
  

20
11/
6  

  
    D
ISA

  W
OR
KI
NG
  PA

PE
R  

  
Inconsistency and non-additive 

Choquet integration in the 
Analytic Hierarchy Process 

 
Silvia Bortot, Ricardo Alberto Marques Pereira   

DISA  
D ipa rtimento  d i  In fo rma tica   
  e   S tud i  Az ie nda li  





20
11/
6  

DI
SA
  W
OR
KI
NG
  PA

PE
R  

  
Inconsistency and non-additive 

Choquet integration in the 
Analytic Hierarchy Process 

 
Silvia Bortot, Ricardo Alberto Marques Pereira   

DISA  
D ipa rtimento  d i  In fo rma tica   
  e   S tud i  Az ie nda li  



DISA Working Papers 
The series of DISA Working Papers is published by the Department of Computer and Management Sciences (Dipartimento di 
Informatica e Studi Aziendali DISA) of the University of Trento, Italy. 
 
Editor  
Ricardo Alberto MARQUES PEREIRA  ricalb.marper@unitn.it 
Managing editor 
Roberto GABRIELE     roberto.gabriele@unitn.it 
Associate editors 
Michele ANDREAUS     michele.andreaus@unitn.it  Financial and management accounting 
Flavio BAZZANA     flavio.bazzana@unitn.it  Finance 
Pier Franco CAMUSSONE   pierfranco.camussone@unitn.it  Management information systems 
Luigi COLAZZO      luigi.colazzo@unitn.it   Computer Science 
Michele FEDRIZZI     michele.fedrizzi@unitn.it   Mathematics 
Andrea FRANCESCONI     andrea.francesconi@unitn.it  Public Management 
Loris GAIO      loris.gaio@unitn.it   Business Economics 
Umberto MARTINI     umberto.martini@unitn.it   Tourism management and marketing 
Pier Luigi NOVI INVERARDI    pierluigi.noviinverardi@unitn.it  Statistics 
Marco ZAMARIAN     marco.zamarian@unitn.it  Organization theory 
 
 
Technical officer 
Mauro MION      mauro.mion@unitn.it 
 
Guidelines for authors 
Papers may be written in English or Italian but authors should provide title, abstract, and keywords in both languages. 
Manuscripts should be submitted (in pdf format) by the corresponding author to the appropriate Associate Editor, who will ask a 
member of DISA for a short written review within two weeks. The revised version of the manuscript, together with the author’s 
response to the reviewer, should again be sent to the Associate Editor for his consideration. Finally the Associate Editor sends 
all the material (original and final version, review and response, plus his own recommendation) to the Editor, who authorizes 
the publication and assigns it a serial number. 
 
The Managing Editor and the Technical Officer ensure that all published papers are uploaded in the international RepEc public-
action database. On the other hand, it is up to the corresponding author to make direct contact with the Depart- mental 
Secretary regarding the offprint order and the research fund which it should refer to. 
 
Ricardo Alberto MARQUES PEREIRA 
Dipartimento di Informatica e Studi Aziendali  
Università degli Studi di Trento 
 Via Inama 5, TN 38122 Trento ITALIA  
Tel +39-0461-282147 Fax +39-0461-282124 E-mail: ricalb.marper@unitn.it 



Inconsistency and non-additive
Choquet integration in the
Analytic Hierarchy Process

Silvia Bortot and Ricardo Alberto Marques Pereira

Dipartimento di Informatica e Studi Aziendali,
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Abstract

We propose to extend the aggregation scheme of Saaty’s AHP, from the stan-
dard weighted averaging to the more general Choquet integration. In our model,
a measure of inconsistency between criteria is derived from the main pairwise
comparison matrix and it is used to construct a non-additive capacity, whose
associated Choquet integral reduces to the standard weighted mean in the con-
sistency case. In the general inconsistency case, however, the new aggregation
scheme based on Choquet integration tends to attenuate (resp. emphasize) the
priority values of the criteria with higher (resp. lower) average inconsistency
with the remaining criteria.

Keywords: Aggregation Functions, Multiple Criteria Analysis, AHP, Inconsis-
tency, non-additive measures, Choquet integral, and Shapley values.

1 Introduction

The Analytic Hierarchy Process (AHP) introduced by Thomas L. Saaty [38,
39, 40, 41] is a well-known multicriteria aggregation model based on pairwise
comparison matrices at two fundamental levels: the lower level encodes pairwise
comparison matrices between alternatives (one such matrix for each criterion),
and the higher level encodes a single pairwise comparison matrix between crite-
ria. In its most general form, the higher level of the AHP can itself be structured
hierarchically, with several layers of criteria, but in this paper we focus on the
single layer case, with a single pairwise comparisons matrix between criteria, as
illustrated in Fig. 1.
The AHP extracts from the pairwise comparison matrix A between criteria,
at the higher level, a vector of priority weights corresponding to the princi-
pal eigenvector, or, alternatively, to the geometric mean vector. The positive
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Figure 1: Hierarchy of the AHP.

components of the priority vector are usually taken normalized to unit sum,

main
n xn

! w = (w1, . . . , wn) priority vector

where wi > 0 is the priority of criterion i, and
∑n

i=1 wi = 1.
Analogously, for each criterion i = 1, . . . , n at the lower level, the model extracts
from the corresponding pairwise comparison matrix Bi between alternatives a
priority vector, whose components are the evaluations of the various alternatives
with respect to that criterion. Again, these priority vectors have positive compo-
nents normalized to unit sum and correspond either to the principal eigenvector
or to the geometric mean vector.
Finally, we associate to each alternative a vector x = (x1, . . . , xn) containing
its evaluations with respect to the n criteria, and we obtain an aggregated
multicriteria evaluation of each alternative using the weighted mean Ww, with
the priority weights derived from the main matrix A,

multicriteria aggregationWw(x) = Ww(x1, . . . , xn) =
n∑

i=1

wixi .

