmax for all λ ∈ Λ. Then λ ∈ Λ implies |λ| ≤ λmax. Therefore:

0 ≤ Pr(θ̂H(Λ) ≥ θ0 + ε) (24)

= Pr(λ(θ; m̂n) ∈ Λ for some θ > θ0 + ε)

≤ Pr(|λ(θ; m̂n)| ≤ λmax for some θ ≥ θ0 + ε)

Now, for any δ 6= 0

q1(θ0 + δ; m̂n)
p→ cov(z, y)− (θ0 + δ)var(z) = −δvar(z) 6= 0

q2(θ0 + δ; m̂n)
p→ 0

Therefore,

Pr(|λ(θ; m̂n)| ≤ λmaxfor some θ ≥ θ0 + ε)→ 0 (25)

By the sandwich theorem (24) and (25) imply Pr(θ̂H(Λ) ≥ θ0 + ε)→ 0, or equivalently that:

Pr(θ̂H(Λ) < θ0 + ε)→ 1 (26)
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Taking (23) and (26) together we get:

Pr(|θ̂H(Λ)− θ0| < ε)→ 1 (27)

which is the result stated in the proposition. The same argument applies to θL. �

B Monte Carlo results

This section reports the results from some simple Monte Carlo experiments. In each experiment,

a sample of size n = 1, 000 is generated from the model:

y = θ0z + β1x1 + β2x2 + v where E(x1v) = E(x2v) = 0 (28)

where corr(z, β1x1 + β2x2) = ρz,xβ and corr(z, v) = λ0ρz,xβ . For convenience, (z, x1, x2, v)

are jointly normal with mean zero and unit variance, corr(x1, x2) is set to zero, and β is set

so that var(β1x1 + β2x2) = 1, i.e., β1 = β2 =
√

0.5. Rather than assuming z is equally

correlated with x1 and x2, we set corr(z, x2) = 0 and corr(z, x1) = ρz,xβ
√

2, which implies

corr(z, β1x1 + β2x2) = ρz,xβ . Given the simulated data, the RCR model is then estimated

for the relative correlation restriction Λ = [0, λH ] The parameters (θ0, λ0, ρz,xβ , λH) are varied

across experiments.

Table 7 shows the main results. The first six columns show the true values set for the

model parameters (θ0, λ0, ρz,xβ , λH) and the related quantities (θ∗, λ∗). The next four columns

show the average values of the estimators (θ̂∗, λ̂∗, θ̂L, θ̂H). The final column shows the actual

coverage rate of the Imbens-Manski confidence interval for θ0 with a nominal coverage of 95%.

As the table shows, the estimator performs well in this setting. In all of the 14 cases in which

the assumed relative correlation restriction actually holds (i.e., when λ0 ∈ [0, λH ]) the average

bounds contain or come very close to containing the true parameter value of zero and the

coverage probabilities are close to the nominal coverage of 0.95.

As one would expect, the estimator performs less well when the assumed relative correlation

restriction is misspecified (i.e., when λH = 0.1 and λ0 is either 0.5 or 1.0) and this misspecifi-

cation is quantitatively important (i.e., when ρz,xβ is not very small). The estimated bounds

are generally biased upwards, and the coverage probablilties are low. Estimates of θ∗ and λ∗

are substantially biased (and highly variable) when ρz,β ≈ 0, but are much more well-behaved
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when ρz,β is larger. Note that this does not substantially affect estimates for the parameter of

interest.

True values Average values CI coverage

θ0 λ0 ρz,xβ λH θ∗ λ∗ θ̂∗ λ̂∗ θ̂L θ̂H Pr(θ0 ∈ CI)

0.0 any 0.0 0.1 undefined ∞ -0.13 39.17 -0.0015 0.0010 0.949
0.0 any 0.0 1.0 undefined ∞ -0.13 39.17 -0.0127 0.0124 0.959
0.0 0.0 0.001 0.1 500 707.11 0.62 39.64 -0.0015 0.0009 0.949
0.0 0.0 0.001 1.0 500 707.11 0.62 39.64 -0.0132 0.0119 0.959
0.0 0.5 0.001 0.1 500 707.11 0.62 39.64 -0.0011 0.0014 0.949
0.0 0.5 0.001 1.0 500 707.11 0.62 39.64 -0.0127 0.0124 0.959
0.0 1.0 0.001 0.1 500 707.11 0.62 39.64 -0.0006 0.0006 0.948
0.0 1.0 0.001 1.0 500 707.11 0.62 39.64 -0.0122 0.0129 0.959
0.0 0.0 0.1 0.1 5 7.00 4.99 7.19 -0.0104 -0.0002 0.949
0.0 0.0 0.1 1.0 5 7.00 4.99 7.19 -0.1040 -0.0002 0.947
0.0 0.5 0.1 0.1 5 7.00 4.99 7.19 0.0406 0.0507 0.709
0.0 0.5 0.1 1.0 5 7.00 4.99 7.19 -0.0523 0.0508 0.997
0.0 1.0 0.1 0.1 5 7.00 4.99 7.19 0.0918 0.1018 0.151
0.0 1.0 0.1 1.0 5 7.00 4.99 7.19 -0.0004 0.1018 0.954
0.0 0.0 0.2 0.1 2.5 3.39 2.50 3.41 -0.0220 -0.0002 0.948
0.0 0.0 0.2 1.0 2.5 3.39 2.50 3.41 -0.2334 -0.0002 0.948
0.0 0.5 0.2 0.1 2.5 3.39 2.50 3.41 0.0873 0.1085 0.190
0.0 0.5 0.2 1.0 2.5 3.39 2.50 3.41 -0.1186 0.1085 1.000
0.0 1.0 0.2 0.1 2.5 3.39 2.50 3.41 0.1968 0.2172 0.000
0.0 1.0 0.2 1.0 2.5 3.39 2.50 3.41 -0.0009 0.2172 0.949

Table 7: Monte Carlo results, 10,000 replications per experiment. Italics indicate bounds or confi-
dence intervals based on invalid relative correlation restrictions (i.e. λ0 /∈ [0, λH ]).
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