In this paper, in order to determine the priority weights w = (w1, . . . , wn), we
consider only the geometric mean method, because its structural properties are
more suited for our study. Moreover, we focus on the question of inconsistency
and how it can be used to modulate the priority values of the various criteria.
Pairwise comparison matrices are typically inconsistent and in fact consistency
is not required by the AHP. However, it is in many respect useful to estimate
the degree of inconsistency involved in any decision making models which is
based on pairwise comparison matrices.
Many authors have studied the problem of measuring inconsistency from pair-
wise comparison matrices. Saaty [38] proposed a consistency index defined in
terms of the principal eigenvalue, Barzilai [1] proposed the relative error, and in
the literature many other indices of consistency have been proposed, see Chu,
Kalaba, and Springarn [10], Cavallo and D’Apuzzo [6, 7], Pelez and Lamata
[36], Crawford and Williams [12], Stein and Mizzi [47], Shiraishi, Obata, and
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Daigo [43], Shiraishi, Obata, Daigo, and Nakajima [44], Shiraishi and Obata
[45], Fedrizzi [14], Fedrizzi, Fedrizzi, and Marques Pereira [15], Fedrizzi and
Giove [16].
In order to take into account some appropriate measure of inconsistency be-
tween criteria which may be present in the main matrix A in modulating the
weighted averaging scheme of the AHP, it is natural to extend the standard
weighted mean aggregation to the more general framework of Choquet integra-
tion. Comprehensive reviews of Choquet integration con be found in Grabisch
and Labreuche [22, 23, 24], Grabisch, Kojadinovich, and Mayer [21], plus also
Wang and Klir [49], Grabisch, Nguyen and Walker [27], Grabisch, Murofushi
and Sugeno [26]. The Choquet integral is defined with respect to a non-additive
capacity and corresponds to a large class of aggregation functions, including the
classical weighted mean - the additive capacity case - and the ordered weighted
means (OWA) - the symmetric capacity case. General reviews of aggregation
functions can be found in Calvo, Mayor, and Mesiar [5], Beliakov, Pradera, and
Calvo [2], Grabisch, Marichal, Mesiar, and Pap [25].
In the framework of Choquet integration, in order to control the exponential
complexity in the construction of the capacity (2n − 2 real coefficients), Gra-
bisch [19] introduced the so called k-additive capacities, see also Grabisch [20],
and Miranda and Grabisch [34]. The 2-additive case in particular (see Miranda,
Grabisch, and Gil, [35]; Mayag, Grabisch, and Labreuche, [32, 33]) is a good
trade-off between the range of the model and its complexity (only n(n+1)/2 real
coefficients are required to define a 2-additive capacity). The Choquet integral
with respect to a 2-additive capacity is an interesting and effective modelling
tool, see for instance Berrah and Clivillé [3], Clivillé, Berrah, and Maurice [11],
Berrah, Maurice, and Montmain [4].
In this paper we focus on the matrix A and we propose an extension of Saaty’s
AHP based on Choquet integration with respect to a 2-additive capacity. This
capacity is defined on the basis of an appropriate transformation of the totally
inconsistent matrix introduced by Barzilai [1], whose elements are obtained as
the quotient between the corresponding elements of the matrix A and the asso-
ciated consistent matrix C. The aggregation scheme is then redefined in terms
of the Choquet integration associated to such capacity, thereby extending the
usual weighted averaging scheme of Saaty’s AHP. A preliminary version of this
paper was presented in [31]. For any given alternative, the standard AHP aggre-
gated value x = Ww(x1, . . . , xn) is transformed into the new aggregated value
x = Cµ(x1, . . . , xn) An important effect of the new aggregation scheme based on
Choquet integration is that of emphasizing (attenuating) the effective priorities
of those criteria which have a lower (higher) level of average inconsistency with
the remaining ones. This compensatory mechanism that emphasizes some ef-
fective priority values and attenuates others is nicely illustrated by the Shapley
values associated with the capacity. In our model the Shapley values encode
the effective importance weights of the various criteria and, under consistency,
the Shapley values coincide with the original priority weights.
The paper is organized as follows. Section 2 reviews the basic definitions and
results on capacities, particularly in the additive and 2-additive cases, Choquet
integration, and Shapley values. In Section 3, we present our extension of Saaty’s
AHP based on Choquet integration. Some numerical examples are described in
Sections 4 and 5, where we also consider a parametrized version of our model. In
Section 6 we discuss the correspondence between the additive and multiplicative
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approaches to the analysis of pairwise comparison matrices. Finally, Section 7
contain some conclusive remarks.

2 Capacities and Choquet integrals

In this section we present a brief review of the basic facts on Choquet integra-
tion, focusing on the additive and 2-additive cases as described by their Möbius
representations. For recent reviews see [22, 21, 23, 24] for the general case, and
[35, 32, 33] for the 2-additive case.
Consider a finite set of interacting criteria N = {1, 2, . . . , n}. The subsets
S, T ⊆ N are usually called coalitions.

Definition 1. A capacity [9] on the set N is a set function µ : 2N −→ [0, 1]
satisfying

(i) µ(∅) = 0, µ(N) = 1 (boundary conditions)

(ii) S ⊆ T ⊆ N ⇒ µ(S) ≤ µ(T ) (monotonicity).

Capacities are also known as fuzzy measures [46] or non-additive measures [13].
Given two coalitions S, T ⊆ N , with S ∩ T = ∅, the capacity µ is said to be

• additive if µ(S ∪ T ) = µ(S) + µ(T ),

• subadditive if µ(S ∪ T ) < µ(S) + µ(T ),

• superadditive if µ(S ∪ T ) > µ(S) + µ(T ).

If any of these properties holds for all coalitions S, T ⊆ N , the capacity µ is
said to be additive, subadditive, or superadditive, respectively. In the additive
case, in particular, we have µ(N) = µ(

⋃n
i=1 i) =

∑n
i=1 µ(i) = 1.

Definition 2. Let µ be a capacity on N . The Choquet integral [9, 17, 18] of a
vector x = (x1, . . . , xn) ∈ [0, 1]n with respect to µ is defined as

Cµ(x) =
n∑

i=1

[µ(A(i))− µ(A(i+1))]x(i) (1)

where (·) indicates a permutation on N such that x(1) ≤ x(2) ≤ . . . ≤ x(n).
Moreover, A(i) = {(i), . . . , (n)} and A(n+1) = ∅.

In the additive case, since

µ(A(i)) = µ((i)) + µ((i+ 1)) + . . .+ µ((n)) = µ((i)) + µ(A(i+1)) (2)

the Choquet integral reduces to a weighted mean,

Cµ(x) =
n∑

i=1

[µ(A(i))− µ(A(i+1))]x(i) =
n∑

i=1

µ((i))x(i) =
n∑

i=1

µ(i)xi (3)

where the weights are given by wi = µ(i), for i = 1, . . . , n.
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Definition 3. Let µ be a capacity on N . The importance index or Shapley
value [28, 42] of criterion i ∈ N with respect to µ is defined as

φµ(i) =
∑

T⊆N\i

(n− 1− t)!t!

n!
[µ(T ∪ i)− µ(T )] i = 1, . . . , n . (4)

The Shapley value φµ(i) amounts to a weighted average of the marginal contri-
bution of element i with respect to all coalitions T ⊆ N \i and can be interpreted
as an effective importance weight. Moreover, it can be shown [28, 42] that

φµ(i) ∈ [0, 1] ,
∑

i

φµ(i) = 1 i = 1, . . . , n . (5)

In the additive case, in particular, we have that φµ(i) = µ(i), for i = 1, . . . , n.
A capacity µ can be equivalently represented by its Möbius transform mµ [37],
which is defined as

mµ(T ) =
∑

S⊆T

(−1)t−sµ(S) T ⊆ N (6)

where s and t denote the cardinality of the coalitions S and T , respectively.
Conversely, given the Möbius transform mµ, the associated capacity µ is ob-
tained as

µ(T ) =
∑

S⊆T

mµ(S) T ⊆ N . (7)

In the Möbius representation, the boundary conditions take the form

m(∅) = 0
∑

T⊆N

m(T ) = 1 (8)

and the monotonicity condition is expressed as follows [34, 8],

∑

S⊆T

m(S ∪ i) ≥ 0 i = 1, . . . , n T ⊆ N \ i . (9)

This form of monotonicity condition derives from the original monotonicity con-
dition in Definition 1, expressed as µ(T∪i)−µ(T ) ≥ 0 for all i ∈ N and T ⊆ N\i.
According to the decomposition of the capacity µ in Eq. (7), the Shapley values
in Definition 3 can also be expressed in terms of the Möbius transform [19],

φµ(i) =
∑

T⊆N\i

mµ(T ∪ i)

t+ 1
i = 1, . . . , n . (10)

Finally, the Choquet integral in Definition 2 can be expressed in terms of the
Möbius transform in the following way [29],

Cµ(x1, . . . , xn) =
∑

T⊆N

mµ(T ) min
i∈T

(xi) . (11)

Defining a capacity µ on a set N of n elements requires 2n − 2 real coefficients,
corresponding to the capacity values µ(T ) for T ⊆ N . In order to control
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exponential complexity, Grabisch [19] introduced the concept of k-additive ca-
pacities.
A capacity µ is said to be k-additive [19] if its Möbius transform satisfies
mµ(T ) = 0 for all T ⊆ N with t > k, and there exists at least one coali-
tion T ⊆ N with t = k such that mµ(T ) += 0.
In particular, in the 1-additive (or simply additive) case, the decomposition
formula (7) takes the simple form

µ(T ) =
∑

i∈T

mµ(i) T ⊆ N , (12)

and the boundary and monotonicity conditions (8), (9) reduce to

m(∅) = 0
∑

i∈N

m(i) = 1 (13)

m(i) ≥ 0 i = 1, . . . , n T ⊆ N \ i . (14)

Moreover, for additive capacities, the Shapley values in (10) are simply

φµ(i) = mµ(i) i = 1, . . . , n (15)

and the Choquet integral in (11) reduces to

Cµ(x1, . . . , xn) =
∑

i∈N

mµ(i)xi. (16)

In the 2-additive case, the decomposition formula (7) takes the form

µ(T ) =
∑

i∈T

mµ(i) +
∑

{i, j}⊆T

mµ(ij) T ⊆ N , (17)

and the boundary and monotonicity conditions (8), (9) reduce to

m(∅) = 0
∑

i∈N

m(i) +
∑

{i, j}⊆N

m(ij) = 1 (18)

m(i) ≥ 0 m(i) +
∑

j∈T

m(ij) ≥ 0 i = 1, . . . , n T ⊆ N \ i . (19)

Moreover, for 2-additive capacities, the Shapley values in (10) are given by

φµ(i) = mµ(i) +
1

2

∑

j∈N\i

mµ(ij) i = 1, . . . , n (20)

and the Choquet integral in (11) reduces to

Cµ(x1, . . . , xn) =
∑

i∈N

mµ(i)xi +
∑

{i, j}⊆N

mµ(ij) min(xi, xj) . (21)

Other equivalent representations of a capacity µ are the Shapley and Banzhaf
interaction indices [20, 28, 34]. In particular, the Shapley interaction index can
expressed in terms of the Möbius transform in the following way,

Iµ(S) =
∑

T⊆N\S

mµ(T ∪ S)

t+ 1
(22)
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and, for coalitions of small cardinality, we have that (see also Eq. (10))

Iµ(i) =
∑

T⊆N\i

mµ(T ∪ i)

t+ 1
= φµ(i)

Iµ(ij) =
∑

T⊆N\{i,j}

mµ(T ∪ ij)

t+ 1
i, j = 1, . . . , n . (23)

In the additive case, in particular, we have

Iµ(i) = mµ(i) = φµ(i) Iµ(ij) = 0 i, j = 1, . . . , n (24)

and, in the 2-additive case,

Iµ(i) = mµ(i) +
1

2

∑

j∈N\i

mµ(ij) = φµ(i)

Iµ(ij) = mµ(ij) i, j = 1, . . . , n . (25)

Our non-additive model for extending the aggregation scheme of Saaty’s AHP
is based on Choquet integration with respect to a 2-additive capacity µ. The
model is constructed at level of the Möbius transform mµ and the Shapley and
interaction indices Iµ(i) = φµ(i) and Iµ(ij), as in Eq. (25), play a crucial role.
The standard Saaty’s AHP corresponds to the additive case, with no second
order interactions.

3 Extension of Saaty’s AHP

In this section we present an extension of Saaty’s AHP based on Choquet in-
tegration with respect to a 2-additive capacity. On the basis of an appropriate
transformation of the totally inconsistent matrix induced by Barzilai [1], we
define the interaction coefficients of a 2-additive capacity and then we redefine
the aggregation scheme in terms of Choquet integration, thereby extending the
usual weighted averaging scheme of Saaty’s AHP.
Consider a positive reciprocal n× n matrix A = [aij ],

aij > 0 aji = 1/aij i, j = 1, . . . , n (26)

where aij is the relative dominance of criterion i over criterion j, as in the main
pairwise comparison matrix at the higher level in Fig. 1.
In fact all pairwise comparison matrices in Saaty’s AHP are of this form. How-
ever, our model regards only the single pairwise comparison matrix A between
criteria at the higher level of the AHP. This is because the main matrix A is
the one that controls the aggregation process: in Saaty’s AHP, the aggrega-
tion is performed by means of weighted averaging, in which the weights are the
components of the higher level priority vector.

Definition 4. A matrix A = [aij ] is said to be consistent if the following
condition holds,

aij = aikakj i, j, k = 1, . . . , n . (27)
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Otherwise, the matrix A is said to be not consistent, or inconsistent.
Given a general positive reciprocal matrix A, typically inconsistent, we can
define an associated consistent matrix C = [cij ] in the following way, see for
instance Barzilai [1],

cij = wi/wj wi = ui/Σ
n
j=1uj i, j = 1, . . . , n (28)

where ui is the geometric mean of the matrix elements in row i,

ui = n

√
Πn

j=1aij i, j = 1, . . . , n (29)

and the weights wi > 0 are normalized to unit sum, Σn
j=1wi = 1. One can

easily check that the positive reciprocal matrix C defined in this way is in fact
consistent,

cij = wi/wj = (wi/wk)(wk/wj) = cikckj i, j, k = 1, . . . , n . (30)

Proposition 1 A matrix A = [aij ] is consistent if and only if it coincides with
the associated consistent matrix C = [cij ],

A is consistent ⇔ cij = aij i, j = 1, . . . , n . (31)

Proof : If the matrix A is consistent, then

cij = wi/wj = ui/uj = n
√
Πn

k=1aik
/

n
√
Πn

k=1ajk

= n

√
Πn

k=1aik /Π
n
k=1ajk = n

√
Πn

k=1aik/ajk

= n
√
Πn

k=1aikakj =
n
√
Πn

k=1aij = aij (32)

and so the consistent matrix C coincides with the matrix A. An immediate
corollary of this result is that the consistent matrix associated to C is again C
itself. Conversely, if the consistent matrix C coincides with the matrix A, then
the matrix A is clearly consistent. "

Given an element aij of the matrix A, we define the neighborhood U(aij) as the
set of matrix elements in row i and column j,

U(aij) = {aik , akj | k = 1, . . . , n} . (33)

Definition 5. A matrix A is said to be locally consistent at (ij) if, on average,
aij is consistent with the matrix elements in its neighborhood,

aij = n
√
Πn

k=1aikakj i, j = 1, . . . , n . (34)

Given that

n
√
Πn

k=1aikakj =
n
√
Πn

k=1aik
/

n
√
Πn

k=1ajk = ui/uj = cij , (35)

we can simply say that A is locally consistent at (ij) if

aij = cij . (36)
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The local consistency of Definition 5 is a weak form of the (full) consistency
of Definition 4. In fact, according to Proposition 1, the matrix A is (fully)
consistent if and only if it is locally consistent at every (ij), for i, j = 1, . . . , n.
Given a general positive reciprocal matrix A, we now consider the associated
totally inconsistent matrix E = [eij ] introduced by Barzilai [1],

eij = aij/cij i, j = 1, . . . , n (37)

Proposition 2 A matrix A = [aij ] is consistent if and only if every elements
of the associated totally inconsistent matrix E = [eij ] is equal to 1,

A is consistent ⇔ eij = 1 i, j = 1, . . . , n . (38)

Proof : It is a direct consequence of Proposition 1 and Definition (37). "

The general element eij ∈ (0,∞) of the totally inconsistent matrix E associated
with A is a natural local consistency measure of the matrix A at (ij). The more
eij is close to 1, the more A is locally consistent at (ij). On the basis of this
notion, we now wish to define a (0, 1] measure of local consistency by means of
an appropriate transformation of the matrix elements of E.

Definition 6. The scaling function f : (0,∞) → (0, 1] is defined as

f(x) =
2

x+ x−1
for x > 0 . (39)

The scaling function f has the important property

f(x) = f(x−1) for x > 0 (40)

and its graph is shown in Fig. 2. Notice that the scaling function f has a single
critical point at x = 1, where it reaches the maximum value f(1) = 1, and f(x)
tends monotonically to 0 as x moves away from x = 1, towards 0 or infinity.

2 4 6 8

0.2

0.4

0.6

0.8

1

Figure 2: The graph of the scaling function f .

By means of the scaling function f , we can associate a positive symmetric n×n
matrix V = [vij ] to the matrix A = [aij ] in the following way,

vij = f(eij) = f(aij/cij) i, j = 1, . . . , n (41)

with
vij ∈ (0, 1] vij = vji i, j = 1, . . . , n . (42)

9



The fact that the n× n matrix V = [vij ] is symmetric is due to the reciprocity
of the positive matrix A, plus the fact that f(x) = f(x−1) for x > 0,

vji = f(eji) = f(aji/cji) = f(cij/aij) = f(aij/cij) = f(eij) = vij . (43)

Notice that vii = 1 for i = 1, . . . , n and vij = 1 if and only if aij = cij .
Otherwise vij ∈ (0, 1) and the more aij/cij differs from 1 the more vij gets
closer to 0. Therefore, we can consider the element vij as a (0, 1] measure of
local consistency of the matrix A at (ij).
On the basis of the local consistency measure vij , with i = 1, . . . , n, we introduce
the following notation,

vi =
n∑

j=1

vijwj and v =
n∑

i=1

wivi (44)

Accordingly, since

vi =
n∑

j=1

vijwj =
∑

j $=i

vijwj + viiwi =
∑

j $=i

vijwj + wi (45)

and vij ∈ (0, 1], we obtain

wi < vi ≤ 1 i = 1, . . . , n (46)

which means that the value vi corresponding to the average degree of local
consistency between criterion i and the remaining criteria, lies in the interval
(wi, 1], where wi is the standard AHP weight of criterion i, for i = 1, . . . , n.
Moreover, the previous equation leads to

n∑

i=1

wiwi <
n∑

i=1

viwi ≤
n∑

i=1

wi (47)

and thus
n∑

i=1

w2
i < v ≤ 1 . (48)

Given a general positive reciprocal n×nmatrixA = [aij ], typically inconsistent,
we now wish to define a capacity µ : 2N −→ [0, 1] in the following way: with
reference to Eq. (17), in which the 2-additive capacity µ is expressed in terms
of its Möbius transform, we define

µ(T ) =
∑

i∈T

mµ(i) +
∑

{i, j}⊆T

mµ(ij) (49)

with
m(i) = wi/D m(ij) = −wi(1− vij)wj/D (50)

where the normalization factor D is obtained from the boundary condition
µ(N) = 1,

µ(N) =
∑

{i}⊆N

wi/D +
∑

{i,j}⊆N

(−wi(1− vij)wj)/D = 1 (51)
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which leads to

D =
∑

{i}⊆N

wi +
∑

{i,j}⊆N

−wi(1− vij)wj = 1− 1

2

n∑

i,j=1

wi(1− vij)wj

=
1

2
(1 +

n∑

i,j=1

wivijwj) =
1

2
(1 +

n∑

i=1

wivi) =
1

2
(1 + v) . (52)

In particular, for coalitions T ⊆ N of small cardinality, we have

µ(i) = 2wi/(1 + v) i, j = 1, . . . , n

µ(ij) = (2wi + 2wj − 2wi(1− vij)wj)/(1 + v) . (53)

The graph interpretation of this definition, with singletons {i} corresponding to
nodes and pairs {i, j} corresponding to edges between nodes, is the following:
the value of the 2-additive capacity µ on a coalition T is given by the sum of
the nodes and edges contained in the subgraph associated with the coalition T ,
as illustrated in Fig. 3.

µ

m  (jk)

m  (j)µ

m  (k)

m  (ij)µ

m  (ik)µ

m  (i)µ µ

Figure 3: Graph representation of the 2-additive capacity.

Proposition 3 The capacity µ introduced in (49), (50), (52), satisfies the
boundary conditions µ(∅) = 0 and µ(N) = 1, and is strictly monotonic, that
is µ(S) < µ(T ) for S ⊂ T ⊆ N .

Proof : The boundary conditions µ(∅) = 0 and µ(N) = 1 are clearly satisfied,
the latter corresponds to the choice of the normalization factor D in (51), (52).
In order to prove strict monotonicity, it suffices to show that µ(T ∪ i) > µ(T )
for all i ∈ N , T ⊆ N \ i. We begin by noting that

wi−
n∑

j=1

wi(1−vij)wj = wi−wi(1−vi) = wivi > w2
i > 0 i = 1, . . . , n . (54)

Therefore, wi >
∑n

j=1 wi(1− vij)wj , which means that the positive value wi/D
associated to each node of the graph dominates (in absolute value) the sum of
the non positive values −wi(1 − vij)wj/D ≤ 0 associated to the n − 1 edges

11



connecting that node with the other nodes in the graph, as illustrated in Fig.
4. Accordingly,

µ(T ∪ i) = µ(T ) + wi/D −
∑

j∈T

wi(1− vij)wj/D

> µ(T ) + wi/D − wi/D > µ(T ) (55)

which, in turn, implies the general result, i.e., µ(S) < µ(T ) when S ⊂ T . "

Figure 4: Strict monotonicity of the capacity.

Proposition 4 The capacity µ introduced in (49), (50), (52) is subadditive,
that is µ(S ∪ T ) ≤ µ(S) + µ(T ) for S, T ⊆ N and S ∩ T += ∅.

Proof : Consider coalitions S, T ⊆ N with S ∩ T += ∅. In addition to the nodes
and arcs contained separately in coalitions S and T , the expression of µ(S ∪ T )
also contains all the non positive arcs between nodes in S and nodes in T ,

µ(S ∪ T ) = µ(S) + µ(T )−
∑

i∈S, j∈T

wi(1− vij)wj/D ≤ µ(S) + µ(T ) (56)

which proves the result. "

The non-additive capacity introduced in (49), (50), (52) is the basis of our ex-
tension of Saaty’s AHP. In our model, the aggregated priority values of the
alternative with respect to the n criteria are obtained through Choquet integra-
tion with respect to the 2-additive capacity µ. Our model is thus an extension
of Saaty’s AHP, in the sense that our model coincides with the AHP in the case
of consistency (additive capacity), but differs slightly from the AHP in the case
of inconsistency (non-additive capacity). In fact, if the matrix A is consistent
then vij = 1 for all i, j = 1, . . . , n and D = 1. In such case, Eq. (50) implies that
m(i) = wi = µ(i) and m(ij) = 0, which means that the capacity µ is additive,
and, see (12)

µ(T ) =
∑

i∈T

m(i) =
∑

i∈T

wi . (57)

Moreover, the Choquet integral reduces to the standard weighted mean of the
AHP, as in Eq. (16)

Cµ(x) =
n∑

i=1

m(i)xi =
n∑

i=1

wixi . (58)

We now compute the Shapley values in our non-additive model and investigate
how they relate with the traditional weighted averaging scheme of the AHP.

12



Proposition 5 The Shapley values φi, i = 1, . . . , n associated with the capacity
µ introduced in (49), (50), (52), can be expressed as follows,

φi = wi
1 + vi
1 + v

. (59)

Proof : Using the Möbius transform, one can easily compute the Shapley values
φi, i = 1, . . . , n associated with the capacity µ defined above, as in Eq. (20),

φi = mµ(i) +
1

2

∑

j∈N\i

mµ(ij)

= 2wi/(1 + v)− 1

2

∑

j∈N\i

2wi(1− vij)wj/(1 + v)

= 2wi/(1 + v)−
∑

j∈N\i

wi(1− vij)wj/(1 + v) . (60)

The summation can be developed in order to express the Shapley values φi,
i = 1, . . . , n only in terms of wi, vi and v as follows,

φi = 2wi/(1 + v)−
∑

j∈N\i

wi(1− vij)wj/(1 + v)

= 2wi/(1 + v)−
n∑

j=1

wi(1− vij)wj/(1 + v) + wi(1− vii)wi/(1 + v)

= 2wi/(1 + v)−
n∑

j=1

wiwj/(1 + v) +
n∑

j=1

wivijwj/(1 + v)

= 2wi/(1 + v)− wi/(1 + v)) + wivi/(1 + v)

= wi(1 + vi)/(1 + v) . " (61)

In our multicriteria aggregation model the Shapley values encode the effective
importance weights of the various criteria. When the matrix A is consistent, we
have vij = 1 for all i, j = 1, . . . , n and Eq. (60) implies that the Shapley values
are φi = wi. Otherwise, we have φi > wi if vi > v and φi < wi if vi < v. In gen-
eral, the fact that A is inconsistent changes the original distribution of weights,
attenuating the importance values of the more inconsistent criteria (those with
higher average inconsistency) and emphasizing the importance values of the
more consistent criteria.
This fact can also be illustrated by means of the second order Taylor expansion of
the Shapley values φi, around the consistency condition vi = 1 for i = 1, . . . , n.

Proposition 6 The second order Taylor expansion of the Shapley values φi =
wi(1 + vi)/(1 + v), i = 1, . . . , n, around the consistency condition vi = 1 is

φi ≈ wi

(
1 +

1

4
(vi − v)(3− v)

)
i = 1, . . . , n . (62)

Proof : The proof can be found in the Appendix. "

13



Notice that the second order approximation of the Shapley values is still nor-
malized to unit sum, since

∑n
i=1 wi(vi−v) = 0. Moreover, the Taylor expansion

shows clearly that, away from the consistency condition, the fact that vi > v
implies φi > wi and, analogously, vi < v implies φi < wi, in a compensatory
mechanism typical of weighted averaging schemes.

4 Illustrative example

We apply our extension of Saaty’s AHP to an example due to Saaty and Vargas
[41]. The example, sightly adapted and with some numerical modifications in
order to produce simpler priority values and clearer inconsistency effects, is as
follows. A young couple wishes to buy a car. They consider four different
criteria for purchasing the car: dependability, comfort, aesthetics, and cost.
The resulting six independent pairwise comparisons are shared by the couple,
he takes the ones involving cost and she takes the remaining ones. From his
point of view, car aesthetics is important and comfort less so. From her point of
view, the reverse is true. The pairwise comparison matrix between the criteria
given by the couple is:

A =





1 3/2 3/2 1
1 2 1/3

1 4/3
1





Criterion 1: dependability
Criterion 2: comfort
Criterion 3: aesthetics
Criterion 4: cost

(63)

The priority vector of importance weights extracted from this pairwise compar-
ison matrix (using the geometric mean method) is

w = [wi] = (0.3, 0.2, 0.2, 0.3) . (64)

The young couple can choose between three different alternatives: Toyota,
Honda (CVCC), Chevrolet (Citation). There are four pairwise comparison ma-
trices between these alternatives, one for each criterion, see Fig. 5.

Figure 5: Hierarchy for Choosing a Car.

The priority vectors extracted from these four pairwise comparison matrices
(using the geometric mean method) are

Dependability : (0.43, 0.43, 0.14) Comfort : (0.43, 0.14, 0.43)
Aesthetics : (0.63, 0.22, 0.15) Cost : (0.41, 0.33, 0.26)

14



The aggregated priority values of the alternatives (cars) with respect to all the
criteria are obtained through weighted mean Ww(x1, x2, x3, x4) =

∑4
i=1 wixi ,

whose weights are given by the components of the priority vector w = [wi] =
(0.3, 0.2, 0.2, 0.3),

Toyota Ww(0.43, 0.43, 0.63, 0.41) 1 0.46
Honda Ww(0.43, 0.14, 0.22, 0.33) = 0.30
Chevrolet Ww(0.14, 0.43, 0.15, 0.26) 1 0.24

which means that the alternative Toyota is the one chosen by the young couple.
We now wish to illustrate our aggregation model in the context of this example,
focusing in particular on the effect of inconsistency on the Shapley values of the
various criteria.
The consistent matrix C associated with the pairwise comparison matrix A in
Eq. (63) can easily be obtained from the importance weights in Eq. (64) and is
given by

C = [cij = wi/wj ] =





1 3/2 3/2 1
1 1 2/3

1 2/3
1



 (65)

Naturally, it shares with the matrix A the same priority vector w.
It is useful to consider the class of all pairwise comparison matricesA(α1,α2,α3)
which share the same priority vector w. In other words, all pairwise compar-
ison matrices A(α1,α2,α3) which share the same consistent matrix C can be
obtained from C by multiplying it componentwise by the positive reciprocal
matrix 



1 α1 α2 1/α1α2

1 α3 α1/α3

1 α2α3

1



 α1, α2, α3 > 0 (66)

whose line products are all equal to one. The consistent matrix C itself cor-
responds to A(α1 = 1,α2 = 1,α3 = 1) and the original pairwise comparison
matrix A indicated in in Eq. (63) corresponds to A(α1 = 1,α2 = 1,α3 = 2).
These parameter values are still reasonably neutral but the Shapley values as-
sociated with the original pairwise comparison matrix A in Eq. (63) which are
φ1 1 0.31, φ2 1 0.195, φ3 1 0.195, φ4 1 0.30 already show some deviation
from the importance weights w = [wi] indicated in Eq. (64). In this example,
therefore, the inconsistency in the ratings involving comfort and aesthetics has
the effect of emphasizing dependability.
We can however choose the parameter values so as to obtain a more significant
effect on the Shapley values. In the following two examples, we consider the
pairwise comparison matrices associated with different assignments of the pa-
rameters α1, α2, α3 in (66) and we compute the corresponding Shapley values.

Example 1. The first example is α1 = 5, α2 = 1, α3 = 1. In this case we have

A(α1 = 5,α2 = 1,α3 = 1) =





1 15/2 3/2 1/5
1 1 10/3

1 2/3
1



 (67)
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Notice that the matrix A in Eq. (67) is not locally consistent at positions (12),
(14), and (24), because the matrix elements a12, a14, and a24 are different than
the corresponding elements in the consistent matrix C. This means that we are
emphasizing the relative dominance of dependability over comfort, attenuating
the relative dominance of dependability over cost, and emphasizing the relative
dominance of comfort over cost. These changes produce an inconsistent pairwise
comparison matrix but preserve the importance weights w obtained by the
geometric mean method.
If we compute the weighted averages of local consistency measures vij , we obtain

v1 = v4 1 0.69 , v2 1 0.63 , v3 = 1 , v 1 0.74 . (68)

Note that v3 > v, and then we will have φ3 > w3, as explained in the final part
of the previous section. Instead, vi < v for i = 1, 2, 4 and then in those cases
we have φi < wi. In fact, the Shapley values associated with this inconsistent
pairwise comparison matrix are φ1 1 0.29, φ2 1 0.19, φ3 1 0.23, φ4 1 0.29.
Therefore, the overall effect of inconsistency was to emphasize criterion 3 (aes-
thetics) w.r.t. the other three criteria.

Example 2. The second example is α1 = 4, α2 = 1/4, α3 = 4. In this case we
have

A(α1 = 4,α2 = 1/4,α3 = 4) =





1 6 3/8 1
1 4 2/3

1 2/3
1



 (69)

Again, notice that the matrix A in Eq. (69) is not locally consistent at positions
(12), (13), and (23), because the matrix elements a12, a13, and a23 are different
than the corresponding elements in the consistent matrix C. This means that I
am emphasizing the relative dominance of dependability over comfort, attenu-
ating the relative dominance of dependability over aesthetics, and emphasizing
the relative dominance of comfort over aesthetics. Again, these changes pro-
duce an inconsistent pairwise comparison matrix but preserve the importance
weights w obtained by the geometric mean method.
If we compute the weighted averages of local consistency measures vij , we obtain

v1 1 0.79 , v2 = v3 1 0.74 , v4 = 1 , v 1 0.83 . (70)

Note that v4 > v, and then we will have φ4 > w4, as explained in the final part
of the previous section. Instead, vi < v for i = 1, 2, 3 and then in those cases
we have φi < wi. In fact, the Shapley values associated with this inconsistent
pairwise comparison matrix are φ1 1 0.29, φ2 1 0.19, φ3 1 0.19, φ4 1 0.33.
Therefore, this time the overall effect of inconsistency was to emphasize criterion
4 (cost) w.r.t. the other three criteria.

Example 3. Consider again the Example 1 with α1 = 5, α2 = 1, α3 = 1. We
introduce now a new alternative Ford, with scores (0.31, 0.10, 0.66, 0.15) and
we compute the AHP aggregate value of this new alternative with respect to all
the criteria

Ford Ww(0.31, 0.10, 0.66, 0.15) = 0.29
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Now, in the final ranking, the alternative Honda, with AHP aggregate value
0.30, is preferred to the alternative Ford, with AHP aggregate value 0.29,

Honda Ww(0.43, 0.14, 0.22, 0.33) = 0.30
Ford Ww(0.31, 0.10, 0.66, 0.15) = 0.29

where the weighted mean is associated with the weighted vector w = [wi] =
(0.3, 0.2, 0.2, 0.3). Instead if we aggregate using Choquet integration we obtain

Honda Cµ(0.43, 0.14, 0.22, 0.33) 1 0.31
Ford Cµ(0.31, 0.10, 0.66, 0.15) 1 0.32

Now the alternative Ford is preferred to the alternative Honda and therefore the
Choquet integral method may lead to different preferences w.r.t. the standard
weighted average scheme of AHP.

5 The parametrized model

In our model, the definition of scaling function can easily be extended in order
to accommodate a free parameter β ≥ 0. We define the parametrized scaling
function fβ : (0,∞) → (0, 1) as fβ(x) = 2/(xβ + x−β), for x > 0. Clearly, fβ=0

is 1 everywhere. The graphs of the scaling function fβ for β = 2, 4 and β = 1
2 ,

1
4

are shown in Fig. 6. As before, the scaling function fβ has a single critical

2 4 6 8

0.2
0.4
0.6
0.8
1

beta=0.5

2 4 6 8

0.2
0.4
0.6
0.8
1

beta=0.25

2 4 6 8

0.2
0.4
0.6
0.8
1

beta=2

2 4 6 8

0.2
0.4
0.6
0.8
1

beta=4

Figure 6: The graphs of some parametrized the scaling functions fβ .

point at x = 1, where it reaches the maximum value fβ(1) = 1, and fβ(x)
tends monotonically to 0 as x moves away from x = 1, towards 0 or infinity.
Moreover, the scaling function fβ has the important property fβ(x) = fβ(x−1),
for all x > 0.
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The scaling function fβ has two different asymptotic behaviours close to the
origin in relation with the parameter ranges 0 < β < 1 (vertical asymptote at
the origin) and β > 1 (horizontal asymptote at the origin), as can be easily
derived from the expressions below,

fβ(x) =
2xβ

1 + x2β
f ′
β(x) =

2βxβ−1(1− x2β)

(1 + x2β)2
for x > 0 . (71)

Moreover, it is straightforward to show that the consistency measure provided
by the scaling function becomes stricter for increasing values of β. In other
words, as β increases, all the local consistency measures vij(β) decrease, with
the exception of those associated with exact consistency vij = 1. Accordingly,
the inconsistency effects in the context of our model can be attenuated or em-
phasized, relatively to the original case β = 1, by means of appropriate choices of
the parameter β: higher values of the parameter lead to stronger inconsistency
effects.

Example 4. Consider again the Example 1 with α1 = 5, α2 = 1, α3 = 1. The
Shapley values associated with this inconsistent pairwise comparison matrix are
φ = (φ1, φ2, φ3, φ4) 1 (0.29, 0.19, 0.23, 0.29), therefore the overall effect of
inconsistency was to emphasize criterion 3 (aesthetics) w.r.t. the other three
criteria.
Consider now a parametrized scaling function

fβ=4(x) =
2x4

1 + x8
for x > 0 , (72)

in order to further emphasize the effects of inconsistency.
The Shapley values obtained using this parametrized scaling function fβ=4 are
φ β=4 1 (0.285, 0.18, 0.25, 0.285), therefore criterion 3 is further emphasized
w.r.t. the other three criteria.

φβ=1 1 (0.29, 0.19, 0.23, 0.29) φβ=4 1 (0.285, 0.18, 0.25, 0.285) (73)

As in the Example 3 we can introduce the new alternative Ford and, making
use of the parametrized scaling function fβ=4, compute the Choquet aggregate
values of Honda and Ford

Honda Cµ(0.43, 0.14, 0.22, 0.33) 1 0.32
Ford Cµ(0.31, 0.10, 0.66, 0.15) 1 0.33

Again, as in the Example 3, the Choquet aggregate value of the alternative Ford
is bigger than the Choquet aggregate value of the alternative Honda. Hence the
alternative Ford is preferred to the alternative Honda and even in this case
the Choquet integral method leads to different preferences w.r.t. the standard
weighted average scheme of AHP.

Example 5. Consider again the Example 2 with α1 = 4, α2 = 1/4, α3 = 4.
The Shapley values associated with this inconsistent pairwise comparison matrix
are φ = (φ1, φ2, φ3, φ4) 1 (0.29, 0.19, 0.19, 0.33) therefore the overall effect of
inconsistency was, in this case, to emphasize criterion 4 (cost) w.r.t. the other
three criteria.
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Consider in this case the following parametrized scaling function

fβ=2(x) =
2x2

1 + x4
for x > 0 , (74)

in order to further emphasize the effects of inconsistency.
The Shapley values obtained using this parametrized scaling function are φβ=2=
(0.29, 0.18, 0.18, 0.35) therefore criterion 4 is further emphasized w.r.t. the
other three criteria.

φβ=1 1 (0.29, 0.19, 0.19, 0.33) φβ=2 1 (0.29, 0.18, 0.18, 0.35) (75)

6 The case of additive pairwise comparison ma-
trices

In this paper, so far, we have only considered pairwise comparison matrices in
the multiplicative case. We denote by A = [aij ] a general pairwise comparison
matrix and by C = [cij ] and E = [eij ] the consistent and the totally inconsistent
matrices associated to A.
As pointed out by Barzilai [1], pairwise comparison matrices can also be ex-
pressed in the additive case, but there is an isomorphism relating the additive
and multiplicative approaches.
In this section we indicate with A× a general pairwise comparison matrix in
the multiplicative case and we indicate with A+ a general pairwise comparison
matrix in the additive case.
Let A+ = [a+

ij ] be a pairwise comparison matrix in the additive case where

a+

ij = −a+

ji i, j = 1, . . . , n . (76)

Applying componentwise the exponential function to the pairwise comparison
matrixA+ in the additive case, we obtain the corresponding pairwise comparison
matrix A× in the multiplicative case,

ea
+
ij = a×

ij i, j = 1, . . . , n . (77)

As in the multiplicative case, we can associate to the matrix A+ a consistent
matrix C+ = [c+ij ] and a totally inconsistent matrix E+ = [e+

ij ] as follows

c+ij = u+

i − u+

j where u+

i =
1

n

n∑

j=1

a+

ij i, j = 1, . . . , n , (78)

e+

ij = a+

ij − c+ij i, j = 1, . . . , n . (79)

In the multiplicative case the consistent matrix C× = [c×ij ] and the totally
inconsistent matrix E× = [e×

ij ] were defined as, see Eq. (28) and Eq. (37)

c×ij = u×
i /u

×
j where u×

i = n

√
Πn

j=1a
×
ij i, j = 1, . . . , n , (80)

e×
ij = a×

ij/c
×
ij i, j = 1, . . . , n . (81)
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Note that

eu
+
i = e

1
n

∑n
j=1 a+

ij =
n

√
Πn

j=1e
a+
ij = n

√
Πn

j=1a
×
ij = u×

i . (82)

Then, again, applying componentwise the exponential function to the pairwise
comparison matrices C+ and E+ in the additive case, we obtain the correspond-
ing pairwise comparison matrices C× and E× in the multiplicative case,

ec
+
ij = eu

+
i −u+

j = eu
+
i /eu

+
j = u×

i /u
×
j = c×ij (83)

ee
+
ij = ea

+
ij−c+ij = ea

+
ij/ec

+
ij = a×

ij/c
×
ij = e×

ij i, j = 1, . . . , n . (84)

The classical weights wi > 0 of the AHP are obtained as

eu
+
i

∑n
j=1 e

u+
j

= wi =
u×
i∑n

j=1 u
×
j

.

As far as the scaling function is concerned, we want to define f+ and f× such
that f+(x) = f×(ex). Therefore, in analogy to the multiplicative case, f× :
(0,+∞) → (0, 1] as in Eq. (39),

f×(x) =
2

x+ x−1
for x > 0 , (85)

we define f+ : R → (0, 1] in the additive case as

f+(x) =
2

ex + e−x
for x ∈ R , (86)

whose graph is shown in Fig. 7. In fact, we have that

Figure 7: The graph of the scaling function f+.

f+(e+

ij) =
2

ee
+
ij + e−e+ij

=
2

ea
+
ij−c+ij + ec

+
ij−a+

ij

=

=
2

a×
ij/c

×
ij + c×ij/a

×
ij

=
2

e×
ij + (e×

ij)
−1

= f×(e×
ij) .

(87)

As in the multiplicative case, by means of the scaling function f+ we can asso-
ciate the positive symmetric n× n matrix V = [vij ] to the matrix A+ = [a+

ij ] in
the following way,

f+(e+

ij) = vij = f×(e×
ij) i, j = 1, . . . , n . (88)
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7 Concluding remarks

We propose an extension of Saaty’s AHP in which the multicriteria aggregation
scheme is based on Choquet integration with respect to a 2-additive capacity.
This capacity is defined in terms of the inconsistency between criteria which is
present in the main pairwise comparison matrix A, on the basis of an appropri-
ate transformation of the totally inconsistent matrix introduced by Barzilai [1].
The standard AHP is obtained in the particular case of consistency.
An important effect of the new aggregation scheme based on Choquet integra-
tion is well illustrated by the Shapley values associated with the capacity. In
our model, the Shapley values encode the effective importance weights of the
various criteria and, under consistency, the Shapley values coincide with the
original priority weights. In general, the fact that A is inconsistent changes the
original distribution of weights, attenuating the importance values of the more
inconsistent criteria (those with higher average inconsistency) and emphasizing
the importance values of the more consistent criteria.

Appendix A. Second order Taylor expansion of
the Shapley values

In this section we compute the second order Taylor expansion of the Shapley
values

φi(v1, . . . , vn) = wi
1 + vi
1 + v

i = 1, . . . , n (A.1)

around the consistency condition vi = 1, where vi ∈ (0, 1] for i = 1, . . . , n and
v =

∑
i wivi ∈ (0, 1].

Consider the new variables

xi = 1− vi xi ∈ [0, 1) x =
∑

i

wixi = 1− v x ∈ [0, 1) (A.2)

We can then write

φi(v1, . . . , vn) = wiψi(x1, . . . , xn) (A.3)

where

ψi(x1, . . . , xn) =
2− xi

2− x
. (A.4)

The first and the second partial derivatives of ψi(x) with respect to x are

∂jψi(x) =
(−δij)(2− x)− (2− xi)(−wj)

(2− x)2

=
ψiwj − δij

2− x
(A.5)

∂k∂jψi(x) =
(wj ∂kψi)(2− x)− (ψiwj − δij)(−wk)

(2− x)2

=
wj(ψiwk − δik) + wk(ψiwj − δij)

(2− x)2
(A.6)
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Therefore, the second order Taylor expansion of ψi(x) at x = 0 is as follows,

ψi(x) ≈ 1 +
n∑

j=1

(
wj − δij

2

)
xj +

1

2

n∑

j, k=1

(
wj(wk − δik) + wk(wj − δij)

4

)
xjxk

= 1 +
1

2
(x− xi) +

1

8



x2 −
n∑

j=1

wjxjxi + x2 −
n∑

k=1

wkxkxi





= 1 +
1

2
(x− xi) +

1

8

(
2x2 − xxi − xxi

)
= 1 +

1

4
(x− xi)(2 + x) (A.7)

where the symbol ≈ refers to the second order approximation.
Finally, substituting xi = 1 − vi and x = 1 − v and using φi(v) = wiψi(x), we
obtain

φi(v1, . . . , vn) ≈ wi

(
1 +

1

4
(vi − v)(3− v)

)
(A.8)

which corresponds to the second order Taylor expansion of the Shapley values
φi, i = 1, . . . , n around the consistency condition vi = 1 as in equation (62).
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